文档库 最新最全的文档下载
当前位置:文档库 › 牛顿法求最优解

牛顿法求最优解

牛顿法求最优解

牛顿法求最优解

1.试用牛顿法求f(X)-8x12+5x22的最优解,设x(0)-10 10初始点为x(0)-10 10,则初始点处的函数值和梯度分别为

f(X0)=1700

? f(X0)=16x14x2

4x110x2=

200

140

,沿梯度方向进行一维搜索,有

X1=X0-α0f(X0)=10

10-α0200

140

=

10?200α0

10?140α0

α0为一维搜索最佳步长,应满足必要的极值条件f(X1)=minαf X0α?f(X0)

=minα8×(10?200α0)2

(10?200α0)×10?140α05×(10?

140α0)2

=minαφα

φ′α-1060000α0-59600=0 α0=59600

1060000=0.0562264 从而算出一维搜索最佳步长

则第一次迭代设计点位置和函数值X1=10?200α0

10?140α0=

?1.2452830

2.1283019

f(X1)=24.4528302,从而完成第一次迭代。按照上面的过程依次进行下去,便可求得最优解。

牛顿迭代法

牛顿迭代法 李保洋 数学科学学院信息与计算科学学号:060424067 指导老师:苏孟龙 摘要:牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法,即牛顿迭代法.迭代法是一种不断用变量的旧值递推新值的过程.跟迭代法相对应的是直接法或者称为一次解法,即一次性解决问题.迭代法又分为精确迭代和近似迭代.“牛顿迭代法”属于近似迭代法,本文主要讨论的是牛顿迭代法,方法本身的发现和演变和修正过程,避免二阶导数计算的Newton迭代法的一个改进,并与中国古代的算法,即盈不足术,与牛顿迭代算法的比较. 关键词:Newton迭代算法;近似求解;收敛阶;数值试验;中国古代数学; 九章算术;Duffing方程;非线性方程;收敛速度;渐进性 0 引言: 迭代法也称辗转法,是一种不断用变量的旧值递推新值的过程,跟迭代法相对应的是直接法或者称为一次解法,即一次性解决问题.迭代法又分为精确迭代和近似迭代.“二分法”和“牛顿迭代法”属于近似迭代法. 迭代算法是用计算机解决问题的一种基本方法.它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值.具体使用迭代法求根时应注意以下两种可能发生的情况: (1)如果方程无解,算法求出的近似根序列就不会收敛,迭代过程会变成死循环,因此在使用迭代算法前应先考察方程是否有解,并在程序中对迭代的次数给予限制. (2)方程虽然有解,但迭代公式选择不当,或迭代的初始近似根选择不合理,也会导致迭代失败. 所以利用迭代算法解决问题,需要做好以下三个方面的工作: 1、确定迭代变量.在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量. 2、建立迭代关系式.所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系).迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成. 3、对迭代过程进行控制,在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题.不能让迭代过程无休止地重复执行下去.迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定.对于前一种情况,可以构建一个固定次数的循环来实现对迭代过程的控制;对于后一种情况,需要进一步分析出用来结束迭代过程的条件. 1牛顿迭代法:

最优化课程设计

《最优化》课程设计 题目:牛顿法与阻尼牛顿法算法分析 学院: 数学与计算科学学院 专业:数学与应用数学 姓名学号:廖丽红 1000730105 欧艳 1000730107 骆宗元 1000730122 沈琼赞 1000730127 指导教师:李向利 日期:2012年11月08日

摘要 本文基于阻尼牛顿法在解决无约束最优化问题中的重要性,对其原理与算法予以讨论。论文主要是参阅大量数学分析和最优化理论方法,还有最优化方法课程以及一些学术资料,结合自己在平时学习中掌握的知识,并在指导老师的建议下,拓展叙述牛顿法和其改进方法——阻尼牛顿法的优缺点,同时针对阻尼牛顿法的基本思路和原理进行研究,其搜索方向为负梯度方向,改善了牛顿法的缺点,保证了下降方向。 关键词:无约束牛顿法下降方向阻尼牛顿法最优解

Abstract This thesis is based on the importance of the damping Newton's method to solve unconstrained optimization problems, we give the discussion about its principles and algorithms. We search a large number of mathematical analysis and optimization theory methods, optimization methods courses, as well as some academic information ,and at the same time combined with knowledge we have learning in peacetime and thanks to the instructor's advice, we also give an expanding narrative for the Newton's method and the improved method -- damping Newton method's advantages and disadvantages, and make a study of the basic ideas and principles for damping Newton method at the same time , we find that a negative gradient direction is for the search direction of the damping Newton method, this method improves the shortcomings of the Newton method which can ensure the descent direction. Keywords: unconstrained , Newton's method , descent direction , damping Newton's method ,optimal solution

用牛顿迭代法求近似根

用牛顿迭代法求近似根

————————————————————————————————作者:————————————————————————————————日期:

第四题 题目:用Newton 法求方程在 74 28140x x -+= (0.1,1.9)中的近似根(初始近似值取为区间端点,迭代6次或误差小于0.00001). 解:此题是用牛顿迭代法求解近似根的问题 1. Newton 迭代法的算法公式及应用条件: 设函数在有限区间[a,b]上二阶导数存在,且满足条件 ⅰ. ()()0f a f b <; ⅱ. ()''f x 在区间[a,b]上不变号; ⅲ. ()'0f x ≠; ⅳ. ()()'f c f c b a ≤-,其中c 是a,b 中使()()''min(,)f a f b 达到的一个. 则对任意初始近似值0[,]x a b ∈,由Newton 迭代过程 ()()() 1'k k k k k f x x x x f x +=Φ=-,k=0,1,2… 所生成的迭代序列{ k x }平方收敛于方程()0f x =在区间[a,b]上的唯一解а. 对本题: )9.1()9.1(0 )8(4233642)(0 )16(71127)(0 )9.1(,0)1.0(,1428)(3225333647>?''<-=-=''<-=-='<>+-=f f x x x x x f x x x x x f f f x x x f Θ 故以1.9为起点 ?? ???='-=+9.1)()(01x x f x f x x k k k k 2. 程序编写 #include #include void main() { double x0,x=1.9; do

最优化 马昌凤 第三章作业

最优化方法及其Matlab程序设计习题作业暨实验报告 学院:数学与信息科学学院 班级:12级信计一班 姓名:李明 学号:1201214049

第三章 最速下降法和牛顿法 一、上机问题与求解过程 1、用最速下降法求212 221216423),(x x x x x x f --+=的极小值。 解: 仿照书上编写最速下降法程序如下: function [x,val,k]=grad(fun,gfun,x0) %功能:用最速下降法求解无约束化问题:min f(x) %输入:x0是初始点,fun,gfun 分别是目标函数和梯度 %输出:x,val 分别是近似嘴有点和最优值,k 是迭代次数 maxk=5000; rho=0.5;sigma=0.4; %一开始选择时选择的rho 和sibma 选择的数据不够合理,此处我参照书上的数据编写数据 k=0;epsilon=1e-5; while (k

探究与发现牛顿法──用导数方法求方程的近似解

牛 顿 法 ——用导数方法求方程的近似解 一、思考问题 问题1:求方程x 3-1=0的解. 问题2:求方程x 3 +2x 2 +10x -20=0的解. 问题3:求方程x 3 +2x 2 +10x -20=0的近似解, 精确度为0.001. 二、形成方法 1. 点A 横坐标为x 0,函数f (x )在点A 处的 切线方程为: . (写成点斜式方程,结果用f (x 0)、f’(x 0)表示) 问题4:可以求出x 1的值吗?如果可以, 请写出关于x 1的解析式,结果用f (x 0)、f’(x 0)表示. 问题5:是否可以把x 1作为零点r 的近似解? 2. 写出求x 2的解析式: . 3. 问题6:x n 与x n -1之间是否有关系? 4. 这种用 的方法求方程近似解即为 ,牛顿法公式: . 5. 问题7:x n 满足什么要求才可以作为近似解? 精确度公式: . 例1. 用牛顿法求方程x 3 +2x 2 +10x -20=0的近似解. 精确度z 0=0.001. 解:令f (x )= x 3+2x 2+10x -20,则f ’(x )=3x 2+4x +10x . 取x 0= , x n =x n -1-)(')(11--n n x f x f = x n -1-10 4)(32010)(2)(12112131++-++-----n n n n n x x x x x 所以: 第一步: x 1= ,0 011=x x x z - ; A

第二步: 问题8:不同的初始值对求方程的近似解有影响吗?如果有,影响在什么地方? 三、化繁为简 1. 算法步骤 第一步:给定初始值x 0和精确度z 0; 第二步: 第三步: 2. 程序框图 四、感悟方法 五、课堂小结 1. 通过这节课的学习,你有哪些收获? 2. 牛顿法步骤? 六、课后作业 1. 用牛顿法求方程x 3-3x -1=0在x =2附近的近似解,精确度z 0=0.01. 2. 求 25的近似值,精确度z 0=0.01. 七、课外延伸

关于拟牛顿法的综述

几种拟牛顿算法综述 摘要: 拟牛顿方法是求解无约束优化问题有效而著名的算法。在拟牛顿法中,有根据矫正公式的不同分为几类方法。本文主要针对SR1、SR1的一种修改、BFGS、MBFGS、非单调的CBFGS、LBFGS这几种矫正公式产生方法进行理论阐述,包括其收敛性,收敛速度的证明并检验其在正定二次问题上的等价性。最后通过C#编程语言检验上述方法在收敛速度上的差异性。 关键字:拟牛顿法、矫正公式、收敛性、非线性方程 引言: 考虑无约束问优化题minf(x)(0.1)f是连续可微的函数。牛顿法利用 Newton方法最突出的优点是其收敛速度快,凡是目标函数的Hessian矩阵 较简单的问题都可以采用Newton方法,1- 。对于那些Hessian矩阵复杂的问题而 言,求解Hessian矩阵无疑是一项艰巨的工程,这是很多学者选择采用拟牛顿的方法来解决现实中较复杂的问题的原因所在。拟牛顿法和Newton法的主要区别于求解迭代方向。拟牛顿法的主要思路是通过构造一个矩阵序列*H(k)+去逼近 原问题迭代方向中的Hessian矩阵*G(k)?1+,这很好的避免了复杂矩阵求逆的问题。在算法上很好的降低了计算量,从而提高计算速度。为了寻找与G有某种近似的,我们需要来考察的各种相关关系。为此目的,我们将f(x)的梯度在处作Taylor 展开, (δ)()δ(x) f(x) 当δ充分小时,可得到近似关 δ()δ(δ)() 或δγ,γ 1 1(δ)(0.2) 关系式(1)对二次函数f(x)恒成立,但对于不一定成立。现在我们研究与寻找,使它满足关系式(1)。为讨论与计算上的方便,当得到 1 δ时,δ,γ已知,我们求得 1,它满足关系: 1 δγ (0.3)为了叙述方便,我们引入=?1那么有以下式子成立

