文档库 最新最全的文档下载
当前位置:文档库 › 苦参生物碱的研究进展

苦参生物碱的研究进展

苦参生物碱的研究进展

科技论坛

1苦参的概述

苦参是一种常用的中药系豆科槐属植物,苦参的干燥根据文献报导苦参中含有苦参碱(M atrine)和氧化苦参碱(Oxymatrine)等17种化学结构相似生物碱。其中以苦参碱为其最主要的活性成分。

1.1苦参的质量控制研究

目前,苦参药材的质量控制多以药典为标准对其质量进行检测控制,多从其性状特征、显微特征、检查(总灰分、酸不溶灰分)、含量测定进行控制,含量测定采用薄层扫描法测定其苦参碱含量,也可采用定量较准确的高效液相色谱法进行含量控制。

制剂的质量控制研究,目前主要采取测定苦参总碱或总碱中主要代表成分苦参碱、氧化苦参碱的含量作为质量控制标准,主要测

定方法有酸碱滴定法、

薄层比色法、酸性染料结合测定法、双波长薄层扫描法、气相色谱法、高效液相色谱法、盐析容量法等方法。

1.2苦参的化学成分

从苦参中分离经鉴定的化学成分主要有两大类:生物碱类,黄酮类化合物。从苦参根、茎、叶和花中共分离出23种生物碱。苦参生物碱大多数是喹诺里西啶类,极少数为双哌啶类。喹诺里西啶生物碱多数为苦参碱型生物碱,另有三种金雀花碱型,三种无叶豆碱型,一种羽扇豆碱型生物碱。

2苦参生物碱的药理作用研究2.1对肝病的研究

杨文卓[1]观察了氧化苦参碱预防大鼠肝纤维化的疗效并探讨其作用机制,采用半乳糖胺诱导的大鼠肝纤维化模型,观察氧化苦参碱(30mg/kg 、90mg/kg)干预前后肝指数、血及肝组织生化、羟脯氨酸含量、TGF β1mRNA 表达水平、电镜及病理组织学改变。结果氧化苦

参碱预防组较模型组ALT 、

AST 下降,肝组织羟脯氨酸含量及TGF β1表达水平降低(P<0.01);预防组肝组织内SOD 、GSTPX 较模型组升高,而M DA 低于模型组;电镜显示肝细胞损伤减轻,病理组织学明显改善,免疫组化显示预防组desmin 及αSM A 的表达明显低于模型组。

蔡雄[2]报道苦参素注射液治疗慢性乙肝临床疗效,如表1(对照组A2干扰素)。

2.2抗癌作用研究

司维柯[3]报导,K562细胞属于人红白血病细胞株,是骨髓多能干细胞,以苦参作为诱导分化剂,可使K562细胞有分化现象,并向多方向分化,这为临床探索中草药非杀伤性治疗白血病打下了良好基础。

胡振林[4]报道,用小鼠致死性肝炎模型和TNF 体外诱生方法,研究苦参碱对脂多糖诱导的经痤疮丙酸杆菌(PA )预刺激的小鼠产

生TN F 以及致死性肝炎的影响。

结果表明可降低血清TNF 和ALT 水平及小鼠对致死毒性的敏感性,并可在体外抑制诱导的经PA 预刺激的小鼠腹腔巨噬细胞释放TNF 。提示的保肝作用与其抑制TNF 释放有关。

2.3免疫药理研究

冯亚珍[5]报道,采用苦参水煎剂给小鼠ig,观察全身免疫功能的影响。结果表明苦参在小鼠体内对T 细胞、B 细胞和腹腔巨噬细胞的免疫功能活性均有抑制作用。

2.4抗柯萨奇B 病毒主要研究

陈婷婷[6]报道,当苦参总碱浓度在200Lg/m l- 3.125Lg/m l 时,产生明显的抗柯萨奇B 病毒活性,使受感染的Hela 细胞在3HTdR 掺入、M TT 比色、结晶紫染色等指标评价下,加的病毒感

染组明显好于感染对照组,且该保护作用与药物浓度存在剂量依赖关系。

2.5对心肌功能的影响

季勇报道在离体豚鼠工作心脏上,观察苦参碱对心功能的作用。研究表明:0.1, 1.0,10mo l/L ,可浓度依赖性增强心脏的收缩功能,增加冠脉流量,但抑制舒张功能。0.01,0.1,1.0mo l/L ,可浓度依赖性地增加单个乳鼠心肌细胞[Ca 2+]i 浓度。提示的正性肌力作用与其升高[Ca 2+]i 有关。

2.6对中枢神经系统药理研究

耿群美报道药理实验结果表明,苦参碱与氧化苦参碱有类似安定作用,二药对中枢有抑制作用,并与脑中递质C2氨基丁酸和甘氨酸含量增加有关,作用随剂量增加而增加。

胡素玲报道,用100%浓度苦参糖浆,20~25m l,qn.po.治疗28例不同类型精神病人顽固性失眠。其中5例躁狂症和3例高血压性精神病人全部有效,20例精神分裂症病人11例有效。

2.7平喘作用研究

鲍淑娟报道,对大鼠、

豚鼠离体气管、回肠平滑肌在有Ca 2+和无Ca 2+的情况下,苦参碱均有明显地对抗组织胺、乙酰胆碱及氯化钡

兴奋气管平滑肌和肠平滑肌的作用,在无Ca 2+

作用下,这种对抗作用更为明显。

殷金珠的实验研究证明,氧化苦参碱能显著降低细胞膜流动性,提高细胞膜稳定性,影响细胞膜表面IgE 受体移动,从而有效地抑制抗原与特异性IgE 受体结合诱导的肥大细胞脱颗粒释放组织胺,其抑制程度与药物浓度呈正相关。

3结论

对于传统中草药的单体研究,已经成为中草药药理研究的一个发展方向。苦参的化学成份复杂,目前对其作用机理及环节尚未最终阐明,今后应从不同水平探讨其机理,为了更好地开发和利用传统中草药苦参苦豆子等,对其主要活性成分苦参碱类生物碱进行全面系统地研究具有重大意义和远大的市场前景。

参考文献

[1]杨文卓,曾民德,陆伦根,等.氧化苦参碱预防半乳糖胺诱导的大鼠肝纤维化的实验研究[J].肝脏,2002,7(1):2-4.

[2]蔡雄,王国俊,瞿瑶.苦参素注射液治疗慢性乙肝临床疗效分析[J].第二军医大学学报,1996,17(6)∶553.

[3]司维柯,秦建平,蒋纪恺.苦参诱导K562细胞分化的研究[J].中草药,1997,28(5)∶309-310.

[4]胡振林,张俊平,万莫斌.苦参碱对脂多糖?痤疮丙酸杆菌诱导的小鼠肝炎及产生肿瘤坏死因子的影响[J].药学学报,1996,31(9)∶662-663[5]冯亚珍,周蓉,魏新峰.苦参对小鼠免疫功能的抑制作用[J].河南中医,1997,17(5)∶277-278.

