文档库 最新最全的文档下载
当前位置:文档库 › 升压芯片之RT9212

升压芯片之RT9212

升压芯片之RT9212
升压芯片之RT9212

DS9212-05 March 2007

https://www.wendangku.net/doc/479500475.html,

Dual 5V Synchronous Buck PWM DC-DC and Linear Power Controller

Features

z Operating with Single 5V Supply Voltage z Drives All Low Cost N-MOSFETs z Voltage Mode PWM Control

z 300kHz Fixed Frequency Oscillator z

Fast Transient Response :Full 0% to 100% Duty Ratio z Internal Soft-Start

z Adaptive Non-Overlapping Gate Driver

z

Over-Current Fault Monitor on V CC , No Current Sense Resistor Required

z

RoHS Compliant and 100% Lead (Pb)-Free

Applications

z Graph Card

z Motherboard, Desktop Servers z IA Equipments

z Telecomm Equipments

z

High Power DC-DC Regulators

Pin Configurations

Ordering Information

General Description

The RT9212 is a 3-in-one power controller delivers high efficiency and tight regulation from two voltage regulating synchronous buck PWM DC-DC and one linear power controllers.

The RT9212 can control two independent output voltages adjustment in range of 0.8V to 4.0V with 180 degrees channel to channel phase operation to reduce input ripple.In dual power supply application the RT9212 monitors the output voltage of both Channel 1 and Channel 2. An independent PGOOD (power good) signal is asserted for each channel after the soft-start sequence has completed,and the output voltage is within ±15% of the set point. The linear controller drives an external transistor to provide an adjustable output voltage.

Built-in over-voltage protection prevents the output from going above 137.5% of the set point by holding the lower MOSFET on and the upper MOSFET off. Adjustable over-current protection (OCP) monitors the voltage drop across the R DS(ON) of the upper MOSFET for each synchronous buck PWM DC-DC controller individually.

(TOP VIEW)

UGATE1BOOT1PHASE1

NC OCSET2/SD OCSET1/SD PVCC1

PGND1FB1COMP1

FB2PGOOD NC LGATE1FBL NC GNDA VCC DRV

PHASE2BOOT2PGND2

LGATE2UGATE2

TSSOP-24

Note :

RichTek Pb-free and Green products are :

`RoHS compliant and compatible with the current require- ments of IPC/JEDEC J-STD-020.

`Suitable for use in SnPb or Pb-free soldering processes.`100% matte tin (Sn) plating.

RT9212

P : Pb Free with Commercial Standard G : Green (Halogen Free with Commer- cial Standard)

Typical Application Circuit

1.8V

1.5V

OUT1OUT2V OUT1 & V OUT2 )

DS9212-05 March 2007

https://www.wendangku.net/doc/479500475.html,

Functional Pin Description

UGATE1 (Pin 1)

Channel 1 upper gate driver output. Connect to gate of the high-side power N-MOSFET . This pin is monitored by the adaptive shoot-through protection circuitry to determine when the upper MOSFET has turned off.BOOT1 (Pin 2)

Bootstrap supply pin for the upper gate driver. Connect the bootstrap capacitor between BOOT1 pin and the PHASE1 pin. The bootstrap capacitor provides the charge to turn on the upper MOSFET .PHASE1 (Pin 3)

Connect this pin to the source of the upper MOSFET and the drain of the lower MOSFET. PHASE1 is used to monitor the Voltage drop across the upper MOSFET of the channel 1 regulator for over-current protection.NC (Pin 4, 7, 8)

No connection. Don ’t connect any component to this pin.FB1 (Pin 5)

Channel 1 feedback voltage. This pin is the inverting input of the error amplifier. FB1 senses the channel 1 through an external resistor divider https://www.wendangku.net/doc/479500475.html,P1 (Pin 6)

Channel 1 external compensation. This pin internally connects to the output of the error amplifier and input of the PWM comparator. Use a RC + C network at this pin to compensate the feedback loop to provide optimum transient response.GNDA (Pin 9)

Signal ground for the IC. All voltage levels are measured with respect to this pin. Ties the pin directly to ground plane with the lowest impedance.PHASE2 (Pin 10)

Connect this pin to the source of the upper MOSFET and the drain of the lower MOSFET. PHASE2 is used to monitor the Voltage drop across the upper MOSFET of the channel 2 regulator for over-current protection.

BOOT2 (Pin 11)

Bootstrap supply pin for the upper gate driver. Connect the bootstrap capacitor between BOOT2 pin and the PHASE2pin. The bootstrap capacitor provides the charge to turn on the upper MOSFET .UGATE2 (Pin 12)

Channel 2 upper gate driver output. Connect to gate of the high-side power N-MOSFET . This pin is monitored by the adaptive shoot-through protection circuitry to determine when the upper MOSFET has turned off.PGND2 (Pin 13)

Return pin for high currents flowing in low-side power N-MOSFET . Ties the pin directly to the low-side MOSFET source and ground plane with the lowest impedance.LGATE2 (Pin 14)

Channel 2 lower gate drive output. Connect to gate of the low-side power N-MOSFET . This pin is monitored by the adaptive shoot-through protection circuitry to determine when the lower MOSFET has turned off.VCC (Pin 15)

Connect this pin to a well-decoupled 5V bias supply. It is also the positive supply for the lower gate driver, LGATE2.DRV (Pin 16)

Connect this pin to the base of an external transistor. This pin provides the drive for the linear regulator's pass transistor.FBL (Pin 17)

Linear regulator feedback voltage. This pin is the inverting input of the error amplifier and protection monitor. Connect this pin to the external resistor divider network of the linear regulator.FB2 (Pin 18)

Channel 2 feedback voltage. This pin is the inverting input of the error amplifier. FB2 senses the channel 2 through an external resistor divider network.

Function Block Diagram

MOSFET

upper the of R 40uA I DS(ON)OCSET

OCSET R ×=

GNDA

PGOOD (Pin 19)

PGOOD is an open-drain output used to indicate that both the channel 1 and channel 2 regulators are within normal operating voltage ranges.

OCSET2/SD (Pin 20), OCSET1/SD (Pin 21)

Connect a resistor (R OCSET ) from this pin to the drain of the upper MOSFET of the supply voltage sets the over-current trip point. R OCSET , an internal 40μA current source , and the upper MOSFET on-resistance, (R DS(ON), set the converter over-current trip point (I OCSET ) according to the following equation:

An over-current trip cycles the soft-start function. Pulling the pin to ground resets the device and all external MOSFETs are turned off allowing the two output voltage power rails to float.

PVCC1 (Pin 22)

Connect this pin to a well-decoupled 5V supply. It is also the positive supply for the lower gate driver, LGATE1.LGATE1 (Pin 23)

Channel 1 power gate drive output. Connect to gate of the low-side power N-Channel MOSFET . This pin is monitored by the adaptive shoot-through protection circuitry to determine when the lower MOSFET has turned off.PGND1 (Pin 24)

Return pin for high currents flowing in low-side power N-MOSFET . Ties the pin directly to the low-side MOSFET source and ground plane with the lowest impedance.

