文档库 最新最全的文档下载
当前位置:文档库 › 马尔可夫模型在语言处理中的应用

马尔可夫模型在语言处理中的应用

马尔可夫模型在语言处理中的应用
马尔可夫模型在语言处理中的应用

马尔可夫模型在语言处理中的应用隐含马尔可夫模型是一个数学模型,到目前为之,它一直被认为是实现快速精确的语音识别系统的最成功的方法。复杂的语音识别问题通过隐含马尔可夫模型能非常简单地被表述、解决,让我不由由衷地感叹数学模型之妙。隐含马尔可夫模型是一个数学模型,到目前为之,它一直被认为是实现快速精确的语音识别系统的最成功的方法。复杂的语音识别问题通过隐含马尔可夫模型能非常简单地被表述、解决,让我不由由衷地感叹数学模型之妙。

自然语言是人类交流信息的工具。很多自然语言处理问题都可以等同于通信系统中的解码问题-- 一个人根据接收到的信息,去猜测发话人要表达的意思。这其实就象通信中,我们根据接收端收到的信号去分析、理解、还原发送端传送过来的信息。以下该图就表示了一个典型的通信系统:

其中s1,s2,s3...表示信息源发出的信号。o1, o2, o3 ... 是接受器接收到的信号。通信中的解码就是根据接收到的信号o1, o2, o3 ...还原出发送的信号s1,s2,s3...。

其实我们平时在说话时,脑子就是一个信息源。我们的喉咙(声带),空气,就是如电线和光缆般的信道。听众耳朵的就是接收端,而听到的声音就是传送过来的信号。根据声学信号来推测说话者的意思,就是语音识别。这样说来,如果接收端是一台计算机而不是人的话,那么计算机要做的就是语音的自动识别。同样,在计算机中,如果我们要根据接收到的英语信息,推测说话者的汉语意思,就是机器翻译;如果我们要根据带有拼写错误的语句推测说话者想表达的正确意思,那就是自动纠错。

那么怎么根据接收到的信息来推测说话者想表达的意思呢?我们可以利用叫做“隐含马尔可夫模型”(Hidden Markov Model)来解决这些问题。以语音识别为例,当我们观测到语音信号o1,o2,o3 时,我们要根据这组信号推测出发送的句子s1,s2,s3。显然,我们应该在所有可能的句子中找最有可能性的一个。用数学语言来描述,就是在已知o1,o2,o3,...的情况下,求使得条件概率:

P (s1,s2,s3,...|o1,o2,o3....) 达到最大值的那个句子s1,s2,s3,...

当然,上面的概率不容易直接求出,于是我们可以间接地计算它。利用贝叶斯公式并且省掉一个常数项,可以把上述公式等价变换成:

P(o1,o2,o3,...|s1,s2,s3....) * P(s1,s2,s3,...)

其中P(o1,o2,o3,...|s1,s2,s3....) 表示某句话s1,s2,s3...被读成o1,o2,o3,...的可能性, 而P(s1,s2,s3,...) 表示字串s1,s2,s3,...本身能够成为一个合乎情理的句子的可能性,所以这个公式的意义是用发送信号为s1,s2,s3...这个数列的可能性乘以s1,s2,s3...本身可以一个句子的

可能性,得出概率。

我们在这里做两个假设:

第一,s1,s2,s3,... 是一个马尔可夫链,也就是说,si 只由si-1 决定(详见系列一);

第二,第i 时刻的接收信号oi 只由发送信号si 决定(又称为独立输出假设, 即P(o1,o2,o3,...|s1,s2,s3....) = P(o1|s1) * P(o2|s2)*P(o3|s3)...。

那么我们就可以很容易利用算法Viterbi找出上面式子的最大值,进而找出要识别的句子s1,s2,s3,...。

满足上述两个假设的模型就叫隐含马尔可夫模型。我们之所以用“隐含”这个词,是因为状态s1,s2,s3,...是无法直接观测到的。

隐含马尔可夫模型的应用远不只在语音识别中。在上面的公式中,如果我们把s1,s2,s3,...当成中文,把o1,o2,o3,...当成对应的英文,那么我们就能利用这个模型解决机器翻译问题;如果我们把o1,o2,o3,...当成扫描文字得到的图像特征,就能利用这个模型解决印刷体和手写体的识别。

P (o1,o2,o3,...|s1,s2,s3....) 根据应用的不同而又不同的名称,在语音识别中它被称为“声学模型” (Acoustic Model),在机器翻译中是“翻译模型” (Translation Model) 而在拼写校正中是“纠错模型” (Correction Model)。而P (s1,s2,s3,...) 就是我们在系列一中提到的语言模型。

在利用隐含马尔可夫模型解决语言处理问题前,先要进行模型的训练。常用的训练方法由伯姆(Baum)在60年代提出的,并以他的名字命名。隐含马尔可夫模型在处理语言问题早期的成功应用是语音识别。七十年代,当时IBM 的贾里尼克和卡内基·梅隆大学的Jim and Janet Baker分别独立地提出用隐含马尔可夫模型来识别语音,语音识别的错误率相比人工智能和模式匹配等方法降低了三倍(从30% 到10%)。八十年代李开复博士坚持采用隐含马尔可夫模型的框架,成功地开发了世界上第一个大词汇量连续语音识别系统Sphinx。

语音识别的核心思想就是隐含马尔可夫模型, 复杂的语音识别问题居然能如此简单地被表述、解决,我由衷地感叹数学模型之妙。

隐马尔可夫模型

引言

隐马尔可夫模型(Hidden Markov Model,HMM)作为一种统计分析模型,创立于20世纪70年代。80年代得到了传播和发展,成为信号处理的一个重要方向,现已成功地用于语音识别,行为识别,文字识别以及故障诊断等领域。

基本理论

隐马尔可夫模型是马尔可夫链的一种,它的状态不能直接观察到,但能通过观测向量序列观察到,每个观测向量都是通过某些概率密度分布表现为各种状态,每一个观测向量是由一个具有响应概率密度分布的状态序列产生。所以,隐马尔可夫模型是一个双重随机过程----具有一定状态数的隐马尔可夫链和显示随机函数集。自20世纪

80年代以来,HMM被应用于语音识别,取得重大成功。到了90年代,HMM还被引入计算机文字识别和移动通信核心技术“多用户的检测”。近年来,HMM在生物信息科学、故障诊断等领域也开始得到应用。

模型的表达

隐马尔可夫模型可以用五个元素来描述:

1.N,模型的隐状态数目。虽然这些状态是隐含的,但在许多实际应用中,模型的状态通常有具体的物理意义

2.M,每个状态的不同观测值的数目。

3,A ,状态转移概率矩阵。描述了HMM模型中各个状态之间的转移概率。其中

Aij = P(at+1 =Sj | qt=Si),1≤i,j≤N. (1)

式(1)表示在t时刻、状态为Si的条件下,在t+1时刻状态是Sj的概率。

4 B ,观测概率矩阵。其中

Bj(k) = P[Vk(t) | qt = Sj]; 1≤j≤N,1≤k≤M.

