文档库 最新最全的文档下载
当前位置:文档库 › 传输线的基本理论

传输线的基本理论

射频及传输线基础知识

传输线的基本知识 传输射频信号的线缆泛称传输线,常用的有两种:双线与同轴线。频率更高则会用到微带线与波导,虽然结构不同,用途各异,但其基本传输特性都由传输线公式所表征。 不妨先让我们作一个实验,在一台PNA3620上测一段同轴线的输入阻抗。我们会发现在某个频率上同轴线末端开路时其输入阻抗却呈现短路,而末端短路时入端反而呈现开路。通过这个实验可以得到几个结论或想法:首先,这个现象按低频常规电路经验看是想不通的,因此一段线或一个网络必须在使用频率上用射频仪器进行测试才能反映其真实情况。其二,出现这种现象时同轴线的长度为测试频率下的λ/ 4或其奇数倍;因此传输线的特性通常是与长度的波长数有关,让我们习惯用波长数来描述传输线长度,而不是绝对长度,这样作就更通用更广泛一些。最后,这种现象必须通过传输线公式来计算(或阻抗圆图来查出),熟悉传输线公式或圆图是射频、天馈线工作者的基本功。 传输线公式是由著名的电报方程导出的,在这里不作推导而直接引用其公式。对于一般工程技术人员,只需会利用公式或圆图即可。 这里主要讲无耗传输线,有耗的用得较少,就不多提了。 射频器件(包括天线)的性能是与传输线(也称馈线)有关的,射频器件的匹配过程是在传输线上完成的,可以说射频器件是离不开传输线的。先熟悉传输线是合理的,而电路的东西是比较具体的。即使是天线,作者也尽量将其看成是个射频器件来处理,这种作法符合一般基层工作者的实际水平。 1.1 传输线基本公式 1.电报方程 对于一段均匀传输线,在有关书上可 查到,等效电路如图1-1所示。根据线的 微分参数可列出经典的电报方程,解出的 结果为: V 1= 2 1(V 2+I 2Z 0)e гx + 2 1 (V 2-I 2Z 0)e -гx (1-1) I 1= 21Z (V 2+I 2Z 0)e г x - 21Z (V 2-I 2Z 0)e -г x (1-2) 2 x 为距离或长度,由负载端起算,即负载端的x 为0 2г= α+j β, г为传播系数,α为衰减系数, β为相移系数。无耗时г = j β. 一般情况下常用无耗线来进行分析,这样公式简单一些,也明确一些,或者说理想化一些。而这样作实际上是可行的,真要计算衰减时,再把衰减常数加上。 2 Z 0为传输线的特性阻抗。 2 Z i 为源的输出阻抗(或源内阻),通常假定亦为Z 0;若不是Z 0,其数值仅影响线上电压的幅度大小,并不影响其分布曲线形状。

实验01_传输线理论

实验一:传输线理论 * (Transmission Line Theory) 一. 实验目的: 1.了解基本传输线、微带线的特性。 2.利用实验模组实际测量以了解微带线的特性。 3.利用MICROWAVE软件进行基本传输线和微带线的电路设计和仿真。 二、预习容: 1.熟悉微波课程有关传输线的理论知识。 2.熟悉微波课程有关微带线的理论知识。 项次设备名称数量备注 1 MOTECH RF2000 测量仪1套亦可用网络分析仪 2 微带线模组1组RF2KM1-1A, 3 50Ω BNC 连接线2条CA-1、CA-2 (粉红色) 4 1MΩ BNC 连接线2条CA-3、CA-4(黑色) 5 MICROWAVE软件1套微波电路设计软件 四、理论分析: (一)基本传输线理论 在传输线上传输波的电压、电流信号会是时间及传输距离的函数。一条单位长度传输线的等效电路可由R、L、G、C等四个元件来组成,如图1-1所示。 假设波的传播方向为+Z轴的方向,则由基尔霍夫电压及电流定律可得下列二个传输线方程式: ) ( ) ( ) ( ) ( ) (2 2 2 = + - - -z V LG RC j z V LC RG dz z V d ω ω ) ( ) ( ) ( ) ( ) (2 2 2 = + - - -z I LG RC j z I LC RG dz z I d ω ω 图1-1单位长度传输线的等效电路