DS9212-05 March 2007

https://www.wendangku.net/doc/479500475.html,

Electrical Characteristics

(V

= 5V, T = 25°C, unless otherwise specified)

To be continued

Recommended Operating Conditions (Note 3)

z Supply Voltage, V CC -------------------------------------------------------------------------------------------------5V ± 5 %z Ambient T emperature Range ---------------------------------------------------------------------------------------0°C to 70°C z

Junction T emperature Range ---------------------------------------------------------------------------------------0°C to 125°C

Absolute Maximum Ratings (Note 1)

z Supply Voltage, V CC -------------------------------------------------------------------------------------------------7V z BOOT , V BOOT - V PHASE -----------------------------------------------------------------------------------------------7V

z Input, Output or I/O Voltage ----------------------------------------------------------------------------------------GND-0.3V to 7V z

Package Thermal Resistance

TSSOP-24, θJA --------------------------------------------------------------------------------------------------------100°C/W z Junction T emperature ------------------------------------------------------------------------------------------------150°C z Lead Temperature (Soldering, 10 sec.)--------------------------------------------------------------------------260°C

z Storage T emperature Range ---------------------------------------------------------------------------------------?65°C to 150°C z

ESD Susceptibility (Note 2)

HBM (Human Body Mode)-----------------------------------------------------------------------------------------2kV MM (Machine Mode)-------------------------------------------------------------------------------------------------

200V

Note 1.Stresses listed as the above“Absolute Maximum Ratings”may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for

extended periods may remain possibility to affect device reliability.

Note 2. Devices are ESD sensitive. Handling precaution recommended.

Note 3. The device is not guaranteed to function outside its operating conditions.

DS9212-05 March 2007

https://www.wendangku.net/doc/479500475.html,

Typical Operating Characteristics

Power Good Rising

V OUT2(2V/Div)PGOOD (5V/Div)

Time (5ms/Div)

V OUT1(2V/Div)V CC (5V/Div)UGATE Phase Shift UGATE2(5V/Div)Time (1us/Div)UGATE1(5V/Div)LGATE Phase Shift

LGATE2(5V/Div)

Time (1us/Div)

LGATE1(5V/Div)

Power On

V OUT1(2V/Div)V OUT2(2V/Div)UGATE2(5V/Div)

Time (5ms/Div)

UGATE1(10V/Div)

I OUT1 = I OUT2 = 5A

Power Off

V OUT1(2/Div)V OUT2(2/Div)UGATE2(5V/Div)

Time (500us/Div)

UGATE1(10/Div)

I OUT1 = I OUT2 = 5A

Power Good Falling

V CC (5V/Div)Time (25ms/Div)

V OUT1(2V/Div)V OUT2(2V/Div)PGOOD (5V/Div)

V OUT2 Transient

Time (250us/Div)

V OUT2(10mV/Div)

I OUT2(5A/Div)

V OUT1 Transient Time (250us/Div)V OUT1

(100mV/Div)

I OUT1(5A/Div)

Bootstrap

LGATE1(5V/Div)

Time (1us/Div)UGATE1(5V/Div)

Bootstrap

LGATE2(5V/Div)

Time (1us/Div)

UGATE2

(5V/Div)

V OUT2 Short

Time (5ms/Div)

V OUT2(1V/Div)

UGATE2(10V/Div)

LGATE2(5V/Div)V OUT1 Short LGATE1(5V/Div)

Time (5ms/Div)

UGATE1(10V/Div)V OUT1(2V/Div) V IN = 5V, V OUT = 3.3V, C OUT = 3000μF

V IN = 5V, V OUT = 2.5V, C OUT = 3000μF

DS9212-05 March 2007

https://www.wendangku.net/doc/479500475.html,

Iocset & Temperature

3035

40

45

5055

-40

-20

20

40

60

80

100

120

140

Temperature I

o c s e t (μA )

(°C)Reference vs. Temperature

0.788

0.79

0.7920.7940.7960.7980.80.8020.804

0.806

0.808-40

-20

20

40

60

80

100

120

Temperature F B

v o l t a g e (V )

(°C)

POR (Start Up)

V OUT1(2V/Div)

V OUT2(2V/Div)

V CC (5V/Div)Time (5ms/Div)

V OUT3

(200mV/Div)

V OUT3 Transient

Time (2.5ms/Div)

I OUT3(2A/Div)

V IN = 5V, V OUT

= 1.8V

Frequency vs. Temperature

285

290295300305310

315-40-20020406080100120

Temperature F r e q u e n c y (k H z ) (°C)

POR (Rising/Falling) vs. Temperature

3.93.954

4.054.14.15

4.24.25-40

-10

20

5080

110

140

Temperature P O R (V )

(°C)

Applications Information

Inductor

The inductor is required to supply constant current to the output load. The inductor is selected to meet the output voltage ripple requirements and minimize the converter's response time to the load transient.

A larger value of inductance reduces ripple current and voltage. However, the larger value of inductance has a larger physical size, lower output capacitor and slower transient response time.

A good rule for determining the inductance is to allow the peak-to-peak ripple current in the inductor to be approximately 30% of the maximum output current. The inductance value can be calculated by the following equation :

Where

V IN is the input voltage,V OUT is the output voltage,F S is the switching frequency,

I

OUT is the peak-to-peak inductor ripple current.The inductance value determines the converter's ripple current and the ripple voltage. The ripple current is calculated by the following equations :

Increasing the value of inductance reduces the ripple current and voltage. However, the large inductance values raise the converter's response time to a load transient.One of the parameters limiting the converter's response to a load transient is the time required to change the inductor current. Given a sufficiently fast control loop design, the RT9212 will provide 0% to 100% duty cycle in response to a load transient.

The response time is the time required to slew the inductor current from an initial current value to the transient current level. The inductor limit input current slew rate during the load transient. Minimizing the transient response time can minimize the output capacitance required. The response time is different for application of load and removal of load to a transient. The following equations give the approximate response time for application and removal of a transient load :

Where

T Rise is the response time to the application of load,T Fall is the response time to the removal of load,

I

OUT is the transient load current step.Input Capacitor

The input capacitor is required to supply the AC current to the Buck converter while maintaining the DC input voltage.The capacitor should be chosen to provide acceptable ripple on the input supply lines. Use a mix of input bypass capacitors to control the voltage overshoot across the MOSFET s. Use small ceramic capacitors for high frequency decoupling and bulk capacitors to supply the current. Place the small ceramic capacitors close to the MOSFETs and between the drain of Q1/Q3 and the source of Q2/Q4.The key specifications for input capacitor are the voltage rating and the RMS current rating. For reliable operation,select the bulk capacitor with voltage and current ratings above the maximum input voltage and largest RMS current.The capacitor voltage rating should be at least 1.25 times greater than the maximum input voltage and voltage rating of 1.5 times is a conservative guideline. The RMS current rating for the input capacitor of a buck regulator should be greater than approximately 0.5 the DC load current.

?×=

××IN OUT OUT

IN (V V )V ΔI V Fs L

OUT

IN OUT Rise V V ΔI L T ?×=OUT

OUT Fall V ΔI L T ×=

?×=

××IN OUT OUT IN S OUT

(V V )V L V F ΔI ΔΔ,

DS9212-05 March 2007

https://www.wendangku.net/doc/479500475.html,

Output Capacitor

The output capacitor is required to maintain the DC output voltage and supply the load transient current. The capacitor must be selected and placed carefully to yield optimal results and should be chosen to provide acceptable ripple on the output voltage.

The key specification for output capacitor is its ESR. Low ESR capacitors are preferred to keep the output voltage ripple low. The bulk capacitor's ESR will determine the output ripple voltage and the initial voltage drop after a high slew-rate transient. For transient response, a combination of low value, high frequency and bulk capacitors placed close to the load will be required. High frequency decoupling capacitors should be placed as close to the power pins of the load as possible. In most cases, multiple electrolytic capacitors of small case size perform better than a single large case capacitor.

The capacitor value must be high enough to absorb the inductor's ripple current. The output ripple is calculated as :

Another concern is high ESR induced output voltage ripple may trigger UV or OV protections will cause IC shutdown.MOSFET

The MOSFET should be selected to meet power transfer requirements is based on maximum drain-source voltage (V DS ), gate-source drive voltage (V GS ), maximum output current, minimum on-resistance (R DS(ON)) and thermal management.

In high-current applications, the MOSFET power dissipation, package selection and heatsink are the dominant design factors. The losses can be divided into conduction and switching losses.