[6]陈婷婷,陈曙霞,刘晶星.苦参总碱有效成分对柯萨奇B 病毒感染的Hela 细胞的保护作用[J].中国实验临床免疫学杂志,1997,9(1)∶18-21.

á?????????????èé ???? ?é ????? ? ! ??? "#$? ! ??

苦参生物碱的研究进展

周岚

李贵森

(多多药业有限公司,黑龙江佳木斯154000)

摘要:苦参作为一种清热解毒的中药,一直应用于细菌性痢疾,急性肠胃炎,急性传染性肝炎,小儿肺炎,寄生虫病等的治疗。近年

来,苦参在传统药理研究基础上有了新的进展。在苦参药理研究中苦参生物碱表现了多种明显的活性,主要有抗肝损伤、

抗癌作用研究、免疫药理研究、抗柯萨奇B 病毒作用研究、对心肌功能影响研究、中枢抑制作用研究及平喘作用研究。

关键词:苦参;化学成分;药理作用表1苦参素注射液治疗慢性乙型肝炎疗效

两组疗效比较P >0.05。

51··

现代生物技术研究进展

现代生物技术研究进展 luojuan 摘要:生物技术是21世纪最具有发展前景和活力的学科,世界各国都将生物技术视为一项高新技术,生物技术在相关领域中的应用也成为应用技术研究中的热点。生物技术又叫生物工程,是综合运用生物学、细胞生物学、微生物学、生物化学等基础科学和生化工程等原理和技术而形成的一门综合性的科学技术。 关键词:现代生物技术细胞工程酶工程发酵工程基因工程蛋白质工程研究进展 一、现代生物技术概述[1] 生物技术包括传统生物技术和现代生物技术。传统生物技术主要是自然发酵技术和自然杂交育种技术。现代生物技术是指以现代生物学研究成果为基础,以基因工程为核心的新兴学科。现代生物技术主要包括:细胞工程、酶工程、发酵工程、基因工程、蛋白质工程。 二、细胞工程研究进展[2] 细胞工程的概念及其基本操作细胞工程属于广义的遗传工程,是将一种生物细胞中携带的全套遗传信息的基因或染色体整个导入另一种生物细胞,从而改变细胞的遗传性,创造新的生物类型。它包括细胞融合、细胞重组、染色体工程、细胞器移植、原生质体诱变及细胞和组织培养技术。 近年来,在该领域的研究最引人注目的是细胞融合技术和细胞杂交,并取得一些突破性研究进展。应用细胞融合技术可以培育新型生物物种。可实现种间育种。 1975年英国科学家研制成功了淋巴细胞杂交瘤技术,由此技术获得的单克隆抗体很快应用于临床实践,被称为20世纪80年代的“生物导弹”。目前单克隆抗体技术已用于治疗诊断癌症、艾滋病等多种疑难疾病,及快熟诊断人类、动物和农作物病害等方面,成为细胞工程在医学上最重要的成就之一。 日本秋田生物技术公司和遗传资源开发利用中心联合采用细胞工程的原生质体突变,将“秋田小町”稻育成“新秋田小町”新品种。该稻试种过程中,产量大大提高,取得了明显的经济效益。我国科学家利用细胞工程的原生质体育种在世界上首创了食用菌属间原生质体杂交。这种属间杂交新品种,既有香菇的独特香味和优良品质,又有平菇的高产量、生长周期短、易栽培、抗逆性强等特性。 随着细胞工程技术的不断发展,植物细胞和组织培养这一细胞工程技术也无例外地得到发展,目前已在许多植物上,特别是在农林生产实践中得到了广泛应用。尤其在林木优良品种和无性系的快速繁殖方面进展较快。 细胞工程已成为当代社会经济重要支柱性技术之一。 三、酶工程的研究进展[3] 酶工程就是在一定的生物反应装置中,利用酶的催化功能,将相应的原料转化成有用物质的一门技术。 化学酶工程又称初级酶工程,主要由酶学与化学工程技术相互结合而形成。在开发自然酶制剂方面,大规模生产和应用的商品酶只有数十种,如水解酶、凝乳酶、果胶酶等。在食品工业中的应用主要是淀粉加工,其次是乳品加工、果汁加工、食品烘烤及啤酒发酵;在轻化工业中的应用主要包括洗涤剂制造、毛皮工业、明胶制造、胶原纤维制造、牙膏和化妆品的生产、造纸、废水废物处理和饲料加工等;在能源开发上的应用主要是利用微生物或酶工程技术从生物体中生产燃料,也可利用微生物作为石油勘探、二

苦参的药理活性研究进展

苦参的药理活性研究进展 【关键词】苦参 苦参(Sophoraflavescens Ait)为豆科槐属植物,是我国历史悠久的传统药物之一,其性味苦寒,归心、肝、肾、大肠、膀胱经,具有清热燥湿,祛风杀虫,利尿的功能。用于热痢、便血、黄疸、尿闭、赤白带下、阴痒、湿疹、湿疮、皮 肤搔痒、疥疮麻风、外治滴虫性阴道炎。其主要成分为苦参碱matrine,氧化苦参碱oxymatrine等多种生物碱类成分,苦参醇kurarinol、苦参丁醇kuraridinol 等多种黄酮类成分,另含氨基酸类,挥发油类,糖类,有机酸类,内酯类成分等。近几年,对苦参化学成分和生物活性的研究不断深入,现将国内外对苦参药理活性 的研究现状综述如下。 1 抗肿瘤活性 肿瘤的发生和发展不仅是肿瘤细胞增殖和分化异常所致,而且还是肿瘤细胞异常凋亡的结果。因此,抑制肿瘤细胞增殖,诱导肿瘤细胞分化和凋亡,对临床治疗肿瘤有一定的指导意义。近几年的研究表明,苦参对恶性葡萄胎、绒癌、子宫癌、埃氏腹水瘤和淋巴内癌细胞都有不同程度的抑制和消灭作用,苦参碱对肿瘤细胞具有选择性杀伤作用,还能通过改变细胞核酸的分子序列,抑制肿瘤的生长,而且这种影响是广泛的、多部位的。研究表明,用苦参碱治疗各种晚期癌肿,能减轻症状,延长存活期,且不破坏正常白细胞的产生,甚至能升高白细胞,提高机体抵抗力,这是许多治疗药物难以达到的。对苦参碱在抗肿瘤机制方面的研究 概括起来其抗肿瘤活性主要表现在以下几个方面。 抑制肿瘤细胞增殖苦参碱能有效抑制人肝癌细胞株HepG2的增殖。MTT试验显示,苦参碱对HepG2抑制作用有时间剂量依赖性。随着作用时间 延长和药物浓度的增加,HepG2细胞存活率明显降低,细胞DNA合成亦相应降低。病理学研究表明,苦参碱可抑制肝癌HepG2细胞的增殖,并具有直接杀伤作用。其作用机制是苦参碱抑制部分肿瘤细胞从G期进入S期,从而抑制其增殖。 诱导肿瘤细胞分化和凋亡苦参碱不仅能抑制细胞增殖并促进其 良性分化,还能诱导肿瘤细胞的凋亡。研究表明,苦参碱对K562细胞的分化作用随浓度的增加而增加,一定浓度的苦参碱对K562细胞具有一定的诱导分化效应,这一结果为临床探索中药非杀伤性治疗白血病打下了良好的基础。曾晖等人研究发现,苦参碱具有诱导人胃癌细胞凋亡的作用。/mL苦参碱作用于胃癌细胞株48h,光镜下可见大量的凋亡细胞,随着作用时间的延长,