此两个方程式的解可写成: z z e V e V z V γγ--++=)( (1-1) ,z z e I e I z I γγ--+-=)((1-2) 其中V +,V -,I +,I - 分别是信号的电压及电流振幅常数,而+、-则分别表示+Z ,-Z 的传输方向。γ则是传输系数(propagation coefficient ),其定义如下: ))((C j G L j R ωωγ ++= (1-3) 而波在z 上任一点的总电压及电流的关系则可由下列方程式表示: I L j R dz dV ?+-=)(ω V C j G dz dI ?+-=)(ω (1-4) 式(1-1)、(1-2)代入式(1-3)可得: C j G I V ωγ +=++ 一般将上式定义为传输线的特性阻抗(Characteristic Impedance )——Z O : C j G L j R C j G I V I V Z O ωωωγ++=+===--++ 当R=G=0时,传输线没有损耗(Lossless or Loss-free )。因此,一般无耗 传输线的传输系数γ及特性阻抗Z O 分别为: LC j j ωβγ== , C L Z O = 此时传输系数为纯虚数。大多数的射频传输线损耗都很小;亦即R<<ωL 且G<<ωC 。所以R 、G 可以忽略不计,此时传输线的传输系数可写成下列公式: βαωγj C G L R LC LC j +=?? ? ??++≈2 (1-5) 式(1-5)中与在无耗传输线中是一样的,而α定义为传输线的衰减常数(Attenuation Constant ),其公式分别为: LC j ωβ=, )(2 1 2o o GZ RY C G L R LC +=??? ??+= α 其中Y 0定义为传输线的特性导纳(Characteristic Adimttance), 其公式为: L C Z Y O O == 1 (二)负载传输线(Terminated Transmission Line )

(完整word版)传输线理论

实验一:传输线理论* (Transmission Line Theory) 一.实验目的: 1.了解基本传输线、微带线的特性。 2.利用实验模组实际测量以了解微带线的特性。 3.利用MICROWA VE软件进行基本传输线和微带线的电路设计和仿真。 二、预习内容: 1.熟悉微波课程有关传输线的理论知识。 2.熟悉微波课程有关微带线的理论知识。 项次设备名称数量备注 1 MOTECH RF2000 测量仪1套亦可用网络分析仪 2 微带线模组1组RF2KM1-1A, 3 50ΩBNC 连接线2条CA-1、CA-2 (粉红色) 4 1MΩBNC 连接线2条CA-3、CA-4(黑色) 5 MICROWA VE软件1套微波电路设计软件 四、理论分析: (一)基本传输线理论 在传输线上传输波的电压、电流信号会是时间及传输距离的函数。一条单位长度传输线的等效电路可由R、L、G、C等四个元件来组成,如图1-1所示。 假设波的传播方向为+Z轴的方向,则由基尔霍夫电压及电流定律可得下列二个传输线方程式: 此两个方程式的解可写成: ) ( ) ( ) ( ) ( ) (2 2 2 = + - - -z V LG RC j z V LC RG dz z V d ω ω ) ( ) ( ) ( ) ( ) (2 2 2 = + - - -z I LG RC j z I LC RG dz z I d ω ω 图1-1单位长度传输线的等效电路

z z e V e V z V γγ--++=)( (1-1) ,z z e I e I z I γγ--+-=)((1-2) 其中V +,V -,I +,I -分别是信号的电压及电流振幅常数,而+、-则分别表示+Z ,-Z 的传输方向。γ则是传输系数(propagation coefficient ),其定义如下: ))((C j G L j R ωωγ++= (1-3) 而波在z 上任一点的总电压及电流的关系则可由下列方程式表示: I L j R dz dV ?+-=)(ω V C j G dz dI ?+-=)(ω (1-4) 式(1-1)、(1-2)代入式(1-3)可得: C j G I V ωγ+=++ 一般将上式定义为传输线的特性阻抗(Characteristic Impedance )——Z O : C j G L j R C j G I V I V Z O ωωωγ++=+===--++ 当R=G=0时,传输线没有损耗(Lossless or Loss-free )。因此,一般无耗传 输线的传输系数γ及特性阻抗Z O 分别为: LC j j ωβγ== , C L Z O = 此时传输系数为纯虚数。大多数的射频传输线损耗都很小;亦即R <<ωL 且G <<ωC 。所以R 、G 可以忽略不计,此时传输线的传输系数可写成下列公式: βαωγj C G L R LC LC j +=?? ? ??++ ≈2 (1-5) 式(1-5)中与在无耗传输线中是一样的,而α定义为传输线的衰减常数(Attenuation Constant ),其公式分别为: LC j ωβ=, )(2 1 2o o GZ RY C G L R LC +=??? ??+= α 其中Y 0定义为传输线的特性导纳(Characteristic Adimttance), 其公式为: L C Z Y O O ==1 (二)负载传输线(Terminated Transmission Line ) (A )无损耗负载传输线(Terminated Lossless Line ) 考虑一段特性阻抗为Zo 的传输线,一端接信号源,另一端则接上负载,如

