文档库 最新最全的文档下载
当前位置:文档库 › 现代优化方法综述

现代优化方法综述

现代优化方法综述
现代优化方法综述

1.引言

优化设计英文名是optimization design,从多种方案中选择最佳方案的设计方法。它以数学中的最优化理论为基础,以计算机为手段,根据设计所追求的性能目标,建立目标函数,在满足给定的各种约束条件下,寻求最优的设计方案。

第二次世界大战期间,在军事上首先应用了优化技术。1967年,美国的R.L.福克斯等发表了第一篇机构最优化论文。1970年,C.S.贝特勒等用几何规划解决了液体动压轴承的优化设计问题后,优化设计在机械设计中得到应用和发展。随着数学理论和电子计算机技术的进一步发展,优化设计已逐步形成为一门新兴的独立的工程学科,并在生产实践中得到了广泛的应用。通常设计方案可以用一组参数来表示,这些参数有些已经给定,有些没有给定,需要在设计中优选,称为设计变量。如何找到一组最合适的设计变量,在允许的范围内,能使所设计的产品结构最合理、性能最好、质量最高、成本最低(即技术经济指标最佳),有市场竞争能力,同时设计的时间又不要太长,这就是优化设计所要解决的问题。一般来说,优化设计有以下几个步骤:①建立数学模型。②选择最优化算法。③程序设计。

④制定目标要求。⑤计算机自动筛选最优设计方案等。

2.数学模型

优化设计的数学模型是对优化设计工程问题的数学描述,它包含设计变量、目标函数和设计约束三个基本要素。

2.1设计变量

2.1.1基本参数

a、定义:在设计过程中进行选择变化并最终确定的各项独立参数称为设计变量。

b、说明:在设计选择过程中,这些设计变量是变量,但它们一旦被确定后,设计对象也

就完全确定了。最优化设计是研究怎样合理地优选这些设计变量的一种现代设计

方法。在设计过程中,凡根据设计要求事先给定的,不是设计变量而是设计常量。

2.1.2设计方案的表现形式

a、设计空间:由n个设计变量为坐标所组成的时空间称作设计空间。

b、设计变量的表示法

(1)坐标表示法:一维问题→一个设计变量→数轴上的一个点

二维问题→两个设计变量→平面直角坐标系上的向量

三维问题→三个设计变量→空间直角坐标系的向量

n 维问题→n 个设计变量→n 维超越空间的向量

一个“设计”方案,可用设计空间中的一点表示,此点可看成是设计变量向量的端点(始点取在坐标原点),称作设计点。也即:在设计空间中的一个点,对应于一组设计变量的值,代表一个设计方案。设计空间包含了该项设计所有可能的设计方案。

(2)向量表示法:二维问题→二维向量T x x X ],[21=

三维问题→三维向量T x x x X ],,[321=

n 维问题→n 维向量T n x x x X ],,,[21 =

2.1.3.设计变量的选取

a 、维数:设计变量的数目称为最优化问题的维数。如有n 个设计变量则称为n 维问题。

b 、常选用的设计变量

(1)结构的总体布置尺寸,如中心距。

(2)元件的几何尺寸:长度,截面尺寸,某些点的坐标值。

(3)材料的力学和物理特性:重量、惯性矩、力或力矩等。

通常选择的设计变量都是构件的几个尺寸,因为这不仅可使问题相对简单些,而且由于很多实际结构的几个关系和材料特性已决定的缘故。决定结构布置情况的设计变量的选取要复杂些。较困难的是选取表示材料特性的变量,因为通常所用材料的特性是离散值,选择这些变量时出现了设计变量不连续变化的这一特殊问题。

c 、设计变量的选择原则

(1)对设计影响较大的参数选为设计变量

(2)尽量减少设计变量的个数

2.2设计约束

2.2.1设计约束的种类

a 、定义:

设计空间是所有设计方案的集合,但这些设计方案有些是工程上所不能接受的(例如面积取负等)。如果一个设计满足所有对它提出的要求,就称为可行(或可接受)设计。反之则称为不可行(或不可接受)设计。

在设计过程中,为了得到可行的设计方案,必须根据实际要求,对设计变量的取值加以种种限制,这种限制条件称为约束条件。即:一个可行设计必须满足的限制条件称为约束条件。

b 、分类

法一 性能约束:针对性能要求而提出的限制条件称为性能约束。

例如:强度条件、刚度或稳定性条件等等。

边界约束:对设计变量的取值范围加以限制的约束。

例如允许选择的尺寸范围。

法二 等式约束:h (x )=0要求设计点在n 维设计空间的约束曲面上

不等式约束:g (x )≥0要求设计点在约束曲面一侧

2.2.2可行域与非可行域

设计可行域:凡满足所有约束条件的设计点,它在设计空间中的活动范围称作可行域。

2.3目标函数

2.3.1目标函数的定义:

a 、定义

在设计中,设计者总是希望所设计的产品或工程设施具有最好的使用性能,最小的质量或最紧凑的体积和最小的制造成本及最大的经济效益。在最优设计中,可将所追求的设计目标(最优指标)用设计变量的函数形式表达出来。

● 目标函数是设计中预期要达到的目标,表达为各设计变量的函数表达式:

),,,()(21n x x x f X f

● 在优化设计中,用目标函数的大小来衡量设计方案的优劣,故目标函数又叫评价函数。 ● 优化设计中,通常对目标函数求极小值。

b 、常用的目标函数

(1)以成本最低构造目标函数。

(2)按最小重量构造目标函数。

(3)按几何要求:如最小体积,最小尺寸构造目标函数。

(4)按机构的工作精度要求构造

(5)按机构的运动轨迹最准确

(6)满足应力要求(材料利用最好)

(7)振动或噪声最小(齿轮振动,由侧隙产生,寻找一周期内啮合点加速度平方根值最小)。

(8)平均寿命最长(轴承的寿命计算)。

(9)冷却效果最好(轴承的热平衡计算)。

(10)可靠性最高。

2.4 优化设计数学模型的几何意义

2.4.1 优化设计数学模型的一般形式

a 、模型形式

选取设计变量,列出目标函数,给定约束条件后,便可构造最优化设计的数学模型。任何一个最优化问题均可归结为如下描述:

在给定的约束条件下,选取适当的设计变量X ,使其目标函数f (X )达到最优值,其数学表达式(数学模型)为:

)x ,,x ,x (f )X (f min n 21 =

T n x x x X ],,,[21 =

)m ,,2,1u (0)x (g .t .s u =≥

)n p ,,2,1v (0

)x (h v <== b 、模型分类:

(1)法一 有约束

无约束

(2)法二 线性:目标函数和约束函数都是线性的。

非线性:目标函数和约束函数至少有一个为非线性

2.4.2最优化问题的几何描述

a 、约束条件与可行域

b 、目标函数等值线

(1)定义:目标函数是n 为变量的函数,它的图象只能在n+1维空间中描述出来。给定一

组设计变量的值就相应有一个函数值(并相应在设计空间对应于一个设计点),

具有相同函数值的点集在设计空间内形成一个曲线或曲面,就是目标函数的等值

面或等值线。

c、无约束最优解和约束最优解

(1)无约束优化问题:在没有限制条件下,对设计变量求目标函数的极小点,即求等值面中心。

(2)约束优化问题:在设计可行域内寻求目标函数的极小点。

2.4.3局部最优解和全局最优解

一、单谷函数和多股函数

只有一个极值点的函数称为单谷函数;具有两个以上局部极值点的函数称为多谷函数。

二、局部最优解和全局最优解

2.5优化设计数学模型大小的分类:

n>

50大型

10≤n

≤50中型

n<10小型

3.经典优化算法小结:

3.1无约束优化方法

工程优化问题通常都是多维有约束优化问题,但需从一维无约束问题到多维无约束优化问题再到多维约束优化问题的由简单到复杂的循序渐进的研究过程。

无约束优化问题数学模型:n

R

X

X

f

),

(

min

分类,从是否利用目标函数的导数信息,分直接法和间接法

3.1.1 坐标轮换法

3.1.1.1 坐标轮换法基本原理

将多维无约束优化问题分解、转化为一系列一维优化问题,轮换沿各个坐标轴一维搜索,直到求得最优点。

在每次迭代内部,要依次沿各坐标轴进行N 次(N 为优化问题的维数)一维搜索。这种一维搜索是固定其它N-1维变量,视为常量,然后进行一维搜索,),,2,1

(,1N j e X X j k j k j k j =+=-α,对于第k 轮迭代,须重复N 次该式的一维搜索,搜索的参数为a j k (即要优化的参数是a j k ),为相对第j 维变量的搜索步长,搜索方向为第j 维空间坐标的方向。当k 轮迭代结束后,本轮搜索的重点作为下一轮的起点,即k N k X X =+10,然后投入下一轮迭代。

3.1.1.2 该方法特点

不考虑目标函数本身的变化情况(函数特点),简单、效率低、收敛速度慢。

3.1.2 共轭方向法

3.1.2.1 共轭方向

对于N 维正定二次函数[]c X b X A X X f T T ++= 21)( (当N=2,为同心椭圆族),[H]为函数f 的黑塞矩阵(正定对称阵)。若存在两个方向向量1S ,2S ,满足[]021=S H S T ,则称1S 与2S 为共轭方向。 如何构造共轭方向(二维)?对于某两点2010,X X ,沿方向1S (12010,S X X -不平行)一维搜索得到两个最优点21,X X ,构成方向122X X S -=,则可以证明1S 与2S 为共轭方向,即[]021=S H S T

