文档库 最新最全的文档下载
当前位置:文档库 › 钌系催化剂在不对称催化氢化反应中的应用

钌系催化剂在不对称催化氢化反应中的应用

钌系催化剂在不对称催化氢化反应中的应用
钌系催化剂在不对称催化氢化反应中的应用

钌系催化剂在不对称催化氢化反应中的应用

何伟平20083310 应化08-1班

摘要:潜手性酮不对称加氢生成的手性仲醇是合成手性药物和精细化学品的重要中间体,钌催化剂对催化无论是简单酮还是β-酮酸酯的不对称加氢反应具有显著的优越性。

关键字:不对称氢化、钌、酮、β-酮酸酯。

不对称催化反应作为一个手性增量过程已成为人工合成旋光性产物最有效的手段之一。其中不对称氢化反应发展较快,是研究得较多的一类反应。不对称催化具有容量大、产率高、反应速度快、产物分离相对容易、催化剂的手性易于通过改变配体来修饰等优点,使该领域成为国际化学家研究的热点。酮的不对称催化加氢已成为合成手性醇最重要的方法之一,而钌催化剂对催化酮的不对称加氢反应具有的高活性和高对映选择,使它一直被各国化学家所关注。本文对钌系催化剂不对称催化氢化简单酮和β-酮酸酯的最新进展进行综述。

1 简单酮的不对称氢化

对不含官能团的简单芳香酮来说,由于除酮羰基外不具有与催化剂中心金属进行配位的辅助功能基团, 因此导致钌-膦配合物催化剂对这类酮加氢的对映选择性不高。直到1995年Noyori发现Ru(Ⅱ) –BINAP-diam ineKOH催化体系后,才使得简单芳香酮的不对称催化加氢在催化活性和对映选择性上有了突破性的进展。此后,膦配体、钌、手性二胺形成的三元配合物常用作简单酮进行不对称催化氢化反应的催化剂。图1 可能的过渡态机理研究表明,手性双胺双膦钌催化剂之所以获

得很高的催化活性和对映选择性. 一个可能的原因

是:在反应过程中,上述催化剂可与反应底物酮生成

催化活性的六元环过渡态。首先,手性胺膦钌络合物

在碱的作用下生成Ru-H 络合物,红外光谱已证实了

该结构的存在。此外,手性配体中的“NH”官能团,

在催化反应过程中,通过形成氢—氧键,可能生成电

荷交替的六元环过渡态(图1)。

同时,催化剂各配体的存在使底物酮只能沿着特

定的反应通道与催化剂络合,从而有利于单一对映体产物的生成。

厦门大学李岩云等根据金属原子簇络合物含有多个金属中心,可望发挥多个金属原子间的协同作用,参与对底物的有效络合与活化的依据,成功设计并合成了用羰基钌原子簇

Ru

3(CO)

12

作为催化剂的前体,分别与手性双胺双膦配体组合的手性原子簇催化体系。相对

于单核钌催化剂,其转化率和ee值均有大幅提高(表 1)。

表 1 原子簇/手性胺膦配体混和体系催化芳香酮的不对称转移氢化

酮手性催化剂产率 (%) ee (%)

1 苯乙酮 Ru3(CO)12/5 91 81

2 苯乙酮 Ru3(CO)12/1 11 83

3 苯乙酮 Ru3(CO)12/5 96 82

4 苯乙酮 Ru3(CO)12/

5 94 95

5 苯乙酮 Ru3(CO)12/5 98 96

6 苯乙酮 Ru3(CO)12/1 72 92

7 苯乙酮 Ru3(CO)12/1 93 92

8 苯乙酮 Ru3(CO)12/5 48 99

9 苯乙酮 Ru3(CO)12/5 79 99

10 苯乙酮 Ru3(CO)12/1 30 94

11 苯乙酮 Ru3(CO)12/1 66 90

另著名的Noyori 单核钌催化剂对异丁基苯酮的不对称氢转移氢化, 其转化率和对映选择性分别为41%和83% ,ee值23%。

近年来, 对手性双膦[和手性二胺的研究已成为不对称催化领域的研究热点。以下是几种该类催化剂。

图2 非手性膦配体钌催化剂

a

b

c

膦配体、钌、手性二胺形成的三元配合物催化剂其条件温和,反应温度为室温,氢压2MPa左右。转化率都接近或超过90%,ee值也较高。但其作为均相催化剂,难以与手性产物分离。因此,实现易循环的多相不对称催化剂成为研究热点。四川大学熊伟等以L-脯氨酸做为修饰剂,修饰Ru-PPh3/γ-Al2O3催化剂催化芳香酮不对称加氢反应,成功实现了传统均相催化剂难分离的缺点。