表示在t时刻、状态是Sj条件下,观察符号为Vk(t)的概率。

5,π 初始状态概率矩阵π={πj} πj= P[q1 = Sj];1≤j≤N.

表示在出示t=1时刻状态为Sj的概率。

一般的,可以用λ=(A,B,π)来简洁的表示一个隐马尔可夫模型。给定了N,M,A,B,π后,隐马尔可夫模型可以产生一个观测序列O=O1O2O3…Ot

HMM需要解决三个基本问题:

*1 评估问题:

给定观测序列O=O1O2O3…Ot和模型参数λ=(A,B,π),怎样有效计算某一观测序列的概率.

*2 解码问题

给定观测序列O=O1O2O3…Ot和模型参数λ=(A,B,π),怎样寻找某种意义上最优的隐状态序列.

*3 学习问题

怎样调整模型参数λ=(A,B,π),使观测序列O=O1O2O3…Ot的概率最大?

基本算法

针对以上三个问题,人们提出了相应的算法

*1 评估问题:向前向后算法

*2 解码问题:Viterbi算法

*3 学习问题:Baum-Welch算法

5最标准全面的马尔可夫模型例题(以中天会计事务所为例)

中天会计事务所马尔可夫模型例题一、问题分析 中天会计事务所由于公司业务日益繁忙,常造成公司事务工作应接不暇,解决该公司出现的这种问题的有效办法是要实施人力资源的供给预测技术。根据对该公司材料的深入分析,可采用马尔可夫模型这一供给预测方法对该事务所的人力资源状况进行预测。 马尔可夫分析法是一种统计方法,其方法的基本思想是:找出过去人力资源变动的规律,用以来推测未来人力变动的趋势。马尔可夫分析法适用于外在环境变化不大的情况下,如果外在环境变化较大的时候这种方法则难以用过去的经验情况预测未来。马尔可夫分析法的分析过程通常是分几个时期来收集数据,然后在得出平均值,利用这些数据代表每一种职位的人员变动频率,就可以推测出人员的变动情况。 二、项目策划 (一)第一步是编制人员变动概率矩阵表。 根据公司提供的内部资料:公司的各职位人员如下表1所示。 表1:各职位人员表 职位代号人数 合伙人P 40 经理M 80 高级会计师S 120 会计员 A 160 制作一个人员变动概率矩阵表,表中的每一个元素表示从一个时期到另一个时期(如从某一年到下一年)在两个工作之间调动的雇员数量的历年平均百分比(以小数表示)。(注:一般以3—5年为周期来估计年平均百分比。周期越长,根据过去人员变动所推测的未来人员变动就越准确。) 表2:历年平均百分比人员变动概率矩阵表 职位合伙人 P 经理M 高级会计师S 会计员A 职位年度离职升为 合伙 人 离职升为经 理 降为 会计 员 离职升为高级 会计师 离职 2005 0.20 0.08 0.13 0.07 0.05 0.11 0.12 0.11 2006 0.23 0.07 0.27 0.05 0.08 0.12 0.15 0.29 2007 0.17 0.13 0.20 0.08 0.03 0.10 0.17 0.20 2008 0.21 0.12 0.21 0.03 0.07 0.09 0.13 0.19 2009 0.19 0.10 0.19 0.02 0.02 0.08 0.18 0.21 平均0.20 0.10 0.20 0.05 0.05 0.10 0.15 0.20

马尔可夫链模型

马尔可夫链模型 马尔可夫链模型(Markov Chain Model) 目录 [隐藏] ? 1 马尔可夫链模型概述 ? 2 马尔可夫链模型的性质 ? 3 离散状态空间中的马尔可夫链 模型 ? 4 马尔可夫链模型的应用 o 4.1 科学中的应用 o 4.2 人力资源中的应用 ? 5 马尔可夫模型案例分析[1] o 5.1 马尔可夫模型的建 立 o 5.2 马尔可夫模型的应 用 ? 6 参考文献 [编辑] 马尔可夫链模型概述 马尔可夫链因安德烈·马尔可夫(Andrey Markov,1856-1922)得名,是数学中具有马尔可夫性质的离散时间随机过程。该过程中,在给定当前知识或信息的情况下,过去(即当期以前的历史状态)对于预测将来(即当期以后的未来状态)是无关的。 时间和状态都是离散的马尔可夫过程称为马尔可夫链, 简记为。 马尔可夫链是随机变量的一个数列。这些变量的范围,即他们所有可能 取值的集合,被称为“状态空间”,而Xn的值则是在时间n的状态。如果Xn + 1对于过去状态的条件概率分布仅是Xn的一个函数,则 这里x为过程中的某个状态。上面这个恒等式可以被看作是马尔可夫性质。

马尔可夫在1906年首先做出了这类过程。而将此一般化到可数无限状态空间是由柯尔莫果洛夫在1936年给出的。 马尔可夫链与布朗运动以及遍历假说这两个二十世纪初期物理学重要课题是相联系的,但马尔可夫寻求的似乎不仅于数学动机,名义上是对于纵属事件大数法则的扩张。 马尔可夫链是满足下面两个假设的一种随机过程: 1、t+l时刻系统状态的概率分布只与t时刻的状态有关,与t时刻以前的状态无关; 2、从t时刻到t+l时刻的状态转移与t的值无关。一个马尔可夫链模型可表示为=(S,P,Q),其中各元的含义如下: 1)S是系统所有可能的状态所组成的非空的状态集,有时也称之为系统的状态空间,它可以是有限的、可列的集合或任意非空集。本文中假定S是可数集(即有限或可列)。用小写字母i,j(或S i,S j)等来表示状态。 2)是系统的状态转移概率矩阵,其中P ij表示系统在时刻t处于状态i,在下一时刻t+l处于状态i的概率,N是系统所有可能的状态的个数。对于任意i∈s,有 。 3)是系统的初始概率分布,q i是系统在初始时刻处于状态i的概率, 满足。 [编辑] 马尔可夫链模型的性质 马尔可夫链是由一个条件分布来表示的 P(X n + 1 | X n) 这被称为是随机过程中的“转移概率”。这有时也被称作是“一步转移概率”。二、三,以及更多步的转移概率可以导自一步转移概率和马尔可夫性质:

隐马尔可夫模型及其应用

小论文写作: 隐马尔可夫模型及其应用 学院:数学与统计学院专业:信息与计算科学学生:卢富毓学号:20101910072 内容摘要:隐马尔可夫模型是序列数据处理和统计学习的重要概率模型,已经成功被应用到多工程任务中。本小论文首先从隐马尔可夫模型基本理论和模型的表达式出发,进一步阐述了隐马尔可夫模型的应用。 HMM 隐马尔可夫模型(Hidden Markov Model,HMM)作为一种统计分析模型,创立于20世纪70年代。80 年代得到了传播和发展,成为信号处理的一个重要方向,现已成功地用于语音识别,行为识别,文字识别以及故障诊断等领域。 隐马尔可夫模型状态变迁图(例子如下) x—隐含状态 y—可观察的输出 a—转换概率(transition probabilities) b—输出概率(output probabilities) 隐马尔可夫模型它用来描述一个含有隐含未知参数的马尔可夫过程。其难点是从可观察的参数中确定该过程的隐含参数。然后利用这些参数来作进一步的分析,例如模式识别。 在正常的马尔可夫模型中,状态对于观察者来说是直接可见的。这样状态的转换概率便是全部的参数。而在隐马尔可夫模型中,状态并不是直接可见的,但受状态影响的某些变量则是可见的。每一个状态在可能输出的符号上都有一概率分布。因此输出符号的序列能够透露出状态序列的一些信息。 HMM的基本理论 隐马尔可夫模型是马尔可夫链的一种,它的状态不能直接观察到,但能通过观测向量序列观察到,每个观测向量都是通过某些概率密度分布表现为各种状态,每一个观测向量是由一个具有相应概率密度分布的状态序列产生。所以,隐马尔可夫模型是一个双重随机过程----具有一定状态数的隐马尔可夫链和显示随机函数集。自20世纪80年代以来,HMM被应用于语音识别,取得重大成功。到了

论文:马尔科夫链模型

市场占有率问题 摘要 本文通过对马尔科夫过程理论中用于分析随机过程方法的研究,提出了将转移概率矩阵法应用于企业产品的市场占有率分析当中,并给出了均匀状态下的市场占有率模型。单个生产厂家的产品在同类商品总额中所占的比率,称为该厂产品的市场占有率,市场占有率随产品的质量、消费者的偏好以及企业的促销作用等因素而发生变化。企业在对产品种类与经营方向做出决策时,需要预测各种商品之间不断转移的市场占有率。 通过转移概率求得八月份的各型号商品的市场占有率为……稳定状态后,通过马尔科夫转移矩阵,计算出各商品的市场占有率为…… 关键词马尔科夫链转移概率矩阵

一、问题重述 1.1背景分析 现代市场信息复杂多变,一个企业在激烈的市场竞争环境下要生存和发展就必须对其产品进行市场预测,从而减少企业参与市场竞争的盲目性,提高科学性。然而,市场对某些产品的需求受多种因素的影响,普遍具有随机性。为此,利用随机过程理论的马尔科夫模型来分析产品在市场上的状态分布,进行市场预测,从而科学地组织生产,减少盲目性,以提高企业的市场竞争力和其产品的市场占有率。 1.2问题重述 已知六月份甲,乙,丙,三种型号的某商品在某地有相同的销售额。七月份甲保持原有顾客的60%,分别获得乙,丙的顾客的10%和30%;乙保持原有顾客的70%,分别获得甲,丙的顾客的10%和20%;丙保持原有顾客的50%,分别获得甲,乙顾客的30%和20%。求八月份各型号商品的市场占有率及稳定状态时的占有率。 二、问题分析 单个生产厂家的产品在同类商品总额中所占的比率,称为该厂产品的市场占有率,市场占有率随产品的质量、消费者的偏好以及企业的促销作用等因素而发生变化。题目给出七月份甲、乙、丙三种型号的某商品的顾客转移率,转移率的变化以当前的状态为基准而不需要知道顾客转移率的过去状态,即只要掌握企业产品目前在市场上的占有份额,就可以预测将来该企业产品的市场占有率。概括起来,若把需要掌握过去和现在资料进行预测的方法称为马尔科夫过程。 马尔科夫预测法的一般步骤: (1)、调查目前本企业场频市场占有率状况,得到市场占有率向量A ; (2)、调查消费者的变动情况,计算转移概率矩阵B ; (3)、利用向量A 和转移概率矩阵B 预测下一期本企业产品市场占有率。 由于市场上生产与本企业产品相同的同类企业有许多家,但我们最关心的是本企业产品的市场占有率。对于众多消费者而言,够不够买本企业的产品纯粹是偶然事件,但是若本企业生产的产品在质量、价格、营销策略相对较为稳定的情况下,众多消费者的偶然的购买变动就会演变成必然的目前该类产品相对稳定的市场变动情况。因为原来购买本企业产品的消费者在奖励可能仍然购买本企业的产品,也可能转移到购买别的企业的同类产品,而原来购买其他企业产品的消费者在将来可能会转移到购买本企业产品,两者互相抵消,就能形成相对稳定的转移概率。 若已知某产品目前市场占有率向量A ,又根据调查结果得到未来转移概率矩阵B ,则未来某产品各企业的市场占有率可以用A 乘以B 求得。即: 111212122212312*()*n n n n n nn a a a a a a A B p p p p a a a ????????????=????????????????????? 三、模型假设 1、购买3种类型产品的顾客总人数基本不变; 2、市场情况相对正常稳定,没有出现新的市场竞争; 3、没有其他促销活动吸引顾客。

马尔可夫模型介绍(从零开始)