当然,这个结论可以从2维推广到N 维。同样,说明对于N 维函数,有N 个共轭方向。对于二次函数,只要经过N 个一维搜索即可到达最优点(即N 维空间内完成一轮迭代)。对于大于二次的函数,则可能需要将上一轮迭代的终点作为新一轮迭代的起点。在构造迭代方程式时,可以用二次泰勒展开式来近似目标函数的等值面。

3.1.2.2 共轭方向法基本原理

第一轮迭代与坐标轮换法相同。将起点和N 次一维搜索的末点组成一个新的方向,沿这个方向一维搜索,得到本轮迭代的终点。

从第二轮起,舍去前一轮的第一个一维搜索方向,将前一轮的后N 个一维搜索方向作为本轮迭代的前N 个方向,这N 个方向的一维搜索终点与本轮搜索的起点构成第N+1个一维搜索方向,沿这个方向做一维搜索,得到本轮搜索的终点。

若不满足精度要求,则重复迭代。

3.1.2.3 共轭方向法的特点

收敛速度比坐标轮换法有明显的提高,但前提是每次迭代所产生的新的方向与原来的N-1个方向之间要保持线性无关,若这些方向之间线性相关,则降低了搜索空间的维数,导致不能完全穷尽对设计空间每个方向的搜索,从而不能收敛于真正的最优解。

3.1.3 梯度法(最速下降法)

3.1.3.1 梯度法基本原理

无约束优化的直接法(坐标轮换法和共轭方向法、鲍威尔法)没有考虑无约束优化最优解存在的必要条件(梯度为零),使用这一条件,可以设计出更为高效的算法,所谓间接法(梯度法、牛顿法、变尺度法)。

梯度方向是函数值变化最快的方向,那么负梯度方向便是函数值下降最快的方向。从这一点受启发,可以使迭代方向沿梯度方向进行一维搜索来再多维空间寻优。即搜索方向

为梯度方向:)(k k X f S -?=,或)()(k k X f X f k S ??-=,则迭代公式为)

()(1k k X f X f k k k X X ??+-=α。 3.1.3.2 梯度法的特点

前提是梯度存在。

优点是算法简单。 相邻两次迭代的搜索方向垂直。即0)()(1=??+k T k X f X f

证明:)(1k k k k X f X X ?-=+α,即k 轮迭代经过一次一维搜索由k 点到达k+1点,那么

))((min k k k X f X f ?-α,对于一维优化有0=??k f

α,所以

0)()()(1))((1=??=+??-???+k T k X f X T X f X f X f k

k k k k αα 可见,相邻两轮迭代的搜索方向并不一致,为相互垂直的锯齿形过程。剃度法对于迭代出发点目标函数等值面偏心率为零时很有效,但对于有偏心的其效率就低了,随偏心率的增加,迭代终止的难度也在增加。可见这种搜索在接近目标时的收敛是比较慢(缺点)的,效率也就不会高了。剃度法一般并不作为工程中实际应用的方法,常用于其他方法的初始迭代(类似于坐标轮换法)。

3.2约束优化方法

实际工程优化问题大多数为设计空间多维且带有约束条件的非线性优化问题。其数学模型为

??

???<===≥∈n p v X h m u X g t s R X X f v u n

,,2,1,0)(,,2,1,0)(..),(min 根据对约束条件处理方法的不同:

直接法(约束坐标轮换法、随机方向法、复合形法、可行方向法)

间接法(简约梯度法、惩罚函数法等)。

直接法可以直接从可行域中找到最优解;将问题分解为一系列比较简单的子问题,用子问题的解逼近原问题的解。

直接法简单直观、对目标函数要求不高;计算量大、收敛慢,因此效率低。

3.2.1 约束随机方向搜索法(随机方向法)

3.2.1.1 基本原理

从可行域内某一点出发,沿某一给定步长,并随机产生搜索方向,直到该方向同时满足可行性和下降性要求,沿着这个方向以该步长继续搜索,直到不满足可行性及下降性条件为止。把上述满足要求的终点作为新的起点,重新产生随机方向,如果能够找到一个合适的方向,同时满足条件,则沿该方向以原步长继续搜索;如若找不到适合的方向,则将步长减半,仍以该点为起点随机搜索,如果能找到新的方向,则沿该方向继续,如果不能,步长再减半。直到找不到新的搜索方向,且步长满足精度要求,则以该起点为最优点。 一个需要说明的问题:从某一点出发,如何判断沿某一给定步长找不到可行的方向呢?如果不靠目标函数和约束条件中隐含的指引信息,那么只有对搜索空间进行机械的排查,对随机方向搜索法而言,就是在产生并搜索了足够多方向之后,认为可以近似的得出这个结论。那么,到底随机搜索了多少个方向才能得出结论呢?一般取50~500个方向,当然,如果不考虑计算的速度和效率,这个最大的方向数大一些更好,而且设计空间维数越大,这个数也应越大。

3.2.1.2 初始点的选取

)(0

i i i i i a b r a x -+=

其中r i 为随机数,对C 语言,有函数rand()产生一个0到RAND_MAX 的伪随机整数,则

MAX RAND rand r i _()= 3.2.1.3随机搜索方向的产生

T r y )1,,1,1(2 -=。通过该变换,使搜索方向的每个分量为-1到1之间的随机值,从而确保对每个坐标方向的正负两方向的搜索。之后可以进行标准化处理y

y e = 3.2.1.4 随机法的特点

算法简单,对目标函数要求不高;由于随机搜索带有盲目性,效率低,速度慢,可能不收敛。

3.2.2 复合形法

3.2.2.1 基本原理

(1) 在设计空间找到K 个可行点构成多面体(复合形),一般N+1≤K ≤2N 。

(2) 不断使复合形向着约束内最优点移动和收缩。更具体一些,根据目标函数值的大小

找出这K 个点中的最坏点(函数值最大),除最坏点之外的其它K-1个点的形心为映射中点,找到最坏点的映射点(对称点),最坏点之外其余K-1个点以及这个映射点构成新的复合形。

(3) 检验复合形中各个点与最好点是否满足重合,或这些点收敛于某个精度构成的最好

点的临域之内。若满足,则算法成功结束;否则,重复(2)。

3.2.2.2 几个关键问题

(一)初始复合形的产生

1.确定第一个可行点作为复合形的第一个顶点。如果不满足可行性,反复进行随机搜索,直到找到可行点。公式)(11i i i i i a b r a x -+=

2.再随机产生其余K-1个顶点。k j a b r a x i i j i i j i ,,3,2),( =-+=

3.对2.中产生的K-1个点逐一检验可行性,并将不满足的点调入可行域。

具体的方法:

1)从第一个点起,找到满足可行性的q 个点,第q+1个点不满足。求前q 个点的形心。

2)将q+1点向这个形心按两点长度的一半移动,如此反复,直到将该点移入可行域。

3)之后其它不可行的点按1)、2)的步骤重复,直到K 个点均满足可行性。

(二)映射点不满足可行性和下降性的处理

1) 如果映射点不满足可行性和下降性,将映射系数减半,产生新的映射点,如此反

复,直到满足;否则2)

2) 以次坏点取代最坏点,求新的形心和形心的映射点。

(三)可行域为非凸集的处理

如果除最坏点外其它K-1个点的形心不在可行域内,则可行域可能是非凸集。

这时在以最好点和该形心构成的超立方体中重新构造复合形。如果C i L i x x <,

则C i i L i i x b x a ←←, (四)迭代终止条件:各顶点与最好点目标函数值之差的均方根小于设计精度

ε≤-∑=21

)]()([1L j k j X f X f k 3.2.2.3 复合形法的特点

搜索具有方向性,收敛速度较快

3.2.3 惩罚函数法

罚函数法基本思想:约束条件构造罚函数项,并入目标函数,化为无约束优化问题。所谓“惩罚”,既是给不满足约束条件的惩罚项以很大的值,使目标函数的总值增大(就是惩罚),那么无约束优化方法就会使搜索向着总值减小的方向前进,从而使不满足的约束的点(或远离约束边界的点)向满足约束的方向靠拢。

4. 现代优化算法小结——遗传算法

遗传算法简称GA(Genetic Algorithm),最早由美国Michigan大学的J. Holland教授提出(于上世纪60-70年代,以1975年出版的一本著作为代表),模拟自然界遗传机制和生物进化论而成的一种并行随机搜索最优化方法。

遗传算法是以达尔文的自然选择学说为基础发展起来的。自然选择学说包括以下三个方面:

(1)遗传:这是生物的普遍特征,亲代把生物信息交给子代,子代总是和亲代具有相同或相似的性状。生物有了这个特征,物种才能稳定存在。

(2)变异:亲代和子代之间以及子代的不同个体之间的差异,称为变异。变异是随机发生的,变异的选择和积累是生命多样性的根源。

(3)生存斗争和适者生存:具有适应性变异的个体被保留下来,不具有适应性变异的个体被淘汰,通过一代代的生存环境的选择作用,性状逐渐与祖先有所不同,演变为新的物种。

遗传算法将“优胜劣汰,适者生存”的生物进化原理引入优化参数形成的编码串联群体中,按所选择的适应度函数并通过遗传中的选择、交叉及变异对个体进行筛选,使适应度高的个体被保留下来,组成新的群体,新的群体既继承了上一代的信息,又优于上一代。这样周而复始,群体中个体适应度不断提高,直到满足一定的条件。遗传算法的算法简单,可并行处理,并能到全局最优解。

4.1 遗传算法的基本操作(算子)有

(1)选择(Selection Operator)

选择是从一个旧种群中选择生命力强的个体位串产生新种群的过程。具有高适应度的位串更有可能在下一代中产生一个或多个子孙。

选择操作可以通过随机方法来实现。首先产生0~1之间均匀分布的随机数,若某串的选择概率为40%,则当产生的随机数在0.40~1.0之间时,该串被选择,否则被淘汰。

(2)交叉(Crossover Operator)

选择操作能从旧种群中选择出优秀者,但不能创造新的染色体。而交叉模拟了生物进化过程中的繁殖现象,通过两个染色体的交换组合,来产生新的优良品种。

交叉的过程为:在匹配池中任选两个染色体,随机选择一点或多点交换点位置;交换双亲染色体交换点右边的部分,即可得到两个新的染色体数字串。

交叉体现了自然界中信息交换的思想。交叉有单点交叉、多点交叉、还有一致交叉、顺序交叉和周期交叉。单点交叉是最基本的方法,应用较广。它是指染色体切断点有一处。

(3)变异 (Mutation Operator)

变异运算用来模拟生物在自然的遗传环境中由于各种偶然因素引起的基因突变,它以很小的概率随机地改变遗传基因(表示染色体的符号串的某一位)的值。在染色体以二进制编码的系统中,它随机地将染色体的某一个基因由1变为0,或由0变为1。

若只有选择和交叉,而没有变异,则无法在初始基因组合以外的空间进行搜索,使进化过程在早期就陷入局部解而进入终止过程,从而影响解的质量。为了在尽可能大的空间中获得质量较高的优化解,必须采用变异操作。

4.2 遗传算法的特点

(1)遗传算法是对参数的编码进行操作,而非对参数本身,这就是使得我们在优化计算过程中可以借鉴生物学中染色体和基因等概念,模仿自然界中生物的遗传和进化等机理(2)遗传算法同时使用多个搜索点的搜索信息。传统的优化方法往往是从解空间的单个初始点开始最优解的迭代搜索过程,单个搜索点所提供的信息不多,搜索效率不高,有时甚至使搜索过程局限于局部最优解而停滞不前。遗传算法从由很多个体组成的一个初始群体开始最优解的搜索过程,而不是从一个单一的个体开始搜索,这是遗传算法所特有的一种隐含并行性,因此遗传算法的搜索效率较高

(3)遗传算法直接以目标函数作为搜索信息。传统的优化算法不仅需要利用目标函数值,而且需要目标函数的导数值等辅助信息才能确定搜索方向。而遗传算法仅使用由目标函数值变换来的适应度函数值,就可以确定进一步的搜索方向和搜索范围,无需目标函数的导数值等其他一些辅助信息。

遗传算法可应用于目标函数无法求导数或导数不存在的函数的优化问题,以及组合优化问题等

(4)遗传算法使用概率搜索技术。遗传算法的选择、交叉、变异等运算都是以一种概率的方式来进行的,因而遗传算法的搜索过程具有很好的灵活性。随着进化过程的进行,遗传算法新的群体会更多地产生出许多新的优良的个体

(5)遗传算法在解空间进行高效启发式搜索,而非盲目地穷举或完全随机搜索

(6)遗传算法对于待寻优的函数基本无限制,它既不要求函数连续,也不要求函数可微,既可以是数学解析式所表示的显函数,又可以是映射矩阵甚至是神经网络的隐函数,因而应用范围较广

(7)遗传算法具有并行计算的特点,因而可通过大规模并行计算来提高计算速度,适合大规模复杂问题的优化。

4.3 遗传算法的应用领域

(1)函数优化

函数优化是遗传算法的经典应用领域,也是遗传算法进行性能评价的常用算例。尤其是对非线性、多模型、多目标的函数优化问题,采用其他优化方法较难求解,而遗传算法却可以得到较好的结果。

(2)组合优化

随着问题的增大,组合优化问题的搜索空间也急剧扩大,采用传统的优化方法很难得到最优解。遗传算法是寻求这种满意解的最佳工具。例如,遗传算法已经在求解旅行商问题、背包问题、装箱问题、图形划分问题等方面得到成功的应用。

(3)生产调度问题

在很多情况下,采用建立数学模型的方法难以对生产调度问题进行精确求解。在现实生产中多采用一些经验进行调度。遗传算法是解决复杂调度问题的有效工具,在单件生产车间调度、流水线生产车间调度、生产规划、任务分配等方面遗传算法都得到了有效的应用。

(4)自动控制

在自动控制领域中有很多与优化相关的问题需要求解,遗传算法已经在其中得到了初步的应用。例如,利用遗传算法进行控制器参数的优化、基于遗传算法的模糊控制规则的学习、基于遗传算法的参数辨识、基于遗传算法的神经网络结构的优化和权值学习等。

(5)机器人

例如,遗传算法已经在移动机器人路径规划、关节机器人运动轨迹规划、机器人结构优化和行为协调等方面得到研究和应用。

(6)图像处理

遗传算法可用于图像处理过程中的扫描、特征提取、图像分割等的优化计算。目前遗传算法已经在模式识别、图像恢复、图像边缘特征提取等方面得到了应用。

4.4 遗传算法的实施步骤

(1)染色体编码及解码方法

基本遗传算法使用固定长度的二进制符号来表示群体中的个体,其等位基因是由二值符号集{0,1}所组成。初始个体基因值可用均匀分布的随机值生成。

(2)个体适应度评价:基本遗传算法与个体适应度成正比的概率来决定当前群体中每个个体遗传到下一代群体中的概率多少。为正确计算这个概率,要求所有个体的适应度必须为正数或零。因此,必须先确定由目标函数值J到个体适应度f之间的转换规则。

(3)遗传算子:基本遗传算法使用下述三种遗传算子:

①选择运算: 使用比例选择算子

②交叉运算: 使用单点交叉算子

③变异运算: 使用基本位变异算子或均匀变异算子

(4)基本遗传算法的运行参数

有下述4个运行参数需要提前设定:

M:群体大小,即群体中所含个体的数量,一般取为20~100;

G:遗传算法的终止进化代数,一般取为50~500;

Pc:交叉概率,一般取为0.4~0.99;

Pm:变异概率,一般取为0.0001~0.1。

4.5 遗传算法的应用步骤

对于一个需要进行优化的实际问题,一般可按下述步骤构造遗传算法:

第一步:确定决策变量及各种约束条件,即确定描述个体的变量X和问题的解空间范围;

第二步:建立优化模型,即确定目标函数的类型及数学描述形式或量化方法;

第三步:确定表示可行解的染色体编码方法;

第四步:确定解码方法,即确定由基因到个体的对应关系或转换方法;

第五步:确定个体适应度的量化评价方法,即确定由目标函数值到个体适应度的转换规则;

第六步:设计遗传算子,即确定选择运算、交叉运算、变异运算等遗传算子的具体操作方法。

第七步:确定遗传算法的有关运行参数,即M,G,Pc,Pm等参数。

最优化方法简明教程—centre

①图与网 破圈法:任取一个圈,去掉一条权最大的边,直到最小树。 避圈法:选最小权的边,避圈前进,直到最小树。 最短路算法: Dijkstra法:从V s给定P标号T标号λ标号(T标号变为P标号λ标号记位置) 反向追踪:列表,d1(V1,V j)→d k(V1,V j)=min(ωij+d k(V1,V i))据最小权反向追踪 网络优化: 最小截集最大流:找到最小截集(弧的集合) 标号法:开始,为的标号, 最小费用最大流: 邮递员问题:通过消灭奇点,找欧拉回路 网络计划图: 最早开始最晚开始机动时间 最早结束最晚结束自由时差 工期优化:人力,费用,工期优化。 费用率=(最短时间费用-正常时间费用)/(正常时间-最短时间)②排队论(保证服务质量,又减少费用) 顾客源→(排队规则)队列→(服务规则)服务机构→离去 服务规则:FCFS,LCFS,随机服务,PR

M(顾客到达)|A(服务时间)|1(服务台数)|∞(容量)|∞(顾客源) N(t)队长N q (t)排队长T(t)顾客逗留时间T q (t)顾客等待时间 L 平均队长L q 平均等待队长W 平均逗留时间W q 平均等待时间 R 为系统利用率 泊松流(M):无后效性;平稳性;单个性; P 1(t,t+Δt)=λΔt+o(Δt); o(Δt)=∑∞ 2P n (t,t+Δt);E ξ=D ξ=λt (t 时刻n 个顾客的概率) 负指数分布(M):无记忆性(P(T>t+s/t>s)=P(T>t));[0,t)至少到达一 个顾客1-P 0(t )=1-e -t λ,t>0 !)()(K t e t V K t k λλ-= ,2,1,0=K ?? ?<≥-=-0,00,1)(t t e t F t i λξ),2,1( =i 爱尔朗分布(E K ):(相当于泊松流到达后被k 个服务台均分顾客形成) (其中,t>0,E(T)=1/μ,Var(T)=1/μ2k ) )! 1()()(1 >-= --t e k t t f t k μμμ K=1为M ,k=∞定长分布D,k ≥30正态分布近似 G 表示一般相互独立的随机分布 Little 公式:(四者知一即可) μ1 + =q W W W L λ= q q W L λ= ρ+=q L L ∑∞ ==0 n n nP L ∑∑∞=∞ =+=-=s n n m s n q nP P s n L 0 )( 服务率:ρ=λ/μ(λ为到达μ为服务) 排队系统分析:

群智能优化算法综述

现代智能优化算法课程群智能优化算法综述 学生姓名: 学号: 班级: 2014年6月22日

摘要 工程技术与科学研究中的最优化求解问题十分普遍,在求解过程中,人们创造与发现了许多优秀实用的算法。群智能算法是一种新兴的演化计算技术,已成为越来越多研究者的关注焦点,智能优化算法具有很多优点,如操作简单、收敛速度快、全局收敛性好等。群智能优化是智能优化的一个重要分支,它与人工生命,特别是进化策略以及遗传算法有着极为特殊的联系。群智能优化通过模拟社会性昆虫的各种群体行为,利用群体中个体之间的信息交互和合作实现寻优。本文综述群智能优化算法的原理、主要群智能算法介绍、应用研究及其发展前景。 关键词:群智能;最优化;算法

目录 摘要 (1) 1 概述 (3) 2 定义及原理 (3) 2.1 定义 (3) 2.2 群集智能算法原理 (4) 3 主要群智能算法 (4) 3.1 蚁群算法 (4) 3.2 粒子群算法 (5) 3.3 其他算法 (6) 4 应用研究 (7) 5 发展前景 (7) 6 总结 (8) 参考文献 (9)

1 概述 优化是人们长久以来不断研究与探讨的一个充满活力与挑战的领域。很多实际优化问题往往存 在着难解性,传统的优化方法如牛顿法、共扼梯度法、模式搜索法、单纯形法等己难以满足人们需求。 因此设计高效的优化算法成为众多科研工作者的研究目标。随着人类对生物启发式计算的研究, 一些社会性动物( 如蚁群、蜂群、鸟群) 的自组织行为引起了科学家的广泛关注。这些社会性动物在漫长的进化过程中形成了一个共同的特点: 个体的行为都很简单, 但当它们一起协同工作时, 却能够“突现”出非常复杂的行为特征。基于此,人们设计了许多优化算法,例如蚁群算法、粒子群优化算法、混合蛙跳算法、人工鱼群算法,并在诸多领域得到了成功应用。目前, 群智能理论研究领域主要有两种算法: 蚁群算法(Ant Colony Optimization, ACO) 和粒子群优化算法(ParticleSwarm Optimization, PSO)。 2 定义及原理 2.1 定义 群集智能优化算法源于对自然界的生物进化过程或觅食行为的模拟。它将搜索和优化过程模拟成个体的进化或觅食过程,用搜索空间中的点模拟自然界中的个体;将求解问题的目标函数度量成个体对环境的适应能力;将个体的优胜劣汰过程或觅食过程类比为搜索和优化过程中用好的可行解取代较差可行解的迭代过程。从而,形成了一种以“生成+检验”特征的迭代搜索算法,是一种求解极值问题的自适应人工智能技术。各类优化算法实质上都是建立问题的目标函数,求目标函数的最优解,因而实际工程优化问题均可转化为函数优化问题。其表达形式如下: 求: ,,2,1,0)(..), (min , ,,2,1,),,,(21Lm j X g t s X f n L i x L x x X i T n i =≤== 。Ω∈X 其中, i X 为设计变量;)(X f 为被优化的目标函数;0)(≤X g j 为约束函数;Ω为设计变量的 可行域。

进销存系统的设计--文献综述

本科毕业设计(论文)文献综述 学院专业 学生姓名学号 指导教师职称 合作导师职称 论文题目企业进销存系统的设计 文献综述: 摘要:随着当今世界计算机技术的飞速发展,计算机在企业管理中应用的普及,利用计算机实现企业进销存管理势在必行。商品或货物实行信息化管理,可以提高管理水平和工作效率,同时也可以地大限度地减少手工操作带来的失误,对企业内部的一系列资源也进行全面的整合,而企业管理成为在整合、调整过程中主要调整对象。随着企业信息化进程的不断发展企业进销存管理系统在企业管理中都有广泛的应用前景。 关键词:管理,进销存,进销存管理 1 管理信息系统(MIS) 1.1 管理信息系统的产生和概念 企业管理水平是企业经营成败的重要因数,进入二十一世纪后,企业的经营环境发生了巨大的变化,企业面临着知识经济和经济一体化的新局面。“信息化是我国加快实现工业化和现代化的必然选择,坚持以信息化带动工业化,以工业化促进信息化”。信息化被提升到了国家战略层面,企业信息化是企业发展的必经之路。从企业内部来看,必须构建企业的最佳业务流程,通过信息流,协同各生产经营单位和部门的商流、物流和资金流,合理配置企业资源,提高核心企业的竞争能力和市场应变能力。 管理信息系统(MIS)是一个由人、计算机等组成的能进行信息的收集、传递、储存、加工、维护和使用的系统,必然能代替过去大量、繁杂的手工操作。而且知识经济时代最显著的特征是商业企业的结构随着产品技术进步、市场变化而快速变化,时效经济和消费个性化会不断增强。一个优秀的信息系统能使管理者对商业企业了如指掌,用数据帮助企业家瞻前顾后,使企业家能把有限的精力更多地用于处理风险规避上。

城市轨道交通规划设计—地铁篇.

城市轨道交通规划设计—地铁篇

目录 第一章综述 (3) 第二章地铁线路网规划 (3) 2.1 线网合理规模论证问题研究 (3) 2.2 线网空间形态与构架问题研究 (5) 2.3 关于地铁线网与城市其它交通方式的衔接 (8) 第三章地铁站站址规划 (9) 3.1车站开挖对地标建筑物的影响 (9) 3.2车站开挖对地下建筑物的影响 (10) 3.3车站开挖对地下管线的影响 (11) 3.4车站开挖对地面交通和周围环境的影响 (12) 3.5地铁车站开挖方法受多因素影响时的选择 (13) 3.6小结 (13) 第四章发展与展望 (13)

第一章综述 近年来, 我国城市地铁建设又出现了一个新的勃发之机,不仅北京、上海、广州等特大城市加速地铁建设, 一些百万以上人口规模的大城市如西安等也在积极筹划和兴建地铁, 无疑,这是我国城市交通加速现代化进程的一个好兆头。 地铁是城市综合交通体系中的一个子系统,其内在组成结构及外部运行环境都是决定系统整体效能的关键因素。地铁网络总体布局规划的任务一方面是要研究其内在结构,另一方面是要研究它与城市综合交通体系中其它子系统(如道路及地面常规公共客运等)的协调关系,乃至与城市形态和土地使用布局的协调关系。不言而喻,如果没有地铁线网的总体布局规划作为线路建设的依据,将来形成的地铁系统很难保证有较理想的运行效能。在地铁线网规划中如何确定线网合理规模、线网空间构架形态以及与其它交通方式的衔接关系是线网规划理论中尚待探讨的问题, 同时也是涉及规划方法的问题。 第二章地铁线路网规划 2.1 线网合理规模论证问题研究 线网规模(线网营运总里程)取决于城市规模、城市形态以及社会经济发展水平等诸多因素,换言之,一个城市地铁线网的总体规模无疑应当与上述客观条件相匹配,否则无法保证线网运营的整体社会经济效益。编制线网总体布局规划时,往往只注意线网覆盖面及线网的具体构架,而不作合理规模的论证,这是当前我国城市地铁网规划中普遍存在的一个问题。从国外的情况看,伦敦、巴黎、东京以及莫斯科等

现代优化方法综述

1.引言 优化设计英文名是optimization design,从多种方案中选择最佳方案的设计方法。它以数学中的最优化理论为基础,以计算机为手段,根据设计所追求的性能目标,建立目标函数,在满足给定的各种约束条件下,寻求最优的设计方案。 第二次世界大战期间,在军事上首先应用了优化技术。1967年,美国的R.L.福克斯等发表了第一篇机构最优化论文。1970年,C.S.贝特勒等用几何规划解决了液体动压轴承的优化设计问题后,优化设计在机械设计中得到应用和发展。随着数学理论和电子计算机技术的进一步发展,优化设计已逐步形成为一门新兴的独立的工程学科,并在生产实践中得到了广泛的应用。通常设计方案可以用一组参数来表示,这些参数有些已经给定,有些没有给定,需要在设计中优选,称为设计变量。如何找到一组最合适的设计变量,在允许的范围内,能使所设计的产品结构最合理、性能最好、质量最高、成本最低(即技术经济指标最佳),有市场竞争能力,同时设计的时间又不要太长,这就是优化设计所要解决的问题。一般来说,优化设计有以下几个步骤:①建立数学模型。②选择最优化算法。③程序设计。 ④制定目标要求。⑤计算机自动筛选最优设计方案等。 2.数学模型 优化设计的数学模型是对优化设计工程问题的数学描述,它包含设计变量、目标函数和设计约束三个基本要素。 2.1设计变量 2.1.1基本参数 a、定义:在设计过程中进行选择变化并最终确定的各项独立参数称为设计变量。 b、说明:在设计选择过程中,这些设计变量是变量,但它们一旦被确定后,设计对象也 就完全确定了。最优化设计是研究怎样合理地优选这些设计变量的一种现代设计 方法。在设计过程中,凡根据设计要求事先给定的,不是设计变量而是设计常量。 2.1.2设计方案的表现形式 a、设计空间:由n个设计变量为坐标所组成的时空间称作设计空间。 b、设计变量的表示法 (1)坐标表示法:一维问题→一个设计变量→数轴上的一个点 二维问题→两个设计变量→平面直角坐标系上的向量 三维问题→三个设计变量→空间直角坐标系的向量