苦参生物碱的提取分离与鉴定最终版

实验五苦参生物碱的提取分离与鉴定 苦参是豆科槐属植物苦参的干燥根,含有多种生物碱,总碱含量高达约1%,其中以苦参碱、氧化苦参碱含量最高。苦参碱可溶于水、乙醚、三氯甲烷、苯,难溶于石油醚。氧化苦参碱为白色柱状结晶,可溶于水、三氯甲烷、乙醇‘难溶于乙醚、石油醚。现代药理学研究表明,苦参中的生物碱具有消肿利尿、抗肿瘤和抗心律失常的作用。 一、实验目的 本实验通过从苦参中提取苦参生物碱,考察盐酸的浓度和渗漉速度对提取产率的影响 了解化学反应萃取分离在天然药物提取过程中的应用 掌握渗漉法和离子交换提取生物碱的原理、方法与工艺过程,并熟悉用柱层析法分离生物碱。 二、实验内容 (1)苦参总碱的提取。 ①将苦参粗粉用不同浓度的HCl溶液润湿后渗漉,收集渗漉液; ②将收集的渗漉液通过阳离子交换树脂柱,进行离子交换; ③洗脱并回流提取苦参总碱。 (2)分别用柱层析法和溶解度差异法分离氧化苦参碱。 三、实验时间 步骤所需时间/h 渗漉 2 离子交换 2 回流 5 柱层析(或溶解度差异法) 2.5

鉴定0.5 四、实验原理 1.提取与分离方法 利用苦参生物碱具有弱碱性,可与强酸结合成易溶于水的盐的性质,将总碱从药材中提取出来。结合动态连接提取工艺过程,实现生物碱充分溶出。然后,加碱碱化,即可得到苦参生物总碱。以苦参碱为例: 2. 工艺流程

五、实验材料与设备 1. 实验设备与仪器 层析柱,渗漉桶,烧杯,布氏漏斗,医用搪瓷盘,恒温水浴箱,层析槽,索氏提取器,研钵。 2.实验材料与试剂 苦参,强酸性阳离子树脂,层析用氧化铝,三氯甲烷,甲醇,浓氨水,乙醚,碘化铋钾,盐酸,氢氧化钠。 碘-碘化钾试剂,碘化汞钾试剂,碘化铋钾试剂,硅钨酸试剂。 六、实验步骤 1.反应提取步骤 (1)动态连续提取 ①取苦参粗粉200g加一定浓度的盐酸,拌匀,放置30min,使生药膨胀。 ②然后装入渗漉桶中,边加边压,层层加紧,全部装完后,药面压平,盖一层滤纸,滤纸上压一些洗净的玻璃塞。 ③加入一定浓度的HCl溶液经过药面,以4~5mL/min的速度渗漉,收集渗漉液至无明显的生物碱反应为止,收集渗漉液约2500mL。 (2)交换 ①将收集的渗漉液置于阳离子交换树脂进行交换,如交换液有为交换的生物碱时,仍可以继续交换,直至流出液无生物碱反应为止。 ②将树脂倾入烧杯中,用蒸馏水洗涤数次,除去杂质,于布氏漏斗中抽干,倒入唐磁盘中晾干。 (3)总生物碱的洗脱 ①将晾干的树脂,加浓氨水适量,搅匀,使湿润度适宜,树脂充分膨胀,盖好放置20min。 ②装入索氏提取器中,加三氯甲烷300mL在水浴上回流洗脱,提至尽生物碱为止。 ③回收三氯甲烷,得棕色粘稠物。 ④加无水丙酮适量,加热溶解,过滤,减压蒸干。 必要时重复此操作,以脱除粗生物碱中的水,再在无水丙酮中重结晶。2.氧化苦参的分离 (1)柱色谱法取100目色谱用氧化铝50g,用漏斗缓慢加入色谱柱内(1cm ×24cm,干法装柱),取苦参0.2g,加入适量氧化铝,搅匀,研细,装入色谱柱顶端,先用50ml三氯甲烷通过色谱柱,再用三氯甲烷-甲醇(9:1)洗脱,流速

红花的现代研究进展 论文

红花的现代研究进展论文 关键字:成分治疗研究作用抑制活性缺氧红花红花油红花黄色素 作者:杨丽华张敏马春杨戈 【关键词】红花;化学成分;药理研究;临床应用 现代研究表明:红花集药用、食用、染料、油料和饲料于一身。红花油是世界公认的具有食用、保健、美容功用的功能性食用油。红花油在国际上被作为“绿色食品”,其亚油酸含量是所有已知植物中最高的,达80%,号称“亚油酸之王”。并且在医药工业上,红花油常常用作血液胆固醇调整、动脉粥样硬化治疗剂及预防剂的原料。适用于各种类型动脉粥样硬化、高胆固醇、高血压、心肌梗死、心绞痛等,并可用作脂肪肝、肝硬化、肝功能障碍的辅助治疗。红花油还广泛用作抗氧化剂和维生素A、维生素D的稳定剂。红花油酸值低、黏底小、脂肪酸凝点低、油色浅、清亮澄明,可作为药用注射油。红花花冠不但可作为药用,还可提供天然食用的黄色素、红色素,是理想的食品添加剂,还是高档化妆品、纺织品的染色剂,且对人体有抗癌、杀菌、解毒、降压及护肤的功效。饼粕中制得蛋白质浓缩粉和分离物,可作为食物的强化剂。 1 化学成分 目前红花中已分离鉴定的化学成分有60多种〔2〕,其中主要有黄酮类、木脂素类、多炔类等,有药效的成分主要是:黄酮类:包括红花黄色素(saffloryellow,SY,有些文献亦称之为红花总黄素),羟基红花黄色素A(hydroxysaffloryellow A,HSYA)等;脂肪酸:红花中含有棕榈酸、肉豆蔻酸、月桂酸、油酸、亚油酸等不饱和脂肪酸;红花多糖:该成分是由葡萄糖、木糖、阿拉伯糖和中乳糖以β键连接的一种多糖体。1906年日本龟高德平从我国河南产德红花干花中首先分得红色素,含03%~06%;含红花黄色素(SY)查耳酮类化合物为20%~30%〔3〕。为进一步揭示红花药理活性的化学物质基础,开发其活性成分,尹宏斌和郭美丽等对红花进行乙醚和乙酸乙酯提取,并对所得到的化学成分进行了初步分离和纯化,通过波谱分析鉴定出了18个化合物。红花中富含大量的蛋白质、脂肪、膳食纤维、维生素B、维生素E及微量元素铁、锌、铜、磷、硒、钙、钾、钠、铬、钼等,而且还富含多糖和腺苷等物质〔4〕。 2 药理研究及临床应用 2 1 对心功能及血管的影响 小剂量红花煎剂对蟾蜍心脏有轻微兴奋作用,使心跳有力、振幅加大,对心肌缺血有益;大剂量对蟾蜍反而有抑制作用,而扩张体冠动脉及股动脉。此外,还能解除血管平滑肌的痉挛并增强耐缺氧能力,阻止血栓进一步发展并逐步缓解血栓,降低胆固醇的作用。能较好地改善心肌及脑组织的微循环障碍,起到治疗冠心病及脑血栓的效果〔5〕。 2 2 降低血压、血脂的作用