2 β-酮酸酯的不对称氢化

β-酮酸酯通过加氢得到的光学产物β-羟基酸酯是合成多种物质的手性原料,因而具有重要的研究价值。目前常用的方法有多相、两相和均相体系不对称加氢。多相法中兰尼镍(Ni/Ta)是首选的催化剂前体,通过不同的修饰剂改性来提高催化性能;两项和均相法通常用到过度金属配合物催化剂,在此对钌在该方面的进展简述。

常用的钌配体有BINAP、MeO-BIPHEP、P-Phos等。

研究表明,对带有官能团的酮的不对称加氢反应,含有卤素的Ru-BINAP络合物要优于含有二羧酸酯的Ru-BINAP。1987年,Noyori报导了以[RuX2(BINAP)]配合物在温和的条件下催化β-酮酸酯加氢,产物的光学纯度接近100%。这为它的实际应用提供了非常有利的工业化条件。其原因是这些官能团在催化加氢中能起到导向作用,立体识别的关键因素是它们具有辅助基团的杂原子,使得多数功能化的酮都以高对映选择性和可预见构型的方式被加氢。在研究中发现Ru-双膦催化剂用于β-芳基酮酸酯的加氢时,其对映选择性要比用于β烷基酮酸酯的低。这是因为!#芳基酮酸酯中的芳基能和BINAP中的一个苯基形成弱的π-π堆叠而形成一个不利的过渡态,这个弱的堆叠对这个不利的过渡态有轻微的稳定作用,导致对映选择性下降。

β-酮酸酯的催化机理为当催化剂与氢气接触时Ru失去一个氯离子形成RuHCl(BINAP) 然后它与酮酸酯可逆地形成酮酯络合物B,B再从中心Ru向配位酮的负氢转移形成C,D 再与氢气反应,完成催化循环(图3)。其他配体的钌系催化剂催化机理类是。

图3Ru-BINAP催化β-酮酸酯的不对称氢化的机理

四川大学彭宗海等通过一系列的对烷氧基取代MeO-BIPHEP 型手性双膦钌配合物催

化β-酮酸酯不对称加氢反应(图4)。发现对位长链烷氧基的引入对反应活性的影响不大,但可显著提高产物的对映选择性。当苯基对位取代基为正丁氧基时, 催化剂对产物的对映选择性最高。当底物羰基上的取代基R为吸电子基或空间位阻较大时, 产物的对映选择性明

显下降;但当酯基

上的取代基 R′具

有较大的空间位阻

时, 加氢反应仍能

获得较高的活性和

对映选择性。当R

为芳基或取代芳基

时, 反应活性有所

降低,但加氢产物

的ee值仍然较高

(90.6%以上)。

此外,部分科学

家直接将单质钌特殊处理后催化不对称加成也取得了不错的效果。

3 结论

随着科学技术的发展和人类生活质量的提高,人类对生命的重视和对药物需求的日益高涨,不对称加氢已越来越受到人们的关注。由于酮尤其是β-酮酸酯的不对称加氢产物(β-羟基酸酯)是合成多种物质的手性原料,对它的进一步研究将具有重要的理论意义和实用价值。而钌催化剂对催化酮的不对称加氢反应具有的高活性和高对映选择,使对其理论研究还将不断深入,并逐渐转化为具有实际生产意义。

参考文献

[1] 陶明,陈丽,熊伟等。RuCl(BISBI)[(R,R)-DPEN]催化苯乙酮不对称加氢反应研究[J]。有机化学,2006,26(4):559-562.2;

[2] NoyoriR, OhkumaTAsymmetric catalysis by architectural and functionalmolecular engineering: practical chemoand stereoselective hydrogenation of ketones[ J]. Ang ew Chem Int Engl, 2001, 0( 1): 073.