第三章传输线理论

第三章传输线理论 本章的目的是概述由集总电路向分布电路表示法过度的物理前提。在此过程中,推导出一个最有用的公式:一般的射频传输线结构的空间相关阻抗表示公式。正如我们知道的,频率的提高意味着波长的减小,该结论用于射频电路,就是当波长可与分立的电路元件的几何尺寸相比拟时,电压和电流不再保持空间不变,必须把它们看做是传输的波。因为基尔霍夫电压和电流定律都没有考虑到这些空间的变化,我们必须对普通的集总电路分析进行重大的修改。本章重点介绍传输线理论,首先介绍传输线理论的实质,再介绍常用的几种传输线,其中重点介绍微带传输线,以及一般的传输线方程及阻抗的一般定义公式。 3.1传输线的基本知识 传输微波能量和信号的线路称为微波传输线。本节主要介绍传输线理论的实质以及理论基础 3.1.1传输线理论的实质 传输线理论是分布参数电路理论,它在场分析和基本电路理论之间架起了桥梁。随着工作频率的升高,波长不断减小,当波长可以与电路的几何尺寸相比拟时,传输线上的电压和电流将随着空间位置而变化,使电压和电流呈现波动性,这一点与低频电路完全不同。传输线理论用来分析传输线上电压和电流的分布,以及传输线上阻抗的变化规律。在射频阶段,基尔霍夫定律不再成立,因而必须使用传输线理论取代低频电路理论。 现在举例说明:分析一个简单的电路,该电路由内阻为R1的正弦电压源V1通过1.6cm的铜导线与负载电阻R2组成。电路图如下: 图3.1 简单电路

并且我们假设导线的方向与z轴方向一致,且它们的电阻可以忽略。我们假设振荡器的频率是1MHz,由公式 (3.1) 10m/s, rε=10, rμ=1 因此可以得到波长其中是相速度,=9.49×7 λ=94.86m.连接源和负载的1.6cm长的导线,在如此小的尺度内感受的电压空间变化是不明显的。 但是当频率提高到10GHz时情况就明显的不同了,此时波长降低到λ=p v/10 10=0.949cm,近似为导线长度的2/3,如果沿着1.6cm的导线测量电压,确定信号的相位参考点所在的位置是十分重要的。经过测量得知电压随着相位参考点的不同而发生很大的不同。 现在我们面临着不同的选择,在上图所示的电路中,假设导线的电阻可以忽略,当连接源和负载的导线不存在电压的空间变化时,如低频电路情况,才能有基尔霍夫电压定律进行分析。但是当频率高到必须考虑电压和电流的空间特性时,基尔霍夫电路定律将不能直接用。但是这种情况可以补救,假如该线能再细分为小的线元,在数学上称为无限小长度在该小线元上假定电压和电流保持恒定值。对于每一段小的长度的等效电路为: 图3.2 微带线的等效电路 但是具体到什么时候导线或者分立元件作为传输线处理,这个问题不能用简单的数字还给以确切的回答。从满足基尔霍夫要求的集总电路分析到包含有电压和电流的分布电路理论的过度与波长有关。此过度是在波长变得越来越与电路的平均尺寸可比拟的过程中,逐渐发生。根据一般的科研经验,当分立的电路元件平均尺寸长度大于波长的1/10时,就应该用传输线理论。例如在本例中1.6cm的导线我们能估算出频率为:

传输线理论

实验一:传输线理论 * (Transmission Line Theory ) 一. 实验目的: 1. 了解基本传输线、微带线的特性。 2. 利用实验模组实际测量以了解微带线的特性。 3. 利用MICROWA VE 软件进行基本传输线和微带线的电路设计和仿真。 二、预习内容: 1.熟悉微波课程有关传输线的理论知识。 2.熟悉微波课程有关微带线的理论知识。 四、理论分析: (一)基本传输线理论 在传输线上传输波的电压、电流信号会是时间及传输距离的函数。一条单位长度传输线的等效电路可由R 、L 、G 、C 等四个元件来组成,如图1-1所示。 假设波的传播方向为+Z 轴的方向,则由基尔霍夫电压及电流定律可得下列 二个传输线方程式: 此两个方程式的解可写成: 0)()()()() (22 2=+---z V LG RC j z V LC RG dz z V d ωω0)()()()()(2 2 2=+---z I LG RC j z I LC RG dz z I d ωω 图1-1单位长度传输线的等效电路