马尔可夫模型介绍(从零开始) (一):定义及简介: 介绍(introduction) 通常我们总是对寻找某一段时间上的模式感兴趣,这些模式可能出现在很多领域:一个人在使用电脑的时候使用的命令的序列模式;一句话中的单词的序列;口语中的音素序列。总之能产生一系列事件的地方都能产生有用的模式。 考虑一个最简单的情况:有人(柯南?)试图从一块海藻来推断天气的情况。一些民间的传说认为“soggy”的海藻意味着潮湿(wet)的天气,“dry”的海藻预示着晴朗(sun)。如果海藻处于中间状态“damp”,那就无法确定了。但是,天气的情况不可能严格的按照海藻的状态来变化,所以我们可以说在一定程度上可能是雨天或是晴天。另一个有价值的信息是之前某些天的天气情况,结合昨天的天气和可以观察到的海藻的状态,我们就可以为今天的天气做一个较好的预报。 这是在我们这个系列的介绍中一个非常典型的系统。 ?首先我们介绍一个可以随时间产生概率性模型的系统,例如天气在晴天或者雨天之间变动。?接下来我们试图去预言我们所不能观察到的"隐形"的系统状态,在上面的例子中,能被观察到的序列就是海藻的状态吗,隐形的系统就是天气情况 ?然后我们看一下关于我们这个模型的一些问题,在上面那个例子中,也许我们想知道 1. 如果我们观察一个星期每一天的海藻的状态,我们是否能知相应的其天气情况 2. 如果给出一个海藻状态的序列,我们是否能判断是冬天还是夏天?我们假设,如果海藻干(d ry)了一段时间,那就意味着是夏天如果海藻潮湿(soggy)了一段时间,那可能就是冬天。 (二):生成模式(Generating Patterns) ?确定的模式(Deterministic Patterns) 考虑交通灯的例子,一个序列可能是红-红/橙-绿-橙-红。这个序列可以画成一个状态机,不同的状态按照这个状态机互相交替

马尔可夫过程的发展和应用

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程设计(论文) 课程名称:应用随机过程 设计题目:马尔可夫过程的发展与应用 院系:电子信息与工程学院 班级:通信一班 设计者: 学号: 指导教师:田波平 设计时间: 2009/12/17 马尔可夫链(过程)的发展与应用

1. 随机过程发展简述 在当代科学与社会的广阔天地里,人们都可以看到一种叫作随机过程的数学模型:从银河亮度的起伏到星系空间的物质分布、从分子的布朗运动到原子的蜕变过程,从化学反应动力学到电话通讯理论、从谣言的传播到传染病的流行、从市场预测到密码破译,随机过程理论及其应用几乎无所不在。 一些特殊的随机过程早已引起注意,例如1907年前后,Α.Α.马尔可夫研究过一列有特定相依性的随机变量,后人称之为马尔可夫链(见马尔可夫过程);又如1923年N.维纳给出了布朗运动的数学定义(后人也称数学上的布朗运动为维纳过程),这种过程至今仍是重要的研究对象。虽然如此,随机过程一般理论的研究通常认为开始于30年代。1931年,Α.Η.柯尔莫哥洛夫发表了《概率论的解析方法》;三年后,Α.Я.辛钦发表了《平稳过程的相关理论》。这两篇重要论文为马尔可夫过程与平稳过程奠定了理论基础。稍后,P.莱维出版了关于布朗运动与可加过程的两本书,其中蕴含着丰富的概率思想。1953年,J.L.杜布的名著《随机过程论》问世,它系统且严格地叙述了随机过程的基本理论。1951年伊藤清建立了关于布朗运动的随机微分方程的理论(见随机积分),为研究马尔可夫过程开辟了新的道路;近年来由于鞅论的进展,人们讨论了关于半鞅的随机微分方程;而流形上的随机微分方程的理论,正方兴未艾。60年代,法国学派基于马尔可夫过程和位势理论中的一些思想与结果,在相当大的程度上发展了随机过程的一般理论,包括截口定理与过程的投影理论等,中国学者在平稳过程、马尔可夫过程、鞅论、极限定理、随机微分方程等方面也做出了较好的工作。 2. 马尔可夫过程发展 2.1 马尔可夫过程简介 马尔科夫过程(MarKov Process)是一个典型的随机过程。设X(t)是一随机过程,当过程在时刻t0所处的状态为已知时,时刻t(t>t0)所处的状态与过程在t0时刻之前的状态无关,这个特性成为无后效性。无后效的随机过程称为马尔科夫过程。马尔科夫过程中的时同和状态既可以是连续的,又可以是离散的。我们称时间离散、状态离散的马尔科夫过程为马尔科夫链。马尔科夫链中,各个时刻的状态的转变由一个状态转移的概率矩阵控制。 2.2 马尔可夫过程的发展 20世纪50年代以前,研究马尔可夫过程的主要工具是微分方程和半群理论(即分析方法);1936年前后就开始探讨马尔可夫过程的轨道性质,直到把微分方程和半群理论的分析方法同研究轨道性质的概率方法结合运用,才使这方面的研究工作进一步深化,并形成了对轨道分析必不可少的强马尔可夫性概念。1942年,伊藤清用他创立的随机积分和随机微分方程理论来研究一类特殊而重要的马尔可夫过程──扩散过程,开辟了研究马尔可夫过程的又一重要途径。

马尔科夫决策过程MDPs

数学模型-MATLAB工具箱-马尔可夫决策过程-MDPs 前言: MDPs提供了一个数学框架来进行建模,适用于结果部分随机部分由决策者控制的决策情景。由于其在数学建模或学术发表中经常被用到,这里我们从实用的角度对其做一些归纳整理,案例涉及到大数据应用方面的最新研究成果,包括基本概念、模型、能解决的问题、基本算法(基于MATLAB或R工具箱)和应用场景。最后简单介绍了部分可观察马尔可夫决策过程(POMDP)。 由于相关的理论和应用研究非常多,这里我们只介绍最基本的东西(但是提供了必要而丰富的展开),并提供相应的参考文献和工具箱链接,以期帮助读者更快上手,至于更加深入的研究和更加细致的应用,则需要参照相关研究领域的学术文献。 一、基本概念 (1)序贯决策(Sequential Decision)[1]: 用于随机性或不确定性动态系统的最优化决策方法。 (2)序贯决策的过程是: 从初始状态开始,每个时刻作出最优决策后,接着观察下一时刻实际出现的状态,即收集新的信息,然后再作出新的最优决策,反复进行直至最后。 (3)无后效性 无后效性是一个问题可以用动态规划求解的标志之一。 某阶段的状态一旦确定,则此后过程的演变不再受此前各种状态及决策的影响,简单的说,就是“未来与过去无关”,当前的状态是此前历史的一个完整总结,此前的历史只能通过当前的状态去影响过程未来的演变。 (4)马尔可夫决策过程 系统在每次作出决策后下一时刻可能出现的状态是不能确切预知的,存在两种情况: ①系统下一步可能出现的状态的概率分布是已知的,可用客观概率的条件分布来描述。对于这类系统的序贯决策研究得较完满的是状态转移律具有无后效性的系统,相应的序贯决策称为马尔可夫决策过程,它是将马尔可夫过程理论与决定性动态规划相结合的产物。 ②系统下一步可能出现的状态的概率分布不知道,只能用主观概率的条件分布来描述。用于这类系统的序贯决策属于决策分析的内容。 注:在现实中,既无纯客观概率,又无纯主观概率。 客观概率是根据事件发展的客观性统计出来的一种概率。主观概率与客观概率的主要区别是,主观概率无法用试验或统计的方法来检验其正确性。 客观概率可以根据历史统计数据或是大量的试验来推定。 客观概率只能用于完全可重复事件,因而并不适用于大部分现实事件。 为什么引入主观概率:有的自然状态无法重复试验。如:明天是否下雨,新产品销路如何。 主观概率以概率估计人的个人信念为基础。主观概率可以定义为根据确凿有效的证据对个别事件设计的概率。这里所说的证据,可以是事件过去的相对频率的形式,也可以是根据丰富的经验进行的推测。比如有人说:“阴云密布,可能要下一场大雨!”这就是关于下雨的可能性的主观概率。主观概率具有最大的灵活性,决策者可以根据任何有效的证据并结合自己对情况的感觉对概率进行调整。 二、和马尔可夫链的联系