[3] 陶明,熊伟,陈华等。RuCl[P(CH)]-(R,R)-DPEN催化萘乙酮不对称加氢反应[J]。催化学报,2006,27(12);

[4]熊伟、汤波、刘德蓉等。( 1S,2S) -DPEN修饰的负载型钌膦配合物催化苯乙酮及其衍生物不对称加氢反应研究[J]。化学研究与应用,2008,8(20);

[5] Ohkuma T, Ooka H, Ikariya T, Noyori R. Practical enantioselective hydrogenation of aromatic ketones[ J]. J Am Chem Soc, 1995, 117( 9): 26752676;

[6]李岩云、董振荣、张娟等。手性胺膦配体在不对称催化中的应用[J]。中国科学:化学,2011,4(41);

[7] 蒋召雪,张宇,杨玉霞。三苯基膦-氯化钌-DPEN催化取代苯乙酮不对称加氢[J]。西昌学院学报·自然科学版,2008,6(22);

[8] 吴进。β-酮酸酯的不对称加氢反应研究进展[J]。西昌学院学报·自然科学版.2005,9(19)3;

催化加氢总结

催化加氢学习知识总结 一、概述 催化加氢是石油馏分在氢气的存在下催化加工过程的通称。 ?炼油厂的加氢过程主要有两大类: ◆加氢处理(加氢精制) ◆加氢裂化 ?加氢精制/ 加氢处理 ◆产品精制 ◆原料预处理 ◆润滑油加氢 ◆临氢降凝 ?加氢裂化 ◆馏分油加氢裂化 ◆重(渣)油加氢裂化 ?根据其主要目的或精制深度的不同有: ◆加氢脱硫(HDS) ◆加氢脱氮(HDN) ◆加氢脱金属(HDM) 加氢精制原理流程图 1-加热炉;2-反应器;3-分离器; 4-稳定塔;5-循环压缩机 ◆加氢裂化:在较高的反应压力下,较重的原料在氢压及催化剂存在下进行裂解和加 氢反应,使之成为较轻的燃料或制取乙烯的原料。可分为: ●馏分油加氢裂化 ●渣油加氢裂化 加氢精制与加氢裂化的不同点:在于其反应条件比较缓和,因而原料中的平均分子量和分子的碳骨架结构变化很小。 二、催化加氢的意义

1、具有绿色化的化学反应,原子经济性。 催化加氢一般生成产物和水,不会生成其它副产物(副反应除外),具有很好的原子经济性。绿色化学是当今科研和生产的世界潮流,我国已在重大科研项目研究的立项上向这个方向倾斜。 2、产品收率高、质量好 普通的加氢反应副反应很少,因此产品的质量很高。 3、反应条件温和; 4、设备通用性 三、国内外几家主要公司的馏分油加氢裂化催化剂 四、加氢过程的主要影响因素 1 反应压力 反应压力的影响往往是通过氢分压来体现的,系统的氢分压取决于操作压力、氢油比、循环氢纯度和原料的汽化率等 ①汽油加氢精制 ?氢分压在2.5MPa~3.5PMa后,汽油加氢精制反应的深度不受热力学控制,而是取 决于反应速度和反应时间。 ?在气相条件下进行,提高反应压力使汽油的反应时间延长,压力对它的反应速度影 响很小,因此加氢精制深度提高。 ?如果压力不变,通过氢油比来提高氢分压,则精制深度下降。 ②柴油加氢精制 ?在精制条件下,可以是气相也可是气液混相。 ?处于气相时,提高反应压力使汽油的反应时间延长,因此加氢精制深度提高。 ?但在有液相存在时,提高压力将会使精制效果变差。氢通过液膜向催化剂表面扩散