Conduction losses are related to the on resistance of MOSFET , and increase with the load current. Switching losses occur on each ON/OFF transition. The conduction losses are the largest component of power dissipation for both the upper and the lower MOSFETs.

For the Buck converter the average inductor current is equal to the output load current. The conduction loss is defined as :

P CD (high side switch) = I O 2 * R DS(ON) * D P CD (low side switch) = I O 2 * R DS(ON) * (1-D)

The switching loss is more difficult to calculate. The reason is the effect of the parasitic components and switching times during the switching procedures such as turn-on /turn-off delays and rise and fall times. With a linear approximation, the switching loss can be expressed as :P SW = 0.5 * V DS(OFF) * I O * (T Rise + T Fall ) * F Where

V DS(OFF) is drain to source voltage at off time,T Rise is rise time,T Fall is fall time,

F is switching frequency.

The total power dissipation in the switching MOSFET can be calculate as :P High Side Switch =

I O 2 * R DS(ON)* D + 0.5 * V DS(OFF)* I O * (T Rise + T Fall )* F P Low Side Switch = I O 2 * R DS(ON) * (1-D)

For input voltages of 3.3V and 5V, conduction losses often dominate switching losses. Therefore, lowering the R DS(ON)of the MOSFETs always improves efficiency.Feedback Compensation

The RT9212 is a voltage mode controller; the control loop is a single voltage feedback path including an error amplifier and PWM comparator as Figure 1 shows. In order to achieve fast transient response and accurate output regulation, a adequate compensator design is necessary. The goal of the compensation network is to provide adequate phase margin (greater than 45 degrees) and the highest 0dB crossing frequency. And to manipulate loop frequency response that its gain crosses over 0dB at a slope of -20dB/dec.

ESR I V OUT OUT ×Δ=Δ

Modulator Frequency Equations

The modulator transfer function is the small-signal transfer function of V OUT /V E/A . This transfer function is dominated by a DC gain and the output filter (L O and C O ), with a double pole frequency at F LC and a zero at F ESR . The DC gain of the modulator is the input voltage (V IN ) divided by the peak-to-peak oscillator voltage V RAMP .

The first step is to calculate the complex conjugate poles contributed by the LC output filter.

The output LC filter introduces a double pole,?40dB/decade gain slope above its corner resonant frequency, and a total phase lag of 180 degrees. The Resonant frequency of the LC filter expressed as follows :

The next step of compensation design is to calculate the ESR zero. The ESR zero is contributed by the ESR associated with the output capacitance. Note that this requires that the output capacitor should have enough ESR to satisfy stability requirements. The ESR zero of the output capacitor expressed as follows :

O

O P(LC)C L 21F ××=

πESR

C 21F O Z(ESR)××=

π)

C // (C R 21

F C R 21F 0F 2 1 2P12

2Z1P1×=

××==ππ

Figure 2

Figure 3 shows the DC-DC converter's gain vs. frequency.The compensation gain uses external impedance networks Z C and Z F to provide a stable, high bandwidth loop.High crossover frequency is desirable for fast transient response, but often jeopardize the system stability. In order to cancel one of the LC filter poles, place the zero before the LC filter resonant frequency. In the experience, place the zero at 75% LC filter resonant frequency.Crossover frequency should be higher than the ESR zero but less than 1/5 of the switching frequency.

The second pole be place at half the switching frequency.

PWM Figure 1

Compensation Frequency Equations

The compensation network consists of the error amplifier and the impedance networks Z C and Z F as Figure 2 shows.

Figure 3

DS9212-05 March 2007

https://www.wendangku.net/doc/479500475.html,

Layout Consideration

The layout is very important when designing high frequency switching converters. Layout will affect noise pickup and can cause a good design to perform with less than expected results.

1. Even though double-sided PCB is usually sufficient for a good layout, four-layer PCB is the optimum approach to reducing the noise. Use the two internal layers as the power and GND planes, the top layer for power connections with wide, copper filled areas, and the bottom layer for the noise sensitive traces.

2. There are two sets of critical components in a DC-DC converter. The switching components are the most critical because they switch large amounts of energy, and therefore tend to generate large amounts of noise. The others are the small signal components that connect to sensitive nodes or supply critical bypass current and signal coupling.Make all critical component ground connections with vias to GND plane.

3. Use fewer, but larger output capacitors, keep the capacitors clustered, and use multiple layer traces with heavy copper to keep the parasitic resistance low. Place the output capacitors as close to the load as possible.

4. The inductor, output capacitor and the MOSFET should be as close to each other as possible. This helps to reduce the EMI radiated.

5. Place the switching MOSFET as close to the input capacitors as possible. The MOSFET gate traces to the IC must be as short, straight, and wide as possible. Use copper filled polygons on the top and bottom layers for the PHASE nodes.

6. Place the C BOOT as close as possible to the BOOT and PHASE pins.

7. The feedback part of the system should be kept away from the inductor and other noise sources, and be placed close to the IC. Connect to the GND pin with a single trace, and connect this local GND trace to the output capacitor GND.

8. Minimize the leakage current paths on the OCSET/SD pin and locate the resistor as close to the OCSET/SD pin as possible because the internal current source is only 40μA.

9. In multilayer PCB, use one layer as ground plane and have a control circuit ground (analog ground), to which all signals are referenced. The goal is to localize the high current path to a separate loop that does not interfere with the more sensitive analog control function. These two grounds must be connected together on the PC board layout at a single point.

Reference Voltage

Because one of the RT9212 regulators uses a low 35dB gain error amplifier, shown in Figure 4. The voltage regulation is dependent on V IN & V OUT setting.The FB reference voltage of 0.8V is trimmed at V IN = 5V &V OUT = 2.5V condition. In a fixed V IN = 5V application, the FB reference voltage vs. V OUT voltage can be calculated as Figure 5.

Figure 4

Figure 5

0.775

0.780.7850.790.7950.8

0.8050.810.8151

1.5

2

2.5

3

3.5

4

4.5

5

V OUT (V)

F B (V )

FB

1.9V

R2

Richtek Technology Corporation Headquarter

5F, No. 20, Taiyuen Street, Chupei City Hsinchu, Taiwan, R.O.C.

Tel: (8863)5526789 Fax: (8863)5526611Richtek Technology Corporation Taipei Office (Marketing)

8F, No. 137, Lane 235, Paochiao Road, Hsintien City Taipei County, Taiwan, R.O.C.

Tel: (8862)89191466 Fax: (8862)89191465

Email: marketing@https://www.wendangku.net/doc/479500475.html,

L

24-Lead TSSOP Plastic Package Outline Dimension

Boost升压斩波电路要点

总目录 引言 (2) 1 升压斩波工作原理 (2) 1.1 主电路工作原理 (2) 2 升压斩波电路的典型应用 (4) 3 设计内容及要求 (6) 3.1输出值的计算 (7) 4硬件电路 (7) 4.1控制电路 (7) 4.2 触发电路和主电路 (9) 4.3.元器件的选取及计算 (10) 5.仿真 (11) 6.结果分析 (14) 7.小结 (14) 8.参考文献 (14)