z z e V e V z V γγ--++=)( (1-1) ,z z e I e I z I γγ--+-=)((1-2) 其中V +,V -,I +,I - 分别是信号的电压及电流振幅常数,而+、-则分别表示+Z ,-Z 的传输方向。γ则是传输系数(propagation coefficient ),其定义如下: ))((C j G L j R ωωγ++= (1-3) 而波在z 上任一点的总电压及电流的关系则可由下列方程式表示: I L j R dz dV ?+-=)(ω V C j G dz dI ?+-=)(ω (1-4) 式(1-1)、(1-2)代入式(1-3)可得: C j G I V ωγ+=++ 一般将上式定义为传输线的特性阻抗(Characteristic Impedance )——Z O : C j G L j R C j G I V I V Z O ωωωγ++=+===--++ 当R=G=0时,传输线没有损耗(Lossless or Loss-free )。因此,一般无耗传 输线的传输系数γ及特性阻抗Z O 分别为: LC j j ωβγ== , C L Z O = 此时传输系数为纯虚数。大多数的射频传输线损耗都很小;亦即R <<ωL 且G <<ωC 。所以R 、G 可以忽略不计,此时传输线的传输系数可写成下列公式: βαωγj C G L R LC LC j +=?? ? ??++≈2 (1-5) 式(1-5)中与在无耗传输线中是一样的,而α定义为传输线的衰减常数(Attenuation Constant ),其公式分别为: LC j ωβ=, )(2 1 2o o GZ RY C G L R LC +=??? ??+= α 其中Y 0定义为传输线的特性导纳(Characteristic Adimttance), 其公式为: L C Z Y O O ==1 (二)负载传输线(Terminated Transmission Line ) (A )无损耗负载传输线(Terminated Lossless Line ) 考虑一段特性阻抗为Zo 的传输线,一端接信号源,另一端则接上负载,如

传输基础知识

传输基础知识 一、传输基础概述 1、电信网及其分类 电信网就是为公众提供信息服务、完成信息传递与交换的通信网络。电信网所提供的信息服务就就是通常所有的电信业务。 通常把电信网分为业务网、传输网与支撑网。业务网面向公众提供电信业务,传输网为业务网传送信号,支撑网支持业务网与传输网的正常运行,信令网、同步网与管理网并称电信三大支撑网络。 2、传输的概念与地位 通信的目的就就是把信息从一个地点传递到另一个地点,而传输就就是两点之间的桥梁与纽带,传输有单向传输(例如广播)与双向传输(例如通话)之分。如果要在多点间进行通信,则需要建设多点对多点的复杂的传输网络,现代的传输网常称作信息高速公路,为各种业务网提供传送通道。 传输网就是所有业务网的基础,投入大,建设期长,可靠、安全、稳定就是传输网追求的目标,传输网的建设必须以业务需求为导向,在进行科学合理的预测、规划指导下,适当超前建设。在我国,传输网尚未独立运营,通常无直接产出,但除直接服务于相关业务网外,可以通过置换、出租等方式创造利润。 传输网服务于业务网,因此要建设好传输网,需要对服务对象有足够的了解,掌握业务网的各种需求及发展趋势。传输网早期的建设方式通常就是针对于某单一业务网,服务对象比较单一,业务目标清晰,网络比较简单,如:GSM网传输网、PSTN传输网等,不过,为了整合资源、提高网络利用率、节省管理维护成本等,现在的越来越趋向于建设多业务综合传输平台,对规划设计提出了更高的要求。 3、传输网的网络拓扑 传输网由传输节点与节点之间的连接关系组成,通常存在多个节点,传输网内各节点之间的连接关系形成网络拓扑。 传输网的基本网络拓扑形式有5种:线形、星性、树形、环形、网孔形,不过,树形也可以瞧作就是星形互连而成。 传输网的网络拓扑选择一般要考虑下列因素: (1) 网络容量:指网络能够吞吐的通信业务量的总与; (2) 网络可靠性:指网络能够可靠地运行的程度,它跟网络故障的发生概率、影响范围与程度、网络的自愈能力以及网络对不可自愈故障的修复能力等有关;网络故障的发生概率一般取决于设备制造、网络安装与网络管理维护水平,而与网络拓扑关系不大,网络故障的影响则与拓扑有直接关系。网络的自愈能力就是指网络故障发生后,网络所具有的隔离故障、恢复通信业务以及故障修复后的恢复能力。网络对不可自愈故障的修复能力主要取决于网络维修人员的能力; (3) 网络经济性:指构建网络的费用,与所使用的设备及数量、网络的可靠性设计、工程施工费用等有关。 3、1、线形网 线形网就是用一条首尾不相接的线段将各个节点连接起来形成的网络。线形网的路由设置一般分为两种情况:有中心节点与无中心节点,中心节点可位于任一节点,有中心节点的线形网路由设置将物理上的线形网转变成了逻辑上的星形网。线形网一般采用1+1主备保护方式,对传输系统的发送器与接收器提供保护,线形网对线路与节点设备故障起不到保护作用。 线形网通常适用于各节点在地理位置上呈长条状分布的场合。