不对称催化氢化反应中配体研究进展

不对称催化氢化反应中配体研究进展Ξ 乔 振,王 敏 (中国农业大学应用化学系,北京 100094) 摘要:较系统地总结了用于不对称催化氢化反应的各类配体的特点及性能,对于每类配体的最新研究成果进行了较详细的评述。参考文献81篇。 关 键 词:不对称;催化氢化;配体;综述 中图分类号:O463.38,O621.3文献标识码:A文章编号:100521511(2002)012008209 Progress of L igands i n A sy mm etr ic Catalytic Hydrogenation Q I AO Zhen, W AN G M in (D epartm en t of A pp lied Chem istry,Ch ina A gricu ltu ral U n iversity,Beijing100094,Ch ina) Abstract:T he featu res and developm en t of every k ind of ligands in asymm etric catalytic hy2 drogenati on are syo tem atically discu ssed w ith81references. Keywords:asymm etric;catalytic hydrogenati on;ligand;developm en t;review 对潜手性不饱和底物(烯、酮、亚胺等)的不对称催化氢化是合成各种手性物质的重要途径。在过渡金属催化的不对称氢化反应中,手性配体作为手性诱导试剂对产物的光学纯度起着关键性的作用。在过去的30多年中,人们对不对称催化反应的研究取得了巨大的成就(如产物的对映体过量可达100%e.e.),并应用于许多重要药物(如左旋多巴、萘普生、布洛芬)及天然产物(如橙花醇等)的工业合成。但仍有不少具体反应的反应活性及对应选择性不太理想。因此设计及开发新的手性配体一直是不对称合成研究的一个重要和活跃的领域[1]。本文就近几年来出现的用于不对称催化氢化反应的新配体及其相关应用作一概述。 1 阻转异构体配体(A trop is m er ic L igands) 1.1 联萘系列配体 阻转异构体配体的手性由于其分子上基团的位阻作用使分子旋转受阻而产生(ax ial ch irality)。早在1977年,T am ao等[2]利用联萘酚 (1,1′2b is222nap h tho l)合成了第一个用于不对称催化氢化的阻转异构体配体N ap ho s(1),与R h ( )形成的络合物催化氢化乙酰肉桂酸得到54%e.e.的氢化产物,随后Grubb s[3]又合成了(-)21,1′2联萘22,2′2双二苯基膦酸酯(2),在R h ( )催化的脱氢氨基酸的不对称氢化反应中得到76%e.e.的产物;1980年,M iyano[4]合成了1,1′2联萘22,2′2双二苯基膦酰胺(3);接着N oyo ri[5]合成了1,1′2联萘22,2′2双二苯基膦(B I NA P,4) (Chart1),R h-B I NA P在催化氢化苯甲酰基肉桂酸时得到了100%e.e.的产物(Schem e1)。随后人们[6]对B I NA P的应用展开了广泛而深入的研究,证明B I NA P与R h( ),R u( )等过渡金属的络合物对不饱和键(C=C,C=O)的催化氢化具有高度的反应活性及对映选择性,并应用于其它催化领域(如氢硅烷化、烯胺异构化等)。B I2 NA P还成功地用于医药(如萘普生、布洛芬等)及天然产物(如香叶醇)的工业合成,大大降低了工业成本。B I NA P的开发成功并广泛应用,使人们对阻转异构体的的研究异常活跃起来。 — 8 — 合成化学 Ch inese Jou rnal of Syn thetic Chem istry  Ξ收稿日期:2000212224 作者简介:乔振,男,汉族,山东省农药研究所高级工程师,现为中国农业大学农药学专业博士。 通讯联系人:王敏,男,回族,教授,博士生导师,主要从事不对称合成研究。E2m ail:w angm in@m https://www.wendangku.net/doc/449294617.html,

的合成及其不对称催化氢化性能研究

广西师范大学 硕士学位论文 含NH官能团Ni(Ⅱ)配合物的合成及其不对称催化氢化性能研究 姓名:张玉贞 申请学位级别:硕士 专业:无机化学 指导教师:陈自卢;梁福沛 20070501