引言 随着电力电子技术的迅速发展,高压开关稳压电源已广泛用于计算机、通信、工业加工和航空航天等领域。所有的电力设备都需要良好稳定的供电,而外部提供的能源大多为交流,电源设备担负着把交流电源转换为电子设备所需的各种类别直流任务。但有时所供的直流电压不符合设备需要,仍需变换,称为DC/DC 变换。直流斩波电路作为直流电变成另一种固定电压的DC-DC变换器,在直流传动系统.、充电蓄电电路、开关电源、电力电子变换装置及各种用电设备中得到普通的应用。随之出现了诸如降压斩波电路、升压斩波电路、升降压斩波电路、复合斩波电路等多种方式的变换电路。直流斩波技术已被广泛运用开关电源及直流电动机驱动中,使其控制获得加速平稳、快速响应、节约电能的效果。全控型电力电子器件IGBT在牵引电传动电能传输与变换、有源滤波能领域得到了广泛的应用。但以IGBT为功率器件的直流斩波电路在实际应用中需要注意以下问题:(1)系统损耗的问;(2)栅极电阻;(3)驱动电路实现过流过压保护的问题。 直流斩波电路实际上采用的就是PWM技术,这种电路把直流电压斩成一系列脉冲,改变脉冲的占空比来获得所需要的输出电压。PWM控制方式是目前才用最广泛的一种控制方式,它具有良好的调整特性。随电子技术的发展,近年来已发展各种集成式控制芯片,这种芯片只需外接少量元器件就可以工作,这不但简化设计,还大幅度的减少元器件数量、连线和焊点 1 升压斩波工作原理 1.1 主电路工作原理 1)工作原理 假设L和C值很大。V处于通态时,电源E向电感L充电,电流恒定I1,电容C向负载R供电,输出电压Uo恒定。 V处于断态时,电源E和电感L同时向电容C充电,并向负载提供能量。

BUCK_BOOST_BUCK-BOOST电路的原理

BUCK BOOST BUCK/BOOST电路的原理 Buck变换器:也称降压式变换器,是一种输出电压小于输入电压的单管不隔离直流变换器。 图中,Q为开关管,其驱动电压一般为PWM(Pulse width modulation脉宽调制)信号,信号周期为Ts,则信号频率为f=1/Ts,导通时间为Ton,关断时间为Toff,则周期Ts=Ton+Toff,占空比Dy= Ton/Ts。 、Boost变换器:也称升压式变换器,是一种输出电压高于输入电压的单管不隔离直流变换器。 开关管Q也为PWM控制方式,但最大占空比Dy必须限制,不允许在Dy=1的状态下工作。电感Lf在输入侧,称为升压电感。Boost变换器也有CCM和DCM两种工作方式 、Buck/Boost变换器:也称升降压式变换器,是一种输出电压既可低于也可高于输入电压的单管不隔离直流变换器,但其输出电压的极性与输入电压相反。Buck/Boost变换器可看做是Buck变换器和Boost变换器串联而成,合并了开关管。 Buck/Boost变换器也有CCM和DCM两种工作方式,开关管Q也为PWM控制方式。

LDO的特点: ①非常低的输入输出电压差 ②非常小的内部损耗 ③很小的温度漂移 ④很高的输出电压稳定度 ⑤很好的负载和线性调整率 ⑥很宽的工作温度范围 ⑦较宽的输入电压范围 ⑧外围电路非常简单,使用起来极为方便 DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。斩波器的工作方式有两种,一是脉宽调制方式Ts不变,改变ton(通用),二是频率调制方式,ton不变,改变Ts(易产生干扰)。其具体的电路由以下几类:】 (1)Buck电路——降压斩波器,其输出平均电压U0小于输入电压Ui,极性相同。 (2)Boost电路——升压斩波器,其输出平均电压U0大于输入电压Ui,极性相同。 (3)Buck-Boost电路——降压或升压斩波器,其输出平均电压U0大于或小于输入电压Ui,极性相反,电感传输。 (4)Cuk电路——降压或升压斩波器,其输出平均电压U0大于或小于输入电压Ui,极性相反,电容传输。 DC-DC分为BUCK、BUOOST、BUCK-BOOST三类DC-DC。 其中BUCK型DC-DC只能降压,降压公式:Vo=Vi*D BOOST型DC-DC只能升压,升压公式:Vo= Vi/(1-D) BUCK-BOOST型DC-DC,即可升压也可降压,公式:Vo=(-Vi)* D/(1-D) D为充电占空比,既MOSFET导通时间。0

boost升压电路

开关直流升压电路(即所谓的boost或者step-up电路)原理 2007-09-29 13:28 the boost converter,或者叫step-up converter,是一种开关直流升压电路,它可以是输出电压比输入电压高。 基本电路图见图一。 假定那个开关(三极管或者mos管)已经断开了很长时间,所有的元件都处于理想状态,电容电压等于输入电压。 下面要分充电和放电两个部分来说明这个电路 充电过程 在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处用导线代替。这时,输入电压流过电感。二极管防止电容对地放电。由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。随着电感电流增加,电感里储存了一些能量。

放电过程 如图,这是当开关断开(三极管截止)时的等效电路。当开关断开(三极管截止)时,由于电感的电流保持特性,流经电感的电流不会马上变为0,而是缓慢的由充电完毕时的值变为0。而原来的电路已断开,于是电感只能通过新电路放电,即电感开始给电容充电,电容两端电压升高,此时电压已经高于输入电压了。升压完毕。 说起来升压过程就是一个电感的能量传递过程。充电时,电感吸收能量,放电时电感放出能量。 如果电容量足够大,那么在输出端就可以在放电过程中保持一个持续的电流。如果这个通断的过程不断重复,就可以在电容两端得到高于输入电压的电压。 一些补充 1 AA电压低,反激升压电路制约功率和效率的瓶颈在开关管,整流管,及其他损耗

(含电感上). 1.电感不能用磁体太小的(无法存应有的能量),线径太细的(脉冲电流大,会有线损大). 2 整流管大都用肖特基,大家一样,无特色,在输出3.3V时,整流损耗约百分之 十. 3 开关管,关键在这儿了,放大量要足够进饱和,导通压降一定要小,是成功的关键.总共才一伏,管子上耗多了就没电出来了,因些管压降应选最大电流时不超过0.2--0.3V,单只做不到就多只并联....... 4 最大电流有多大呢?我们简单点就算1A吧,其实是不止的.由于效率低会超过1.5A,这是平均值,半周供电时为3A,实际电流波形为0至6A.所以咱建议要用两只号称5A实际3A的管子并起来才能勉强对付. 5 现成的芯片都没有集成上述那么大电流的管子,所以咱建议用土电路就够对付洋电路了. 以上是书本上没有直说的知识,但与书本知识可对照印证. 开关管导通时,电源经由电感-开关管形成回路,电流在电感中转化为磁能贮存;开关管关断时,电感中的磁能转化为电能在电感端左负右正,此电压叠加在电源正端,经由二极管-负载形成回路,完成升压功能。既然如此,提高转换效率就要从三个方面着手:1.尽可能降低开关管导通时回路的阻抗,使电能尽可能多的转化为磁能;2.尽可能降低负载回路的阻抗,使磁能尽可能多的转化为电能,同时回路的损耗最低;3.尽可能降低控制电路的消耗,因为对于转换来说,控制电路的消耗某种意义上是浪费掉的,不能转化为负载上的能量。

boost电路分析

图一 boost升压电路,开关直流升压电路(即所谓的boost或者step-up电路)原理2007-09-29 13:28the boost converter,或者叫step-up converter,是一种开关直流升压电路,它可以是输出电压比输入电压高。基本电路图见图一。 假定那个开关(三极管或者mos管)已经断开了很长时间,所有的元件都处于理想状态,电容电压等于输入电压。下面要分充电和放电两个部分来说明这个电路 充电过程 在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处用导线代替。这时,输入电压流过电感。二极管防止电容对地放电。由于输入是直流电,所以电感上的电流以一定的比率

线性增加,这个比率跟电感大小有关。随着电感电流增加,电感里储存了一些能量。 放电过程 图三 如图三,这是当开关断开(三极管截止)时的等效电路。当开关断开(三极管截止)时,由于电感的电流保持特性,流经电感的电流不会马上变为0,而是缓慢的由充电完毕时的值变为0。而原来的电路已断开,于是电感只能通过新电路放电,即电感开始给电容充电,电容两端电压升高,此时电压已经高于输入电压了。升压完毕。 说起来升压过程就是一个电感的能量传递过程。充电时,电感吸收能量,放电时电感放出能量。如果电容量足够大,那么在输出端就可以在放电过程中保持一个持续的电流。 如果这个通断的过程不断重复,就可以在电容两端得到高于输入电压的电压。 一些补充:AA电压低,反激升压电路制约功率和效率的瓶颈在开关管,整流管,及其他损耗(含电感上). 1 电感不能用磁体太小的(无法存应有的能量),线径太细的(脉冲电流大,会有线损大). 2 整流管大都用肖特基,大家一样,无特色,在输出3.3V时,整流损耗约百分之十.

