文档库 最新最全的文档下载
当前位置:文档库 › CHPTER 1 多维数据与多元统计(多元统计分析课件-西安交通大学 严明义)

CHPTER 1 多维数据与多元统计(多元统计分析课件-西安交通大学 严明义)

CHPTER 1 多维数据与多元统计(多元统计分析课件-西安交通大学 严明义)
CHPTER 1 多维数据与多元统计(多元统计分析课件-西安交通大学 严明义)

CHPTER1

Multivariate Data and Multivariate

Statistics

1.1Applications of Multivariate Statistical Analysis

Multivariate statistical analysis is a ―mixed bag.‖It is difficult to establish a classification scheme for multivariate techniques that both is widely accepted and indicates the appropriateness of the techniques. The objectives of scientific investigations to which multivariate methods most naturally lend themselves include the following:

1.Data reduction or structural simplification.The phenomenon being studied is

represented as simply as possible without sacrificing valuable information. It is hoped

that this will make interpretation easier.

2.Sorting and grouping.Groups of ―similar‖objects or variables are created, based

upon measured characteristics. Alternatively, rules for classifying objects into

well-defined groups may be required.

3.Investigation of the dependence among variables.The nature of the relationships

among variables is of interest. Are all the variables mutually independent or are one or

more variables dependent on the others? If so, how?

4.Prediction.Relations between variables must be determined for the purpose of

predicting the values of one or more variables on the basis of observation on the other

variables.

5.Hypothesis construction and testing.Specific statistical hypothesis, formulated in

terms of the parameters of multivariate populations, are tested. This may be down to

validate assumptions or to reinforce prior convictions.

I conclude this brief overview of multivariate data analysis with a

quotation from F.H.C.Marriott (The interpretation of multiple observation. London: Academic Press 1974, page 89). The statement was made in a discussion of cluster analysis, but I feel it is appropriate for a broader range of methods. You should keep it in mind whenever you attempt to read about a data analysis. It allows one to maintain a proper perspective and not be overwhelmed by the elegance of some of the theory:

If the results disagree with informed opinions, do not admit a simple logical interpretation, and do not show up clearly in a graphical presentation, they are probably wrong. There is no magic about numerical methods, and many ways in which they can break down. They are a valuable aid to the interpretation of data, not sausage machines automatically transforming bodies of numbers into packets of scientific fact.

T h e p u b l i s h e d a p p l i c a t i o n s o f m u l t i v a r i a t e m e t h o d s h a v e i n c r e a s e d tre mendou sly in rece nt yea rs. It is now d iff icu lt to co ver the va riety o f real-wor ld app lica t ion s of the se me thods with br ief d iscus sion.However, i n o r d e r t o g i v e s o m e i n d i c a t i o n o f t h e u s e f u l n e s s o f m u l t i v a r i a t e t e c h n i q u e s,w e o ff e r t h e f o l l o w i n g s h o r t d e s c r ip t i o n s o f t h e r e s u l t s o f s t u d i e s f r o m s e v e r a l d i s c i p l i n e s.T h e s e d e s c r i p t i o n s a r e o r g a n i z e d according to the categories of objectives given above. Of course, many of our examples are multifaceted and could be placed in more than one category.

Data reduction or structural simplification

●Using data on several variables related to cancer patient responses to radiotherapy, a

simple measure of patient response to radiotherapy was constructed.

●Track records from many nations were used to develop an index of performance for

both male and female athletes.

●Multispectral image data collected by a high-altitude scanner were reduced to a form

that could be viewed as images(pictures) of a shoreline in two dimensions.

Sorting and grouping

●Data on several variables related to computer use were employed to create clusters of

categories of computer jobs that allow a better determination of existing(or planned)

computer utilizaton.

●Measurements of several physiological variables were used to develop a screening

procedure that discriminates alcoholics from nonalcoholics.

● The revenue service uses data collected from tax returns to sort taxpayers into two

groups: those that will be audited and those that will not.

● Discriminating the mode of economic growth .

Investigation of the dependence among variables

● Data on several variables were used to identify factors that were responsible for client

success in hiring external consultants.

● Measurements of variables related to innovation, on one hand, and variables related to

the business environment and business organization, on the other hand, were used to

discover why some firms are product innovation and some firms are not.

● The associations between measures of risk-taking propensity and measures of

socioeconomic characteristics for top-level business executives were used to assess the relation between risk-taking behavior and performance.

Prediction

● The associations between test scores and several high school performance variables

and several college performance variables were used to develop predictors of

success in college.

● Measurements on several accounting and financial variables were used to develop

a method for identifying potentially insolvent property-liability insurers.

Hypothesis construction and testing

● Several pollution-related variables were measured to determine whether levels

for large metropolitan area were roughly constant throughout the week, or

whether there was a noticeable difference between weekdays and weekends.

● Data on many variables were used to investigate the differences in structure of

occupations to determine the support for one of two competing sociological

theories.

● Data on several variables were used to determine whether different types of firms

in newly industrialized countries exhibited different patterns of innovation.

1.2 Types of data

The data with which we are primarily concerned consists of measurements or observations made on a number of subjects, patients, objects or other entities of interest. One special type of multivariate data set involves the collection of repeated measures of the same characteristic over time. A special multivariate data matrix, X, will have the form

X=??????? ??np n n p p x x x x x x x x x 212222111211 where the typical element, ij x , is the value of the j th variable for the i th individual. If there are several distinct groups of individuals one of the ij x s might be a categorical variable with values of 1,2, etc. to distinguish these groups. The number of individuals under investigation is

n and the number of observations taken on each of these n individuals is p . Table 1.1 gives a hypothetical example of such a multivariate data matrix. Here n =10, p =7 and for example, 34x =135.

In many cases, as in Table 1.1, the variables measured on each of the individuals will be of different types depending on whether they a conveying quantitative or merely qualitative information. The most

Table 1.1 Data matrix for a hypothetical example of 10 individuals

common way of distinguish these types is the following:

●Nominal scales —the lowest level of measurement and is most often used with variables

that are qualitative in nature rather than quantitative. Examples include brands of jogging s hoes, kinds of fruits, types of music, days of month, religious preference, and eye color.

When using a nominal scale, the variable is divided into its several categories and objects are ―measured‖by determining the category to which they belong. Thus, measurement with a nominal scale really amounts to classifying the objects and giving them the name( hence, nominal scale) of the category to which they belong.