马尔科夫转换模型例子

The R User Conference 2009 July 8-10, Agrocampus-Ouest, Rennes, France
Estimating Markovian Switching Regression Models in An application to model energy price in Spain
S. Fontdecaba, M. P. Mu?oz , J. A. Sànchez*
Department of Statistics and Operations Research Universitat Politècnica de Catalunya - UPC
* josep.a.sanchez@https://www.wendangku.net/doc/459105139.html,

Markovian Switching Models. An application to model energy price in Spain
1 Introduction & Objectives 2 Methodology 3 Data 4 Results 5 Conclusions
Outline
1. Introduction & Objectives 2. Methodology 3. Application to energy price 4. Results 5. Conclusions
2

Markovian Switching Models. An application to model energy price in Spain
1 Introduction & Objectives 2 Methodology 3 Data 4 Results 5 Conclusions
1. Introduction
The model we consider is of the MARKOVIAN SWITCHING (MS) type, originally defined by Hamilton (1989).
?MSVAR library - Krolszing (1998) (not available free acces: OX) ?MSVARlib - Bellone (2005) (Less user friendly) ?MSRegression - Perlin (2007) (Libraries in Matlab)
3

马尔可夫决策基础理论

马尔可夫决策基础理论 内容提要 本章介绍与研究背景相关的几类决策模型及算法。模型部分,首先是最基本的马尔可夫决策模型,然后是在此基础上加入观察不确定性的部分可观察马尔可夫决策模型,以及进一步加入多智能体的分布式部分可观察马尔可夫决策模型和部分可观察的随机博弈模型。算法部分,针对上述几类模型,我们均按照后向迭代和前向搜索两大类进行对比分析。最后,我们介绍了半马尔可夫决策模型及Option理论,这一理论为我们后面设计分等级的大规模多智能体系统的决策模型及规划框架提供了重要基础。 2.1 MDP基本模型及概念 马尔可夫决策过程适用的系统有三大特点:一是状态转移的无后效性;二是状态转移可以有不确定性;三是智能体所处的每步状态完全可以观察。下面我们将介绍MDP基本数学模型,并对模型本身的一些概念,及在MDP模型下进行问题求解所引入的相关概念做进一步解释。 2.1.1 基本模型 马尔科夫决策过程最基本的模型是一个四元组S,A,T,R(Puterman M, 1994): ?状态集合S:问题所有可能世界状态的集合; ?行动集合A:问题所有可能行动的集合; ?状态转移函数T: S×A×S’→[0,1]: 用T(s, a, s’)来表示在状态s,执行动作 P s s a; a,而转移到状态s’的概率('|,) ?报酬函数R: S×A→R:我们一般用R(s,a)来表示在状态s执行动作a所能得到的立即报酬。 虽然有针对连续参数情况的MDP模型及算法,然而本文在没有特殊说明的情况都只讨论离散参数的情况,如时间,状态及行动的参数。 图2.1描述的是在MDP模型下,智能体(Agent)与问题对应的环境交互的过程。智能体执行行动,获知环境所处的新的当前状态,同时获得此次行动的立即

Markov机制转换模型研究_在中国宏观经济周期分析中的应用

Markov机制转换模型研究 )))在中国宏观经济周期分析中的应用 王建军 (厦门大学经济学院) 【摘要】本文首次引入反映我国经济增长周期模式改变和状态转移机制变迁的虚拟变量,对传统M ar ko v机制转换模型进行了修正,由此解决了将M ar ko v模型 应用于中国年度宏观经济数据研究中国经济周期问题的难题。运用修正后的M ark-o v模型,本文对我国1953~2005年的年度实际产出增长率的数据进行了拟合,研 究表明,该模型较好地刻画了我国实际产出增长的周期性变化。根据分析我们发 现,改革前后我国经济周期的非对称性特征比较明显,并且经济增长周期模式和经 济周期性变化机制存在显著差异。 关键词M arkov模型状态转换经济周期 中图分类号F22410文献标识码A Research on the Markov Switching Model Abstract:Fo r the fir st time,this paper take a dummy v ar iable into the trad-i tional M arkov Sw itching M odel to depict the change of Chinese eco no mic cycle pat-tern and Regime-Sw itching mechanism1We resolve the pro blem that how to study Chinese business cy cles w ith the M arkov Sw itching model based on annual macr o-eco no mic data1Fitting the data of Chinese real GDP g row th from1953to2005w ith our m odel,w e find that the m odel per fectly describes Chinese real GDP gr ow th?s periodical mo vement1Chinese Business cycle pattern has chang ed after the Chinese Economic Refo rm1T he Reg im e-Sw itching m echanism also has chang ed after the Chinese Econom ic Refor m1Asymm etry of the Chinese economic cy cle is remarka-ble1Befor e the Chinese Econom ic Refo rm,the ex pansion period is longer than con-traction period but it is r eversed after the Chinese Economic Reform1 Key words:Markov M odel;Regime-sw itching;Business Cycle 一、问题的提出 对经济周期状态的识别和判断历来都是经济周期研究中的重点和难点。为解决这一问题,经济学家们在不断探索新的分析工具和方法。早期研究周期行为有两种基本方法:第一