DC-DC升压(BOOST)电路原理

DC-DC升压(BOOST)电路原理 BOOST升压电路中: 电感的作用:是将电能和磁场能相互转换的能量转换器件,当MOS开关管闭合后,电感将电能转换为磁场能储存起来,当MOS断开后电感将储存的磁场能转换为电场能,且这个能量在和输入电源电压叠加后通过二极管和电容的滤波后得到平滑的直流电压提供给负载,由于这个电压是输入电源电压和电感的磁砀能转换为电能的叠加后形成的,所以输出电压高于输入电压,既升压过程的完成; 肖特基二极管主要起隔离作用,即在MOS开关管闭合时,肖特基二极管的正极电压比负极电压低,此时二极管反偏截止,使此电感的储能过程不影响输出端电容对负载的正常供电;因在MOS管断开时,两种叠加后的能量通过二极向负载供电,此时二极管正向导通,要求其正向压降越小越好,尽量使更多的能量供给到负载端!!

在图2所示的实际电路中,带集成功率MOSFET的IC代替了机械开关,MOSFET的开、关由脉宽调制(PWM)电路控制。输出电压始终由PWM占空比决定,占空比为50%时,输出电压为输入电压的两倍。将电压提高一倍会使输入电流大小达到输出电流的两倍,对实际的有损耗电路,输入电流还要稍高。 电感值如何影响电感型升压转换器的性能? 因为电感值影响输入和输出纹波电压和电流,所以电感的选择是感性电压转换器设计的关键。等效串联电阻值低的电感,其功率转换效率最佳。要对电感饱和电流额定值进行选择,使其大于电路的稳态电感电流峰值。 电感型升压转换器IC电路输出二极管选择的原则是什么? 升压转换器要选快速肖特基整流二极管。与普通二极管相比,肖特基二极管正向压降小,使其功耗低并且效率高。肖特基二极管平均电流额定值应大于电路最大输出电压. 怎样选择电感型升压转换器IC电路的输入电容? 升压调节器的输入为三角形电压波形,因此要求输入电容必须减小输入纹波和噪声。纹波的幅度与输入电容值的大小成反比,也就是说,电容容量越大,纹波越小。如果转换器负载变化很小,并且输出电流小,使用小容量输入电容也很安全。如果转换器输入与源输出相差很小,也可选小体积电容。如果要求电路对输入电压源纹波干扰很小,就可能需要大容量电容,并(或)减小等效串联电阻(ESR)。

一种非常实用的Boost升压电路原理详解

一种实用的BOOST电路 0 引言 在实际应用中经常会涉及到升压电路的设计,对于较大的功率输出,如70W以上的DC /DC升压电路,由于专用升压芯片内部开关管的限制,难于做到大功率升压变换,而且芯片的价格昂贵,在实际应用时受到很大限制。考虑到Boost升压结构外接开关管选择余地很大,选择合适的控制芯片,便可设计出大功率输出的DC/DC升压电路。 UC3S42是一种电流型脉宽调制电源芯片,价格低廉,广泛应用于电子信息设备的电源电路设计,常用作隔离回扫式开关电源的控制电路,根据UC3842的功能特点,结合Boos t拓扑结构,完全可设计成电流型控制的升压DC/DC电路,且外接元器件少,控制灵活,成本低,输出功率容易做到100W以上,具有其他专用芯片难以实现的功能。 1 UC3842芯片的特点 UC3842工作电压为16~30V,工作电流约15mA。芯片内有一个频率可设置的振荡器;一个能够源出和吸入大电流的图腾式输出结构,特别适用于MoSFET的驱动;一个固定温度补偿的基准电压和高增益误差放大器、电流传感器;具有锁存功能的逻辑电路和能提供逐个脉冲限流控制的PWM比较器,最大占空比可达100%。另外,具有内部保护功能,如滞后式欠压锁定、可控制的输出死区时间等。 由UC3842设计的DC/DC升压电路属于电流型控制,电路中直接用误差信号控制电感峰值电流,然后间接地控制PWM脉冲宽度。这种电流型控制电路的主要特点是: 1)输入电压的变化引起电感电流斜坡的变化,电感电流自动调整而不需要误差放大器输出变化,改善了瞬态电压调整率; 2)电流型控制检测电感电流和开关电流,并在逐个脉冲的基础上同误差放大器的输出比较,控制PWM脉宽,由于电感电流随误差信号的变化而变化,从而更容易设置控制环路,改善了线性调整率; 3)简化了限流电路,在保证电源工作可靠性的同时,电流限制使电感和开关管更有效地工作; 4)电流型控制电路中需要对电感电流的斜坡进行补偿,因为,平均电感电流大小是决定输出大小的因素,在占空比不同的情况下,峰值电感电流的变化不能与平均电感电流变化相对应,特别是占空比,50%的不稳定性,存在难以校正的峰值电流与平均电流的误差,即使占空比<50%,也可能发生高频次谐波振荡,因而需要斜坡补偿,使峰值电感电流与平均电感电流变化相一致,但是,同步不失真的斜坡补偿技术实现上有一定的难度。

boost升压电路

boost升压电路2007-12-27 10:07开关直流升压电路(即所谓的boost或者step-up 电路)原理2007-09-29 13:28the boost converter,或者叫step-up converter,是一种开关直流升压电路,它可以是输出电压比输入电压高。 基本电路图见图一。 假定那个开关(三极管或者mos管)已经断开了很长时间,所有的元件都处于理想状态,电容电压等于输入电压。

下面要分充电和放电两个部分来说明这个电路 充电过程 在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处用导线代替。这时,输入电压流过电感。二极管防止电容对地放电。由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。随着电感电流增加,电感里储存了一些能量。 放电过程 如图,这是当开关断开(三极管截止)时的等效电路。当开关断开(三极管截止)时,由于电感的电流保持特性,流经电感的电流不会马上变为0,而是缓慢的由充电完毕时的值变为0。而原来的电路已断开,于是电感只能通过新电路放电,即电感开始给电容充电,电容两端电压升高,此时电压已经高于输入电压了。升压完毕。

说起来升压过程就是一个电感的能量传递过程。充电时,电感吸收能量,放电时电感放出能量。 如果电容量足够大,那么在输出端就可以在放电过程中保持一个持续的电流。 如果这个通断的过程不断重复,就可以在电容两端得到高于输入电压的电压。 一些补充1 AA电压低,反激升压电路制约功率和效率的瓶颈在开关管,整流管,及其他损耗(含电感上). 1.电感不能用磁体太小的(无法存应有的能量),线径太细的(脉冲电流大,会有线损大).