●Ordinal scales — the next higher level of measurement. It possesses a relatively low level

of the property of magnitude. Examples include social class and self-perception of health (each coded from I to V, say), and educational level (no schooling, primary, secondary or tertiary education). Thus an ordinal scale allows determination of whether A>B, A=B, or A

●Interval scale — the higher level of measurement than the ordinal scale. It possesses the

properties of magnitude and equal interval between adjacent units but doesn’t have an absolute zero point. It means that the position of zero is arbitrary. Thus, the interval scale possesses the properties of the ordinal scale and has equal intervals between adjacent units.

The phrase ―equal intervals between adjacent units‖ means that there are equal amounts of the variable being measured between adjacent units on the scale.

Since with an interval scale there are equal amounts of the variable between adjacent units on the scale, equal differences between the members on the scale represent equal differences in the magnitude of the variable. The classical example is the measurement of temperature using the Celsius or Fahrenheit scales. In some cases a variable such as a measure of depression, anxiety or intelligence, for example, might be treated as if it were interval-scaled when this, in fact, might be difficult to justify.

●Ratio scale — the highest level of measurement, where one can investigate the relative

magnitude of scores as well as the difference between them. The position of zero is

fixed. The classical example is the absolute measure of temperature but other common

ones include age(or any other time from a fixed event), frequency of any event, weight

and length.

The qualitative information in Table 1.1 could have been presented in terms of numerical codes (as often would be the case in a multivariate data set) such that Sex =1 for males and Sex =2 for females, for example, or Health =5 when very good and Health =1 for very poor, and so on. But it is vital that both the user or consumer of these data appreciate that the same numerical codes (1, say) will convey completely different information, depending on the scale of measurement.

A further feature of Table 1.1 is that it contains missing values (NK). Missing values arises from a variety of reasons, and it is important to put some effort into discovering why an observaton is missing.

Missing values can cause problems for many of the methods of analysis described in this text, particularly if there are a lot of them. Although there are many ways of dealing with missing-data problems (both valid and invalid), these are, in general, beyond the scope of this text. One method with fairly universal applicability, however, is to estimate the missing values from a knowledge of the data that are not missing. Such imputation methods range from the very simple (replace the missing value with the mean of the values from subjects with non-missing data, for example) to the technically complex (multiple imputation acknowledging the stochastic nature of the data).

1.3 Basic multivariate statistics

Readers will be familiar with the production of simple descriptive statistics from univariate data. These include sample proportions, means and standard deviations (variances), for example. In the case of pairs of measurements, readers are likely also to be familiar with bivariate correlations and, perhaps, the corresponding covariances. When we move on to consider inferential statistics (estimation and hypothesis testing) we also have to clearly distinguish , say, the value of unknown parameter (the population mean, for example) from a statistic obtained from a simple of individuals. In this section we briefly introduce the common multivariate equivalents of the familiar univariate and bivariate summaries.

For the time being we will restrict our discussion to quantitative measurements (other situations will be dealt with when they arise in the later chapters). In order to summarize a multivariate data set we need to produce summaries for each of the variables separately and also summarize the relationships between them. In the latter case, we usually take pairs of variables at a time and look at their covariance or correlation. The quantities of interest are defined below.

1.3.1 Mean

For p variables, the population mean vector is usually represented as

μ ? []p μμμ,,,21 =, where )(i i x E =μ (1.1)

An estimate of μ?, based on n p -dimensional observations, is 'x []p x x x ,,,21 =, where i x is the sample mean of the variable i x .

1.3.2 Variance The vector of population variances can be represented by σ? =[22221,,,p σσσ ], where 22)(i i i x E μσ-= (1.2) An estimate of σ? based on n p -dimensional observations is s ?=[22221,,,p s s s ], where 2i s is the sample variance of i x .

1.3.3 Covariance

The covariance of two variables, i x and j x , is defined by

Cov(i x ,j x ) = E (i x -i μ)(j x -j μ) (1.3)

If i=j, we note that the covariance of the variable with itself is simply its variance, and therefore there is no need to define variances and covariances independently in the multivariate case. The covariance of i x and j x is usually denoted by ij σ (so the variance of the variable i x is often denoted by ii σ rather than 2i σ). With p variables, 1x , 2x , …, p x , there are p variances and p(p -1)/2 covariances. In general these quantities are arranged in a p ×p symmetric matrix, ∑, where ∑=??????? ??pp p p p p σσσσσσσσσ 212222111211; note that ji ij σσ=. This matrix is generally known as the variance –covariance matrix or simply the covariance matrix

. The matrix ∑ is estimated by the matrix S, given by S = ∑=n i 1()x x i -()x x i -'/(n –1 ) (1.4) where 'i x = []ip i i x x x ,,,21

is the vector of observations for the i th individual.

1.3.4 Correlation

The covariance is often difficult to interpret because it depends on the units in which the two variables are measured; consequently, it is often standardized by dividing by the product of the standard deviations of the two variables to give a quantity called the correlation coefficient, ij ρ, where ij ρ= jj ii ij σσσ. (1.5) The correlation coefficient lies between –1 and +1 and gives a measure of the linear relationship of the variables i x and j x . It is positive if high values of i x are associated with high values of j x and negative if high values of i x are associated with low values of j x . With p variables, 1x , 2x , …, p x , there are p(p -1)/2 distinct correlations which may be arranged in a p ×p symmetric matrix, R, whose diagonal elements are unity. This matrix may be written in terms of the covariance matrix, ∑, as follows:

R = D 2/1-∑D 2/1- (1.6)

where D 2/1- = diag (1/ii σ).

In most situations we will be dealing with covariance and correlation matrix of full rank, p , so that both matrices will be non-singular(i.e. invertible).

1.3.5 Linear combinations of variables

Many of the methods of analysis to be described in this text involve linear combinations of the original variables, 1x , 2x , …, p x , that is, a variable constructed thus:

y=p p x a x a x a +++ 2211 (1.7)

where p a a a ,,,21 are a set of scalars. This can be written more simply as

y= a ′x (1.8)

where a ′=[ p a a a ,,,21 ].