天津大学《最优化方法》复习题(含答案)

天津大学《最优化方法》复习题(含答案) 第一章 概述(包括凸规划) 一、 判断与填空题 1 )].([arg )(arg min max x f x f n n R x R x -=∈∈ √ 2 {}{} .:)(m in :)(m ax n n R D x x f R D x x f ?∈-=?∈ ? 3 设.:R R D f n →? 若n R x ∈*,对于一切n R x ∈恒有)()(x f x f ≤*,则称*x 为最优化问题)(min x f D x ∈的全局最优解. ? 4 设.:R R D f n →? 若D x ∈*,存在*x 的某邻域)(*x N ε,使得对一切)(*∈x N x ε恒有)()(x f x f <*,则称*x 为最优化问题)(min x f D x ∈的 严格局部最优解. ? 5 给定一个最优化问题,那么它的最优值是一个定值. √ 6 非空集合n R D ?为凸集当且仅当D 中任意两点连线段上任一点属于D . √ 7 非空集合n R D ?为凸集当且仅当D 中任意有限个点的凸组合仍

属于D . √ 8 任意两个凸集的并集为凸集. ? 9 函数R R D f n →?:为凸集D 上的凸函数当且仅当f -为D 上的凹函数. √ 10 设R R D f n →?:为凸集D 上的可微凸函数,D x ∈*. 则对D x ∈?,有).()()()(***-?≤-x x x f x f x f T ? 11 若)(x c 是凹函数,则}0)( {≥∈=x c R x D n 是凸集。 √ 12 设{}k x 为由求解)(min x f D x ∈的算法A 产生的迭代序列,假设算法 A 为下降算法,则对{} ,2,1,0∈?k ,恒有 )()(1k k x f x f ≤+ . 13 算法迭代时的终止准则(写出三种):_____________________________________。 14 凸规划的全体极小点组成的集合是凸集。 √ 15 函数R R D f n →?:在点k x 沿着迭代方向}0{\n k R d ∈进行精确一维线搜索的步长k α,则其搜索公式

天津大学最优化方法复习题

《最优化方法》复习题 第一章 概述(包括凸规划) 一、 判断与填空题 1 )].([arg )(arg min max x f x f n n R x R x -=∈∈ √ 2 {}{}.:)(min :)(max n n R D x x f R D x x f ?∈-=? ∈ ? 3 设.:R R D f n →? 若n R x ∈*,对于一切n R x ∈恒有)()(x f x f ≤*,则称*x 为 最优化问题)(min x f D x ∈的全局最优解. ? 4 设.:R R D f n →? 若D x ∈*,存在*x 的某邻域)(* x N ε,使得对一切 )(*∈x N x ε恒有)()(x f x f <*,则称* x 为最优化问题)(min x f D x ∈的严格局部最 优解. ? 5 给定一个最优化问题,那么它的最优值是一个定值. √ 6 非空集合n R D ?为凸集当且仅当D 中任意两点连线段上任一点属于D . √ 7 非空集合n R D ?为凸集当且仅当D 中任意有限个点的凸组合仍属于D . √ 8 任意两个凸集的并集为凸集. ? 9 函数R R D f n →?:为凸集D 上的凸函数当且仅当f -为D 上的凹函数. √ 10 设R R D f n →?:为凸集D 上的可微凸函数,D x ∈* . 则对D x ∈?,有 ).()()()(* **-?≤-x x x f x f x f T ? 11 若)(x c 是凹函数,则}0)( {≥∈=x c R x D n 是凸集。 √ 12 设{}k x 为由求解)(min x f D x ∈的算法A 产生的迭代序列,假设算法A 为下降算法, 则对{} ,2,1,0∈?k ,恒有 )()(1k k x f x f ≤+ .

Newton迭代法求解非线性方程

Newton迭代法求解非 线性方程

一、 Newton 迭代法概述 构造迭代函数的一条重要途径是用近似方程来代替原方程去求根。因此,如果能将非线性方程f (x )=0用线性方程去代替,那么,求近似根问题就很容易解决,而且十分方便。牛顿(Newton)法就是一种将非线性方程线化的一种方法。 设k x 是方程f (x )=0的一个近似根,把如果)(x f 在k x 处作一阶Taylor 展开,即: )x x )(x ('f )x (f )x (f k k k -+≈ (1-1) 于是我们得到如下近似方程: 0)x x )(x ('f )x (f k k k =-+ (1-2) 设0)('≠k x f ,则方程的解为: x ?=x k +f (x k ) f (x k )? (1-3) 取x ~作为原方程的新近似根1+k x ,即令: ) x ('f ) x (f x x k k k 1k -=+, k=0,1,2,… (1-4) 上式称为牛顿迭代格式。用牛顿迭代格式求方程的根的方法就称为牛顿迭代法,简称牛顿法。 牛顿法具有明显的几何意义。方程: )x x )(x ('f )x (f y k k k -+= (1-5) 是曲线)x (f y =上点))x (f ,x (k k 处的切线方程。迭代格式(1-4)就是用切线式(1-5)的零点来代替曲线的零点。正因为如此,牛顿法也称为切线法。 牛顿迭代法对单根至少是二阶局部收敛的,而对于重根是一阶局部收敛的。一般来说,牛顿法对初值0x 的要求较高,初值足够靠近*x 时才能保证收敛。若