微带传输线概述解析

《射频电路》课程设计题目:微带传输线概述 系部电子信息工程学院 学科门类工学 专业电子信息工程 学号1108211042 姓名杨越 2012年06月30日

微带传输线概述 摘要 本课程设计主要介绍了微带传输线在实际应用中比较基础且较重要的几个知识点,并没有详细的对微带线的各个参数及特性作细致的说明。例如微带线的近似静态解法、微带线的谱域分析等在本设计中都未曾提及,这与此课程设计的制作人本身的理解能力有着千丝万缕的关系。在后续的微带线设计中,此处所提到准TEM特性、微带线的特性阻抗以及有效介电常数等参数,对于整个微带线系统的确立与实现都有着很重要的关系。例如在设计微带线低通滤波器的时候,当通过低通滤波器原型的电路多次变换计算得到最终的电路时,这时就需要面对将电路图实现微带线的问题,而此时需要的就是特性阻抗的知识。首先,根据特性阻抗值与相对介电常数确定w/h的范围(假设t=0),再由范围选择w/h的具体计算公式,从而求得微带线的宽度。由有效介电常数求出相速度,再求出波导波长,由此可算出微带传输线的长度,等等。 关键词:微带线准TEM特性特性阻抗有效介电常数相速度波导波长

前 言 微带线是(Microstrip Line )是20世纪50年代发展起来的一种微波传输线,是目前混 合微波集成电路(hybird microwave integrated circuit ,缩写为HMIC )和单片微波集成电路(monolithic microwave integrated circuit ,缩写为MMIC )使用最多的一种平面传输线。其优点是体积小、重量轻、频带宽、可集成化;缺点是损耗大,Q 值低,功率容量低。由于微波系统正向小型化和固态化方向发展,因此微带线得到了广泛的应用。 一 微带线的结构 微带线是在金属化厚度为h 的介质基片的一面制作宽度为W 、厚度为t 的导体带,另 一面作接地金属平板而构成的,如图1-1所示。其中,r ε为介质基片的相对介电常数。最 图1-1 微带线 常用的介质基片材料是纯度为99.5%的氧化铝陶瓷(r ε=9.5-10)、聚四氟乙烯环氧树脂如,如图1-2所示。 图1-2 聚四氟乙烯环氧树脂 (r ε=2.55);用作单片微波集成电路的半导体基片材料主要是砷化镓(r ε =13.0),如图1-3 所示。

高频传输线管理知识理论

高頻傳輸線理論(High-Speed Transmission Line Theory) 檢測部

頻寬及信號完整性術語與說明 高頻傳輸線 引言:CPU的速率由50MHz以上升到200MHz以上,連I/O週邊的速率也 由33MHz提升至100MHz以上。原 本扮演「連接傳導」的銅線、銅箔、導 線等變成高頻傳輸線。這些傳線類似天 線,會把流經信號的能量「耦合」或「輻 射」出去,造成電磁串音(訊號線之間的 干擾)及EMI(對外界的干擾)、也有阻抗 匹配的問題等. . . ,以下將就高頻傳輸 線的特性作討論與分析。

基本單位 1. 介電常數(,Dielectric Constant): 介電常數定義為電力線密 度與電場強度的比值(E D = ε),在dielectric material(一般用的塑膠)中,介電常數越小,電容的效應越小,電磁波通過的速率越快,量測的方法如下: Dielectric Constant V V C C o o = = ε 一些常見物質的介電常數: Material Dielectric Constant Air 1 Glass 4-10 Oil 2.3 Paper 2-4

Polyethylene (PE) 2.3 Polystyrene (PS) 2.6 Porcelain 5.7 Teflon 2.1 LCP 3.2 Polyvinyl Chloride (PVC) 3.5~4 SPS 2.9 PCT 2.72~2.87 PPS 3.8~3.9 TPE 2.1~2.3 2. Velocity :電磁波在介質內的傳遞速度取決於介質的介電係數 permittivity,ε)及導磁係數(permeability, )。如下式: εμ 1 V = 在真空中 Where o r εεε= & o r μμμ= 9o 10361 -?= π ε F/m 7o 104-?=πμ H/m 8o o o 1031 V ?== με m/s 可見電磁波在真空中是以光速在前進。假如電磁波在介質中傳播,我們必需知道介質的相對介電係數(r ε)及相對導磁係數(r μ),以推算電磁波在介質內的傳遞速度。 舉例而言,電磁波在SCSI Cable (TPO, r ε= 2.3, r μ =1)內的傳遞速度為

射频电缆概述

射频电缆概述 射频电缆组件的正确选择除了频率范围,驻波比,插入损耗等因素外,还应考虑电缆的机械特性,使用环境和应用要求,另外,成本也是一个永远不变的因素。在本文中,详细讨论了射频电缆的各种指标和性能,了解电缆的性能对于选择一条最佳的射频电缆组件是十分有益的。射频电缆组件的基本选择原则 射频同轴电缆是用于传输射频和微波信号能量的。它是一种分布参数电路,其电长度是物理长度和传输速度的函数,这一点和低频电路有着本质的区别。射频同轴电缆大致可分为半刚和半柔电缆、柔性编织电缆和物理发泡电缆等几大类,不同的应用场合应选择不同类型的电缆。半刚和半柔电缆一般用于设备内部的互联;在测试和测量领域,应采用柔性电缆;发泡电缆常用于基站天馈系统。 半刚性电缆顾名思义,这种电缆不容易被轻易弯曲成型,其外导体是采用铝管或者铜管制成,其射频泄漏非常小(小于-120dB),在系统中造成的信号串扰可以忽略不计。 这种电缆的无源互调特性也是非常理想的。如果要弯曲到某种形状,需要专用的成型机或者手工的模具来完成。如此麻烦的加工工艺换来的是非常稳定的性能,半刚性电缆采用固态的聚四氟乙烯材料作为填充介质,这种材料具有非常稳定