The variable y has a mean given by

E(y) = a ′E(x) = a ′μ, (1.9)

and variance

Var(y) = a ′Σ a . (1.10)

多元统计分析期末复习

第一章: 多元统计分析研究的内容(5点) 1、简化数据结构(主成分分析) 2、分类与判别(聚类分析、判别分析) 3、变量间的相互关系(典型相关分析、多元回归分析) 4、多维数据的统计推断 5、多元统计分析的理论基础 第二三章: 二、多维随机变量的数字特征 1、随机向量的数字特征 随机向量X 均值向量: 随机向量X 与Y 的协方差矩阵: 当X=Y 时Cov (X ,Y )=D (X );当Cov (X ,Y )=0 ,称X ,Y 不相关。 随机向量X 与Y 的相关系数矩阵: )',...,,(),,,(2121P p EX EX EX EX μμμ='=Λ)')((),cov(EY Y EX X E Y X --=q p ij r Y X ?=)(),(ρ

2、均值向量协方差矩阵的性质 (1).设X ,Y 为随机向量,A ,B 为常数矩阵 E (AX )=AE (X ); E (AXB )=AE (X )B; D(AX)=AD(X)A ’; Cov(AX,BY)=ACov(X,Y)B ’; (2).若X ,Y 独立,则Cov(X,Y)=0,反之不成立. (3).X 的协方差阵D(X)是对称非负定矩阵。例2.见黑板 三、多元正态分布的参数估计 2、多元正态分布的性质 (1).若 ,则E(X)= ,D(X)= . 特别地,当 为对角阵时, 相互独立。 (2).若 ,A为sxp 阶常数矩阵,d 为s 阶向量, AX+d ~ . 即正态分布的线性函数仍是正态分布. (3).多元正态分布的边缘分布是正态分布,反之不成立. (4).多元正态分布的不相关与独立等价. 例3.见黑板. 三、多元正态分布的参数估计 (1)“ 为来自p 元总体X 的(简单)样本”的理解---独立同截面. (2)多元分布样本的数字特征---常见多元统计量 样本均值向量 = 样本离差阵S= 样本协方差阵V= S ;样本相关阵R (3) ,V分别是 和 的最大似然估计; (4)估计的性质 是 的无偏估计; ,V分别是 和 的有效和一致估计; ; S~ , 与S相互独立; 第五章 聚类分析: 一、什么是聚类分析 :聚类分析是根据“物以类聚”的道理,对样品或指标进行分类的一种多元统计分析方法。用于对事物类别不清楚,甚至事物总共可能有几类都不能确定的情况下进行事物分类的场合。聚类方法:系统聚类法(直观易懂)、动态聚类法(快)、有序聚类法(保序)...... Q-型聚类分析(样品)R-型聚类分析(变量) 变量按照测量它们的尺度不同,可以分为三类:间隔尺度、有序尺度、名义尺度。 二、常用数据的变换方法:中心化变换、标准化变换、极差正规化变换、对数变换(优缺点) 1、中心化变换(平移变换):中心化变换是一种坐标轴平移处理方法,它是先求出每个变量的样本平均值,再从原始数据中减去该变量的均值,就得到中心化变换后的数据。不改变样本间的相互位置,也不改变变量间的相关性。 2、标准化变换:首先对每个变量进行中心化变换,然后用该变量的标准差进行标准化。 经过标准化变换处理后,每个变量即数据矩阵中每列数据的平均值为0,方差为1,且也不再具有量纲,同样也便于不同变量之间的比较。 3、极差正规化变换(规格化变换):规格化变换是从数据矩阵的每一个变量中找出其最大值和最小值,这两者之差称为极差,然后从每个变量的每个原始数据中减去该变量中的最小值,再除以极差。经过规格化变换后,数据矩阵中每列即每个变量的最大数值为1,最小数值为0,其余数据取值均在0-1之间;且变换后的数据都不再具有量纲,便于不同的变),(~∑μP N X μ∑μ p X X X ,,,21Λ),(~∑μP N X ) ,('A A d A N s ∑+μ)()1(,, n X X ΛX )',,,(21p X X X Λ)')(()()(1X X X X i i n i --∑=n 1 X μ∑μX )1,(~∑n N X P μ),1(∑-n W p X X

多元统计分析实例汇总

多元统计分析实例 院系:商学院 学号: 姓名:

多元统计分析实例 本文收集了2012年31个省市自治区的农林牧渔和相关农业数据,通过对对收集的数据进行比较分析对31个省市自治区进行分类.选取了6个指标农业产值,林业产值.牧业总产值,渔业总产值,农村居民家庭拥有生产性固定资产原值,农村居民家庭经营耕地面积. 数据如下表: 一.聚类法

设定4个群聚,采用了系统聚类法.下表为spss分析之后的结果.

Rescaled Distance Cluster Combine C A S E 0 5 10 15 20 25 Label Num +---------+---------+---------+---------+---------+ 内蒙 5 -+ 吉林 7 -+ 云南 25 -+-+ 江西 14 -+ +-+ 陕西 27 -+-+ | 新疆 31 -+ +-+ 安徽 12 -+-+ | | 广西 20 -+ +-+ +-------+ 辽宁 6 ---+ | | 浙江 11 -+-----+ | 福建 13 -+ | 重庆 22 -+ +---------------------------------+ 贵州 24 -+ | | 山西 4 -+---+ | | 甘肃 28 -+ | | | 北京 1 -+ | | | 青海 29 -+ +---------+ | 天津 2 -+ | | 上海 9 -+ | | 宁夏 30 -+---+ | 西藏 26 -+ | 海南 21 -+ | 河北 3 ---+-----+ | 四川 23 ---+ | | 黑龙江 8 -+-+ +-------------+ | 湖南 18 -+ +---+ | | | 湖北 17 -+-+ +-+ +-------------------------+ 广东 19 -+ | | 江苏 10 -------+ | 山东 15 -----------+-----------+ 河南 16 -----------+

多元统计分析期末试题

一、填空题(20分) 1、若),2,1(),,(~)(n N X p 且相互独立,则样本均值向量X 服从的分布 为 2、变量的类型按尺度划分有_间隔尺度_、_有序尺度_、名义尺度_。 3、判别分析是判别样品 所属类型 的一种统计方法,常用的判别方法有__距离判别法_、Fisher 判别法、Bayes 判别法、逐步判别法。 4、Q 型聚类是指对_样品_进行聚类,R 型聚类是指对_指标(变量)_进行聚类。 5、设样品),2,1(,),,(' 21n i X X X X ip i i i ,总体),(~ p N X ,对样品进行分类常用的距离 2 ()ij d M )()(1j i j i x x x x ,兰氏距离()ij d L 6、因子分析中因子载荷系数ij a 的统计意义是_第i 个变量与第j 个公因子的相关系数。 7、一元回归的数学模型是: x y 10,多元回归的数学模型是: p p x x x y 22110。 8、对应分析是将 R 型因子分析和Q 型因子分析结合起来进行的统计分析方法。 9、典型相关分析是研究两组变量之间相关关系的一种多元统计方法。 二、计算题(60分) 1、设三维随机向量),(~3 N X ,其中 200031014,问1X 与2X 是否独立?),(21 X X 和3X 是否独立?为什么? 解: 因为1),cov(21 X X ,所以1X 与2X 不独立。 把协差矩阵写成分块矩阵 22211211,),(21 X X 的协差矩阵为11 因为12321),),cov(( X X X ,而012 ,所以),(21 X X 和3X 是不相关的,而正态分布不相关与相互