要保证初值在较大范围内收敛,则需对)x (f 加一些条件。如果所加的条件不满足,而导致牛顿法不收敛时,则需对牛顿法作一些改时,即可以采用下面的迭代格式: ) x ('f ) x (f x x k k k 1k λ -=+, ?=,2,1,0k (1-6) 上式中,10<λ<,称为下山因子。因此,用这种方法求方程的根,也称为牛顿下山法。 牛顿法对单根收敛速度快,但每迭代一次,除需计算)x (f k 之外,还要计算 )x ('f k 的值。如果)x (f 比较复杂,计算)x ('f k 的工作量就可能比较大。为了避免计算导数值,我们可用差商来代替导数。通常用如下几种方法: 1. 割线法 如果用 1 k k 1k k x x ) x (f )x (f ----代替)x ('f k ,则得到割线法的迭代格式为: )x (f ) x (f )x (f x x x x k 1k k 1 k k k 1k --+---= (1-7) 2. 拟牛顿法 如果用 ) x (f )) x (f x (f )x (f k 1k k k ---代替)x ('f k ,则得到拟牛顿法的迭代格式为: )) x (f x (f )x (f ) x (f x x 1k k k k 2k 1k -+--- = (1-8) 3. Steffenson 法 如果用 ) x (f ) x (f ))x (f x (f k k k k -+代替)x ('f k ,则得到拟牛顿法的迭代格式为: ) x (f ))x (f x (f ) x (f x x k k k k 2k 1 k -+- =+

用牛顿迭代法求方程的近似解教学设计

用牛顿迭代法求方程的近似解 一.内容与内容解析 本节课内容是人教版选修2-2第一章第二节探究与发现的内容,教学内容是用牛顿迭代法求方程的近似解。在本节课中,在学生会用二分法求方程近似解的基础上,通过探究和发现,使学生能借助导数研究函数,利用切线逼近函数,进而理解迭代法的含义和作法,培养学生逼近的思想,以直代曲的思想,同时强化算法思想。本节课通过Leonardo方程的求近似解问题,复习和巩固二分法求方程近似解的思想,步骤和算法,并借助导数和切线理解牛顿迭代法的“以直代曲”思想和逼近思想,并分析整理牛顿迭代法的步骤和算法,并用牛顿迭代法解决实际问题。在教学中,通过借助图形计算器的探究,以及问题引导的方式,培养学生分析问题,探究问题和合作解决问题的能力,借助二分法的复习培养学生类比的思想,同时体会知识的联系和应用。本节课中给出的Leonardo方程有丰富的历史背景,练习中的开普勒方程又有实际背景,通过本节课的例子可以培养学生对数学的热爱以及强烈的求知欲望,对古代数学家坚忍不拔的毅力的学习以及对数学在实际生活中的巨大作用的认识都能使学生更加肯于钻研,并产生对数学的巨大兴趣。 教学重点:牛顿迭代法的迭代思想和过程。 二、目标和目标解析 1.复习和巩固用二分法求方程的近似解 二分法求方程的近似解是高中数学必修教材中的内容,和方程与函数的零点的关系一起,作为函数的性质的应用部分,是学生联系实际的重要内容,本节课以求Leonardo方程作为引入和研究对象,联系和复习二分法是顺理成章的,也能够将学习过的内容再现和升华。 2.探究并总结牛顿迭代法求方程的近似解 牛顿迭代法是中学生能够接受的一种较简单的迭代方法,而且十分有效,但如果脱离图形计算器,也是非常困难的。本节课的核心就是通过探究和实践,使学生能够完全理解牛顿迭代法的迭代原理,并能够通过图形计算器进行实际应用,提高了学生解决实际问题的能力。 3.培养学生利用图形计算器进行复杂计算和图形功能探究解决问题的能力。

C语言编程_牛顿迭代法求方程2

牛顿迭代公式 设r 是f(x) = 0的根,选取x0作为r 初始近似值,过点(x0,f(x0)) f(x)的切线L ,L 的方程为y = f(x0)+f'(x0)(x-x0),求出L 与x 轴交点的横坐标 x1 = x0-f(x0)/f'(x0),称x1为r 的一次近似值。过点(x1,f(x1))做曲线y = f(x)的切线,并求该切线与x 轴交点的横坐标 x2 = x1-f(x1)/f'(x1),称x2为r 的二次近似值。重复以上过程,得r 的近似值序列,其中x(n+1)=x(n)-f(x(n))/f'(x(n)),称为r 的n+1次近似值,上式称为牛顿迭代公式。 解非线性方程 f(x)=0似方法。把f(x)在 x0 f(x) = f(x0)+(x -x0)f'(x0)+(x -x0)^2*f''(x0)/2! +… 取其线性部分,作为非线性方程f(x) = 0的近似方程,即泰勒展开的前两项,则有f(x0)+f'(x0)(x -x0)-f(x)=0 设f'(x0)≠0则其解为x1=x0-f(x0)/f'(x0) 这样,得到牛顿法的一个迭代序列:x(n+1)=x(n)-f(x(n))/f'(x(n))。 牛顿迭代法又称牛顿切线法,它采用以下方法求根:先任意设定一个与真实的根接近的值x 0作为第一个近似根,由x 0求出f(x 0),过(x 0,f(x 0))点做f(x)的切线,交x 轴于x 1,把它作为第二次近似根,再由x 1求出f(x 1),再过(x 1,f(x 1))点做f(x)的切线,交x 轴于x 2,再求出f(x 2),再作切线……如此继续下去,直到足够接近真正的x *为止。 ) ()()()(0' 0010 100' x f x f x x x x x f x f - =-= 因此, 就是牛顿迭代公式。 例1 用牛顿迭代法求方程2x 3-4x 2 +3x-6=0在1.5附近的根。 本题中,f(x)= 2x 3-4x 2+3x-6=((2x-4)x+3)x-6 f ’(x)= 6x 2-8x+3=(6x-8)x+3 #include "stdio.h"