苦参碱类生物碱的现代药理研究

50 投稿热线(010)59195139转12 订阅服务(010)59195153 投稿信箱sydk2007@https://www.wendangku.net/doc/418990284.html, 苦参碱类生物碱是广泛存在于豆科植物苦参、苦豆子和广豆根中的一类喹诺里西啶生物碱的总称。现代研究发现,苦参主要含生物碱和黄酮类化合物,生物碱以苦参碱类生物碱为主,属于喹诺里西啶类生物碱,包括苦参碱、氧化苦参碱、槐花醇、异苦参碱、别苦参碱、14-羟基苦参碱、槐果碱、槐定碱、槐胺碱等。现代药理学研究发现苦参碱类生物碱具有镇痛,强心、抗心律失常,抗病毒,抗炎,抗肿瘤,消肿利尿,免疫抑制,抗菌杀虫等作用。本文就其药理作用的研究现状作构。 一、镇痛作用 苦参碱在镇痛方面有着显著的效果,Junzo Kamei 等研究发现苦参碱主要通过激活κ-阿片受体及部分μ-阿片受体而起作用。而且具有较高的受体选择性,同时没有目前镇痛药物所具有的吗啡样副作用。Junzo Kamei 等通过醋酸诱导的腹部收缩实验证实苦参碱在1~10 mg/kg 的剂量范围内对小鼠的镇痛作用呈现剂量依赖关系。别苦参碱((+)-allomatrine)为苦参碱的C-6立体异构体,其主要通过激活κ-阿片受体而发挥镇痛作用,镇痛作用为苦参碱的三分之一。Kimio higashiyama 等研究发现,苦参碱和别苦参碱通过刺激衰减的脑啡肽样神经元,进而激活脊髓上的κ-阿片受体达到镇痛的效果。具有亲水基团的槐花醇,14β-羟基苦参碱,苦参碱的N 氧化物即氧化苦参碱,以及具有双键的槐果碱,槐胺碱则没有显著的镇痛活性。二、抗炎作用 苦参碱具有非甾体抗炎药的特性。对大鼠后肢由角叉菜胶诱发的炎症和对小鼠腹腔注射冰醋酸诱发的渗出性炎症均有明显的抑制作用,但对大鼠由埋藏棉球诱发肉芽组织增生的慢性炎症影响不明显。同时,作者还认为苦参碱的抗炎作用与垂体—肾上腺系统无关,并推测苦参碱的抗炎作用可能是通过直接作用的方式。鲍淑娟,李淑芳的研究也得出了相似的结论,但在抑制肉芽组织增生方面苦参碱的抑制率为53.5%,略小于氢化可的松的60.0%。苦参碱对由晶状体蛋白诱导的眼部炎症反应,具有明显的抑制作用。苦参碱能抑制磷脂酶(PLA2)的活性、脾细胞的增殖以及TNF、IL-1和IL-6的释放,而这些与苦参碱抗炎作用的产生都是相关的。Hong Cheng 等通过用2,4,6-三硝基苯磺酸诱导的小鼠结肠炎实验发现,苦参碱对其有明显的改善作用,并且其作用机制可能是抑制结肠的TNF-α的表达上调。Ji Yong Liu 等的研究表明苦参碱能够抑制P 物质受体的表达,调节炎症细胞因子产物的产生,因而具有潜在的抑制与P 物质相关的炎症反应的功能。 氧化苦参碱也具有抗炎作用。廖杰等研究发现氧化苦参碱与氢考的松的作用相似,能明显对抗巴豆油、角叉菜(大鼠)和冰醋酸(小鼠)诱发的渗出性炎症,但对大鼠由棉球诱发的慢性炎症无效,并进一步验证了其抗急性炎症与垂体—肾上腺系统无关。氧化苦参碱还可以抑制NH-κB 活化, 降低TNF-α、IL-6和ICAM-1的 生成,从而减轻结肠炎性损伤和腹泻、便血症状。焦霞等研究发现氧化苦参碱对哮喘小鼠有明显的抗气道变应性炎症及抑制IL-4mRNA、ICAM-1 mRNA 表达的作用。 三、抗心律失常 大量实验表明苦参碱类多种生物碱具有显著的抗心律失常作用能较好的对抗由乌头碱、氯仿-肾上腺素诱发的大鼠心律失常,以及氯仿诱发的小鼠心室纤颤。苦参碱、氧化苦参碱临床试用发现对室性早搏及阵发性心动过速效果较好。张宝恒等给大鼠静注氧化苦参碱15,30 mg/kg 显著对抗乌头碱,BaCl 2和结扎冠脉诱发的心律失常。并且苦参碱能使离体结肠段在高K +去极化后,随着Ca 2+剂量的累加而张力逐渐上升。张明发,沈雅琴认为苦参碱型生物碱对心脏具有负性频率、负性自律性和延长有效不应期的作用,因而能产生抗心律失常的作用,其中槐定碱和槐胺碱的抗心律失常活性比较高,而槐果碱比较低。陈瑞丰等通过临床对氧化苦参碱治疗心律失常的观察发现氧化苦参碱对缺血性心肌病疗效显著,对心瓣膜病较差,因此可见氧化苦参碱具有保护缺血心肌,缓解冠脉痉挛以及增加冠脉流量的作用。同时研究表明氧化苦参碱的抗心律失常作用机制是提高心肌舒张期兴奋阈值(DET)和延长有效不应期(ERP)。 在运用氧化苦参碱对冠心病患者治疗时发现氧化苦参碱可以显著提高冠心病心律失常患者心律变异性,对 苦参碱类生物碱的现代药理研究 赵晨光,李逐波 (西南大学药学院,重庆北碚 400716)