多元统计分析模拟试题教学提纲

多元统计分析模拟试 题

多元统计分析模拟试题(两套:每套含填空、判断各二十道) A卷 1)判别分析常用的判别方法有距离判别法、贝叶斯判别法、费歇判别法、逐 步判别法。 2)Q型聚类分析是对样品的分类,R型聚类分析是对变量_的分类。 3)主成分分析中可以利用协方差矩阵和相关矩阵求解主成分。 4)因子分析中对于因子载荷的求解最常用的方法是主成分法、主轴因子法、 极大似然法 5)聚类分析包括系统聚类法、模糊聚类分析、K-均值聚类分析 6)分组数据的Logistic回归存在异方差性,需要采用加权最小二乘估计 7)误差项的路径系数可由多元回归的决定系数算出,他们之间的关系为 = 8)最短距离法适用于条形的类,最长距离法适用于椭圆形的类。 9)主成分分析是利用降维的思想,在损失很少的信息前提下,把多个指标转 化为几个综合指标的多元统计方法。 10)在进行主成分分析时,我们认为所取的m(m

多元统计分析期末复习

多元统计分析期末复习 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

第一章: 多元统计分析研究的内容(5点) 1、简化数据结构(主成分分析) 2、分类与判别(聚类分析、判别分析) 3、变量间的相互关系(典型相关分析、多元回归分析) 4、多维数据的统计推断 5、多元统计分析的理论基础 第二三章: 二、多维随机变量的数字特征 1、随机向量的数字特征 随机向量X 均值向量: 随机向量X 与Y 的协方差矩阵: 当X=Y 时Cov (X ,Y )=D (X );当Cov (X ,Y )=0 ,称X ,Y 不相关。 随机向量X 与Y 的相关系数矩阵: 2、均值向量协方差矩阵的性质 (1).设X ,Y 为随机向量,A ,B 为常数矩阵 E (AX )=AE (X ); E (AXB )=AE (X )B; D(AX)=AD(X)A ’; Cov(AX,BY)=ACov(X,Y)B ’; (2).若X ,Y 独立,则Cov(X,Y)=0,反之不成立. )' ,...,,(),,,(2121P p EX EX EX EX μμμ='= )')((),cov(EY Y EX X E Y X --=q p ij r Y X ?=)(),(ρ

(3).X 的协方差阵D(X)是对称非负定矩阵。例2.见黑板 三、多元正态分布的参数估计 2、多元正态分布的性质 (1).若 ,则E(X)= ,D(X)= . 特别地,当 为对角阵时, 相互独立。 (2).若 ,A为sxp 阶常数矩阵,d 为s 阶向量, AX+d ~ . 即正态分布的线性函数仍是正态分布. (3).多元正态分布的边缘分布是正态分布,反之不成立. (4).多元正态分布的不相关与独立等价. 例3.见黑板. 三、多元正态分布的参数估计 (1)“ 为来自p 元总体X 的(简单)样本”的理解---独立同截面. (2)多元分布样本的数字特征---常见多元统计量 样本均值向量 = 样本离差阵S= 样本协方差阵V= S ;样本相关阵R (3) ,V分别是 和 的最大似然估计; (4)估计的性质 是 的无偏估计; ,V分别是 和 的有效和一致估计; ; S~ , 与S相互独立; 第五章 聚类分析: 一、什么是聚类分析 :聚类分析是根据“物以类聚”的道理,对样品或指标进行分类的一种多元统计分析方法。用于对事物类别不清楚,甚至事物总共可能有几类都不能确),(~∑μP N X μ ∑ μ p X X X ,,,21 ),(~∑μP N X ),('A A d A N s ∑+μ) ()1(,,n X X X )',,,(21p X X X )' )(() ()(1X X X X i i n i --∑=n 1X μ∑μX ) 1,(~∑n N X P μ),1(∑-n W p X X

多元统计分析模拟考题及答案

一、判断题 ( 对 )112(,,,)p X X X X '=L 的协差阵一定是对称的半正定阵 ( 对 )2标准化随机向量的协差阵与原变量的相关系数阵相同。 ( 对)3典型相关分析是识别并量化两组变量间的关系,将两组变量的相关关系 的研究转化为一组变量的线性组合与另一组变量的线性组合间的相关关系的研究。 ( 对 )4多维标度法是以空间分布的形式在低维空间中再现研究对象间关系的数据分析方法。 ( 错)5),(~),,,(21∑'=μp p N X X X X Λ,,X S 分别是样本均值和样本离差阵,则, S X n 分别是,μ∑的无偏估计。 ( 对)6),(~),,,(21∑'=μp p N X X X X Λ,X 作为样本均值μ的估计,是 无偏的、有效的、一致的。 ( 错)7 因子载荷经正交旋转后,各变量的共性方差和各因子的贡献都发生了变化 ( 对)8因子载荷阵()ij A a =中的ij a 表示第i 个变量在第j 个公因子上的相对重要性。 ( 对 )9 判别分析中,若两个总体的协差阵相等,则Fisher 判别与距离判别等 价。 (对)10距离判别法要求两总体分布的协差阵相等,Fisher 判别法对总体的分布无特定的要求。 二、填空题 1、多元统计中常用的统计量有:样本均值向量、样本协差阵、样本离差阵、样本相关系数矩阵. 2、设∑是总体1(,,)m X X X =L 的协方差阵,∑的特征根(1,,)i i m λ=L 与相应的单 位正交化特征向量 12(,,,)i i i im a a a α=L ,则第一主成分的表达式是 11111221m m y a X a X a X =+++L ,方差为 1λ。 3设∑是总体1234(,,,)X X X X X =的协方差阵,∑的特征根和标准正交特征向量分别 为:' 112.920(0.1485,0.5735,0.5577,0.5814)U λ==--- ' 221.024(0.9544,0.0984,0.2695,0.0824)U λ==- '330.049(0.2516,0.7733,0.5589,0.1624)U λ==--

多元统计分析期末试题及答案.doc

22121212121 ~(,),(,),(,),, 1X N X x x x x x x ρμμμμσρ ?? ∑==∑= ??? +-1、设其中则Cov(,)=____. 10 31 2~(,),1,,10,()()_________i i i i X N i W X X μμμ=' ∑=--∑L 、设则=服从。 ()1 2 34 433,4 92,32 16___________________ X x x x R -?? ?'==-- ? ?-? ? =∑、设随机向量且协方差矩阵则它的相关矩阵 4、 __________, __________, ________________。 215,1,,16(,),(,)15[4()][4()]~___________i p p X i N X A N T X A X μμμμ-=∑∑'=--L 、设是来自多元正态总体和分别为正态总体的样本均值和样本离差矩阵,则。 12332313116421(,,)~(,),(1,0,2),441, 2142X x x x N x x x x x μμ-?? ?'=∑=-∑=-- ? ?-?? -?? + ??? 、设其中试判断与是否独立? (), 1 2 3设X=x x x 的相关系数矩阵通过因子分析分解为 211X h = 的共性方差111X σ= 的方差21X g = 1公因子f 对的贡献1213 30.93400.1280.9340.4170.8351100.4170.8940.02700.8940.44730.8350.4470.10320 13 R ? ? - ????? ? -?? ? ? ?=-=-+ ? ? ? ??? ? ? ????? ? ???