第四章无约束优化方法

第一节,概述 无约束优化问题:求n维设计变量x=(x1,x2,…,x n)T,使目标函数f(x)→min,而对 x没有任何限制。用数学方法求解方程▽f=0的问题/,。 该方程为非线性方程,不宜直接求解,选择搜索法。 给定初始点x0,沿着某一方向d0进行搜索,确定最佳步长α0,使得沿着d0方向下降最大;x k+1=x k+αk d k。 根据d的构成分类:一类为利用目标函数一阶和二阶导数的无约束优化方法【最速下降法】,【共轭梯度法】,【牛顿法】,【变尺度法】,另一类只利用目标函数值【坐标轮换法】,【单形替换法】,【鲍威尔法】。 第二节,最速下降法 又称梯度法,以负梯度方向作为搜索方向。 d=-▽f(x);x k+1=x k-αk▽f(x k) α为步长因子,取一维搜索的最佳步长:f(x k+1)=f(x k-αk▽f(x k))=minαf(x k-αk▽f(x k))=minαφ(α)→φ'(α)=-(▽f(x k-αk▽f(x k)))▽f(x k)=0→▽f(x k+1)▽f(x k)=0 相邻两次迭代方向垂直。 【重点】第三节,牛顿法 牛顿迭代公式:x k+1=x k- 多元函数f(x),设x k为f(x)极小点x*的一个近似点,在x k处将f(x)进行泰勒展开,保留二次项,得到:f(x)≈f(x k)+▽f(x k)T(x-x k)+; 整理出牛顿迭代公式:x k+1=x k-(▽2f(x k))-1▽f(x k) 阻尼牛顿法:引入阻尼因子αk,故有x k+1=x k-αk(▽2f(x k))-1▽f(x k),其中αk可由极小化求解:f(x k+1)=f(x k+αk d k)=minαf(x k+αd k),其理论意义为沿着d k方向一维搜索的最佳步长。 第四节,共轭方向法 共轭方向:d k和d k+1满足(d k)T G(d k+1)=0 原则和步骤:选定初始点x0,下降方向d0和收敛精度ε;沿着d0方向一维搜索,x1=x0+αd0;判断(),不满足则反复迭代演算,其中新方向dk+1满足(d k)T Gd k+1=0 【第五节】共轭梯度法 每一个共轭矢量都是依赖于迭代点处的负梯度构造的。 共轭方向与梯度之间的关系: x k+1-x k=αk d k 在x k和x k+1处的梯度为g k,g k+1,设二次函数f(x)=1/2x T Gx+b T x+c, g k=Gx k+b; g k+1=Gx k+1+b; g k+1-g k=G(x k+1-x k)=αk Gd k 若d j和d k共轭,则有(d j)T(g k+1-g k)=0 意义:沿着d j方向一维搜索其终点x k+1与始点x k的梯度之差g k+1-g k与d k的共轭方向d j正交。计算过程:设初值点x0,第一个搜索方向取x0的负梯度方向-g0,一维搜索后得x1,g1,要求x1为以d0为切线和某等值曲线的切点,g1和d0正交,g1T g0=0;求d0的共个方向d1,改 写d1=- g1+β0 d0其中:β0=,d1=,计算x2、g2;计算d2…直到迭代点梯度 的模小于允许值。

拟牛顿法

拟牛顿法 牛顿法的收敛速度虽然较快,但要求海森矩阵要可逆,要计算二阶导数和逆矩阵,就加大了就算机计算量。为了克服牛顿法的缺点,同时保持较快收敛速度的优点,就产生了拟牛顿法。拟牛顿法是牛顿法的直接推广,通过在试探点附近的二次逼近引进牛顿条件来确定线搜索方向,它主要有DFP 和BFGS 两种形式,拟牛顿法的一般步骤为: (1) 给定初始点(0)x ,初始对称正定矩阵0H ,(0) 0()g g x =及精度0ε>; (2) 计算搜索方向() k k k p H g =-; (3) 作直线搜索(1) ()()(,)k k k x F x p +=,计算(1)(1)11(),()k k k k f f x g g x ++++==, (1)()1,k k k k k k S x x y g g ++=-=- (4) 判断终止准则是否满足; (5) 令1k k k H H E +=+置1k k =+,转步骤(2); 不同的拟牛顿法对应不同的k E ,主要介绍DFP 和BFGS 两种拟牛顿法。 1. DFP 法 (1) 算法原理 DFP 算法中的校正公式为: 1k k k k T T k k k k k k T T k k k S S H y y H H H S y y H y +=+ - 为了保证k H 的正定性,在下面的算法中迭代一定次数后,重置初始点和迭代矩阵再进行迭代。 (2) 算法步骤 1) 给定初始点(0)x ,初始矩阵0n H I =及精度0ε>; 2) 若() (0) f x ε?≤,停止,极小点为(0)x ;否则转步骤3); 3) 取() (0)(0)0p H f x =-?,且令0k =; 4) 用一维搜索法求k t ,使得() ()()()0 ()min ()k k k k k k t f X t p f X tp α≥+=+,令 (1)()()k k k x x tp +=+,转步骤5); 5) ( ) (1) k f x ε+?≤,停止,极小值点为(1)k x +;否则转步骤6); 6) 若1k n +=,令(0) ()n x x =,转步骤3);否则转步骤7);