苦参现代研究进展

苦参现代研究进展(综述) 苦参为豆科植物苦参( Sophora flavescens Ait . ) 的干燥根。苦参味苦、性寒。归心、肝、胃、大肠、膀胱经。随着分离技术的发展,苦参中的成分在被慢慢的发现中,很多已经明确的有效成分在被不断的研究,已经确定的药理作用也有很多。随着人们的对身体健康的关注度提高、养生保健意识增强,毒副作用小,药效明显的中药越来越受人们的青睐,苦参就是其中一种现在就以现代苦参研究中的化学成分、药理作用、有效成分的提取及质量控制做一综述。 1 化学成分 苦参中化学成分主要有生物碱类、黄酮类、三萜皂苷类以及醌类化合物。除外苦参中还含有多种氨基酸、脂肪酸等成分,但是这些都无明显的药理作用故而研究较少。 1.1生物碱类苦参碱、氧化苦参碱、槐果碱、槐胺碱、槐定碱、N-氧化槐根碱、槐醇碱、N-甲基野定碱等,其中以前五种为目前认为的具有主要药理活性的生物碱[1]。苦参中的生物碱类为最主要的成分,是苦参的重要有效成分,有多种药理作用。《中国药典》(2010版)规定,苦参干燥品中苦参碱、氧化苦参碱的总含量不得低于1%,可见这两种成分在苦参中的重要性。 1.2黄酮类化合物包括:二氢黄酮、黄酮醇、二氢黄酮醇、苦参新醇、苦参查耳酮、苦参醇等。 1.3三萜皂苷类化合物包括:苦参皂苷(Ⅰ、Ⅱ、Ⅲ、Ⅳ)、大豆皂苷等。 1.4醌类化合物包括:苦参醌A等。 2 药理作用 苦参作为一种传统的中药具有清热解毒、燥湿利尿、祛风杀虫等作用。现代研究表明苦参具有杀菌消毒、抗寄生虫、抗心律失常、抗心肌缺氧、抗肿瘤等作用。苦参碱、氧化苦参碱为诸多药理作用的活性成分。 2.1杀菌消毒张顺合等[2]研究发现苦参对细菌繁殖体、病毒、真菌(霉菌)具有消毒作用。

苦参碱Matrine

苦参碱Matrine [编辑本段] 植物来源 :豆科植物苦参Sophora flavescens Ait的干燥根。 英文名称:Matrine [编辑本段] 别名 :母菊碱 [编辑本段] 苦参的生物学基本特性. 中文科名(Family Name):豆科(leguminous plants) 来源品名(Botanical Origin):苦参Sophora japonica (kushen,Sophora flavesc ens Ait.);Lighiyellow Sophora Root;豆科植物苦参Sophora flavescens Ait.的根。 其他来源:山豆根Sophora subprostrata (shandougen),以及Sophora alope curoides地上部分 一般中文名:苦参(Sophora japonica (kushen));sophoraal opecuraidesl;So phora flavescens Ait. 学名:Sophora japonica 英文名:(英)Sophora japonica(kushen),Sophora alopecuroides L.;Radix S ophorae Flavescentis 中文别名:别名苦甘草、苦参草、苦豆根,西豆根,苦平子,野槐根、山槐根、干人参、苦骨。 中文品名:苦参提取物Lighiyellow Sophora Root P.E.:苦参碱(Matrine,C15H2 4N2O)98%HPLC 中文品名:苦参提取物Lighiyellow Sophora Root P.E.:氧化苦参碱(苦参素)(ox ymatrine,C15H24N2O2)98%HPLC [编辑本段] 化学成分: 国外早在30年代初苏联开始研究,国内开始于1972年,国内外研究的重点均放在生物碱上,目前国内自苦参植物中提取、分离、鉴定的生物碱主要有氧化苦参碱(oxymatrine,C15H24N2O2),苦参碱(Matrine,C15H24N2O),异苦参碱(Iosmatrine,C1

中药一 第三章 生物碱总结

生物碱 1.特点——环状结构、氮原子多位于环内、具有碱性,与酸成盐、显著的生理活性 2.分布 (1)双子叶——毛茛科、马钱子科、茄科、豆科、罂粟科、防己科、吴茱萸科、小檗科 (宝马别逗罂粟,防己终于小破) (2)单子叶——石蒜科、百合科、兰科 (3)麻黄生物碱——髓部;黄柏生物碱——树内皮 (4)不用植物生物碱含量差别大;同科同属植物含相同结构类型的生物碱 3.分类 (1)简单吡啶类——槟榔碱、烟碱、胡椒碱 (2)双稠哌啶类(喹诺里西啶)——苦参碱、氧化苦参碱(“苦”大“稠”深) (3)莨菪烷类——莨菪碱、古柯碱 (4)异喹啉类——简单异喹啉类、苄基异喹啉(罂粟碱、汉防己甲/乙素) 原小檗碱(小檗碱、延胡索乙素)、吗啡烷类(吗啡、可待因) (5)吲哚类——简单吲哚类、色胺吲哚类、单萜吲哚类(利血平、士的宁)、双吲哚类(长春碱) (6)有机胺类——麻黄碱、秋水仙碱、益母草碱(氮原子不在环内) 4.性状 (1)多为结晶形固体,少数非结晶性形粉末液体状:烟碱、毒芹碱、槟榔碱等简单吡啶类 具挥发性:烟碱、麻黄碱具升华性:咖啡因具甜味:甜菜碱 小檗碱、蛇根碱呈黄色,药根碱、小檗红碱呈红色显荧光:利血平 (2)旋光性影响因素:手性碳、测定溶剂、pH、温度、浓度 (3)溶解性: ?游离生物碱——亲脂性(多数仲胺碱、叔胺碱)易溶于酸水 亲水性—季胺碱(离子型化合物)、含N-氧化物结构(氧化苦参碱) 小分子生物碱(麻黄碱、烟碱)、酰胺类生物碱(秋水仙碱、咖啡碱) 具有特殊官能团—具有酚羟基(吗啡)或羧基(槟榔次碱)的生物碱(两性生物碱)、 具有内脂或内酰胺结构的生物碱(喜树碱、苦参碱) ?生物碱盐——易溶于水;少数难溶于水(小檗碱盐酸盐、麻黄碱草酸盐) (4)碱性 ?碱性强弱常熟pKa值:pKa越大,碱性越强 ?强碱(pKa>11):胍类、季铵碱中强碱(pKa7-11):脂胺、脂杂环类(SP3) 弱碱(pKa2-7):芳香胺、N-六元芳杂环类(SP2)极弱碱(pKa<2):酰胺、N-五元芳杂环类 ?影响因素:N原子的杂化方式(SP3>SP2>SP)——四氢异喹啉>异喹啉;可待因>罂粟碱 电子云密度(电性效应)——诱导效应:苯异丙胺>麻黄碱>去甲麻黄碱 (供电诱导,碱性增强;吸电诱导,碱性减弱) 共轭效应:苯胺形(环己胺>苯胺)酰胺形(胡椒碱、秋水仙碱、咖啡碱) (共轭效应使碱性减弱) 空间效应——莨菪碱>山莨菪碱>东莨菪碱(多一个6,7位环氧基,使碱性减弱)(空间效应使碱性减弱) 分子内形成氢键(氢键效应)——钩藤碱>异钩藤碱(氢键使碱性增强) (5)沉淀反应 ?沉淀试剂:碘化铋钾—黄色质橘红色碘化汞钾—类白色碘碘化钾—红棕色 硅钨酸—淡黄色或灰白色饱和苦味酸—黄色雷氏铵盐—红色 ?反应条件:酸性水溶液中进行(苦味酸试剂可在中性条件下进行) ?少数生物碱不与一般生物碱沉淀试剂反应:麻黄碱(鉴别反应)、吗啡、咖啡碱(均是仲胺碱) ?一些非生物碱类成分可与沉淀试剂反应:氨基酸、多肽、蛋白质、鞣质