多元统计分析(最终版)

题目:研究不同温度与不同湿度对粘虫发育历期的影响,得试验数据如表。分析不同温度和湿度对粘虫发育历期的影响是否存在着显著性差异。(注:要对方差齐性进行检验) 不同温度与不同湿度粘虫发育历期表 根据上述题目,分析结果如下。 一、相关理论概述 F检验与方差齐性检验 在方差分析的F检验中,是以各个实验组内总体方差齐性为前提的,因此,按理应该在方差分析之前,要对各个实验组内的总体方差先进行齐性检验。如果各个实验组内总体方差为齐性,而且经过F检验所得多个样本所属总体平均数差异显著,这时才可以将多个样本所属总体平均数的差异归因于各种实验处理的不同所致;如果各个总体方差不齐,那么经过F 检验所得多个样本所属总体平均数差异显著的结果,可能有一部分归因于各个实验组内总体方差不同所致。 但是,方差齐性检验也可以在F检验结果为多个样本所属总体平均数差异显著的情况下进行,因为F检验之后,如果多个样本所属总体平均数差异不显著,就不必再进行方差齐性检验。本文分析数据采用后一种方法,即先F检验再方差齐次性检验。

二、从单因子方差角度分析 (一)在假定相对湿度不变的情况下分析 1、假定相对湿度恒为40%,分析不同温度对粘虫发育历期的影响。如下表: 温度℃ 重复 25 27 29 31 1 100. 2 90.6 77.2 73.6 2 103. 3 91.7 85.8 73.2 3 98.3 94.5 81.7 76. 4 4 103.8 92.2 79.7 72. 5 Ti 405. 6 369 324.4 295.7 T 2 i 164511.36 136161 105235.36 87438.49 在本例中,r=4,m=4, n=16 , =1394.7, = 123413.4696 T 2 /n=(1394.7)2/ 16=121574.2556 (式1) ( 式2) (式3) S E =S T -S A =1839.214-1762.297=76.917 (式4) 数据的方差分析表见表1. 表1 粘虫发育历期方差分析表 粘虫发育历期 (相对湿度40%) 来源 平方和 df 均方 F 显著性 组间 1762.297 3 587.432 91.646 .000 组内 76.917 12 6.410 总数 1839.214 15 分析表1可知,F 0.05(3,12)=3.49,F 值=,91.646,F>F 0.05,P=0.000<0.05,说明在相对湿度为40%时,不同温度对粘虫发育历期有显著影响。同时,在方差齐次性检验中P=0.304>0.05,说明方差齐次性显著,如下表。以下方差齐次性检验于此类同,限于篇幅,直接得出结果,方差齐性检验 粘虫发育历期 Levene 统计量 df1 df2 显著性 1.351 3 12 .304 相关程序源代码附录如下:DATASET ACTIV ATE 数据集0. ONEW AY 粘虫发育历期 BY X2 /STA TISTICS HOMOGENEITY =493346.2105/4-121574.2556=1762.297 =123413.4696-121574.2556=1839.214

多元统计分析知识点多元统计分析课件

多元统计分析(1) 题目:多兀统计分析知识点 研究生___________________________ 专业____________________________ 指导教师________________________

完成日期2013年12月 目录 第一章绪论 (1) §.1什么是多元统计分析 (1) §.2多元统计分析能解决哪些实际问题 (2) §.3主要内容安排 (2) 第二章多元正态分布 (2) 弦.1基本概念 (2) 弦.2多元正态分布的定义及基本性质 (8) 1. (多元正态分布)定义 (9) 2?多元正态变量的基本性质 (10) §2.3多元正态分布的参数估计X =(X1,X2^|,X p) (11) 1?多元样本的概念及表示法 (12) 2. 多元样本的数值特征 (12) 3」和a 的最大似然估计及基本性质 (15) 4.Wishart 分布 (17) 第五章聚类分析 (18) §5.1什么是聚类分析 (18) §5.2距离和相似系数 (19) 1 ? Q—型聚类分析常用的距离和相似系数 (20) 2. .......................................................................................................................................... R 型聚类分析常用的距离和相似系数 (25) §5.3八种系统聚类方法 (26) 1. 最短距离法 (27) 2. 最长距离法 (30) 3. 中间距离法 (32) 4. 重心法 (35) 5. 类平均法 (37) 6. 可变类平均法 (38) 7. 可变法 (38) 8. 离差平方和法(Word方法) (38) 第六章判别分析 (39)

何晓群多元统计分析(数据)