实验报告阻尼牛顿222

太原理工大学机械学院机测系课程上机实验报告课程名称:机械优化设计 班级塑机日期2012.6.6 成绩评定 姓名杨士东实验室图强机房老师签名 实验 名称 利用牛顿法求解相关函数的极小值点 所用 软件 C++ DEV 实验目的及内容实验目的: 1、明确牛顿法基本原理及程序框图 2、编制牛顿法程序 3、用考核题对所编程序进行考核 2、牛顿法程序考核题 01 .0 ]0 0[ X 10 )1 (2 )1 (4 ) ( T 2 1 2 2 2 1 = = + + + - + + = ε ,梯度精度 , 初始点: x x x x X f 实 验 原 理 步 骤 、 实验原理: 实验步骤: 1,画流程图,编写程序; 2,将目标函数代入; 3,编译运行,将结果保存

实验结果及分析**********阻尼牛顿法计算结果********** ++++++一维搜索方法:黄金分割法++++++ 初始坐标: x( 0)=[ 0.0000000, 0.0000000], f( 0)= 16.0000000 迭代轮数k= 1 x( 1)=[ -1.1249988, 0.7499992], f( 1)= 9.8125000 迭代精度:0.000009986 迭代轮数k= 2 x( 2)=[ -1.1250000, 0.7500000], f( 2)= 9.8125000 迭代精度:0.000000116 ********************* 阻尼牛顿法法优化最优点及目标函数值为: x( * )=[ -1.1250000, 0.7500000], f( * )= 9.8125000 迭代精度:0.000000116

拟牛顿法及其相关解法

本文链接:https://www.wendangku.net/doc/499188373.html,/miaowei/52925.html 最近在看条件随机场中的优化算法。其中就设计到了无约束化的最优化方法,也就是牛顿法。在CRF (conditional random field)中,使用的是L-BFGS法。费了好大的劲把算法的原理及推导算是看明白了,可是到了具体实现上,又碰到问题了,比如在求搜索方向的时候,使用 但是程序中如何实现呢? 现在转载一篇文章,看过之后,会非常受益。 使用导数的最优化算法中,拟牛顿法是目前为止最为行之有效的一种算法,具有收敛速度快、算法稳定性强、编写程序容易等优点。在现今的大型计算程序中有着广泛的应用。本文试图介绍拟牛顿法的基础理论和若干进展。 牛顿法(Newton Method) 牛顿法的基本思想是在极小点附近通过对目标函数做二阶Taylor展开,进而找到的极小点的估计值[1]。一维情况下,也即令函数为 则其导数满足 因此 (1) 将作为极小点的一个进一步的估计值。重复上述过程,可以产生一系列的极小点估值集合。一定条件下,这个极小点序列收敛于的极值点。 将上述讨论扩展到维空间,类似的,对于维函数有 其中和分别是目标函数的的一阶和二阶导数,表现为维向量和矩阵,而后者又称为目标函数在处的Hesse矩阵。设可逆,则可得与方程(1)类似的迭代公式: (2) 这就是原始牛顿法的迭代公式。 原始牛顿法虽然具有二次终止性(即用于二次凸函数时,经有限次迭代必达极小点),但是要求初始点需要尽量靠近极小点,否则有可能不收敛。因此人们又提出了阻尼牛顿法[1]。这种方法在算法形式上等同于所有流行的优化方法,即确定搜索方向,再沿此方向进行一维搜索,找出该方向上的极小点,然后在该点处重新确定搜索方向,重复上述过程,直至函数梯度小于预设判据。具体步骤列为算法1。

用牛顿迭代法求方程的近似解课堂评价

教学点评 《用牛顿迭代法求方程的近似解》 背景介绍: 卢老师执教的《用牛顿迭代法求方程近似解》一课,是人教A版高中数学选修2-2第一章第二节后的“探究与发现”栏目的内容,由于此部分内容高考不考且高中阶段学生理解有一定难度,所以普通高中的正常教学中很少涉及,卢翔老师则进行了大胆的尝试。他任教的耀华中学是天津市市属重点校,本节课的授课对象是其任教的实验班学生,这些学生基本素质较好。本节课卢老师借助学案中的问题串,引导学生利用图形计算器展开了系列探究活动,取得了很好的教学效果。 本节课的亮点与特色如下: 1.教学设计内容全面,符合课程改革理念 卢老师本节课的教学设计包括:内容与内容解析、目标和目标解析、教学问题诊断分析、教法分析、教学支持条件分析、教学过程设计和目标检测设计,内容全面详细,符合“全国中学青年数学教师优秀课评价标准(修订版)”对教学设计的要求。 2.教学目标定位合理,学科德育渗透到位 卢老师教学设计中的目标定位准确、清晰、具体、具有一定的可操作性。整节课不仅强调了知识的获得,更强调了学生研究问题思路的获得,更难能可贵的是,卢老师深入挖掘了本节课的教学内容,以知识为载体,渗透了数学文化,也让学生感受了深入钻研、不断探索的精神,充分发挥了数学教学的育人功能。 3. 教学过程清晰流畅,难点突破顺利有效 卢老师本节课通过“激发兴趣,引出问题;复习巩固,启发引导;问题引导,分析方法;探究切线,体验迭代;建立方法,完善理论;归纳整理,算法思想;总结提高,学以致用;科学研究,精神培养”这八个环节来完成,这八个环节环环相扣,清晰流畅,符合学生的认知规律,也及时检测了学生对知识的认知和掌握情况。 本节课的重点和难点是牛顿迭代法的得出,卢老师引导学生类比二分法求方程近似解的研究思路,利用问题串,借助于图形计算器逐步引导学生解决了“迭代初始值、迭代公式、迭代运算、迭代终止条件、算法框图”等几个问题,突出了“逼近”的思想和“以直代曲”的思想。特别是借助图形计算器让学生体验以直代曲的思想,从而得出用切线法求方程近似解的思路,有效突破了本节课的教学难点。 4.教学方法以生为本,凸显学生主体地位