苦参中的化学成分以及药理作用的研究进展

苦参中的化学成分以及药理作用的研究进展 摘要:本文通过对近年来研究关于苦参的化学成分,及其药理作用的文献进行查阅和整理,并对其进行了综述。 关键词:苦参;化学成分;药理作用 Research Process on the Chemical Compounds and Pharmacology of Sophora Flavescens Abstract:This article review and consolidation the literature of research on the chemical composition of sophora, and its pharmacological effects in recent years, then summarise them into a paper. Key words: Sophora; chemical composition; pharmacological effects 前言 苦参是常用中药之一,始载于《神农本草经》,列为中品。别名苦骨、川参、草槐、地槐等。为豆科植物槐属苦参(Sophora flavescens A it.)的干燥根。苦参为落叶半灌木,高 1.5-3m。根圆柱状,外皮黄白色。茎直立,多分枝,具纵沟;幼枝被疏毛,后变无毛。奇数羽状复叶,长20-25cm,互生;小叶15-29片,叶片呈披针形至线状披针形,长3-4cm,宽1.2-2cm,先端渐尖,基部圆,有短柄,全缘,背面密生平贴柔毛;托叶线形。总状花序顶生,长15-20cm,被短毛,苞片线形;萼钟状,扁平,长6-7mm,5浅裂;花冠蝶形,淡黄白色;旗瓣匙形,翼瓣无耳,与龙骨瓣等长;雄蕊10,花丝分离;子房柄被细毛,柱头圆形。荚果线形,先端具长喙,成熟时不开裂,长5-8cm。种子间微缢缩,呈不明显的串珠状,疏生短柔毛,种子3-7颗,为黑色近球形。花期6

生物碱的概述及分类

题目:第九章生物碱(一) 生物碱的概述及分类 教学目的与要求: 要求掌握生物碱的定义、分类及分布 内容与时间分配:(2学时) 一、掌握生物碱的定义和存在形式 二、熟悉生物碱的主要结构类型 三、了解生物碱的生源合成途径及生物合成的基本原理 重点与难点: 重点:生物碱的主要结构类型 难点:生物碱的生源合成途径及生物合成的基本原理 §9 第九章生物碱 §9-1 概述(15分钟) 一、生物碱的含义 二、生物碱的分布 三、生物碱的存在形式 §9-2 生物碱生物合成的基本原理(10分钟) 一、环合反应:一级环合反应、二级环合反应 二、C-N 键的裂解 §9-3 生物碱的分类(65分钟) 一、来源于乌氨酸的生物碱 吡咯类、托品烷类、吡咯里西定类 二、来源于赖氨酸的生物碱 哌定类、吲哚里西定类、喹诺里西定 三、来源于邻氨基苯甲酸的生物碱 喹啉、丫啶酮 四、来源于苯丙氨酸和酪氨酸的生物碱 苯丙胺类、苄基四氢异喹啉、四氢异喹啉、苯乙基四氢异喹啉、苄基苯乙胺类、吐根碱类五、来源于色氨酸的生物碱

简单吲哚类、半萜吲哚类、单萜吲哚类 六、来源于萜类的生物碱 单萜、二萜、三萜类 七、来源于甾体的生物碱 孕甾烷类、环孕甾烷类、胆甾烷类 §9-4 生物碱的理化性质(10分钟) 一、形状 二、旋光性 题目:第九章生物碱(二) 生物碱的理化性质 教学目的与要求: 要求掌握生物碱的溶解性、碱性及沉淀反应 内容与时间分配:(4学时) 一、掌握生物碱的形态、颜色和旋光性及生物碱和生物碱盐的溶解性及其应用,生物碱沉淀反应 二、掌握生物碱的碱性,碱性强弱与生物碱分子结构的关系及其在提取分离中的应用 三、了解生物碱的C-N键的裂解反应机理 重点与难点: 重点:生物碱的溶解性及酸碱性 难点:生物碱的碱性强弱与生物碱分子结构的关系及其应用 三、生物碱的溶解性(60分钟) (一)亲脂性生物碱1、游离生物碱易溶氯仿难溶于水(特例) 2、生物碱盐易溶于水难溶于低级性溶剂(特例) 3、具有酸碱两性的生物碱既可溶于酸、又可溶于碱 4、具有内酯、酰胺结构的生物碱加碱开环加酸环合 5、极弱碱不易与酸成盐 (二)亲水性生物碱1、季胺碱

现代陶瓷研究进展

材料与化工学院 2012级材料科学与工程二班 课程作业:无机非金属材料工艺学学生姓名:刘健 学生学号: 授课老师:

目录 1.传统陶瓷材料------------------------------------------------------------------------------------------------3 2.新型陶瓷材料------------------------------------------------------------------------------------------------3 2.1生物陶瓷材料------------------------------------------------------------------------------------------4 2.1.1生物陶瓷研究背景------------------------------------------------------------------------------4 2.1.2生物陶瓷研究的一些成果---------------------------------------------------------------------4 2.1.3生物陶瓷在国外的研究动态和发展趋势-------------------------------------------------4 2.1.4我国生物陶瓷材料研究设想与展望--------------------------------------------------------5 2.2高温压电陶瓷材料-------------------------------------------------------------------------------------5 2.2.1改性钛酸铅压电陶瓷----------------------------------------------------------------------------5 2.2.2 PZT基多元系压电陶瓷--------------------------------------------------------------------------6 2.3超级亲水易洁陶瓷材料-------------------------------------------------------------------------------6 2.4热障涂层陶瓷材料--------------------------------------------------------------------------------------7 2.4.1几类热障陶瓷涂料研究近况-------------------------------------------------------------------7 2.4.1.1氧化物稳定的ZrO2---------------------------------------------------------------------------7 2.4.1.2焦绿石或萤石结构A2B2O7陶瓷----------------------------------------------------------7 2.4.2需要达到的目标------------------------------------------------------------------------------------8 3.结语----------------------------------------------------------------------------------------------------------------8

苦参化学成分图解

生物碱 (+)-氧化苦参碱(+)-别苦参碱(-)-9α-羟基苦参碱 (+)-oxymatrine (+)-allomatrine (-)-9α-hydroxymatrine (-)-槐果碱(+)-氧化槐果碱(+)-莱蔓碱 (-)-sophocarpine (+)-oxysophocarpine (+)-lehmannine (-)-13,14-去氢槐定碱(-)-9α-羟基槐果碱(+)-12α-羟基槐果碱(-)-13,14-dehydrosophoridine (-)-9α-hydroxysophocarpine (+)-12α-hydroxysophocarpine (-)-臭豆碱苦参色满二氢黄酮A (-)-anagyrine sophoraflavenochromane A 苦参色满二氢黄酮B 苦参色满二氢黄酮C sophoraflavenochromane B sophoraflavenochromane C 苦参色满二氢黄酮D 苦参色满黄酮A sophoraflavenochromane D sophoraflavechromane A