DC-DC升压(BOOST)电路原理

BOOST升压电路中: 电感的作用:是将电能和磁场能相互转换的能量转换器件,当MOS 开关管闭合后,电感将电能转换为磁场能储存起来,当MOS断开后电感将储存的磁场能转换为电场能,且这个能量在和输入电源电压叠加后通过二极管和电容的滤波后得到平滑的直流电压提供给负载,由于这个电压是输入电源电压和电感的磁砀能转换为电能的叠加后形成的,所以输出电压高于输入电压,既升压过程的完成; 肖特基二极管主要起隔离作用,即在MOS开关管闭合时,肖特基二极管的正极电压比负极电压低,此时二极管反偏截止,使此电感的储能过程不影响输出端电容对负载的正常供电;因在MOS管断开时,两种叠加后的能量通过二极向负载供电,此时二极管正向导通,要求其正向压降越小越好,尽量使更多的能量供给到负载端!! 电感升压原理: 什么是电感型升压DC/DC转换器? 如图1所示为简化的电感型DC-DC转换器电路,闭合开关会引起通过电感的电流增加。打开开关会促使电流通过二极管流向输出电容。因储存来自电感的电流,多个开关周期以后输出电容的电压升高,结果输出电压高于输入电压。 电感型升压转换器应用在哪些场合? 电感型升压转换器的一个主要应用领域是为白光LED供电,该白光LED能为电池供电系统的液晶显示(LCD)面板提供背光。在需要提升电压的通用直流-直流电压稳压器中也可使用。 决定电感型升压的DC-DC转换器输出电压的因素是什么? 在图2所示的实际电路中,带集成功率MOSFET的IC代替了机械开关,MOSFET的开、关由脉宽调制(PWM)电路控制。输出电压始终由PWM占空比决定,占空比为50%时,输出电压为输入电压的两倍。将电压提高一倍会使输入电流大小达到输出电流的两倍,对实际的有损耗电路,输入电流还要稍高。 电感值如何影响电感型升压转换器的性能? 因为电感值影响输入和输出纹波电压和电流,所以电感的选择是感性电压转换器设计的关键。等效串联电阻值低的电感,其功率转换效率最佳。要对电感饱和电流额定值进行选择,使其大于电路的稳态电感电流峰值。 电感型升压转换器IC电路输出二极管选择的原则是什么? 升压转换器要选快速肖特基整流二极管。与普通二极管相比,肖特基二极管正向压降小,使其功耗低并且效率高。肖特基二极管平均电流额定值应大于电路最大输出电压.

BOOST升压电路原理简单介绍

1.BOOST升压电路介绍 boost 升压电路,开关直流升压电路(即所谓的boost 或者step-up 电路)the boost converter,或者叫step-up converter,是一种开关直流升压电路,它可以是输出电压比输入电压高,基本电路如下: 1.1 B OOST升压电路工作原理 假定那个开关(三极管或者mos 管)已经断开了很长时间,所有的元件都处于理想状态,电容电压等于输入电压。下面要分充电和放电两个部分来说明这个电路。 充电过程: 在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处 用导线代替。这时,输入电压流过电感。二极管防止电容对地放电。由于输入是 直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。 随着电感电流增加,电感里储存了一些能量。

放电过程: 如图,这是当开关断开(三极管截止)时的等效电路。当开关断开(三极管截止) 时,由于电感的电流保持特性,流经电感的电流不会马上变为0,而是缓慢的由充电完毕时的值变为0。而原来的电路已断开,于是电感只能通过新电路放电,即电感开始给电容充电,电容两端电压升高,此时电压已经高于输入电压了。升压完毕。 如果这个通断的过程不断重复,就可以在电容两端得到高于输入电压的电压。 2.提高转换效率 ①尽可能降低开关管导通时回路的阻抗,使电能尽可能多的转化为磁能; ②尽可能降低负载回路的阻抗,使磁能尽可能多的转化为电能,同时回路的损耗最低;

③尽可能降低控制电路的消耗,因为对于转换来说,控制电路的消耗某种意义上是浪费掉的,不能转化为负载上的能量;

DC-DC升压电路原理

DC-DC升压电路原理 BOOST升压电路中: 电感的作用:是将电能和磁场能相互转换的能量转换器件,当MOS 开关管闭合后,电感将电能转换为磁场能储存起来,当MOS断开后电感将储存的磁场能转换为电场能,且这个能量在和输入电源电压叠加后通过二极管和电容的滤波后得到平滑的直流电压提供给负载,由于这个电压是输入电源电压和电感的磁砀能转换为电能的叠加后形成的,所以输出电压高于输入电压,既升压过程的完成; 肖特基二极管主要起隔离作用,即在MOS开关管闭合时,肖特基二极管的正极电压比负极电压低,此时二极管反偏截止,使此电感的储能过程不影响输出端电容对负载的正常供电;因在MOS管断开时,两种叠加后的能量通过二极向负载供电,此时二极管正向导通,要求其正向压降越小越好,尽量使更多的能量供给到负载端!! 電感升壓原理: 什么是电感型升压DC/DC转换器? 如图1所示为简化的电感型DC-DC转换器电路,闭合开关会引起通过电感的电流增加。打开开关会促使电流通过二极管流向输出电容。因储存来自电感的电流,多个开关周期以后输出电容的电压升高,结果输出电压高于输入电压。 决定电感型升压的DC-DC转换器输出电压的因素是什么? 在图2所示的实际电路中,带集成功率MOSFET的IC代替了机械开关,MOSFET的开、关由脉宽调制(PWM)电路控制。输出电压始终由PWM占空比决定,占空比为50%时,输出电压为输入电压的两倍。将电压提高一倍会使输入电流大小达到输出电流的两倍,对实际的有损耗电路,输入电流还要稍高。 电感值如何影响电感型升压转换器的性能? 因为电感值影响输入和输出纹波电压和电流,所以电感的选择是感性电压转换器设计的关键。等效串联电阻值低的电感,其功率转换效率最佳。要对电感饱和电流额定值进行选择,使其大于电路的稳态电感电流峰值。 电感型升压转换器IC电路输出二极管选择的原则是什么?

boost升压电路原理

boost升压电路,开关直流升压电路(即所谓的boost或者step-up电路)原理2007-09-29 13:28the boost converter,或者叫step-up converter,是一种开关直流升压电路,它可以是输出电压比输入电压高。 基本电路图见图一。 假定那个开关(三极管或者mos管)已经断开了很长时间,所有的元件都处于理想状态,电容电压等于输入电压。 下面要分充电和放电两个部分来说明这个电路 充电过程

在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处用导线代替。这时,输入电压流过电感。二极管防止电容对地放电。由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。随着电感电流增加,电感里储存了一些能量。 放电过程 如图,这是当开关断开(三极管截止)时的等效电路。当开关断开(三极管截止)时,由于电感的电流保持特性,流经电感的电流不会马上变为0,而是缓慢的由充电完毕时的值变为0。而原来的电路已断开,于是电感只能通过新电路放电,即电感开始给电容充电,电容两端电压升高,此时电压已经高于输入电压了。升压完毕。 说起来升压过程就是一个电感的能量传递过程。充电时,电感吸收能量,放电时电感放出能量。 如果电容量足够大,那么在输出端就可以在放电过程中保持一个持续的电流。

如果这个通断的过程不断重复,就可以在电容两端得到高于输入电压的电压。 一些补充1 AA电压低,反激升压电路制约功率和效率的瓶颈在开关管,整流管, 及其他损耗(含电感上). 1.电感不能用磁体太小的(无法存应有的能量),线径太细的(脉冲电流大,会有线损大). 2 整流管大都用肖特基,大家一样,无特色,在输出3.3V时,整流损耗约百分之十. 3 开关管,关键在这儿了,放大量要足够进饱和,导通压降一定要小,是成功的关键.总共才一伏,管子上耗多了就没电出来了,因些管压降应选最大电流时不超过0.2--0.3V,单只做不到就多只并联....... 4 最大电流有多大呢?我们简单点就算1A吧,其实是不止的.由于效率低会超过1.5A,这是平均值,半周供电时为3A,实际电流波形为0至6A.所以咱建议要用两只号称5A实际3A的管子并起来才能勉强对付. 5 现成的芯片都没有集成上述那么大电流的管子,所以咱建议用土电路就够对付洋电路了. 以上是书本上没有直说的知识,但与书本知识可对照印证. 开关管导通时,电源经由电感-开关管形成回路,电流在电感中转化为磁能贮存;开关管关断时,电感中的磁能转化为电能在电感端左负右正,此电压叠加在电源正端,经由二极管-负载形成回路,完成升压功能。既然如此,提高转换效率就要从三个方面着手:1.尽可能降低开关管导通时回路的阻抗,使电能尽可能多的转化为磁能;2.尽可能降低负载回路的阻抗,使磁能尽可能多的转化为电能,同