的温度特性,尤其在高温条件下,具有非常良好的相位稳定性。半刚性电缆的成本高于半柔性电缆,大量应用于各种射频和微波系统中。 图1. 半刚性电缆半柔性电缆半柔性电缆是半刚性电缆的替代品,这种电缆的性能指标接近于半刚性电缆,而且可以手工成型。但是其稳定性比半刚性电缆略差些,由于其可以很容易的成型,同样的也容易变形,尤其在长期使用的情况下。图2. 半柔性电缆柔性编织电缆柔性电缆是一种“测试级”的 电缆。相对于半刚性和半柔性的电缆,柔性电缆的成本十分昂贵,这是因为柔性电缆在设计时要顾及的因素更多。柔性电缆要易于多次弯曲而且还能保持性能,这是作为测试电缆的最基本要求。柔软和良好的电指标是一对矛盾,也是导致造价昂贵的主要原因。柔性射频电缆组件的选择要同时考虑各种因素,而这些因素之间有些的相互矛盾的,如单股内导体的同轴电缆比多股的具有更低的插入损耗和弯曲时的幅 度稳定性,但是相位稳定性能就不如后者。所以一条电缆组件的选择,除了频率范围,驻波比,插入损耗等因素外,还应考虑电缆的机械特性,使用环境和应用要求,另外,成本也是一个永远不变的因素。 图3. 柔性编织电缆特性阻抗 射频同轴电缆由内导体,介质,外导体和护套组成,见下图4。“特性阻抗”是射频电缆,接头和射频电缆组件中最常提到

11个基础知识点了解传输线

11个基础知识点了解传输线 1.什么是传输线? 传输线:用来引导传输电磁波能量和信息的装置。 传输线的基本要求:传输损耗小,传输效率高;工作带宽宽等 低频时,使用普通的双导线就可以完成传输;高频时,因工作频率的升高,导线的趋肤效应和辐射效应的增大,使得在高频和高频以上的必须采用完全不同的传输形式。 2.对传输线的要求? 工作带宽和功率容量满足工作频率的最小要求、稳定性好、损耗小、尺寸小和成本低。 实际工作中:米波或分米波采用双导线或同轴线; 厘米波范围内采用空心金属波导管、微带线或带状线等; 毫米波范围采用空心金属波导管、介质波导、介质镜像线或微带线; 光频段波采用波导(光纤); 3.什么是传输线模型? 以TEM导模的方式传送电磁波能量或信号的行系统。 传输线在电路中相当于一个二端口网络,一个端口连接信号源,通常称为输入端,另一个端口连接负载,称为输出端。 特点:横向尺寸<<工作波长 结构:平行双导线 4.为什么要用传输线理论? 工作在高频时,必须要考虑传输距离对信号幅度相位(频域)和波形时延(时域)的影响。它是相对于场理论,简化了的模型。不包括横向(垂直于传输线的截面)场分布的信息,保留了纵向(沿传输线方向)的波动。对于许多微波工程中各种器件,运用传输线理论这种简单的模型可以进行较有效和简洁的计算,帮助分析工程问题。 A.首先要知道两个概念 长线:指传输线的几何尺寸和工作波长的比值≥0.05; 短线:几何长度与工作波长相比可以忽略不计≤0.05。 长线我们用分布参数来分析;短线我们用集总参数分析。