优化作业演示教学

优化作业

第1章 思考题 1. 何为约束优化设计问题?什么是无约束优化设计问题?试各举一例说明。机械优化设计问题多属哪一类? 2. 一般优化问题的数学模型包括哪些部分?写出一般形式的数学模型。 3. 试简述优化算法的迭代过程。 习题 1. 画出满足下列约束的可行域。 g1(X )= 3x1+2x1-48≤0 g2(X )= x1–18+x2≤0 g3(X )=–x1≤0 g4(X )=–x2≤0 2. 试将优化问题 min F (X)=x12+x22-4x2+4 X∈D?R2 D:g1(X )= 1-x1+x22≤0 g2(X )= x1-3≤0 g3(X )= -x2≤0 的目标函数等值线和约束边界曲线勾画出来,并回答下列问题: (a) X=[1,1]T是不是可行点? (b) T X? ? ? ?? ? = 2 1 2 5 是不是可行点? (c) 可行域D是否为凸集,用阴影线描绘出可行域的范围。

3. 已知某约束优化问题的数学模型为 min F (X)=(x1-3)2+(x2-4)2 X∈D?R2 D:g1(X )= x1-5+x2≤0 g2(X )= 2.5 -x1+x2≤0 g3(X )= -x1≤0 g4(X )= -x2≤0 (1) 该问题是线性规划问题还是非线性规划问题? (2) 按一定比例画出目标函数F(X )的值分别等于1、2、3时的三条等值线,并在图上划出可行域。 (3) 在图上确定无约束最优解和约束最优解。 (4) 若在该问题中又加入等式约束h(x)= x1-x2=0,其约束最优解X*、F(x*)又为多少? 第2章 思考题 1. 试说明函数的方向导数与梯度之间的关系?研究函数的梯度对求函数的极值有什么意义?为什么说梯度方向是函数值上升最快的方向只是函数的一种局部性质? 2. 怎样判断多元函数有无极值? 习题 1. 试将函数F (X ) = x12-x1x2+x22写成矩阵向量式,并判断其二次型的系数矩阵是否为正定。 2. 试用矩阵形式表示函数F (X ) = x12 +x22-x1x2-4x2+60,并写出其海森矩阵。

求解非线性方程组的非精确牛顿法

求解非线性方程组的非精确牛顿法 摘要:在经典牛顿法的基础上,给出了求解非线性方程组的非精确牛顿法。在一定的条件下,证明了该算法的超线性收敛性,并且这个收敛性是二阶的。 关键词:非线性方程组;非精确牛顿法;收敛性 对于无约束问题: minf(x) (1) 其中x∈Rn,f∶Rn→R是一个连续可微函数。 求解无约束优化问题方法大都属于迭代法,这类算法特点是:每一次迭代都要求函数值有所下降,因此人们称这类算法为下降法。当下降方向取为负梯度时,此时函数值下降量最大,人们称它为最速下降法。它是无约束最优化问题中最简单的方法,它具有全局收敛性,并且存储最较少,因此它适合于解决大型优化问题。但它的缺点是收敛速度慢,在最优点处附近容易产生锯齿现象,为了改善收敛速度,人们提出了牛顿法。 牛顿法的基本思想是,在极小点附近用二阶Taylor多项式近似目标函数f(x),进而求出极小点的估计值。设f(x)是二次可微实函数,x∈Rn。又设x(k)是f(x)的极小点的一个估计,把f(x)在x(k)展成Taylor级数,并取二阶近似: f(x)≈Φ(x)=f(x(k))+ f(x(k))T(x-x(k))+12(x-x(k))T 2f(x(k))(x-x(k)) (2) 令Φ(x)=0,可得: x(k+1)=x(k)- 2f(x(k))-1 f(x(k)) (3)