文化结构的产品设计方法综述

文化结构的产品设计方法综述产品设计师通过以用户为主体的设计方法,归纳出产品设计的几大重要因素组成的体系(产品—人—环境)。其细分为:(1)用户相关的使用、心理等用户(人)核心体系;(2)产品本身所具备的功能品质等产品体系;(3)产品外环境所承载的品牌、潮流等因素的环境体系。层次化结构则将该体系由表至里进行了区分与归纳。 层次化结构的构成 产品设计中,以汽车造型设计为主要特征代表的形态设计派的设计宗旨是从外观造型的线条、曲面、空间体上打造设计哲学理念,或是简洁、或是优雅、或是灵动、或是强悍,这些风格一旦被塑造定型并确定了它的文化性质,即成为了某个品牌某个风格的一种文化语言,有时,这些风格与传统文化的某些特征具有相同之处或者如出一辄,此时,设计便可相通。有时,设计师试图通过在产品表面贴纹样而提高产品的文化底蕴,笔者认为这仅仅是产品设计的一个最简单的途径,也仅仅是文化传承的最浅层次,容易被认为是“俗套的设计”,因此其层次关系有待深入挖掘。层次化知识结构,将其解析为:基于层次构架与互通性的传统文化精神与产品设计的知识结构。层次上的构架包括:表层、中层、内层、核层。表层内容:传统文化表现为纹样符号,而产品设计的表现为图形美化装饰;中层内容:传统文化表现为风格样式,而产品设计表现为形态样式;内层内容:传统文化表现为行为习惯,产品设计表现为方式、功能;核层内容:传统文化表现为精神与文化内涵,产品设计表现为品牌形象、理念、品质内涵。朴素简洁

的无印良品CD播放器无印良品CD播放器产品设计,通过一根拉绳操作音乐播放与停止,裸露的旋转CD盘面给人简单而美妙的观感。此设计无疑是对产品与文化深层次的挖掘与表现的设计构思。如此设计需要大胆与锐利的目光,传统文化中没有CD播放器,而CD播放器的操作一直都被认定为有几个按钮的操作方式。笔者认为,这样的设计并非仅仅对风格的追求,并非因为风格的框架所决定的,而是对文化与产品层次挖掘的成果。无印良品的产品包装以简单朴素为特色风格,使用环保的无漂白纸张作为商品袋,给人以新鲜、纯粹的感觉[3]。从表1可知,该产品的设计是通过对产品进行深入挖掘,发现了文化的对等性,而将两者融合,最终在产品的外观中体现出融合的结果,这是文化在现代化产品设计上应用的典型例子。装饰华丽的诺基亚“回纹”手机曾盛极一时的诺基亚回纹系列手机,可谓文化(符号)与产品结合的经典,无论是纹样还是材质,无论是触感还是交互,这款手机的设计都给人强烈的文化刺激。虽然曾有人质疑其过于花哨的外表,但没有人怀疑它的商业成功。多少年后的今天,从另外一个新的视角去看,这款产品的设计,在设计手法上表达了“文化”的哪个方面、层面?用户体验设计的经典——iPhone手机目前依然风靡全球的苹果iPhone手机以独特的操作体验、简练的形式给人眼前一亮的感觉,使用过的人无不被这种技术和设计带来的操作体验而折服。iPhone手机的成功更多的是对产品的理解,同时在工业设计上对用户为中心的PHE设计体系的客观分析。 基于文化应用层次化结构的产品设计方法

茶社设计文献综述

论茶社装修装饰设计的文献综述 前言 吃茶品茗始于中国,中国茶社之多,严格地说来,冠于天下。茶社文化丰富,是中华茶文化的首要构成部分。茶社,别名茶肆、茶坊、茶店、茶铺、茶馆等,是以吃茶品茗为中间的综合性活动场合。茶社是跟着吃茶品茗的昌隆而呈现的,是跟着城镇经济、市民文化的发展而昌隆起来的、从古到今,茶社经历了上千的演变,不但具有各个时期的烙印,也具有较着的地区特点,似的茶社由纯真谋划差说的功效,衍生出了诸多别的功效。现代随着人民生活的生活节奏的加快,生活压力的不断增加,人们更多的希望有一个宁静、幽香,没有喧哗的地方让我们静静的品一杯清茶,洗去一身的烦躁。 一、茶社设计的本土化发展 (一)茶社店面设计的重要性 如果说在西方大都市,咖啡馆是一座座文化驿站的话,中国各大城市的茶社就是中国都市文化的代表,喝茶、品茶、闻茶、聊茶,在中国人看来极其稀松平常。作为茶馆业,曾被成为“绿色产业”,它的性质是直接为顾客提供以品茶为主,集休闲娱乐等一体的综合性服务。没有人因为口渴而去茶社饮茶,他们去茶社往往是为了休闲放松和突出自己的文化品位。故此,茶社的设计应该是一种美的文化表现形式。 (二)茶社设计存在的问题 与国外已经形成一种模式的咖啡文化相比,中国的茶社虽然发展了一千多年,却始终按照休闲茶社、文化茶社的套路经营着,一直没有打的突破。在品牌塑造上,没有品牌意识,缺乏茶社价值的塑造;在文化层次上,虽认识到文化的重要性,但未真正理解茶文化的真谛;在装修风格上,极近相似,主题不鲜明,环境不突出。茶社令人印象深刻的是它的饮茶环境,它往往围绕一个特定的主题对茶社进行装饰,甚至食品也与主题相配合,为顾客营造出一种或轻松或愉悦的

国内外沥青路面设计方法综述

国内外沥青路面设计方法综述 周利,蔡迎春,杨泽涛 (郑州大学环境与水利学院,郑州450002) 摘要:当前世界各国众多的沥青路面设计方法,可概括地分为2类:一类是以经验或试验为依据的经验法;一类是以力学分析为基础,考虑环境、交通条件以及材料特性为依据的力学-经验法。简要介绍目前国内外典型设计方法(CBR法、A ASHT O法、S HEL L法、A I法及国内方法),并比较其优缺点,针对现行设计方法,特别是我国设计方法,提出改进意见。 关键词:沥青路面;设计方法;综述 文章编号:1009-6477(2007)04-0036-04中图分类号:U416.217文献标识码:B S ummary of Dome stic&Overseas Asphalt Paveme nt Design M ethod Zhou Li,Cai Y ingc hun,Y ang Zetao 沥青路面是在柔性基层、半刚性基层上,铺筑一定厚度的沥青混合料作为面层的路面结构。以沥青路面为主的柔性路面设计理论与方法研究已有近百年的历史,其发展历程经历了古典法、经验法和力学-经验法3个阶段。当前世界各国众多的沥青路面设计方法大体为后面2种,即以工程使用经验或试验为依据的经验法和以力学分析为基础,考虑环境、交通条件以及材料特性为依据的力学-经验法。为了更好地借鉴前人的研究成果,有助于指导今后设计方法的研究,本文简要介绍目前国内外几种典型的设计方法:(1)经验法的代表方法:CBR法和A AS HTO法;(2)力学-经验法的典型代表:AI法和SHEL L法;(3)我国2004规范(报批稿)采用的设计方法,并作简单评价。 1国外沥青路面设计方法 国外的沥青路面设计方法,可分为经验法和力学-经验法2大类[1]。 1.1经验法 经验法主要通过对试验路或使用道路的实验观测,建立路面结构、荷载和路面性能三者间的经验关系。最为著名的经验设计方法有美国加州承载比(CBR)法和美国各州公路和运输工作者协会(AA SHT O)柔性路面设计法。 1.1.1CBR法[2-3] CBR法是以CBR值作为路基土和路面材料(主要是粒料)的性质指标,通过对已损坏或使用良好的路面的调查和CBR测定,建立起路基土CBR-轮载-路面结构层厚度3者之间的经验关系。利用此关系曲线,可以按设计轮载和路基土CBR值确定所需的路面层总厚度。路面各结构层的厚度,按各层材料的CBR值进行当量厚度换算。不同轮载的作用按等弯沉的原则换算为设计轮载的当量作用。此方法设计过程简单、概念明确,适用于重载、低等级的路面设计,所提出的C BR指标已作为路面材料的一种参数指标得到了广泛应用。如日本的路面设计经验法(T A法)就是以CB R法为基础制定的。 1.1.2AA SHT O法[2,4-5] A AS HTO法是在1958)1962年间A AS HO试验路的基础上建立的。整理试验路的试验观测数据,得到了路面结构-轴载-使用性能三者间的经验关系式。路面结构中的路基土采用回弹模量表征其性质,路面结构层按各层材料性质的不同转换为用一个结构数(S N)表征。AAS HT O方法提出了现时服务能力指数(PSI)的概念,以反映路面的服务质量。PS I是一个由评分小组进行主观评定后得到的指标,它与路面实际状况(坡度变化、裂缝面积、车辙深度、修补面积)之间建立经验关系式,提出了轴载换算的概念和公式,考虑了结构的可靠度和排水条件的影响,这些思想对后来世界各国的设计思想产生了很大的影响。 1.2力学-经验法 力学-经验法首先分析路面结构在荷载和环境作用下的力学响应(应力、应变、位移),利用在力学 公路交通技术2007年8月第4期Technology of Highw ay and Transport Aug.2007No.4 收稿日期:2007-01-10