B.与电路理论和场理论的区别:电路理论<传输线理论<场理论 电路理论:基尔霍夫定律+电路元件 计算速度快;可靠度低,应用范围受限 场理论:麦克斯韦方程组+边界条件 逻辑上严谨,计算复杂,计算速度慢 传输线理论:“化场为路” 分布参数电路理论,它在场分析和基本电路理论之间架起了桥梁。从传输线方程出发,求出满足边界条件的电压、电流的波动方程解,得出沿线等效电压、电流表达式分析其特性。 5.传输线理论包括哪些内容? 频率的提高意味着波长的减小,该结论用于射频电路,就是当波长可与分立的电路元件的几何尺寸相比拟时,电压和电流不再保持空间不变,必须把它们看做是传输的波。因为基尔霍夫电压和电流定律都没有考虑到这些空间的变化,我们必须对普通的集总电路分析进行重大的修改。基本内容包括: A.基本方程:电压、电流的变化规律及其相互关系的微分方程。 传输载体对传输信号的影响,分布参数影响到多样的系统设计。 B.分布参数阻抗(传输线理论的实质) 高频时,传输线的各部分都存在有电容、电感、电阻和电导,也就是说,这个时候传输线和阻抗元件融为一体,他们构成的是分布参数电路,即在传输线上有储能、有损耗。当电流流过导线,导线发热,因此表面导线本身有分布电阻(单位长度的电阻用R 1表示)当电流流过导线,形成磁场,因此导线上存在分布电感的效应(单位长度的电感用L 1表示)两导线间有电压,形成电场,因此导线间存在分布电容的效应(单位长度的电感用C 1表示)材料不能完全绝缘,存在漏电流,因此导线间有分布电导(单位长度分布电导用G 1表示) C.无耗工作状态 当R 1=0、G 1=0时 D.有耗工作状态 E.Smith 圆图 F.阻抗匹配 6.传输线的基本性能参数 特性阻抗Z 0:传输线上导行波的电压与电流之比(与工作频率、本身结构和材料有关) 输入阻抗Z in :传输线上任意一点处的电压与电流之比 传输功率P:表征信号输入与输出的指标 反射系数Γ:反射波电压与入射波电压之比(取值范围0≤|Γ|≤1) 驻波比ρ:传输线上电压(或电流)的最大值和最小值之比(取值范围0≤ρ≤∞) 7.传输线分类? A.双导体传输线,又称横电磁波(TEM 波)传输线 由两根或两根以上平行导体构成,主要包括平行双导线、同轴线、带状线等,常用波段米波、分米波、厘米波。

传输线理论(可编辑修改word版)

单位长度 实验一:传输线理论 * (Transmission Line Theory ) 一. 实验目的: 1. 了解基本传输线、微带线的特性。 2. 利用实验模组实际测量以了解微带线的特性。 3. 利用 MICROWAVE 软件进行基本传输线和微带线的电路设计和仿真。 二、预习内容: 1. 熟悉微波课程有关传输线的理论知识。 2. 熟悉微波课程有关微带线的理论知识。 四、理论分析: (一)基本传输线理论 在传输线上传输波的电压、电流信号会是时间及传输距离的函数。一条单位长度传输线的等效电路可由 R 、L 、G 、C 等四个元件来组成,如图 1-1 所示。 图 1-1 单位长度传输线的等效电路 假设波的传播方向为+Z 轴的方向,则由基尔霍夫电压及电流定律可得下列二个传输线方程式: d 2V (z ) - dz 2 d 2 I (z ) - dz 2 (RG -2 LC )V (z ) - (RG -2LC )I (z ) - j (RC + LG )V (z ) = 0 j (RC + LG )I (z ) = 0 此两个方程式的解可写成: 项次 设备名称 数量 备注 1 MOTECH RF2000 测量仪 1 套 亦可用网络分析仪 2 微带线 模组 1 组 RF2KM1-1A, 3 50Ω BNC 连接线 2 条 CA-1、CA-2 (粉红色) 4 1M Ω BNC 连接线 2 条 CA-3、CA-4(黑色) 5 MICROWAVE 软件 1 套 微波电路设计软件

(R + j L )(G + j C ) L C L C + V (z ) = V +e -z + V -e z (1-1) , I (z ) = I +e -z - I -e z (1-2) 其中V +,V -,I +,I -分别是信号的电压及电流振幅常数,而+、-则分别表示+Z ,-Z 的传输方向。γ则是传输系数(propagation coefficient ),其定义如下: = (1-3) 而波在 z 上任一点的总电压及电流的关系则可由下列方程式表示: dV = -(R + dz j L ) ? I dI = -(G + dz j C ) ?V (1-4) 式(1-1)、(1-2)代入式(1-3)可得: V = I + G + j C 一般将上式定义为传输线的特性阻抗(Characteristic Impedance )——Z O : V + V - Z O = I + = I - = G + j C = 当 R=G=0 时,传输线没有损耗(Lossless or Loss-free )。因此,一般无耗传 输线的传输系数γ及特性阻抗 Z O 分别为: = j = j LC , Z O = 此时传输系数为纯虚数。大多数的射频传输线损耗都很小;亦即 R <<ωL 且 G <<ωC。所以 R 、G 可以忽略不计,此时传输线的传输系数可写成下列公式: ≈ j LC + ? R + G ? =+ j ? 2 ? ? (1-5) 式(1-5)中与在无耗传输线中是一样的,而α定义为传输线的衰减常数 (Attenuation Constant ),其公式分别为: = j LC , = ? R + G ? = 1 (RY + GZ ) ? o o 2 ? ? 2 其中 Y 0 定义为传输线的特性导纳(Characteristic Adimttance), 其公式为: Y = 1 = O Z O (二)负载传输线(Terminated Transmission Line ) (A ) 无损耗负载传输线(Terminated Lossless Line ) 考虑一段特性阻抗为 Zo 的传输线,一端接信号源,另一端则接上负载,如 R + j L G + j C L C LC LC C L

10-3 传输线基本理论.