含NH官能团Ni(Ⅱ)配合物的合成及其不对称催化氢化性能研究 中文摘要 2004级无机化学研究生:张玉贞指导教师:陈自卢博士 梁福沛教授 以过渡金属配合物为催化剂催化氢化羰基化合物是近几十年来比较活跃的一个课题。特别是从上世纪90年代以来,对于后过渡金属(如Rh、Ru、Ir)含NH官能团配合物的催化研究更是取得了突破性进步。日本Noyori因在此方面的卓越成就而荣获2001年诺贝尔化学奖。 含NH官能团配合物的催化研究目前主要集中在贵金属(如Rh、Ru、Ir)。而对于3d 金属NH官能团配合物的催化性能研究还非常罕见。本论文合成了一系列Ni(Ⅱ)的NH官能团配合物,对其结构进行了表征,并且选取其中6种配合物检测其催化性能。 1.NiCl2与配体乙二胺(en)、邻苯二胺(opda)和N, N, N’, N’-四甲基乙二胺(tmen)反应得到了三种新配合物:[Ni(en)(2,2′-bipy)(H2O)2]Cl2(1), [Ni(en)(H2O)2(tmen)]Cl2·2H2O (2), [Ni(opda)(Phen)Cl2]· CH3OH(3)。配合物(1)属单斜晶系,P21/c空间群,晶胞参数为:a = 14.132(5) ?, b = 8.371(3) ?, c = 15.454(6) ?, β = 115.734(5)°;配合物(2)属正交晶系,P bcn空间群,晶胞参数为:a = 15.005(4) ?, b = 9.591(3) ?, c = 12.505(3) ?;配合物(3)属单斜晶系,C2/c空间群,晶胞参数分别为:a = 13.898(4) ?, b = 18.246(5) ?, c = 10.015(3) ?, β = 126.313(3) °。 2.NiCl2与环己烷乙二胺(dach)和(R, R)-1、2-二苯基乙二胺[(R, R)-dpen] 反应得到了六个新配合物:[Ni(dach)(tmen)(H2O)2]Cl2·2H2O(5),[Ni(dach)(2,2′-bipy)2(Cl)2]·2H2O (6),[Ni2((R, R)-dpen)4(H2O)2Cl2]Cl2·CH3CH2OCH3(8),[Ni((R, R)-dpen)(phen)(CH3OH)2]Cl2(9),[Ni2(dach)2(phen)2 (Cl)2(H2O)2]Cl2(10), [Ni((R,R)-dpen)(tmen)(H2O)2]Cl2(11)。配合物(5)属正交晶系,I ba2空间群,晶胞参数为:a = 14.160(2) ?, b = 9.8435(14) ?, c = 15.221(2) ?;配合物(6)属单斜晶系,C2/c空间群,晶胞参数为:a = 15.270(15) ?, b =17.732(17) ?, c = 10.244(10) ?, β = 127.535(10)°。配合物(8)属三斜晶系,P1空间群,晶胞参数为:a = 19.738(7) ?, b =10.439(8) ?, c = 16.418(12) ?, α =105.044(11)°,β = 98.591(10)°,γ =90.003(11) °。配合物(9)属单斜晶系,C2/c空间群,晶胞参数为:a = 15.270(15) ?, b = 17.732(17) ?, c = 10.244(10) ?, β = 127.535(10)°,配合物(10)属单斜晶系,P21/n空间群,晶胞参数为:a =12.378(3) ?, b = 13.836(3) ?, c = 21.279(5) ?, β = 101.273(3)°。配合物(11)属三斜晶系,P1空间群,晶胞参数为:a = 9.017(3) ?, b =11.690(4) ?, c = 13.095(5) ?, α = 77.431(4)°,β = 89.984(4) °,γ =69.298(5)°。

芳香杂环化合物不对称催化氢化反应的研究进展

2005年第25卷有机化学V ol. 25, 2005第6期, 634~640 Chinese Journal of Organic Chemistry No. 6, 634~640 ygzhou@https://www.wendangku.net/doc/449294617.html, * E-mail: Received August 2, 2004; revised October 25, 2004; accepted November 23, 2004.