最优化方法及应用

陆吾生教授是加拿大维多利亚大学电气与计算机工程系 (Dept. of Elect. and Comp. Eng. University of Victoria) 的正教授, 且为我校兼职教授,曾多次来我校数学系电子系讲学。陆吾生教授的研究方向是:最优化理论和小波理论及其在1维和2维的数字信号处理、数字图像处理、控制系统优化方面的应用。 现陆吾生教授计划在 2007 年 10-11 月来校开设一门为期一个月的短期课程“最优化理论及其应用”(每周两次,每次两节课),对象是数学系、计算机系、电子系的教师、高年级本科生及研究生,以他在2006年出版的最优化理论的专著作为教材。欢迎数学系、计算机系、电子系的研究生及高年级本科生选修该短期课程,修毕的研究生及本科生可给学分。 上课地点及时间:每周二及周四下午2:00开始,在闵行新校区第三教学楼326教室。(自10月11日至11月8日) 下面是此课程的内容介绍。 ----------------------------------- 最优化方法及应用 I. 函数的最优化及应用 1.1 无约束和有约束的函数优化问题 1.2 有约束优化问题的Karush-Kuhn-Tucker条件 1.3 凸集、凸函数和凸规划 1.4 Wolfe对偶 1.5 线性规划与二次规划 1.6 半正定规划 1.7 二次凸锥规划 1.8 多项式规划 1.9解最优化问题的计算机软件 II 泛函的最优化及应用 2.1 有界变差函数 2.2 泛函的变分与泛函的极值问题 2.3 Euler-Lagrange方程 2.4 二维图像的Osher模型 2.5 泛函最优化方法在图像处理中的应用 2.5.1 噪声的消减 2.5.2 De-Blurring 2.5.3 Segmentation ----------------------------------------------- 注:这是一门约二十学时左右的短期课程,旨在介绍函数及泛函的最优化理论和方法,及其在信息处理中的应用。只要学过一元及多元微积分和线性代数的学生就能修读并听懂本课程。课程中涉及到的算法实现和应用举例都使用数学软件MATLAB 华东师大数学系

智能优化算法综述

智能优化算法的统一框架 指导老师:叶晓东教授 姓名:李进阳 学号:2 班级:电磁场与微波技术5班 2011年6月20日

目录 1 概述 (3) 2群体智能优化算法.................................. 错误!未定义书签。 人工鱼群算法 (4) 蚁群算法 (5) 混合蛙跳算法 (9) 3神经网络算法 (10) 神经网络知识点概述 (10) 神经网络在计算机中的应用 (11) 4模拟退火算法 (15) 5遗传算法.......................................... 错误!未定义书签。 遗传算法知识简介 (17) 遗传算法现状 (18) 遗传算法定义 (19) 遗传算法特点和应用 (20) 遗传算法的一般算法 (21) 遗传算法的基本框架 (26) 6总结 (28) 7感谢 (29)

1概述 近年来,随着人工智能应用领域的不断拓广,传统的基于符号处理机制的人工智能方法在知识表示、处理模式信息及解决组合爆炸等方面所碰到的问题已变得越来越突出,这些困难甚至使某些学者对强人工智能提出了强烈批判,对人工智能的可能性提出了质疑。众所周知,在人工智能领域中,有不少问题需要在复杂而庞大的搜索空间中寻找最优解或准优解。像货朗担问题和规划问题等组合优化问题就是典型的例子。在求解此类问题时,若不能利用问题的固有知识来缩小搜索空间则会产生搜索的组合爆炸。因此,研究能在搜索过程中自动获得和积累有关搜索空间的知识,并能自适应地控制搜索过程,从而得到最优解或准有解的通用搜索算法一直是令人瞩目的课题。智能优化算法就是在这种背景下产生并经实践证明特别有效的算法。 2群体智能优化算法 自然界中群体生活的昆虫、动物,大都表现出惊人的完成复杂行为的能力。人们从中得到启发,参考群体生活的昆虫、动物的社会行为,提出了模拟生物系统中群体生活习性的群体智能优化算法。在群体智能优化算法中每一个个体都是具有经验和智慧的智能体 (Agent) ,个体之间存在互相作用机制,通过相互作用形成强大的群体智慧来解决复杂的问题。自 20世纪 90年代模拟蚂蚁行为的蚁群算法(ACO)提出以来,又产生了模拟鸟类行为的微粒群算法 ( PSO)、模拟鱼类生存习性的人工鱼群算法、模拟青蛙觅食的混合蛙跳算法 ( SFLA)等。这些群体智能优化算法的出现,使原来一些复杂的、难于用常规的优化算法进行处理的问题可以得到解决,大大增强了人们解决和处理优化问题的能力,这些算法不断地用于解决工程实际中的问题,使得人们投入更大的精力对其理论和实际应用进行研究。群体智能优化算法本质上是一种概率搜索,它不需要问题的梯度信息具有以下不同于传统优化算法的特点: ①群体中相互作用的个体是分布式的,不存在直接的中心控制,不会因为个别个体出现故障而影响群体对问题的求解,具有较强的鲁棒性; ②每个个体只能感知局部信息,个体的能力或遵循规则非常简单,所以群体智能的实现简单、方便; ③系统用于通信的开销较少,易于扩充; ④自

毕业设计文献综述范文

四川理工学院毕业设计(文献综述)红外遥控电动玩具车的设计 学生:程非 学号:10021020402 专业:电子信息工程 班级:2010.4 指导教师:王秀碧 四川理工学院自动化与电子信息学院 二○一四年三月

1前言 1.1 研究方向 随着科技的发展,越来越多的现代化电器走进了普通老百姓的家庭,而这些家用电器大都由红外遥控器操控,过多不同遥控器的混合使用带来了诸多不便。因此,设计一种智能化的学习型遥控器,学习各种家用电器的遥控编码,实现用一个遥控器控制所有家电,已成为迫切需求。首先对红外遥控接收及发射原理进行分析,通过对红外编码理论的学习,设计以MSP430单片机为核心的智能遥控器。其各个模块设计如下:红外遥控信号接收,红外接收器把接收到的红外信号经光电二极管转化成电信号,再对电信号进行解调,恢复为带有一定功能指令码的脉冲编码;接着是红外编码学习,利用单片机的输入捕捉功能捕捉载波的跳变沿,并通过定时器计时记下载波的周期和红外信号的波形特征,进行实时编码;存储电路设计,采用I2C总线的串行E2PROM(24C256)作为片外存储器,其存储容量为8192个字节,能够满足所需要的存取需求;最后是红外发射电路的设计,当从存储模块中获取某红外编码指令后,提取红外信号的波形特征信息并进行波形还原;将其调制到38KHZ的载波信号上,通过三极管放大电路驱动红外发光二极管发射红外信号,达到红外控制的目的。目前,国外进口的万能遥控器价格比较昂贵,还不能真正走进普通老百姓的家中。本文在总结和分析国外设计的基础上,设计一款以MSP430单片机为核心的智能型遥控器,通过对电视机和空调的遥控编码进行学习,能够达到预期的目的,具有一定的现实意义。 1.2 发展历史 红外遥控由来已久,但是进入90年代,这一技术又有新的发张,应用范围更加广泛。红外遥控是一种无线、非接触控制技术,具有抗干扰能力强,信息传输可靠,功耗低,成本低,易实现等显著优点,被诸多电子设备特别是家用电器广泛采用,并越来越多的应用到计算机系统中。 60年代初,一些发达国家开始研究民用产品的遥控技术,单由于受当时技术条件限制,遥控技术发展很缓慢,70年代末,随着大规模集成电路和计算机技术的发展,遥控技术得到快速发展。在遥控方式上大体经理了从有线到无限的超声波,从振动子到红外线,再到使用总线的微机红外遥控这样几个阶段。无论采用何种方式,准确无误传输新信号,最终达到满意的控制效果是非常重要的。最初的无线遥控装置采用的是电磁波传输信号,由于电磁波容易产生干扰,也易受干扰,因此逐渐采用超声波和红外线媒介来传输信号。与红外线相比,超声传感器频带窄,所能携带的信息量少扰而引起误动作。较为理想的是光控方式,逐渐采用红外线的遥控方式取代了超声波遥控方式,出现了红外线多功能遥控器,成为当今时代的主流。 1.3 当前现状 红外线在频谱上居于可见光之外,所以抗干扰性强,具有光波的直线传播特性,不易产生相互间的干扰,是很好的信息传输媒体。信息可以直接对红外光进行调制传输,例如,信息直接调制红外光的强弱进行传输,也可以用红外线产生一定频率的载波,再用信息对载波进调制,接收端再去掉载波,取到信息。从信