第二章数据 行业公司简称净资产 收益 率% 总资产 报酬 率% 资产负 债率% 总资产周 转率 流动资 产周转 率 已获利 息倍数 销售增 长率% 资本积 累率% 电力、煤气及水的生产和供应业深能源A16.8512.35 42.32 0.37 1.78 7.18 45.73 54.54 深南电A2215.30 46.51 0.76 1.77 15.67 48.11 19.41 富龙热力8.977.98 30.56 0.17 0.58 10.43 17.80 9.44 穗恒运A10.258.99 40.44 0.46 2.46 5.06 11.06 1.09 粤电力A20.8120.00 35.87 0.43 1.25 34.89 24.77 12.67 韶能股份8.867.52 27.59 0.24 0.84 20.59 -3.50 54.02 惠天热电10.987.94 49.30 0.36 0.69 12.43 16.88 3.52 原水股份8.858.88 36.20 0.13 0.41 8.53 -11.49 2.44 大连热电9.037.41 46.89 0.28 0.79 6.86 16.23 -1.52 龙电股份12.078.70 16.81 0.28 0.68 29.75 4.11 63.06 华银电力 6.85 6.12 41.93 0.24 0.65 4.38 11.20 3.80 房地行业长春经开9.8510.50 31.23 0.34 0.40 17.13 18.05 7.18 兴业房产 1.07 1.52 66.91 0.21 0.24 1.53 -31.93 1.08 金丰投资19.447.01 73.34 0.26 0.30 7.02 71.22 12.73 新黄浦7.61 5.92 39.64 0.16 0.17 4.20 14.77 7.91 浦东金桥 4.24 3.99 37.30 0.20 0.25 3.98 -9.24 4.69 外高桥 1.673 1.92 49.05 0.03 0.05 1.06 -21.74 0.24 中华企业8.78 6.28 57.42 0.17 0.19 3.58 75.29 2.93 渝开发A0.2 2.24 63.40 0.09 0.15 1.07 -12.56 0.29 辽房天8.12 3.98 69.10 0.10 0.72 2.65 -35.83 3.16 粤宏远A0.42 1.16 37.42 0.09 0.15 1.59 19.18 0.43 ST中福 5.17 6.62 65.48 0.16 0.21 1.33 -19.91 23.74 倍特高新0.72 2.76 65.39 0.30 0.42 1.24 8.40 0.70 三木集团 5.99 4.53 65.17 0.74 0.88 4.14 75.36 0.87 寰岛实业0.420.20 24.03 0.02 0.03 -8.18 -71.33 0.42 中关村9.32 4.48 67.76 0.32 0.37 16.42 -29.42 4.09 信息技术 业中兴通讯18.7811.09 69.15 0.93 1.08 4.79 80.80 23.27 长城电脑14.949.48 45.53 1.14 1.85 9.51 34.47 35.93 青鸟华光9.7888.70 36.67 0.28 0.39 13.11 28.36 7.87 清华同方15.919.08 34.19 0.85 1.19 15.61 98.92 95.66 永鼎光缆9.48.67 32.75 0.79 1.25 13.49 41.75 6.33 宏图高科14.577.96 65.86 0.76 0.94 3.95 54.45 15.71 海星科技 4.06 3.35 36.49 0.48 0.60 4.64 -16.28 1.69 方正科技27.4816.69 57.13 2.51 2.87 7.40 63.27 32.02

多元统计分析期末考试考点整理

二名词解释 1、多元统计分析:多元统计分析是运用数理统计的方法来研究多变量(多指标)问题的理论和方法,是一元统计学的推广 2、聚类分析:是根据“物以类聚”的道理,对样品或指标进行分类的一种多元统计分析方法。将个体或对象分类,使得同一类中的对象之间的相似性比与其他类的对象的相似性更强。使类内对象的同质性最大化和类间对象的异质性最大化 3、随机变量:是指变量的值无法预先确定仅以一定的可能性(概率)取值的量。它是由于随机而获得的非确定值,是概率中的一个基本概念。即每个分量都是随机变量的向量为随机向量。类似地,所有元素都是随机变量的矩阵称为随机矩阵。 4、统计量:多元统计研究的是多指标问题,为了了解总体的特征,通过对总体抽样得到代表总体的样本,但因为信息是分散在每个样本上的,就需要对样本进行加工,把样本的信息浓缩到不包含未知量的样本函数中,这个函数称为统计量 三、计算题 解:

答: 答:

题型三解答题 1、简述多元统计分析中协差阵检验的步骤 答: 第一,提出待检验的假设和H1; 第二,给出检验的统计量及其服从的分布; 第三,给定检验水平,查统计量的分布表,确定相应的临界值,从而得到否定域; 第四,根据样本观测值计算出统计量的值,看是否落入否定域中,以便对待判假设做出决策(拒绝或接受)。 2、简述一下聚类分析的思想 答:聚类分析的基本思想,是根据一批样品的多个观测指标,具体地找出一些能够度量样品或指标之间相似程度的统计量,然后利用统计量将样品或指标进行归类。把相似的样品或指标归为一类,把不相似的归为其他类。直到把所有的样品(或指标)聚合完毕. 3、多元统计分析的内容和方法 答:1、简化数据结构,将具有错综复杂关系的多个变量综合成数量较少且互不相关的变量,使研究问题得到简化但损失的信息又不太多。(1)主成分分析(2)因子分析(3)对应分析等

多元统计分析期末复习试题

第一章: 多元统计分析研究的容(5点) 1、简化数据结构(主成分分析) 2、分类与判别(聚类分析、判别分析) 3、变量间的相互关系(典型相关分析、多元回归分析) 4、多维数据的统计推断 5、多元统计分析的理论基础 第二三章: 二、多维随机变量的数字特征 1、随机向量的数字特征 随机向量X均值向量: 随机向量X与Y的协方差矩阵: 当X=Y时Cov(X,Y)=D(X);当Cov(X,Y)=0 ,称X,Y不相关。 随机向量X与Y的相关系数矩阵: 2、均值向量协方差矩阵的性质 (1).设X,Y为随机向量,A,B 为常数矩阵 E(AX)=AE(X); E(AXB)=AE(X)B; D(AX)=AD(X)A’; )' ,..., , ( ) , , , ( 2 1 2 1P p EX EX EX EXμ μ μ = ' = )' )( ( ) , cov(EY Y EX X E Y X- - = q p ij r Y X ? =) ( ) , (ρ

Cov(AX,BY)=ACov(X,Y)B ’; (2).若X ,Y 独立,则Cov(X,Y)=0,反之不成立. (3).X 的协方差阵D(X)是对称非负定矩阵。例2.见黑板 三、多元正态分布的参数估计 2、多元正态分布的性质 (1).若 ,则E(X)= ,D(X)= . 特别地,当 为对角阵时, 相互独立。 (2).若 ,A为sxp 阶常数矩阵,d 为s 阶向量, AX+d ~ . 即正态分布的线性函数仍是正态分布. (3).多元正态分布的边缘分布是正态分布,反之不成立. (4).多元正态分布的不相关与独立等价. 例3.见黑板. 三、多元正态分布的参数估计 (1)“ 为来自p 元总体X 的(简单)样本”的理解---独立同截面. (2)多元分布样本的数字特征---常见多元统计量 样本均值向量 = 样本离差阵S= 样本协方差阵V= S ;样本相关阵R (3) ,V分别是 和 的最大似然估计; (4)估计的性质 是 的无偏估计; ,V分别是 和 的有效和一致估计; ; S~ , 与S相互独立; 第五章 聚类分析: 一、什么是聚类分析 :聚类分析是根据“物以类聚”的道理,对样品或指标进行分类的一种多元统计分析方法。用于对事物类别不清楚,甚至事物总共可能有几类都不能确定的情况下进行事物分类的场合。聚类方法:系统聚类法(直观易懂)、动态聚类法(快)、有序聚类法(保序)...... Q-型聚类分析(样品)R-型聚类分析(变量) 变量按照测量它们的尺度不同,可以分为三类:间隔尺度、有序尺度、名义尺度。 二、常用数据的变换方法:中心化变换、标准化变换、极差正规化变换、对数变换(优缺点) 1、中心化变换(平移变换):中心化变换是一种坐标轴平移处理方法,它是先求出每个变量的样本平均值,再从原始数据中减去该变量的均值,就得到中心化变换后的数据。不改变样本间的相互位置,也不改变变量间的相关性。 2、标准化变换:首先对每个变量进行中心化变换,然后用该变量的标准差进行标准化。 经过标准化变换处理后,每个变量即数据矩阵中每列数据的平均值为0,方差为1,且也不再具有量纲,同样也便于不同变量之间的比较。 3、极差正规化变换(规格化变换):规格化变换是从数据矩阵的每一个变量中找出其最大值和最小值,这两者之差称为极差,然后从每个变量的每个原始数据中减去该变量中的最小值,再除以极差。经过规格化变换后,数据矩阵中每列即每个变量的最大数值为1,最小数值为0,其余数据取值均在0-1之间;且变换后的数据都不再具有量纲,便于不同的变量之间的比较。 4、对数变换:对数变换是将各个原始数据取对数,将原始数据的对数值作为变换后的新值。它将具有指数特征的数据结构变换为线性数据结构。 三、样品间相近性的度量 研究样品或变量的亲疏程度的数量指标有两种:距离,它是将每一个样品看作p 维空),(~∑μP N X μ∑μp X X X ,,,21 ),(~∑μP N X ),('A A d A N s ∑+μ)()1(,,n X X X )',,,(21p X X X )')(()()(1X X X X i i n i --∑=n 1X μ ∑μX )1,(~∑n N X P μ),1(∑-n W p X X