苦参色满黄酮B 苦参色满黄酮C sophoraflavechromane B sophoraflavechromane C 5-去羟山柰素7,4′-二羟基-3′-甲氧基异黄酮Resokaempferol 7,4′-dihydroxyl-3′-methoxylisoflavone 毛蕊异黄酮鹰嘴豆素甲 calycosin biochanin A 大豆素芒柄花素 Daidzein formononetin 大豆皂醇B三萜番石榴酸二乙酯酚性化合物soyasapogenol B piscidic acid diethyl ester

经络穴位之现代研究进展

现代对经络腧穴系统之研究,包含在解剖组织学之探讨,腧穴功能、生物物理特性的研究,腧穴脏腑相关及临床诊断之研究等等。 腧穴形态结构特异性研究 为寻找腧穴在形态上的特殊结构,学者早期由解剖入手,而知道百分之五十的人体穴位其下方有神经通过,而剩下的百分之五十与神经干相差亦不超过0.5厘米],然而并不能解释经络腧穴的特异性。近年来的穴位形态学研究,已从大体解剖方向过渡向穴位的巨微结构形态学,而认为穴位是一个多层次的立体结构,穴位周围的微血管分支、神经分支、淋巴管分支和交通十分丰富,并明显多于非穴位处]。 大部分的穴位都有细小神经分支通过,据统计穴位34.2%位于大神经干上,90%穴位于神经干周围,经组织学观察大多数穴位的神经末梢丰富。约有45.5%的穴位在大血管周围,18.6%穴位在血管上,组织学观察到穴位的小血管和毛细血管网在皮下组织内异常丰富,约占99.6%,而淋巴管分支亦十分丰富。随着科技进步,亦有运用计算器三维重构技术来展示穴位组织结构及其毗邻组织的穴间立体结构]。又从结缔组织的观察中发现,在胆经、肺经、胃经腧穴上,发现到钙元素特别丰富的关系]。 生物物理特异性研究 自二十世纪五○年代初期,日人中谷义雄率先报导良导络等经络皮肤低电阻现象以来,中国学者在对经穴的生物物理特性,做了重大的工作。大量的资料报导,人体经络具“隐性循经感传线”的特色,并普偏存在于百分之九十五以上的人群中,其宽度约一至三毫米,且位置稳定不变,与十四条古典经脉线相吻合。而此亦与“循经低阻线”相一致,宽约一毫米,以及“高振动声传导线”一致。经由这些研究,还发现在经络的横断面上,不同的层次有不同的结构。 (1)皮肤角质层。经络在线角质层变薄,是循经低电阻抗特性的物质基础。 (2)表皮层和真皮层的乳头层。这里感觉神经末梢分布集中,是隐性感传线感觉过敏的原因。 (3)真皮层和皮下结缔组织。神经束和肥大细胞相对集中,可能是发生循经敏感和感传的物质基础。 (4)肌层某些特殊的结缔组织,是产生高振动声的物质结构。 不同的层次,不同的结构,表明经络不是一种单一的线,而是一个立体的三维结构,在其中分布着发生各种生理学和生物物理学特性的物质结构。 经由人体表里经络差异的相关研究又发现,人体对高频信息的导电度比低频的高,高频的电信息在人体内传送时,能量的耗损会比较低,所以能够传很远信息的能力还相当强;愈往高频区看,发现经络和非经络的导电度差异也有愈小的趋势]。 近年来的研究工作表明,穴位的低阻抗性可能并非普偏存在,而人体的电阻特性亦非线性]。同

苦参

苦参 【性味与功效】 味苦,性寒。功效:清热燥湿,祛风解毒。 【传统应用】 主治湿热之痢疾、黄疸、赤白带下、阴疮湿瘁、皮肤癣疹瘙痒、恶疮、瘰疬等病症。 苦参、丹参、蛇床子,治疗一切疥及风瘙痒成疮; 【药理作用】 (一)抗病原体 本品煎剂对结核杆菌和皮肤真菌有抑制作用。体外试验有抗滴虫功效。对多种病毒、细菌有显著的抑制作用。 (二)细胞毒 苦参生物碱具有丝裂霉素样的细胞毒作用,能抑制细胞合成周期S期,对癌细胞、正常细胞均有抑制作用,是一抗癌药和免疫抑制药。 (三)苦参有利尿作用 【临床应用】 1.治疗细菌性痢疾、急性肠炎,也能用于溃疡性结肠炎之大便脓血。 2.治疗慢性炎、滴虫性炎和真菌性炎。 3.治疗各种肝炎,包括急性黄疸型肝炎、慢性乙型肝炎、免疫性肝炎。 4.治疗多种免疫病,如红斑狼疮、慢性肾炎、白塞病、皮肌炎等及其出现的蛋白尿、红斑、皮疹、溃疡、肌酶升高等。 5.治疗皮肤过敏的红斑、皮疹、瘙痒。 6.治疗各种恶性肿瘤。

【临床体会】 (一)治疗自身免疫病 苦参一药,我们临床较多用于治疗自身免疫病、过敏性疾病引起的皮疹、红斑,皮肤、口腔、阴部溃疡,眼炎,血管炎,蛋白尿、转氨酶、肌酶、球蛋白升高,淋巴结肿大等,是一味重要的免疫抑制药。其药力和副作用比环磷酰胺、氨甲蝶呤等免疫抑制药要弱。 治疗皮疹、红斑、瘙痒与生地、地肤子、白鲜皮等同用。治疗血管炎、蛋白尿与生地、丹皮、接骨木、落得打等同用。治疗白塞病,眼炎,口腔、阴部溃疡与徐长卿、土茯苓、焦决明等同用。 (二)治疗各种肿瘤 苦参有细胞毒作用,能抑制细胞增殖,可用于各种肿瘤,如肠癌、肺癌、肾癌、前列腺癌、皮肤癌、宫颈癌、恶性淋巴瘤、白血病等,是一味重要的抗癌中草药,可与七叶一枝花、南星、半夏等同用。其抗癌的作用机制类似丝裂霉素,但药力和副作用远远不如丝裂霉素。 (三)治疗大便脓血 大便脓血症状可由感染性、免疫性、恶性三种不同性质的疾病所引起,其治疗方法有相同之处,也有不同之处。 1.感染性疾病苦参是治疗痢疾的传统用药,对细菌性痢疾和阿米巴痢疾都有疗效。中医辨证为湿热积滞,清除肠道湿热的中药很多,以黄连、黄柏、大黄、白头翁、秦皮为最佳,并且以清化湿热、通因通用的方法治疗为主。对白头翁汤效果产生耐药的,才用苦参治疗,以加强其药力。 苦参也用于治疗真菌,与蛇床子等同用,以外洗为好。 2.免疫性疾病慢性溃疡性结肠炎和克隆病常有大便脓血之症,是自身免疫病。中医

现代表面改性技术的国内外最新研究进展

J I A N G S U U N I V E R S I T Y 现代表面改性技术的国内外最新研 究进展 学院名称: 专业班级: 姓名、学号: 指导教师: 时间:

摘要:金属材料表面改性技术是一门新兴的技术,主要包括激光表面改性、离子注入法、物理气相沉积法和热喷涂等,简述了该4种技术的研究和发展现状,对各种技术的原理和应用状况分别加以描述,最后总结了材料表面改性技术的发展前景。 关键词:激光表面改性离子注入物理气相沉积。 工业技术的发展使得制造工业产品所需的材料品种日益繁多,为了适应高强度、高硬度、耐磨、耐高温、耐腐蚀等不同要求,通常采用各种表面处理技术对普通金属材料表面进行加工,使其适用各种复杂的工作环境。金属材料表面改性技术很多,除传统的热处理、电镀堆焊外,还包括激光表面改性、离子注入法、物理气相沉积法和热喷涂等。 随着现代工业的发展, 对机械产品零件表面的性能要求越来越高。对其研究已经成为材料科学研究的一个重要领域。表面改性研究的重要性在于在不改变原材料基本性能的基础上采用各种技术改善或提高材料的表面性能, 金属材料表 面改性可以提高零件的寿命、减少磨损, 提高经济效益。铜合金具有很高的导电、导热性能及良好的塑性; 电极电位是正值, 具有很好的耐蚀性能; 铜合金还是优良的耐磨材料, 这些特点是其它材料所不能同时具有的。铜合金在机械、电子等各行各业的广泛应用, 特别是在耐磨、耐热、耐蚀零件中。如要求表面高性能的铜材零部件有连铸结晶器, 氧枪喷头, 高炉风口, 滑块, 轴承等, 高炉风口是典 型的耐磨耐热零部件, 通过表面改性, 不仅保持其传导性而且达到表面高硬度、高耐磨性等使用要求。目前, 铜合金的表面改性技术主要有: 热处理多元共渗、表面渗硫、等离子喷涂以及铸渗法等。 1 激光表面改性 由于激光特有的优良属性, 自从20世纪中期激光器的研制成功以来, 激光已被广泛应用于科学技术研究和工业生产。激光表面改性是激光在表面技术领域中的新的应用, 虽然在激光应用领域中只占大约15%的比重, 但由于激光表面处理同其他表面处理技术相比具有很多独特的优点, 如激光熔化后形成的组织, 化学均匀性很高, 而且晶粒非常细小, 因而强化了合金,使耐磨性大大提高; 由于热输入小, 工件变形小, 对基体产生的热影响很小等等。因此在表面处理领域内, 针对激光表面改性的研究和开发活动相当活跃。根据采用的不同的激光能量密度和不同的处理方式, 激光表面改性技术中比较典型的方法有几种: 激光熔覆、激光表面熔凝、激光相变硬化、激光冲击强化、激光表面合金化等。这些方法的目的都是为了使工作面获得基材无法达到或代价太大的高硬度、高耐磨性以及高耐腐蚀性等性能, 从而实现既节约了成本, 又满足工作要求的目的。本文综述了激光表面改性技术的研究和应用状况, 展望了激光表面改性技术的发展趋势。 1.1 激光相变硬化 在各种激光表面改性的方法中激光相变硬化是当前研究最多的, 进展最快 的一种表面改性方法。激光相变硬化又称激光淬火, 就是利用激光将金属材料加热到相变点以上, 金属熔化以前, 依靠金属自身冷却达到淬火的目的。激光相变

苦参提取工艺

1.1溶剂提取法苦参碱的溶剂提取法,常用水、酸水及乙醇等 作为提取溶媒,提取方法多为浸渍、渗滚、煎煮、回流等经典方法。孔令明等川从酸水回流提取、乙醇回流提取两大苦参总碱方法 的对比中发现,乙醇回流法在保证较高的苦参碱得率的情况下, 出膏率相对较低,综合比较发现,乙醇回流法对苦参总碱的提取 效果较好,是一种目前较为合适的苦参总碱溶剂提取方法。其最 佳工艺参数为:采用筛分目数20一60目的苦参粉,以60%的乙 醇溶液,料液比为1:2,回流提取2次。谭桂莲[a]分别对水煎法、 乙醇回流法和渗滤法提取氧化苦参碱工艺进行优选研究,结果表明,渗滤法所得浸提物中,氧化苦参碱含量明显高于水煎法和乙 醇回流法,故认为渗滤法为氧化苦参碱的最佳提取方法。选择浸 泡时间、乙醇浓度、溶剂用量、流速4个因素,每因素3水平,用 肠(34)正交表进行实验设计,以氧化苦参碱的含量为考核指标。 结果分析:根据各因素的影响来看,其影响大小顺序是乙醇浓度 >溶剂用量>浸泡时间>流速。因此,可推断最佳工艺为加ro 倍量65%乙醇,浸泡24h渗滤,流速为5ml/mino 表面活性剂有降低表面张力及增溶作用。在提取剂中加人 表面活性剂,一方面相互聚集形成胶束,从而增加了提取剂对药 材的浸提能力;另一方面可降低提取剂与药材间的界面张力,促 进润湿,在胶束作用下有效成分易被解吸、提取。应用表面活性 剂于苦参碱的提取,一般选用毒性相对较小,对皮肤刺激性较低 的非离子型表面活性剂吐温类。鲁传华等[3l以多种浓度的乙 醇、稀盐酸溶液、胶束分散系及水为提取溶剂,常温浸渍法提取苦参中苦参碱,考察表面活性剂吐温80的水及醇溶液正向胶束体 系提取苦参碱的效率。结果表明,含有表面活性剂的提取剂能更 快地达到最大提取量,提高生产率。李晓梅[’J在提取溶剂(水或 乙醇)中分别加人0.2%吐温20或吐温80提取苦参碱,以苦参 碱含量为考核指标,考察非离子型表面活性剂在苦参碱提取中的 实际应用价值。结果表明,在苦参碱提取中应用吐温20和吐温80,可以降低药材与溶剂之间的表面张力,增加药材中细胞渗透 性,使溶剂最大限度地溶解或增溶药材中有效成分,显著增加苦 参碱提取率,降低成本,提高经济效益。 1.2离子交换法利用生物碱盐通过强酸型阳离子交换树脂柱, 使生物碱盐阳离子交换在树脂上,而非生物碱化合物则流出柱 外,将交换后的树脂晾干,用氨水碱化,氯仿提取的原理。高拴平 等图研究了离子交换法提取分离苦参碱的工艺过程,技术路线 是:苦参粉、甲醇回流提取。回收溶剂*粗提物、稀硫酸溶解* 脱脂一水层*除揉一上201型阳离子交换树脂一碱化树脂一抓 仿提取*回收溶剂叶脱水一丙酮一苦参碱结晶。采用上述提取 分离方法,苦参碱的产率高,结晶质量好。张存莉等[.]采用不同 浓度的乙醇和阳离子交换树脂对苦参碱进行提取和纯化,并对不 同的苦参碱纯化工艺进行比较和研究。结果表明,用60%的乙 醇进行提取和用阳离子交换树脂进行纯化的工艺过程,生物碱收 率较高,生产成本较低,工序较为简单,适宜工业化生产。

相关文档