No. 6 卢胜梅等:芳香杂环化合物不对称催化氢化反应的研究进展 635 坏稠环的芳香性比完全破坏单环的芳香性所需能量低. 另外, 芳香杂环化合物的氢化比非芳香杂环化合物容易, 这一方面因为杂原子对所在的环有活化作用; 另一方面, 杂原子上的孤对电子可参与和催化剂的金属原子配位, 使催化活性中心靠近底物从而发生氢化反应. 所以在芳香稠杂环化合物氢化时, 一般都是含杂原子的环被氢化[5]. 在均相催化体系中, 第一例报道的芳香杂环化合物的氢化是在1987年, Murata 等[8]使用原位产生的(+)-(DIOP)RhH 作催化剂, 乙醇作溶剂, 室温下对2-位取代的喹喔啉1进行不对称氢化(Eq. 1), 反应需36~72 h, 产物2-甲基-1,2,3,4-四氢喹喔啉只有3%的对映选择性(Table 1, Entry 1). 虽然ee 值很低, 但毕竟实现了对芳香杂环化合物均相不对称氢化, 为后来致力于研究芳香杂环化合物不对称氢化的工作者开辟了道路 . 1998年, Bianchini 研究小组[9]利用邻位金属化铱的二氢复合物fac -exo -(R )-[IrH 2{C 6H 4C*H(Me)N(CH 2CH 2- PPh 2)2}] (L1) 作催化剂, 实现了对2-甲基喹喔啉(1)的高对映选择性氢化, 取得了高达90%的ee 值(Table 1, Entry 2), 但转化率只有54%, 当转化率为97%时, ee 值为73% (Table 1, Entry 3), 反应要在100 ℃进行, 甲醇和异丙醇是最好的溶剂选择. 这是目前对2-甲基喹喔啉氢化取得的最好结果. 同一研究组在2001年又报道了用[(R ,R )-BDPBzPIr(COD)]OTf 和[(R ,R )-BDPBzPRh(NBD)]- OTf 作催化剂, 对2-甲基喹喔啉(1)进行氢化[10], 但ee 值不理想, 分别为23%和11% (Table 1, Entries 4 and 5). 在反应中, 他们发现铑的活性比铱的高, 但对映选择性低. 2003年, Henschke 和Casy 等使用Noyori 的RuCl 2- 氢化为模型反应, 50 ℃, 3.0 MPa 的氢气压力下, 对一系列的手性双磷配体和手性二氨的组合进行了筛选,结果发现(S )-xyl-hexaPHEMP (L3)和(S ,S )-DACH 的组合取得了较好的结果(73% ee ) (Table 1, Entry 6), 所有反应20 h 内转化率都在94%以上, 且S /C 为1000/1[11]. 该催化体系的活性很好, 但对映选择性只是中等. 表1 2-甲基喹喔啉的不对称氢化 Table 1 Asymmetric hydrogenation of 2-methylquinoxaline Entry Catalyst Yield/% ee /% 1 (+)-(DIOP)RhH 72.0 3 2 L1 53.7 90a 3 L1 96.5 73b 4 [L2Ir(COD)]OTf 40.7 23a 5 [L2Rh(NBD)]OTf 93.2 11a 6 RuCl 2/L3/(S ,S )-DACH 99.0 73c a CH 3OH 作溶剂; b i -PrOH 作溶剂; c t -BuOH 作溶剂. 2000年, Ito 等[12]首次报道了对N -Ac 和Boc 保护的2-位取代吲哚进行不对称催化氢化(Eq. 2), 反应在60 ℃下完成, 取得了最高为95%的ee 值. 他们使用的是一个反式鳌合配位的二茂铁双磷配体L4, 金属前体是[Rh(NBD)2]SbF 6. 这一催化体系对2-位取代的N -Ac 保护的吲哚, 无论是收率或对映选择性都取得了令人满意的结果, 碱碳酸铯的加入是取得高对映选择性所必须的. 对N -Boc 保护的吲哚氢化对映选择性不如N -Ac. 但对于3-位取代的N -Ac 保护的吲哚2在上面标准条件下, 反应不能转化完全, 除了所要的氢化产物3外, 还得到 了N 上Ac 被脱除的产物4 (Eq. 3).

加氢催化剂再生

催化剂再生 12.1 就地催化剂再生 注意,以下规程旨在概括催化剂再生的步骤和条件。催化剂供应商提供的具体 规程可取代此概述性规程。须遵守催化剂供应商规定的临界参数,例如温度限 制。 在COLO加氢处理单元中,使用NiMo和CoMo两种催化剂,有些焦碳沉积 是不可避免的。这会引起载体的孔状结构逐渐堵塞,导致催化剂活性降低。则 必须提高苛刻度(通常通过提高反应器温度),以使产品达到技术要求,而提 高温度会加速焦碳的产生。 当达到反应系统的最高设计温度(机械或反应限)时,需要停车进行催化剂再 生或更换催化剂。在正常操作时,这种事情至少在12个月内不应发生。 o催化剂再生燃烧在正常操作期间沉积的使催化剂失活的焦碳。 o再生的主要产物是CO2、CO和SO2。 12.2 再生准备 按照与正常停车相同的步骤,但反应器无需进行冷却。反应器再生可不分先后。 仅取R-101为例。 单元状态:按照正常停车规程的要求或根据再生放空气体系统规范,反应器在 吹扫净其中的H2和烃类后被氮气填充。将R-102的压力降低至略低于随后将 使用的蒸汽的压力。T-101已关停,且E-101排放至塔。T-102可根据再生过 程的下一步骤进行全回流或启动,以便实现石脑油安全循环。 12.3 蒸汽-空气再生程序 1. 在压缩机-反应器回路中建立热氮气循环。利用B-101加热带有循环氮气 的催化剂床,使其温度以25 oC/小时的速度上升至315oC。绝不可让催化 剂床内的温度降至260oC以下,否则,随后置换氮气的蒸汽会出现冷凝, 从而要求在进行下一操作前采取干燥措施。 2. 再次检查吹扫气中的可燃物并继续进行吹扫,直至反应器出口气体中的氢 气浓度低于0.5% vol。在E-107的壳程入口和压缩机的排放侧将压缩机 和D-103系统与反应器B-101系统隔离,并关停压缩机。反应器系统此 时处于氮气条件下。进一步关闭压缩机系统。两个分隔的工段均应处于氮 气正压下,这点至关重要。 3. 将蒸汽从E-104入口引至R-102,将反应器流出物导至再生排气系统。 逐渐加快速度,同时利用B-101控制温度,将反应器入口温度升至并保 持在330-370oC。蒸汽宜为7000 kg/hr左右的速度,这高于CRI(催化 剂供应商)推荐的反应器横截面每平方米1950 kg/hr的最低速度,此最 低速度使R-101和R-102的最低流量分别达到2000 kg/hr和3700 kg/hr。 此时R-102已做好下一步的蒸汽和空气燃烧准备。 4. 启动含0.3-0.5 mole%氧气的空气流,将其导入R-102。 5. 焰锋的建立表现为催化剂床的温度上升,此后,氧气含量最大可增加至1 mole%,但焰锋温度须保持在400oC以下。根据经验,氧气含量每高于