(整理)多元统计分析各章的电子版数据.

第二章数据

第三章数据

例3-1 X1 职工标准工资收入 X5 单位得到的其他收入 X2 职工奖金收入 X6 其他收入 X3 职工津贴收入 X7 性别 X4 其他工资性收入 X8 就业身份 X1 X2 X3 X4 X5 X6 X7 X8 540.00 0.0 0.0 0.0 0.0 6.00 男国有1137.00 125.00 96.00 0.0 109.00 812.00 女集体1236.00 300.00 270.00 0.0 102.00 318.00 女国有1008.00 0.0 96.00 0.0 86.0 246.00 男集体1723.00 419.00 400.00 0.0 122.00 312.00 男国有1080.00 569.00 147.00 156.00 210.00 318.00 男集体1326.00 0.0 300.00 0.0 148.00 312.00 女国有1110.00 110.00 96.00 0.0 80.00 193.00 女集体1012.00 88.00 298.00 0.0 79.00 278.00 女国有1209.00 102.00 179.00 67.00 198.00 514.00 男集体1101.00 215.00 201.00 39.00 146.00 477.00 男集体 例3-3 English Norwegian Danish Dutch German French One En en een ein un Two To to twee zwei deux Three Tre tre drie drei trois Four Fire fire vier vier quatre Five Fem fem vijf funf einq Six Seks seks zes sechs six seven Sju syv zeven siebcn sept Eight Ate otte acht acht huit Nine Ni ni negen neun neuf Ten Ti ti tien zehn dix Spanish Italian Polish Hungarian Finnish Uno uno jeden egy yksi Dos due dwa ketto kaksi Tres tre trzy harom kolme cuatro quattro cztery negy neua Cinco cinque piec ot viisi Seix sei szesc hat kuusi Siete sette siedem het seitseman Ocho otto osiem nyolc kahdeksau nueve nove dziewiec kilenc yhdeksan Diez dieci dziesiec tiz kymmenen 例3-4

多元统计分析期末考试考点整理共5页

多元统计分析 题型一定义、名词解释 题型二计算(协方差阵、模糊矩阵) 题型三解答题 一、定义 二名词解释 1、多元统计分析:多元统计分析是运用数理统计的方法来研究多变量(多指标)问题的理论和方法,是一元统计学的推广 2、聚类分析:是根据“物以类聚”的道理,对样品或指标进行分类的一种多元统计分析方法。将个体或对象分类,使得同一类中的对象之间的相似性比与其他类的对象的相似性更强。使类内对象的同质性最大化和类间对象的异质性最大化 3、随机变量:是指变量的值无法预先确定仅以一定的可能性(概率)取值的量。它是由于随机而获得的非确定值,是概率中的一个基本概念。即每个分量都是随机变量的向量为随机向量。类似地,所有元素都是随机变量的矩阵称为随机矩阵。 4、统计量:多元统计研究的是多指标问题,为了了解总体的特征,通过对总体抽样得到代表总体的样本,但因为信息是分散在每个样本上的,就需要对样本进行加工,把样本的信息浓缩到不包含未知量的样本函数中,这个函数称为统计量 三、计算题 解: 答:

答: 题型三解答题 1、简述多元统计分析中协差阵检验的步骤 答: 第一,提出待检验的假设和H1; 第二,给出检验的统计量及其服从的分布; 第三,给定检验水平,查统计量的分布表,确定相应的临界值,从而得到否定域; 第四,根据样本观测值计算出统计量的值,看是否落入否定域中,以便对待判假设做出决策(拒绝或接受)。 2、简述一下聚类分析的思想 答:聚类分析的基本思想,是根据一批样品的多个观测指标,具体地找出一些能够度量样品或指标之间相似程度的统计量,然后利用统计量将样品或指标进行归类。把相似的样品或指标归为一类,把不相似的归为其他类。直到把所有的样品(或指标)聚合完毕. 3、多元统计分析的内容和方法 答:1、简化数据结构,将具有错综复杂关系的多个变量综合成数量较少且互不相关的变量,使研究问题得到简化但损失的信息又不太多。(1)主成分分析(2)因子分析(3)对应分析等 2、分类与判别,对所考察的变量按相似程度进行分类。(1)聚类分析:根据分析样本的各研究变量,将性质相似的样本归为一类的方法。(2)判别分析:判别样本应属何种类型的统计方法。