Boost 升压电路的工作原理

Boost 升压电路的工作原理: 电感是将电能和磁场能相互转换的能量转换器件,当switch闭合以后,电感将电能转换为磁能储存起来,当switch断开后,电感又将磁能转换为电能(给电容充电)。电容电压由于电感能量的叠加作用升高,并通过二极管和电容滤波后得到平滑的直流电压提供给负载。 肖特基二极管主要起到隔离作用,在switch闭合时,二极管的正极比负极电压低,反偏截止,此时电感的储能过程不影响输出端电容对负载的正常供电;当switch断开时,二极管正向导通,电感能量和电容同时向负载供电。 肖特基二极管的特点: 1.反向恢复时间和正向恢复时间都短=>电感充放电频率可以更快 2.在低电流密度(JF<10 A/cm2)下,有比P+ -n-N+结构的整流二极管更低的通态电压 => 能量 损耗低,效率高

如图,在实际电路中,带集成功率MOSFET的IC代替了机械开关,MOSFET的开关由脉冲调制(PWM)电路控制,输出电压由PWM占空比决定。一路输出反馈到PWM,来控制输出电压。 下面是升压芯片LM2587的模块图: 反馈电路控制输出电压原理:

The output voltage is controlled by the amount of energy transferred which, in turn, iscontrolled by modulating the peak inductor current. This is done byfeeding back a portion of the output voltageto the error amp, which amplifies the difference between the feedback voltage and a 1.230V reference. The erroramp output voltage is compared to a voltage proportional to the switch current (i.e., inductor current during theswitch on time). 由此,我们可以通过调节R1和R2电阻值来调整输出电压。 现在市场上常见的升压模块:

升压斩波(boost+chopper)电路设计

电力电子技术课程设计报告题目:升压斩波(boost chopper)电路设计 学院: 专业: 学号: 姓名: 指导老师: 时间:

目录 前言 ******************************************************* ****2 MATlAB仿真设计***********************************************6 硬件实验******************************************************* **14 参考文献******************************************************* **19 附录一设计任务书*************************************20 附录二PROTEL简介****************************************21 附录三MATLAB简介****************************************24

升压斩波电路(Boost Chopper )设计 一、前言 1.Boost Chopper 工作原理: 图 1.1升压斩波电路图 图 1.1中假设L 值、C 值很大,V 通时,E 向L 充电,充电电流恒为I 1,同时C 的电压向负载供电,因C 值很大,输出电压u o 为恒值,记为U o 。设V 通的时间为t o n ,此阶段L 上积蓄的能量为E I 1t o n V 断时,E 和L 共同向C 充电并向负载R 供电。设V 断的时间为t o f f ,则此期间电感L 释放能量为()o f f o t I E U 1- 稳态时,一个周期T 中L 积蓄能量与释放能量相等 ()off o on t I E U t EI 11-= 化简得:

Boost升压电路原理

为大家介绍一种非常实用的BOOST电路: 0 引言 在实际应用中经常会涉及到升压电路的设计,对于较大的功率输出,如70W以上的DC/DC升压电路,由于专用升压芯片内部开关管的限制,难于做到大功率升压变换,而且芯片的价格昂贵,在实际应用时受到很大限制。考虑到Boost升压结构外接开关管选择余地很大,选择合适的控制芯片,便可设计出大功率输出的DC/DC升压电路。 UC3S42是一种电流型脉宽调制电源芯片,价格低廉,广泛应用于电子信息设备的电源电路设计,常用作隔离回扫式开关电源的控制电路,根据UC3842的功能特点,结合Boost拓扑结构,完全可设计成电流型控制的升压DC/DC电路,且外接元器件少,控制灵活,成本低,输出功率容易做到100W以上,具有其他专用芯片难以实现的功能。 1 UC3842芯片的特点 UC3842工作电压为16~30V,工作电流约15mA。芯片内有一个频率可设置的振荡器;一个能够源出和吸入大电流的图腾式输出结构,特别适用于MoSFET的驱动;一个固定温度补偿的基准电压和高增益误差放大器、电流传感器;具有锁存功能的逻辑电路和能提供逐个脉冲限流控制的PWM比较器,最大占空比可达100%。另外,具有内部保护功能,如滞后式欠压锁定、可控制的输出死区时间等。 由UC3842设计的DC/DC升压电路属于电流型控制,电路中直接用误差信号控制电感峰值电流,然后间接地控制PWM脉冲宽度。这种电流型控制电路的主要特点是: 1)输入电压的变化引起电感电流斜坡的变化,电感电流自动调整而不需要误差放大器输出变化,改善了瞬态电压调整率; 2)电流型控制检测电感电流和开关电流,并在逐个脉冲的基础上同误差放大器的输出比较,控制PWM脉宽,由于电感电流随误差信号的变化而变化,从而更容易设置控制环路,改善了线性调整率; 3)简化了限流电路,在保证电源工作可靠性的同时,电流限制使电感和开关管更有效地工作; 4)电流型控制电路中需要对电感电流的斜坡进行补偿,因为,平均电感电流大小是决定输出大小的因素,在占空比不同的情况下,峰值电感电流的变化不能与平均电感电流变化相对应,特别是占空比,50%的不稳定性,存在难以校正的峰值电流与平均电流的误差,即使占空比<50%,也可能发生高频次谐波振荡,因而需要斜坡补偿,使峰值电感电流与平均电感电流变化相一致,但是,同步不失真的斜坡补偿技术实现上有一定的难度。

Boost电路基本原理

从充放电两方面讲解Boost电路的基本原理 Boost电路是一种开关直流升压电路,它能够使输出电压高于输入电压。 首先我们需要知道: 电容阻碍电压变化,通高频,阻低频,通交流,阻直流; 电感阻碍电流变化,通低频,阻高频,通直流,阻交流; 假定那个开关(三极管或者MOS管)已经断开了很长时间,所有的元件都处于理想状态,电容电压等于输入电压。 下面要分充电和放电两个部分来说明这个电路。 图2 充电过程 在充电过程中,开关闭合(三极管导通),等效电路如图2,开关(三极管)处用导线代替。这时,输入电压流过电感。二极管防止电容对地放电。由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。随着电感电流增加,电感里储存了一些能量。

图3 放电过程 当开关断开(三极管截止)时的等效电路如图3所示。当开关断开(三极管截止)时,由于电感的电流保持特性,流经电感的电流不会马上变为0,而是缓慢的由充电完毕时的值变为0。而原来的电路已断开,电感只能通过新电路放电,即电感开始给电容充电,电容两端电压升高,此时电压已经高于输入电压了。升压完毕。 说起来升压过程就是一个电感的能量传递过程。充电时,电感吸收能量,放电时电感放出能量。如果电容量足够大,那么在输出端就可以在放电过程中保持一个持续的电流。如果这个通断的过程不断重复,就可以在电容两端得到高于输入电压的电压。 boost电路升压过程 开关管导通时,电源经由电感-开关管形成回路,电流在电感中转化为磁能贮存;开关管关断时,电感中的磁能转化为电能在电感端左负右正,此电压叠加在电源正端,经由二极管-负载形成回路,完成升压功能。既然如此,提高转换效率就要从三个方面着手:尽可能降低开关管导通时回路的阻抗,使电能尽可能多的转化为磁能;尽可能降低负载回路的阻抗,使磁能尽可能多的转化为电能,同时回路的损耗最低;尽可能降低控制电路的消耗,因为对于转换来说,控制电路的消耗某种意义上是浪费掉的,不能转化为负载上的能量。