隐马尔可夫模型_HMM_及其应用

42 第30卷 第4期 湖南科技学院学报 V ol.30 No.4 2009年4月 Journal of Hunan University of Science and Engineering Apr.2009 隐马尔可夫模型(HMM)及其应用 王志堂1 蔡淋波2 (1.湖南科技学院 教育科学系, 湖南 永州 425100;2. 五邑大学 信息学院,广东 江门 529020) 摘 要:隐马尔可夫模型(HMM)是序列数据处理和统计学习的一种重要概率模型,具有建模简单、数据计算量小、运行速度快、识别率高等特点,近几年来已经被成功应用到许多工程任务中。文章介绍了隐马尔可夫模型,并对HMM 及其改进的HMM 在语音处理技术、人脸识别和人脸表情识别中的应用进行了叙述。 关键词:隐马尔可夫模型; 语音处理; 人脸识别; 人脸表情识别 中图分类号:TP391.4 文献标识码:A 文章编号:1673-2219(2009)04-0042-03 0 引 言 隐马尔可夫模型(HMM )最早于1957年被提出[1],在20世纪80年代被成功应用于声学信号建模。近年来,也有文献把HMM 应用于金融市场的波动性分析、经济预算、神经生理学与生物遗传等方面。在理论方面Leroox 与Bickel and Ratov 分别给出了隐马尔可夫模型在大数定律与中心极限定理方面的一些性质[2,3]。目前HMM 主要应用在工程领域,如图像处理、语音人工合成、地震勘探、生物信号处理等,并取得了具有科学意义和应用价值的重要成果。因此,结合实际应用,进一步研究各种新型隐马尔可夫模型及其性质,具有十分重要的意义[4] 。本文介绍了隐马尔可夫模型,概括了HMM 及其改进的HMM 在语音处理技术、人脸识别和人脸表情识别中的应用。 1 HMM 的基本理论 HMM 是一个双内嵌式随机过程,即HMM 是由两个随机过程组成,一个是隐含的状态转移序列,它对应一个单纯的Markov 过程;另一个是与隐状态有关的观测序列。并且在这两个随机过程中,有一个随机过程(状态转移序列)是不可观测的,只能通过另一个随机过程的输出观测序列进行推断,所以称之为隐马尔可夫模型,其基本要素包括: (1) 模型的状态数N 。如果S 是状态集合,则 {}N S S S S ,,,21"=。模型在时间t 的状态记为,S q t ∈,1 收稿日期:2008-12-18 修改日期:2009-01-20 基金项目:广东省自然科学基金项目(07010869);北京大学视觉与听觉信息处理国家重点实验室开放课题基金项目 (0505);浙江大学CAD &CG 国家重点实验室开放课题(A0703)。 作者简介:王志堂(1984-),男,助教,主要研究方向为电子技术应用。蔡淋波(1982-),女,硕士研究生,主要研究方向为图像处理、信号处理。 ≤t ≤T ,T 是观察序列的长度。模型经历的状态序列记为 {}t q q q Q ,,,21"=。 (2) 观察符号数M 。设V 是所有观察符号的集合,则 {}M v v v V ,,,21"=。 (3) 状态转移的概率分布A 。状态转移的概率分布可表 示为{}ij a A =,其中=ij a {} i t j t S q S q P ==+|1, N j i ≤≤,1,且满足∑==≥N j ij ij a a 1 1, 0, 表示时刻t 从状态t S 转移到时刻t +1状态j S 的转移概率。 (4) 状态i S 条件下输出的观测变量概率分布B 。假设观测变量的样本空间为V ,在状态i S 时输出观测变量的概率分布可表示为:=B (){}V v N i v b i ∈≤≤,1,,其中 ()=v b i {}i t t S q v Q f ==|,t Q 为时刻t 的观测随机变量,可 以是一个数值或向量,观测序列记为{}t O O O O ,,,21"=。值得注意的是,此处观测变量的样本空间和概率分布可以为离散型,也可为连续型。 (5) 系统初始状态概率分布π。 系统初始状态概率分布可表示为{}N i i ≤≤=1,ππ,其中=i π {}i S q P =1。 综上可知,要描述一个完整的HMM ,需要模型参数 {}π,,,,B A M N 。为了简化,常用下面的形式来表示,即 {}πλ,,B A =。此外,对于一个标准HMM 模型,需要解决 模型训练、隐状态估计和似然计算三个基本问题。 2 HMM 及其扩展在模式识别中的应用 2.1 HMM 在语音处理中的应用 HMM 是序列数据处理和统计学习的一种重要概率模型,近几年来已经被成功应用到许多语音处理的任务中。 文献[5]中给出了一种基于隐马尔可夫模型的中文科研论文头部信息抽取过程以及模型结构的学习和参数的训练等关键问题的解决方法。对中文论文头部信息的抽取固定在标题、作者、单位、地址、邮编、摘要、关键词、中图分类号、文献标识码、文章编号、栏目和电子邮箱12个抽取域。

数学建模马氏链模型

马氏链模型 教学目的: 通过教学,使学生掌握马尔可夫链的基本知识,掌握建立马氏链模型的基本方法,能用马氏链模型解决一些简单的实际问题。 教学重点和难点: 建立马氏链模型的基本思想和基本步骤。 教学内容: 马尔可夫预测法是应用概率论中马尔可夫链(Markov chain)的理论和方法来研究分析时间序列的变化规律,并由此预测其未来变化趋势的一种预测技术.这种技术已在市场预测分析和市场管理决策中得到广泛应用,近年来逐步被应用于卫生事业管理和卫生经济研究中.下面扼要介绍马尔可夫链的基本原理以及运用原理去进行市场预测的基本方法. (1)马尔可夫链的基本原理 我们知道,要描述某种特定时期的随机现象如某种药品在未来某时期的销售情况,比如说第n季度是畅销还是滞销,用一个随机变量X n便可以了,但要描述未来所有时期的情况,则需要一系列的随机变量 X1,X2,…,X n,….称{ X t,t∈T ,T是参数集}为随机过程,{ X t }的取值集合称为状态空间.若随机过程{ X n}的参数为非负整数, X n 为离散随机变量,且{ X n}具有无后效性(或称马尔可夫性),则称这一随机过程为马尔可夫链(简称马氏链).所谓无后效性,直观地说,就是如果把{ X n}的参数n看作时间的话,那么它在将来取什么值只与它现在的取值有关,而与过去取什么值无关. 对具有N个状态的马氏链,描述它的概率性质,最重要的是它在n时刻处于状态i下一时刻转移到状态j的一步转移概率: 若假定上式与n无关,即,则可记为(此时,称过程是平稳的),并记 (1)称为转移概率矩阵. 例1 设某抗病毒药销售情况分为“畅销”和“滞销”两种,

部分可观察马尔可夫决策过程研究进展.