催化剂的活化与再生

催化剂的活化与再生 加氢催化剂器外预硫化技术 1、Eurecat公司开发的Sulficat技术,用于再生催化剂的器外预硫化。 2、Eurecat和Akzo Nobel公司联合开发的EasyActive技术,用于新鲜催化剂的器外预硫化。3、CRI公司开发的ActiCat技术。 4、RIPP开发的RPS技术用于新鲜催化剂和再生催化剂的器外预硫化。 在推出EasyActive器外预硫化催化剂后,Eurecat和Akzo Nobel公司又进一步改进器外预硫化技术。为简化预硫化过程和减少对环境的污染,研究了水溶性硫化物生产器外预硫化催化剂以及将器外预硫化和原位预硫化结合的预硫化技术。 水溶性硫化剂有1,2,2-二亚甲基双二硫代氨基甲酸二酸盐、二巯基二氨硫杂茂、二乙醇二硫代物、二甲基二硫碳酸二甲氨和亚二硫基乙酸等。下表列举了几种水溶性硫化剂器外预硫化的催化剂的活性比较。 水溶性硫化剂进行器外预硫化的催化剂活性 可见水溶性硫化剂完全可以作为器外预硫化的硫化剂。 为了降低器外预硫化的成本和提高硫的利用率,又开发一种将S作为硫化剂的器外预硫化方法及将S与有机硫化物相结合的技术,目前多采用这一方法。

加氢催化剂器外预硫化技术 1、Eurecat公司开发的Sulficat技术,用于再生催化剂的器外预硫化。 2、Eurecat和Akzo Nobel公司联合开发的EasyActive技术,用于新鲜催化剂的器外预硫化。 3、CRI公司开发的ActiCat技术。 4、RIPP开发的RPS技术用于新鲜催化剂和再生催化剂的器外预硫化。 国外催化剂器外再生的主要工艺 目前,国外主要有三家催化剂再生公司:Eurecat、CRI和Tricat。其中Eurecat和CRI两家公司占国外废催化剂再生服务业的85%,余下的为Tricat公司和其他公司所分担。CRI公司的再生催化剂中,约60%来自加氢处理装置,15%来自加氢裂化装置,25%来自重整和石化等其他领域。 Eurecat、CRI和Tricat公司采用不同的再生工艺。Eurecat公司使用一个旋转的容器使催化剂达到缓慢烧炭的目的;CRI公司采用流化床和移动带相结合的工艺,如最新的OptiCAT 工艺;Tricat公司应用沸腾床工艺。 非贵金属废加氢催化剂的金属回收 从非贵金属废加氢催化剂中回收金属有两种方法:一种是湿法冶金,用酸或碱浸析废催化剂,然后回收可以销售的金属化合物或金属。另一种是火法(高温)冶金,用热处理(焙烧或熔炼)使金属分离。 非贵金属废加氢处理/加氢精制催化剂通常都有3~5种组分:钼、钒、镍、钴、钨、氧化铝和氧化硅。 美国有两家领先的非贵金属回收商:一家是海湾化学和冶金公司(GCMC),从1946年开始回收金属业务;另一家是Cri-met公司(Cyprus Amax矿业公司和CRI国际公司的合资公司),从1946年开始回收金属业务。有些废非贵金属加氢裂化催化剂中含有钨,回收的费用高,且数量不大。目前奥地利的Treibacher工业公司是钨的主要回收商。 另外,美国的ACI工业公司、Encycle/texas公司、Inmetco公司,法国的Eurecat公司,德国的Aura冶金公司、废催化剂循环公司,比利时的Sadaci公司,日本的太阳矿工公司、