§ 3 传输线基本理论 §3-1. Basic ideas 1、传输线(transmission line):将电磁能量从一处传输到另一处的装置example: two-conductor parallel line,coaxial line 2、长线、短线(long line and short line) 1m的微波同轴线长线? 1m以下, question: 1km的交流输电线长线? 50HZ,6000km, conclution: 长线/短线:相比电磁波长 §3-2. General transmission line equations ( 传输线基本方程 ) 基本思路:建立物理模型——建立数学模型——求解数学模型——解的物理意义(图形)(方程组)(函数表达式)(文字说明) 一、Transmission line equation ( 传输线方程 ): (一)physics 平行双线,同轴线,波导 对象——单位长度的一段均匀传输线方法——电磁学,电工学 一条传输线,由于均匀,只需取其一段研究。 a. 作图并分析电流流过导线,导线会发热 导线本身有电阻,这电阻平均分布在整段导线上。 R0 单位长度传输线上的电阻。 b. 作图并分析电流流过导体,导体周围会激励起磁场。 有电感效应,存在电感,电感均匀分布在整段导线上 L0表示单位长度传输线上的电感 c. 作图导线间绝缘不良可能存在漏电流 存在电导 G0代表单位长度传输线上的电导 d. 作图 说明导线间存在电压导线间存在电容,有电容 C0表示单位长度传输线上的漏电容 (二)math 对象:物理模型(不是直接传输线) 方法:电工学原理 1、简化 图示分析

公共广播布线基础知识概述

公共广播布线基础知识简介 公共广播音响系统涉及面很广,从商场、学校、宾馆、车站、码头、广场到会场、影剧院、体育馆等无不与之有密切关系。 1、在民用建筑工程设计中,广播系统可分为以下几类: (1)面向公众区(商场、车站、码头、商场、餐厅、走廊、教室等)和停车场等的公共广 播系统;这种系统主要用于语音广播,因此清晰度是首要的。而且,这种系统往往平时进行背景音乐广播,在出现灾害或紧急情况时,又可转换为紧急广播。 (2)面向宾馆客房的广播音响系统;这种系统包括客房音响广播和紧急广播,常由设在客房中的床头柜放送,客房广播含有多个可供自由选择的波段,在紧急广播时,客房广播即自动中断,自动切换为紧急广播。 (3)以礼堂、剧场、体育馆为代表的厅堂扩声系统;这是专业性较强的扩声系统,它不仅要考虑电声技术问题,还要涉及建筑声学问题。两者都要统筹兼顾,不可偏废,这类广播系统往往有综合性多用途的要求,不仅可供会场语言扩声使用,还常常用于文艺演出等,对于大型现场演出的音响系统,电功率少则几万,多的达数十万瓦。故要用大功率的扬声器和功率放大器,在系统的配置和器材选用方面有一定的要求,同时应注意电力线路的负荷问题。 (4)面向会议室、报告厅等的广播音响系统;这类系统一般也是设置成公共广播提供的背景音乐和紧急广播两用的系统,但因其特殊性故也常在会议室和报告厅单独设置会议广播系统。对要求较高或国际会议厅,还需另行设计诸如同声传译系统,会议表决系统以及大屏幕投影电视等的专用视听系统。 从上面介绍可知,对于各种大楼、宾馆及其他民用建筑物的广播音响系统基本上可以归纳为三种类型:一是公共广播系统(Public Address system简称PA),这种是有线广播系统,它包括背景音乐和紧急广播功能,通常结合在一起,平时播放背景音乐或其他节目,出现火灾等紧急事故时,转换为报警广播。这种系统中的广播用的话筒与向公众广播的扬声器一般不处同一房间内,故无声反馈的问题,并以定压式传输方式其典型系统;二是厅堂扩声系统,这种系统使用专业音响设备,并要求有大功率的扬声器系统和功放,由于传声器与扩声用的扬声器同处于一个厅堂内,故存在声反馈乃至啸叫的问题,且因其距离较短,所以系统一般采用低阻直接传输方式;三是专卖店用的会议系统,它虽也属扩声系统,但有其特殊要求,如同声传译系统等。 2、公共广播音响系统的组成 不管哪一种广播音响系统,都可以基本分为四个部分:节目源设备、信号的放大和处理设备、传输线路和扬声器系统。 ◆节目源设备:节目源通常为无线电广播,激光唱机和录音卡座等设备提供,此外还有传声器、电子乐器等。 ◆信号放大和处理设备:包括调音台、前置放大器、功率放大器和各种控制器及音响加工

相关文档