0引言 部分可观察马尔可夫决策过程 (partially observable Markov decision processes , POMDP 描述的是当前世界模型部分可知的情况下,智能体 Agent Agent 的例如, 足球运动员在球场上踢足球, 每个球员并不完全清楚他周围的所有状态, 当他向前带球的过程中, 他可能知道在他前面人的位置和状态, 但是可能不知道在他后面的其他队友的位置和状态, 此时他观察到的信息是不完整的, 但是一个优秀的足球运动员往往靠着一种感觉传给他身后的最有利的队员, 使其进行最有利的进攻, 过程就是部分可观察马尔可夫决策过程。在部分可感知模型中, 不仅要考虑到状态的不确定性, 同时还要考虑到动作的不确定性,这种世界模型更加能够客观的描述真实世界, 因此应用十分广泛。 本文综述了目前在 POMDP 领域的研究情况, 介绍了 MDP 的数学理论基础和决策模型, 以及一种典型的 POMDP 决策算法-值迭代算法, 介绍了目前现有的几种经典的决策算法, 并分析它们之间的优点和不足, 列举了一些 POMDP 常见的应用领域, 并进行了总结和展望。 1马尔可夫决策过程 Agent 每一个时刻都要做一些决策, 做决策时不仅要考虑甚至是其它 Agents (Markov decision process , MDP 的最优解, MDP 可以用一个四元组 < , >来描述 [1] :

:Agent 的行为集; , : ×:当 Agent 在状态 , 可能转移到状态的概率, 使用 | :→ 情况下 采用动作 -2116- -2117 - , Agent 使 Agent 选择的动作能够获得

马尔科夫决策解决方案

马尔科夫决策解决方案 篇一:马尔可夫决策过程模型 3。马尔可夫决策过程模型 本节介绍了MDP模型来确定相互制约的服务商到客户系统调度策略,分配区分服务器优先级的客户。医药科学的MDP模型作为一个线性规划模型,以至于考虑与约束不可以添加扩展马尔可夫状态空间,从而允许有效的线性规划算法标识最佳相互制约政策。消费者要求达到的服务,都有一个关联的位置和分为高优先级或低优先级。服务器救护车所分化他们的答复和服务时间。我们可以捕捉时间从一个服务器是派去当它到达现场,捕捉的总时间和服务时间为客户服务,包括响应客户时间,对待客户现场,运输一个客户去医院,并返回到服务。目标是确定哪些服务器调度到达客户最大化平均水平.总奖励每阶段给予最低标准股本。回复一个电话的奖励是解释作为高优先级客户的可能性是对一个固定的时间内一个RTT目标函数已经成为最好的效率的性能的措施,在EMS系统。在模型中,客户根据到达泊松过程的速度。当一个客户到达时,其位置和优先级评估,和一家派往它可用的服务器。的模型使得几个假设: 1.如果客户和服务器可用,到达服务器必须派遣。 2。只有服务器-服务器位于他们家庭基站可以被派往客

户。 3。一个服务器分配给每个客户。 4。然后服务器返回服务客户。 5。服务时间不依赖于客户优先权和指数分布。 6。有一个零长度队列为客户。 我们将讨论如何修改模型 电梯的假设和假设一个强大的影响产生的政策。需要服务器被派往客户如果服务器是可用非理想的政策合理,因为这里的模型是出于EMS体系中,为所有客户提供服务是一个主要的公共服务系统的目标。此外,由于担忧的责任,而不是保留是一种能力,嵌入在EMS调度和政策实践,约束的服务提供者。为了简单起见,所有服务器维修后返回本国驻地客户,当他们说为其他客户服务可用,服务器不能动态改航。在实践中,服务器可以从以外的地点派遣他们家电台,当服务器完整的服务。以允许救护车被派遣本国驻地以外的位置,可以扩大到包括状态空间辅助服务器的位置相对应服务器完成服务。同样地,可以将状态空间扩大到包括辅助客户地点,对应一个服务器是谁前往客户允许服务器动态改航,直到它到达服务客户和位置,相对应的服务器正在接近尾声与另一个客户的服务。关于第五假设,尽管它将琐碎包含服务时间依赖于客户优先级,指数提升,因为我们假设是更难了必须扩大状态方程考虑non-Markov模型。我们承认这是一个强

马尔可夫决策过程 马尔可夫决策过程(Markov Decision Processes

马尔可夫决策过程 马尔可夫决策过程(Markov Decision Processes,MDP) 马尔可夫决策过程概述 马尔可夫决策过程是基于马尔可夫过程理论的随机动态系统的最优决策过程。马尔可夫决策过程是序贯决策的主要研究领域。它是马尔可夫过程与确定性的动态规划相结合的产物,故又称马尔可夫型随机动态规划,属于运筹学中数学规划的一个分支。 马尔可夫决策过程是指决策者周期地或连续地观察具有马尔可夫性的随机动态系统,序贯地作出决策。即根据每个时刻观察到的状态,从可用的行动集合中选用一个行动作出决策,系统下一步(未来)的状态是随机的,并且其状态转移概率具有马尔可夫性。决策者根据新观察到的状态,再作新的决策,依此反复地进行。马尔可夫性是指一个随机过程未来发展的概率规律与观察之前的历史无关的性质。马尔可夫性又可简单叙述为状态转移概率的无后效性。状态转移概率具有马尔可夫性的随机过程即为马尔可夫过程。马尔可夫决策过程又可看作随机对策的特殊情形,在这种随机对策中对策的一方是无意志的。马尔可夫决策过程还可作为马尔可夫型随机最优控制,其决策变量就是控制变量。 马尔可夫决策过程的发展概况 50年代R.贝尔曼研究动态规划时和L.S.沙普利研究随机对策时已出现马尔可夫决策过程的基本思想。R.A.霍华德(1960)和D.布莱克韦尔(1962)等人的研究工作奠定了马尔可夫决策过程的理论基础。1965年,布莱克韦尔关于一般状态空间的研究和E.B.丁金关于非时齐(非时间平稳性)的研究,推动了这一理论的发展。1960年以来,马尔可夫决策过程理论得到迅速发展,应用领域不断扩大。凡是以马尔可夫过程作为数学模型的问题,只要能引入决策和效用结构,均可应用这种理论。 马尔可夫决策过程的数学描述 周期地进行观察的马尔可夫决策过程可用如下五元组来描述:{S,(A(i),i∈S,q,γ,V},其中S 为系统的状态空间(见状态空间法);A(i)为状态i(i∈S)的可用行动(措施,控制)集;q为时齐的马尔可夫转移律族,族的参数是可用的行动;γ是定义在Γ(Г呏{(i,ɑ):a∈A(i),i∈S}上的单值实函数;若观察到的状态为i,选用行动a,则下一步转移到状态j的概率为q(j│i,ɑ),而且获得报酬γ(j,ɑ),它们均与系统的历史无关;V是衡量策略优劣的指标(准则)。 马尔可夫决策过程的策略 策略是提供给决策者在各个时刻选取行动的规则,记作π=(π0,π1,π2,…,πn,πn +1…),其中πn是时刻n选取行动的规则。从理论上来说,为了在大范围寻求最优策略πn,最好根据时刻n以前的历史,甚至是随机地选择最优策略。但为了便于应用,常采用既不依赖于历史、又不依赖于时间的策略,甚至可以采用确定性平稳策略。 马尔可夫决策过程的指标 衡量策略优劣的常用指标有折扣指标和平均指标。折扣指标是指长期折扣〔把t时刻的单位收益折合成0时刻的单位收益的βt(β < 1)倍〕期望总报酬;平均指标是指单位时间的平均期望报酬。 采用折扣指标的马尔可夫决策过程称为折扣模型。业已证明:若一个策略是β折扣最优的,则初始时刻的决策规则所构成的平稳策略对同一β也是折扣最优的,而且它还可以分解为若干个确定性平稳策略,它们对同一β都是最优的。现在已有计算这种策略的算法。 采用平均指标的马尔可夫决策过程称为平均模型。业已证明:当状态空间S 和行动集A(i)均为有限集时,对于平均指标存在最优的确定性平稳策略;当S和(或)A(i)不是有限的情况,必须增加条件,才有最优的确定性平稳策略。计算这种策略的算法也已研制出来。