Boost升压稳压电源(DOC)

数控Boost开关电源 题目: 数控Boost开关电源 组员:索世昌李永杜政立 日期:2013年8月10日

数控Boost开关电源 摘要 开关电源较线性电源说具有体积小、重量轻、耗能低、使用方便等优点,在邮电通信、航空航天、仪器仪表、工业控制、医疗器械、家用电器等领域应用效果显著。基于这些特点本组设计了一套升压式开关电源。升压式开关电源主要应用在供电系统不稳定,并有下降的趋势的场合。通过升压式开关电源可以很稳定的输出所需电压值。该系统以Boost升压拓扑电路为主回路,采用TL494作为开关稳压电源的核心控制芯片,采用TPS2812驱动MOS管,实现了输出电压16V~36V任意可调,最大输出电流2A,以及输出过流保护功能。 关键词:Boost;TL494;数控;显示;过流保护

1引言 开关稳压电源简称开关电源(Switching Power Supply),通过控制开关管的导通比来维持输出电压的稳定,体积小、重量轻(体积和重量只有线性电源的20~30%)、效率高(一般为60~70%,而线性电源只有30~40%)、自身抗干扰性强、输出电压范围宽、模块化。功耗低、纹波小、噪音低、易扩容等特点,使得开关电源具有高的稳定性和性价比,在仪器、仪表、工业自动化等领域得到广泛应用。 2系统方案论证 2.1 DC-DC主电路的设计 方案一:采用UC3525A搭建电路,更适合于运用MOS管作为开关器件的DC-DC变换器,它是采用双级型工艺制作的新型模拟数字混合集成电路,性能优异,所需外围器件较少。 方案二:采用TL494构建Boost变换器,TL494是一种电压控制型脉宽调制控制集成电路,工作频率可高到300kHz,工作电压可达到40V,内有5V的电压基准,死区时间可调整,主要应用于各种开关电源。 上述两种DC-DC主电路的搭建方法,各有其优缺点,TL494是电压反馈型开关芯片,具有双差分放大器反馈控制端口,PWM的死区时间可直接通过分压调节控制,资料较多,易于掌握,故采用TL494作为系统的主控制部分,综合各种考虑我们采用了方案二。 2.2 控制方法选择与论证 开关电源的控制方式分为电流模式控制和电压模式控制。电流控制模式虽然具有良好的线性调整率和快速的输入输出动态响应,但是需要双环控制,增加了电路设计和分析的难度,且当占空比大于50%时若没有斜坡补偿,控制环变得不稳定,抗干扰性能差,在比赛过程中不利于发挥,故选则电压控制型。 2.3 辅助电源的选取 方案一:采用最常用的7812的芯片,产生12V电压,然后再接7805芯片产

BUCK BOOST电路原理分析

BUCK BOOST电路原理分析 电源网讯 Buck变换器:也称降压式变换器,是一种输出电压小于输入电压的单管不隔离直流变换器。 图中,Q为开关管,其驱动电压一般为PWM(Pulse width modulation脉宽调制)信号,信号周期为Ts,则信号频率为f=1/Ts,导通时间为Ton,关断时间为Toff,则周期 Ts=Ton+Toff,占空比Dy= Ton/Ts。 Boost变换器:也称升压式变换器,是一种输出电压高于输入电压的单管不隔离直流变换器。 开关管Q也为PWM控制方式,但最大占空比Dy必须限制,不允许在Dy=1的状态下工作。电感Lf在输入侧,称为升压电感。Boost变换器也有CCM和DCM两种工作方式

Buck/Boost变换器:也称升降压式变换器,是一种输出电压既可低于也可高于输入电压的单管不隔离直流变换器,但其输出电压的极性与输入电压相反。Buck/Boost变换器可看做是Buck变换器和Boost变换器串联而成,合并了开关管。 Buck/Boost变换器也有CCM和DCM两种工作方式,开关管Q 也为PWM控制方式。 LDO的特点: ① 非常低的输入输出电压差 ② 非常小的内部损耗

③ 很小的温度漂移 ④ 很高的输出电压稳定度 ⑤ 很好的负载和线性调整率 ⑥ 很宽的工作温度范围 ⑦ 较宽的输入电压范围 ⑧ 外围电路非常简单,使用起来极为方便 DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。斩波器的工作方式有两种,一是脉宽调制方式Ts不变,改变ton(通用),二是频率调制方式,ton不变,改变Ts(易产生干扰)。其具体的电路由以下几类: (1)Buck电路——降压斩波器,其输出平均电压 U0小于输入电压Ui,极性相同。 (2)Boost电路——升压斩波器,其输出平均电压 U0大于输入电压Ui,极性相同。 (3)Buck-Boost电路——降压或升压斩波器,其输出平均电压U0大于或小于输入电压Ui,极性相反,电感传输。 (4)Cuk电路——降压或升压斩波器,其输出平均电压U0大于或小于输入电压Ui,极性相反,电容传输。

BOOST升压电路案例分析

BOOST 升压电路案例分析 将直流电能转换为另一种固定电压或电压可调的直流电能的电路称为直流斩波电路。它利用电力开关器件周期性的开通与关断来改变输出电压的大小,因此也称为开关型DC/DC 变换电路或直流斩波电路。直流斩波电路的用途非常广泛,包括直流电动机传动、开关电源、单相功率因素校正,逆变器以及其他领域的交直流电源等。 测试电路如下图4.1所示,测量输入与输出关系。 通道2:输出直流电压信号 u o +- (a)BOOST 测试电路 (b)输出波形 图4.1 BOOST 升压电路(multisim) 一、直流斩波电路的基本原理 基本的直流变换电路原理如图4.2所示,T 为全控型开关管,R 为纯电阻性负载。当开关T 在时间T on 开通时,电流流经负载电阻R ,R 两端就有电压;开关T 在时间T off 关断时,R 中电流为零,电压也就变为零。直流变换电路的负载电压波形如图4.2(b)。 (a) 直流斩波原理图 (b)输出波形 图4.2直流斩波原理示意图

定义上述电路中脉冲的占空比:on on s on off T T D T T T ==+。 其中T s 为为开关管T 的工作周期,T on 为开关管T 的导通时间。由图5.3(b)的波形可知,输出电压的平均值为: 01 s T on O d d d s S T U U dt U DU T T ===? 此式说明,控制开关管的导通与关断来控制就可以达到控制输出电压。 二、BOOST 升压过程 直流输出电压的平均值高于输入电压的变换电路为升压变换电路,又称为Boost 电路。电路如图5.2所示。 图中Q2为开关管, D1是快恢复二极管,XFG1为频率和占空比都可调的函数发生器, 用于产生驱动开关器件Q1所需的脉冲信号。假设输入电源电压为U d ,输出负载电压为U o ,流过电感的电流为I L 。当Q1在出发信号作用下导通时,电路处于T on 工作器件,D 承受反向电压而截止。一方面,能量从直流电源输入并存储到L 中,电感电流从I 1线性增大到I 2;另一方面,R 由C 提供能量,显然,L 中的感应电动势与U d 相等。则有 21L d on on I I I U L L T T -?== L on d I T L U ?= 当T 被控制信号关断时,电路处于T off 工作期间,D 导通,由于L 中的电流不能突变,产生感应电动势阻止电流减小,此时L 中存储的能量经D 给C 充电,同时也向R 提供能量。在理想条件下,电感电流从I 2线性减小到I 1,由于L 上的电压等于U O -U d ,因此可得 L o d on I U U L T ?-= L L Toff I Uo Ud = ?- 则有 d on o d off U T U U T L L -=

相关文档