运用牛顿法时,初点的选择十分重要。如果初始点靠近极小点,则可能很快收敛;如果初始点远离极小点,迭代产生的点列可能不收敛于极小点。为了克服这个缺点,可以改进迭代公式(3): x(k+1)=x(k)+λkd(k)(4) 其中d(k)=- 2f(x(k))-1 f(x(k))为牛顿方向,λk是由一维搜索得到的步长,即满足: f(x(k)+λkd(k))=minλf(x(k)+λd(k)) 这样修改后的算法称为阻尼牛顿法。由于阻尼牛顿法含有一维搜索,因此每次迭代目标函数值一般有所下降(绝不会上升)。可以证明,阻尼牛顿法在适当的条件下具有全局收敛性。尽管阻尼牛顿法相对经典牛顿法而言前进了一步,但还是存在明显的缺点:当Hesse矩阵奇异时,d(k)不能确定;即使定出了d(k),也不能保证它是下降方向。 为了克服上述的缺点,人们采用了强迫矩阵正定的策略来改进牛顿法[4-6],并提出了非精确牛顿法。与经典牛顿法相比,它在每次迭代中内是近似地求解牛顿方程,因此计算量少很多。笔者借助无约束优化中非精确牛顿法的思想,将其推广到求解非线性方程组。在本文中给出了求解非线性方程组的非精确牛顿法,并在一定的条件下,证明了该算法的超线性收敛性,并且这个收敛性是二阶的。 考虑非线性方程组 r(x)=0 (5) 并且记J(x)= r(x),其中r∶Rn→Rn具有以下性质: (1)存在x*使得r*(x)=0;

单纯形法和拟牛顿法

拟牛顿法(Quasi-Newton Methods)是求解非线性优化问题最有效的方法之一,于20世纪50年代由美国Argonne国家实验室的物理学家W. C. Davidon所提出来。Davidon 设计的这种算法在当时看来是非线性优化领域最具创造性的发明之一。不久R. Fletcher和M. J. D. Powell证实了这种新的算法远比其他方法快速和可靠,使得非线性优化这门学科在一夜之间突飞猛进。在之后的20年里,拟牛顿方法得到了蓬勃发展,出现了大量的变形公式以及数以百计的相关论文。 拟牛顿法和最速下降法(Steepest Descent Methods)一样只要求每一步迭代时知道目标函数的梯度。通过测量梯度的变化,构造一个目标函数的模型使之足以产生超线性收敛性。这类方法大大优于最速下降法,尤其对于困难的问题。另外,因为拟牛顿法不需要二阶导数的信息,所以有时比牛顿法(Newton's Method)更为有效。如今,优化软件中包含了大量的拟牛顿算法用来解决无约束,约束,和大规模的优化问题。 拟牛顿法的基本思想如下。首先构造目标函数在当前迭代$x_k$的二次模型:m_k(p)=f_k+g_k^T p+p^T B_k p/2,这里f_k=f(x_k),g_k=▽f(x_k),B_k是一个对称正定矩阵。于是我们取这个二次模型的最优解p_k=-B_k^{-1} g_k作为搜索方向,并且得到新的迭代点x_{k+1}=x_k+a_k p_k,其中我们要求步长a_k满足Wolfe条件。这样的迭代类似与牛顿法,区别就在于用近似的Hesse矩阵B_k代替真实的Hesse矩阵。所以拟牛顿法最关键的地方就是每一步迭代中矩阵B_k的更新。现在假设得到一个新的迭代x_{k+1},并得到一个新的二次模型:m_{k+1}(p)=f_{k+1}+g_{k+1}^T p + p^T B_{k+1} p/2。我们尽可能地利用上一步的信息来选取B_{k+1}。具体地,我们要求g_{k+1}-g_k=a_k B_{k+1} p_k,从而得到B_{k+1}s_k=y_k,其中s_k=x_{k+1}-x_k,y_k=g_{k+1}-g_k。这个公式被称为割线方程。下面主要介绍这几种方法:DFP方法,BFGS方法,SR1方法,Broyden族方法。 纯形法,求解线性规划问题的通用方法。单纯形是美国数学家G.B.丹齐克于1947年首先提出来的。它的理论根据是:线性规划问题的可行域是n维向量空间Rn中的多面凸集,其最优值如果存在必在该凸集的某顶点处达到。顶点所对应的可行解称为基本可行解。单纯形法的基本思想是:先找出一个基本可行解,对它进行鉴别,看是否是最优解;若不是,则按照一定法则转换到另一改进的基本可行解,再鉴别;若仍不是,则再转换,按此重复进行。因基本可行解的个数有限,故经有限次转换必能得出问题的最优解。如果问题无最优解也可用此法判别。根据单纯形法的原理,在线性规划问题中,决策变量(控制变量)x1,x2, (x) n的值称为一个解,满足所有的约束条件的解称为可行解。使目标函数达到最大值(或最小值)的可行解称为最优解。这样,一个最优解能在整个由约束条件所确定的可行区域内使目标函数达到最大值(或最小值)。求解线性规划问题的目的就是要找出最优解。 最优解可能出现下列情况之一:①存在着一个最优解;②存在着无穷多个最优解; ③不存在最优解,这只在两种情况下发生,即没有可行解或各项约束条件不阻止目标函数的值无限增大(或向负的方向无限增大)。 单纯形法的一般解题步骤可归纳如下:①把线性规划问题的约束方程组表达成典范型方程组,找出基本可行解作为初始基本可行解。②若基本可行解不存在,即约束条件有矛盾,则问题无解。③若基本可行解存在,从初始基本可行解作为起点,根据最优性条件和可行性条件,引入非基变量取代某一基变量,找出目标函数值更优的另一基本可行解。④按步骤3进行迭代,直到对应检验数满足最优性条件(这时目标函数值不能再改善),即得到问题的最优解。⑤若迭代过程中发现问题的目标函数值无界,则终止迭代。 用单纯形法求解线性规划问题所需的迭代次数主要取决于约束条件的个数。

相关文档
相关文档 最新文档