结构优化方法研究综述

结构优化方法研究综述 结构优化方法研究综述 【摘要】建筑结构优化对建筑整体的稳定性、可靠性、耐久性有非常重要的作用。文章针对建筑结构优化设计的主要因素,以及结构优化的方法等方面做简要的分析,以提高建筑结构的整体的稳定性、耐久性等性能。 【关键词】结构设计;结构优化;结构类型 0引言 建筑结构优化,即在一些建筑结构的设计方案中选取最优的或最适宜的设计方案,它参照数学中的模型最优化原理应用到建筑工程结构设计方案的优化比选中。研究发现,建筑结构在使用过程中是否稳定、耐久、合理等,主要决定于在建筑结构设计时选定的结构类型是否最优、是否最符合工程结构的需要。对于同一座建筑工程项目,不同的结构设计师知识储备不同,因此可能会设计出不同的结构类型、结构体系,但经过结构方案的优化、从而选取最优化的结构类型,提高建筑结构的使用寿命、稳定性能。 1建筑结构优化的主要因素 1.1荷载设计 研究发现,任何一座建筑结构都需要受到水平力和竖向荷载的作用,同时建筑还要承受较大的风荷载、地震力的作用等。当建筑结构的整体高度比较低时,由结构本身的重力引起的竖向荷载对结构的作用比较明显,而水平荷载作用在结构上,产生的内力和位移比较小,往往在计算时不考虑水平荷载的作用;若在较高层建筑设计中,虽然所受到的竖向荷载仍对结构产生较大程度的影响,但水平荷载对建筑结构本身的影响比竖向荷载产生的影响更加强烈。研究表明,随着建筑结构整体高度的逐渐增加,水平荷载对建筑结构产生的影响越将会越来越大,因此,在建筑结构高度较高时,结构所承受的水平荷载对结构的影响则不可忽视。 1.2选取结构类型较轻的

在建筑结构优化过程中,要尽量选取结构体较轻的。在现代结构优化设计中,设计人员越来越重视选用轻质高强材料,从而做大程度上减轻整体结构的自重。由于在多层建筑结构中,水平荷载对结构产生的影响处于较次要地位,结构所承受的主要荷载是竖向荷载。由于多层建筑楼层较少,整体高度相对比较低,结构自重相对来说较轻,对材料的强度要求不是特高。 但随着建筑结构高度的增加,在较多的楼层作用下,结构产生的自重荷载则会比较大,使得建筑结构对基础产生较大的竖向荷载,同时在水平荷载的作用下,结构的竖向构件(柱)中会产生较大的水平剪力和附加轴力。为了使得结构满足刚度和强度的要求,通常采取加大结构构件的截面尺寸,但是加大构件的截面尺寸会使得结构的整体自重增加。因此在高层建筑结构首先应该考虑如何减轻结构的自重。 研究表明,当在高层或超高层建筑结构优化设计时,选用结构强度高、自重较轻的钢结构、高强混凝土结构可以很大程度上减小建筑结构的自重。 1.3 侧向位移 据相关资料表明,建筑结构的侧向位移随着建筑高度的增加而逐渐增大,因此,在建筑结构的优化设计中,对层数较少、高度较低的结构,可以不考虑其侧向位移对结构的影响。但随建筑结构高度的增加,整体结构的侧移对结构产生的影响则不可忽视。 研究表明,由于水平荷载对结构作用产生的侧移随着建筑高度的增加而逐渐增大,且侧移量与结构高度成一定的关系。 在进行高层建筑结构优化设计时,既需要充分考虑建筑结构整体是否具有足够的承载能力,能否承受风荷载的冲击作用,又要求结构具有足够的抗侧移性能,当建筑结构受到较大的水平力作用下,其可以很好地控制产生过大的侧移量,确保结构整体的稳定性能。 与低层或多层建筑相比,高层建筑结构的刚度稍微差一些,在发生地震灾害时,结构的侧向变形更大。为了确保高层建筑结构在进入塑性阶段后,结构整体仍具有较强的抗侧移性能,保持结构的稳定性,则需要在高层建筑结构的构造上采取合适的措施,确保结构具有足够的延性,从而满足结构的刚度要求。

《现代设计方法与理论》课程试题

现代机械设计理论及方法大作业及考试题 一、提交一份现代机械设计理论与方法理论及实际应用综述报告要求:阐述五种以上现代设计方法,参考文献不低于10篇,其中必须包含有英文参考文献。 二、完成现代机械设计理论与方法开卷试题,试卷题目如下: 1、采用系统化设计流程说明某公司今年需要投资研发一款新型汽车的整个设计流程。(20) (1)请具体阐述采用何种工作方法,如何去完成汽车的规划设计过程? 答:首先需要通过市场调研,了解现有汽车的性能特点及市场上不同消费阶层客户对汽车功能、外观、能耗、及性价比的期望,然后与设计、营销人员共同分析讨论研究,明确所设计汽车的类别、目的和任务,最后结合实际现有生产能力的情况策划出生产汽车的品种样式,为后续工作做准备。 (2)请具体阐述采用何种工作方法,如何去完成汽车的方案设计过程? 答:根据前一阶段制定的设计汽车类别和任务要求,利用系统化设计方法确定所设计汽车的总功能,然后将该总功能分解成为单个的分功能(功能元),然后利用物理数学知识及创造技法对该功能元求解,以得到最佳原理解,再通过最佳原理解的组合得到不同的设计方案。最后再根据对汽车的设计任务要求选择最佳设计方案。 (3)请具体阐述采用何种工作方法,如何去完成汽车的技术设计过程? 答:根据方案设计阶段确定的汽车设计方案,召集设计人员初步设计出汽车的设计总图,然后对汽车进行可靠性设计、造型设计和工艺设计,以定性设计出汽车的结构,再选取汽车不同部件的材料、尺寸,通过对汽车进行价值设计、有限元设计、优化设计和动态设计,以定量设计汽车的具体结构尺寸。最后,请专家对这一阶段设计的汽车进行技术评价分析。

(4)请具体阐述采用何种工作方法,如何去完成汽车的施工设计过程? 答:首先根据对汽车的前期设计和评价分析,对汽车进行总体设计,即通过专家系统、CAD/CAM 等技术设计出汽车的装配图,然后对汽车的零部件进行具体设计,即通过机械制造技术、装配、检验等方法确定汽车具体零部件的图纸,最后编写汽车设计的技术文件,图纸校正和汇总,以得到汽车最终设计说明书。 2、用系统化设计方法分析并提出垃圾清洁系统(车)的总体方案;用一种评价方法进行评价,得出合理方案,并建立该系统优化数学模型。 (20分) 答:首先,通过问卷调查等方式明确垃圾清洁车的总功能——压缩运输物料;然后,对其进行功能分解:压缩运输物料分为压缩物料和运输物料,而压缩物料又分为传动和压缩,运输物料分为传动和移位;再对分功能求解,通过垃圾清洁车的形态学得到具体的分功能解;最后方案组合,从得到的垃圾清洁车众方案中通过评价分析选取出效率高、承载能力强、生产及使用环境友好的垃圾清洁车,即最佳方案。 现代社会垃圾清洁车的生产要求成本低,使用要求寿命长且维修方便。因此采用技术——经济评价法来对垃圾清洁车的设计方案进行评价。 技术——经济评价法即对设计方案就经济和技术方面进行评价,求出加权相对价值,再进行综合比较。 (1)获得垃圾清洁车的技术评价Wt 垃圾清洁车的技术评价目标是求方案的技术价Wt ,就是求出垃圾清洁车的各项技术性能评价指标的评分值和加权系数乘积之和与最高分值的比值: max 1p q p W n i i i t ∑-= 其中,i p 是各项技术评价指标的评分值;i q 是各项评价技术指标的加权系数,11=∑-n i i q ;max p 是最高分。 (2)获得垃圾清洁车的经济评价Wt 垃圾清洁车的经济评价目标是求方案的经济价Ww ,就是求出垃圾清洁车的理想生产成本与实际生产成本的比值:

智能算法综述

摘要:随着计算机技术的飞速发展,智能计算方法的应用领域也越来越广泛,本文介绍了当前存在的一些智能计算方法,阐述了其工作原理和特点,同时对智能计算方法的发展进行了展望。关键词:人工神经网络遗传算法模拟退火算法群集智能蚁群算法粒子群算1什么是智能算法智能计算也有人称之为“软计算”,是们受自然(生物界)规律的启迪,根据其原理,模仿求解问题的算法。从自然界得到启迪,模仿其结构进行发明创造,这就是仿生学。这是我们向自然界学习的一个方面。另一方面,我们还可以利用仿生原理进行设计(包括设计算法),这就是智能计算的思想。这方面的内容很多,如人工神经网络技术、遗传算法、模拟退火算法、模拟退火技术和群集智能技术等。 2人工神经网络算法“人工神经网络”(ARTIFICIALNEURALNETWORK,简称ANN)是在对人脑组织结构和运行机制的认识理解基础之上模拟其结构和智能行为的一种工程系统。早在本世纪40年代初期,心理学家McCulloch、数学家Pitts就提出了人工神经网络的第一个数学模型,从此开创了神经科学理论的研究时代。其后,FRosenblatt、Widrow和J.J.Hopfield等学者又先后提出了感知模型,使得人工神经网络技术得以蓬勃发展。神经系统的基本构造是神经元(神经细胞),它是处理人体内各部分之间相互信息传递的基本单元。据神经生物学家研究的结果表明,人的一个大脑一般有1010~1011个神经元。每个神经元都由一个细胞体,一个连接其他神经元的轴突和一些向外伸出的其它较短分支——树突组成。轴突的功能是将本神经元的输出信号(兴奋)传递给别的神经元。其末端的许多神经末梢使得兴奋可以同时传送给多个神经元。树突的功能是接受来自其它神经元的兴奋。神经元细胞体将接受到的所有信号进行简单处理(如:加权求和,即对所有的输入信号都加以考虑且对每个信号的重视程度——体现在权值上——有所不同)后由轴突输出。神经元的树突与另外的神经元的神经末梢相连的部分称为突触。 2.1人工神经网络的特点人工神经网络是由大量的神经元广泛互连而成的系统,它的这一结构特点决定着人工神经网络具有高速信息处理的能力。人脑的每个神经元大约有103~104个树突及相应的突触,一个人的大脑总计约形成1014~1015个突触。用神经网络的术语来说,即是人脑具有1014~1015个互相连接的存储潜力。虽然每个神经元的运算功能十分简单,且信号传输速率也较低(大约100次/秒),但由于各神经元之间的极度并行互连功能,最终使得一个普通人的大脑在约1秒内就能完成现行计算机至少需要数10亿次处理步骤才能完成的任务。人工神经网络的知识存储容量很大。在神经网络中,知识与信息的存储表现为神经元之间分布式的物理联系。它分散地表示和存储于整个网络内的各神经元及其连线上。每个神经元及其连线只表示一部分信息,而不是一个完整具体概念。只有通过各神经元的分布式综合效果才能表达出特定的概念和知识。由于人工神经网络中神经元个数众多以及整个网络存储信息容量的巨大,使得它具有很强的不确定性信息处理能力。即使输入信息不完全、不准确或模糊不清,神经网络仍然能够联想思维存在于记忆中的事物的完整图象。只要输入的模式接近于训练样本,系统就能给出正确的推理结论。 [!--empirenews.page--]正是因为人工神经网络的结构特点和其信息存储的分布式特点,使得它相对于其它的判断识别系统,如:专家系统等,具有另一个显著的优点:健壮性。生物神经网络不会因为个别神经元的损失而失去对原有模式的记忆。最有力的证明是,当一个人的大脑因意外事故受轻微损伤之后,并不会失去原有事物的全部记忆。人工神经网络也有类似的情况。因某些原因,无论是网络的硬件实现还是软件实现中的某个或某些神经元失效,整个网络仍然能继续工作。人工神经网络是一种非线性的处理单元。只有当神经元对所有的输入信号的综合处理结果超过某一门限值后才输出一个信号。因此神经网络是一种具有高度非线性的超大规模连续时间动力学系统。它突破了传统的以线性处理为基础的数字电子计算机的局限,标志着人们智能信息处理能力和模拟人脑智能行为能力的一大飞跃。 2.2几种典型神经网络简介 2.2.1多层感知网络(误差逆传播神经网络) 在1986年以Rumelhart和McCelland为首的科学家出版的《ParallelDistributedProcessing》一书中,完整地提出了误差逆传播学习算法,并被广泛

现代优化设计方法的现状和发展趋势

M ac hi neBuil di ng Auto m atio n,D ec2007,36(6):5~6,9 现代优化设计方法的现状和发展趋势 王基维1,熊伟2,李会玲1,汪振华3 (1.宁波职业技术学院,浙江宁波315800;2.湖南生物机电职业技术学院,湖南长沙410126; 3.南京理工大学,江苏南京210094) 摘要:优化设计是近年来发展起来的一门新学科,为机械设计提供了一种重要的科学设计方 法。优化设计在解决复杂设计问题时,能从众多设计方案中寻到尽可能完美或最适宜的设计 方案。对现代优化设计方法进行了概括和总结,展望了现代优化设计的发展方向和发展趋势。 关键词:优化设计;机械设计;发展趋势 中图分类号:T H122文献标识码:B文章编号:167125276(2007)0620005202 Develop ing T rend on M odern O pt im a l Design M ethods WANG J i2wei1,XI ONG W ei2,LI H u i2li ng1,WANG Zhen2hua3 (1.Ni ngbo Voca ti on Te chno l ogy C o ll e ge,N i n gbo315800,C h i na; 2.Huna n B i o l ogy Me c ha ni c a la nd E l e c tri c a lP ro f e ss i ona lTe chno l ogy C o ll ege,C ha ngsha410126,C h i na; 3.Na n ji ng Un i ve rs ity o f S c i e nc e a nd Te chno l o gy,Na n ji ng210094,C h i n a) Abstr ac t:As a new d i s c i p l i ne,o p tm i a l de s i gn p rov i de s an m i p o rtan t sc i en tifi c de s i gn m e t h od f o r e ng i nee https://www.wendangku.net/doc/4d9137103.html, i ng op tm i a ld es i gn, t he y can fi nd o ut a nea rl y pe rf e ct o r op tm i um des i gn s ch em e fr om l o ts o f feas i b l e ap p r o ache s.T he p ape r s um m a ri ze s t he de ve l o p i ng trend a nd d ir e cti o n o f t he m ode rn op tm i a l des i gn m e t hod s. K ey word s:op tm i a ld es i g n;m a ch i n e des i gn;de ve l o p t re nd 0引言 机械设计与制造是机械工程领域中最重要的内容,而机械设计又是机械制造的前提。优化设计(opti m a l de2 si gn)是近年来发展起来的一门新的学科,优化设计为机械设计提供了一种重要的科学设计方法,在机械设计上起着重要的作用,使得在解决复杂设计问题时,能从众多的设计方案中寻到尽可能完美的或最适宜的设计方案[1]。实践证明,在机械设计中采用优化设计方法,不仅可以减轻机械设备质量,降低材料消耗与制造成本,而且可以提高产品的品质和工作性能[2]。文中初步论述了机械优化设计方法的发展现状和趋势。 优化设计方法[3]是数学规划和计算机技术相结合的产物,它是一种将设计变量表示为产品性能指标、结构指标或运动参数指标的函数(称为目标函数),然后在产品规定的性态、几何和运动等其它条件的限制(称为约束条件)的范围内,寻找满足一个目标函数或多个目标函数最大或最小的设计变量组合的数学方法。优化设计方法已成为解决复杂设计问题的一种有效工具。 1优化设计方法及应用现状 优化设计的基础和核心是优化理论和算法。迄今为止,己有上百种优化方法提出,这里重点介绍以下几种优化方法[4,5]。 a)线性逼近法:线性逼近法SLP是将原非线性问题转化为一系列线性优化问题,通过求解线性优化问题得到原问题的近似解。根据形成线性优化的方法不同,可以得到不同的线性逼近法。常用的线性逼近法有近似规划法和割平面法; b)遗传算法[2,6,14]:遗传算法GA(genetic a l gorith m s)是一种基于生物自然选择与遗传机理的随机搜索算法。它是1962年首先由美国密执安大学的J.H.H olland教授提出、随后主要由他和他的一批学生发展起来的[7],并在1975年的专著中作了介绍,首先提出了以二进制串为基础的基因模式理论,用二进制位串来模拟生物群体的进化过程。进化结束时的二进制所对应的设计变量的值即为优化问题的解。GA方法的主要优点是具有很强的通用优化能力,它不需要导数信息,也不需要设计空间或函数的连续性条件,其优化搜索具有隐性并行性,可以多点同时在大空间中作快速搜索,因此有可能获得全局最优解。由于G A有着其他优化算法不可比拟的优点,因此,GA的应用非常广泛,取得大量研究应用成果。在结构优化设计方面的如离散结构的遗传形状优化设计[8]、悬臂扭转结构和梁结构的优化设计[9]、桁架和薄壁的结构优化问题[10]等。在文献[11]中对平面四杆机构的遗传优化设计进行了研究。文献[12]介绍了一个用于ZL40装载机的直齿圆锥齿轮差速器的优化设计问题,用GA中的实数编码进行优化求解,取群体大小为50,交叉率为0.2,变异率为0.5,经过120代的进化并经圆整后得到最优解。文献[15]中通过把机械方案设计过程看作是一个状态空间的求解问题,用遗传算法控制其搜索过程,完善了新的遗传编码体系,为了适应新的编码体系重新构建了交叉和变异等遗传操作,并利用复制、交换和变异等操作进行一次次迭代,最终自动生成一组最优的设计方案。 此外,G A还应用在函数优化、机械工程、结构优化、电工、神经网络、机器学习、自适应控制、故障诊断、系统工程调度和运输问题等诸多领域中[13]; #5 #

相关文档
相关文档 最新文档