多元统计分析论文

多元统计分析实践论文 院系:理学院 专业:统计学 年级:2010 姓名:樊恩泽 学号:20101004005

我国城镇居民人均消费支出的多元统计分析 樊恩泽 摘要:本文本文综合了主成分因子分析与系统聚类分析,先进行主成分因子分析, 再用进行聚类分析。采用2011年我国31个省、市、自治区城镇居民人均消费支出数据,首先利用主成分因子分析的方法, 找出影响我国城镇居民人均消费支出的主成分, 计算各样本的主成分得分;其次运用系统聚类分析法,对各地区人均消费水平进行分类,结果表明,系统聚类分析法得到的结果也较好;最后对于扩大国内消费提出相关建议。 关键词:主成分分析聚类分析居民人均消费支出 1、引言 人均消费支出指居民用于满足家庭日常生活消费的全部支出,包括购买实物支出和服务性消费支出。消费支出按商品和服务的用途可分为食品、衣着、家庭设备用品及服务、医疗保健、交通和通讯、娱乐教育文化服务、居住、杂项商品和服务等八大类。人均消费支出是社会消费需求的主体,是拉动经济增长的直接因素,是体现居民生活水平和质量的重要指标。 本文选取2011年我国城镇居民人均消费支出数据,主要利用三种统计方法进行分析:主成分分析法、聚类分析法。将全国31个省、市、自治区进行分类和排序,并与人们实际观察到的情况进行比较。 1.1主成分分析 主成分分析是将分量相关的原始变量, 借助于一个正交变换转化为不相关的新变量, 并以方差作为信息量的测度, 对新变量进行降维, 取累计贡献率大的若干成分作为主成分。这些主成分能够反映原始变量的绝大部分信息, 它们通常表示为原始变量的某种线性组合。

1.2聚类分析 聚类分析是直接比较各事物之间的性质,将性质相近的归为一类,将性质差别较大的归入不同的类的分析技术。 在市场研究领域,聚类分析主要应用方面是帮助我们寻找目标消费群体,运用这项研究技术,我们可以划分出产品的细分市场,并且可以描述出各细分市场的人群特征,以便于客户可以有针对性的对目标消费群体施加影响,合理地开展工作 2、数据来源及处理 2.1统计思想 主成分因子分析的基本思想是通过对变量相关系数矩阵内部结构的研究,找出能控制所以变量的少数几个随机变量去描述多个变量之间的相关关系,并依据相关性的大小将变量分组,使得同组内的变量之间相关性较高,不同组的变量相关性较低。每组代表一个基本结构,这个基本结构成为公共因子。对于所研究的问题试图用最小个数的不可观测的所谓公共因子的线性函数与特殊因子之和来描述原来可观测的每一个变量。 下表是要进行处理的31个省市的城镇居民人均消费支出的相关原始数据,数据来源于《2011中国统计年鉴》。 X1:食品x2:衣着x3:居住x4:家庭用品x5:交通通信x6:文教娱乐x7:医疗保健 表1

多元统计分析期末考试考点整理

二名词解释 1、 多元统计分析:多元统计分析是运用数理统计的方法来研究多变量(多指标)问题的理 论和方法,是一元统计学的推广 2、 聚类分析:是根据“物以类聚”的道理,对样品或指标进行分类的一种多元统计分析方 法。将个体或对象分类,使得同一类中的对象之间的相似性比与其他类的对象的相似性更强。 使类内对象的同质性最大化和类间对象的异质性最大化 3、 随机变量:是指变量的值无法预先确定仅以一定的可能性 (概率)取值的量。它是由于随 机而获得的非确定值,是概率中的一个基本概念。即每个分量都是随机变量的向量为随机向 量。类 似地,所有元素都是随机变量的矩阵称为随机矩阵。 4、统计量:多元统计研究的是多指标问题 ,为了了解总体的特征,通过对总体抽样得到代表 总体的样本,但因为信息是分散在每个样本上的 ,就需要对样本进行加工,把样本的信息浓缩 到不包含未知量的样本函数中,这个函数称为统计量 二、计算题 ^16 -4 2 k 设H = 其中启= (1Q —纣眉=-4 4-1 [― 试判断叼+ 2吟与 「花一? [是否独立? 解: "10 -6 -15 -6 1 a 2U -16 20 40 故不独立口 -r o 2丿 按用片的联合分帚再I -6 lti 20 -1G 20 ) -1V16 -4 0 -4 A 2 丿"-1

2.对某地区农村的百名2周宙男翌的身高、胸圉、上半骨圉进行测虽,得相关数据如下』根据汶往资料,该地区城市2周岁男婴的遠三个指标的均值血二(90Q乩16庆现欲在多元正态性的假定下检验该地区农村男娶是否与城市男婴有相同的均值?伽厂43107-14.62108.946^1 ]丼中乂=60.2x^)-1=(115.6924)-1-14.6210 3.172-37 3760 、8.9464-37 376035.S936」= 0.01, (3,2) = 99.2, 03) =293 隔亠4) =16.7) 答: 2、假设检验问题:比、# =险用‘//H地 r-8.o> 经计算可得:X-^A 22 厂 「3107 -14.6210 ST1=(23J3848)-1 -14.6210 3.172 8 9464 -37 3760 E9464 -37.3760 35.5936 构造检验统计量:尸=旳(丟-間)〃丿(巫-角) = 6x70.0741=420.445 由题目已知热“(3,)= 295由是 ^I =^W3,3)^147.5 所以在显著性水平ff=0.01下,拒绝原设尽即认 为农村和城市的2周岁男婴上述三个指标的均 值有显著性差异 (] 4、设盂=(耳兀.昂工/ ~M((XE),协方差阵龙=P P (1)试从匸出发求X的第一总体主成分; 答: (2)试|可当卩取多大时才链主成分册贡蕭率达阳滋以上.

多元统计分析

作业一

1.2 分析2016年经济发展情况 排名省gdp 占比累计占比 1 广东79512.05 10.30 10.30 2 江苏76086.2 9.86 20.17 3 山东67008.2 8.68 28.85 4 浙江4648 5 6.02 34.87 5 河南40160.01 5.20 40.08 6 四川32680.5 4.24 44.31 7 湖北32297.9 4.19 48.50 8 河北31827.9 4.12 52.62 9 湖南31244.7 4.05 56.67 10 福建28519.2 3.70 60.37 11 上海27466.2 3.56 63.93 12 北京24899.3 3.23 67.16 13 安徽24117.9 3.13 70.28 14 辽宁22037.88 2.86 73.14 15 陕西19165.39 2.48 75.62 16 内蒙古18632.6 2.41 78.04 17 江西18364.4 2.38 80.42 18 广西18245.07 2.36 82.78 19 天津17885.4 2.32 85.10 20 重庆17558.8 2.28 87.37 21 黑龙江15386.09 1.99 89.37 22 吉林14886.23 1.93 91.30 23 云南14869.95 1.93 93.22 24 山西12928.3 1.68 94.90 25 贵州11734.43 1.52 96.42 26 新疆9550 1.24 97.66 27 甘肃7152.04 0.93 98.59 28 海南4044.51 0.52 99.11 29 宁夏3150.06 0.41 99.52 30 青海2572.49 0.33 99.85 31 西藏1150.07 0.15 100.00 将2016各省的GDP进行排名,可以发现,经济发达的的地区主要集中在东部地区。西部gdp的占比较小。作出2016各省的gdp直方图如下:

相关文档
相关文档 最新文档