马尔可夫决策过程模型

3。马尔可夫决策过程模型 本节介绍了MDP模型来确定相互制约的服务商到客户系统调度策略,分配区分服务器优先级的客户。医药科学的 MDP模型作为一个线性规划模型,以至于考虑与约束不可以添加扩展马尔可夫状态空间,从而允许有效的线性规划算法标识最佳相互制约政策。消费者要求达到的服务(病人),都有一个关联的位置和分为高优先级(H)或低优先级(L)。服务器救护车所分化他们的答复和服务时间。我们可以捕捉时间从一个服务器是派去当它到达现场,捕捉的总时间和服务时间为客户服务,包括响应客户时间,对待客户现场,运输一个客户去医院,并返回到服务。目标是确定哪些服务器调度到达客户最大化平均水平.总奖励每阶段给予最低标准股本。回复一个电话的奖励是解释作为高优先级客户的可能性是对一个固定的时间内一个RTT目标函数已经成为最好的效率的性能的措施,在EMS系统(McLay和马约加2010)。在模型中,客户根据到达泊松过程的速度。当一个客户到达时,其位置和优先级评估,和一家派往它可用的服务器。的模型使得几个假设: 1.如果客户和服务器可用,到达服务器必须派遣。 2。只有服务器-服务器位于他们家庭基站可以被派往客户。3。一个服务器分配给每个客户。 4。然后服务器返回本站服务客户。 5。服务时间不依赖于客户优先权和指数分布。 6。有一个零长度队列为客户。

我们将讨论如何修改模型 电梯的假设和假设一个强大的影响产生的政策。需要服务器被派往客户如果服务器是可用非理想的政策合理,因为这里的模型是出于EMS体系中,为所有客户提供服务是一个主要的公共服务系统的目标。此外,由于担忧的责任,而不是保留是一种能力,嵌入在EMS调度和政策实践,约束的服务提供者。为了简单起见,所有服务器维修后返回本国驻地客户,当他们说为其他客户服务可用,服务器不能动态改航。在实践中,服务器可以从以外的地点派遣他们家电台,当服务器完整的服务。以允许救护车被派遣本国驻地以外的位置,可以扩大到包括状态空间辅助服务器的位置相对应服务器完成服务(见§3.1的讨论状态空间)。同样地,可以将状态空间扩大到包括辅助客户地点,对应一个服务器是谁前往客户允许服务器动态改航,直到它到达服务客户和位置,相对应的服务器正在接近尾声与另一个客户的服务。关于第五假设,尽管它将琐碎包含服务时间依赖于客户优先级,指数提升,因为我们假设是更难了必须扩大状态方程考虑non-Markov模型。我们承认这是一个强烈的假设。 队列长度为零的假设需要更深一层的讨论。请注意,客户只是失去当所有的服务器很忙,因此每种类型的客户丢失的速度相同进入系统。从温顺的角度看来,顾客队列的状态模型变得难以管理和调度,政策可能取决于客户的设置队列中。我们认为,长度为零的假设

Matlab2011b的HMM(隐马尔可夫模型)相关函数介绍

Matlab 2011b Statistics Toolbox HMM 作者:yuheng666 Email:wuyuheng666@https://www.wendangku.net/doc/459105139.html, 关键字:HMM,隐马尔科夫模型,Matlab,Statistics Toolbox 声明:本文主要介绍Matlab2011b中Statistics Toolbox工具箱里与隐马尔科夫模型相关的函数及其用法(请勿与其它HMM工具箱混淆)。本文的主要内容来自Matlab 2011b的帮助文档,为作者自学笔记。水平有限,笔记粗糙,本着“交流探讨,知识分享”的宗旨,希望对HMM感兴趣的同学有些许帮助,欢迎指教,共同进步。 有关马尔科夫模型的基本知识,请参考其他资料。如: https://www.wendangku.net/doc/459105139.html,/~lliao/cis841s06/hmmtutorialpart1.pdf https://www.wendangku.net/doc/459105139.html,/~lliao/cis841s06/hmmtutorialpart2.pdf https://www.wendangku.net/doc/459105139.html,/section/cs229-hmm.pdf http://jedlik.phy.bme.hu/~gerjanos/HMM/node2.html https://www.wendangku.net/doc/459105139.html,/dugad/hmm_tut.html ....... 变量说明: 设有M个状态,N个符号Markov模型。 TRANS:对应状态转移矩阵,大小为M*M,表示各状态相互转换的概率,TRANS(i,j)表示从状态i转换到状态j的概率。 EMIS:对应符号生成矩阵,又叫混淆矩阵,观察符号概率分布。EMIS(i,j)代表在状态i时,产生符号j的概率。 函数介绍: hmmgenerate — Generates a sequence of states and emissions from a Markov model 从一个马尔科夫模型产生状态序列和输出序列,该序列具有模型所表达的随机性特征。 A random sequence seq of emission symbols A random sequence states of states 用法:

相关文档