催化氢化反应安全操作规范讲义

竭诚为您提供优质文档/双击可除催化氢化反应安全操作规范讲义 篇一:精细化工之氢化反应的控制 精细化工之氢化反应的过程控制 一、前言 精细化工是生产精细化学品的化工行业,主要包括医药、染料、农药、涂料、表面活性剂、催化剂,助剂和化学试剂等传统的化工部门,也包括食品添加剂、饲料添加剂、油田化学品、电子工业用化学品、皮革化学品、功能高分子材料和生命科学用材料等近20年来逐渐发展起来的新领域,通 常具有以下特点: 1.品种多,更新换代快; 2.产量小,大多以间歇方式生产; 3.由于具有功能性或最终使用性,因此要求产品质量高; 4.技术密集高,要求不断进行新产品的技术开发和应用技术的研究,重视技术服务; 5.设备投资较小; 根据省安全生产监督管理局“关于推进化工企业自动化控制及安全联锁技术改造工作的意见”的要求,根据国内现

行的危险度评价法,从物质、容量、温度、压力和操作等5 个方面,对化工企业各装置的危险度大小进行综合分析,危险等级在高度及以上(危险度分值≥16)的化工生产、储存装置,重点是硝化、氧化、磺化、氯化、氟化、重氮化、加氢反应等危险工艺的化工生产装置,进行化工企业自动化控制及安全联锁技术的改造。由于,精细化工生产过程与一般大化工、石油化工生产具有不同的特点与要求,对它的生产过程进行控制一直是行业内推行的难点,不论是他的环境控制、还是安全控制或者是他的工艺控制都是较难实施的问题。本文仅就精细化工的特点,结合安全改造实施的具体要求,讨论一下具体实施工作中的经验与看法,供大家参考。 二、氢化反应的特点 氢化是有机化合物与氢分子的反应,在医药化工领域,氢化一般有如下两种类型:不饱和键的氢化、脱去某些保护基团(又称氢解)。 在氢化中,高压可以可增加氢在溶剂中的溶解度,氢压对反应速度的影响可以是线性的,也可以是二次方的,甚至更强烈的影响。因此,氢化反应大多采用高压工艺环境。 另外,催化剂在氢化反应中起着重要的作用,大部分氢化都是在催化剂的催化下才得以完成的。 篇二:高压氢化釜操作要点 高压反应釜的操作过程分为安装、加氢、取样、泄氢、

加氢催化剂再生

中国石油股份有限公司乌鲁木齐石化分公司 失活AT-505、FH-5加氢催化剂 器外再生技术总结 受中国石油股份有限公司乌鲁木齐石化分公司的委托,温州瑞博催化剂有限公司于2009年9月23日至9月26日,在山东再生基地对该公司失活AT-505、FH-5加氢催化剂进行了器外再生,现将有关技术总结如下: 一、催化剂再生前的物性分析及再生后催化剂指标要求 根据合同和再生的程序要求,首先对待生剂进行了硫、碳含量、比表面、孔容、强度等物性分析,其结果如下表: AT-505加氢催化剂再生前物性分析表 ◆中国石油股份有限公司乌鲁木齐石化分公司对再生后AT-505、FH-5加氢催化剂质量要求如下: 催化剂碳含量:≯0.5m% 硫含量不大于实验室数据+0.3 m% 三项指标(比表面、孔体积、强度)达到在实验室再生结果的95%以上。

二、实验室和工业再生 温州瑞博催化剂有限公司加氢催化剂器外再生是网带炉式集预热脱油、烧硫、烧碳和冷却降温于一体,实现电脑控制、上位管理的临氢催化剂烧焦再生作业线,系半自动、全密封、进行颗粒分离并实施除尘和烟气脱硫的清洁工艺生产的作业线。 针对中国石油股份有限公司乌鲁木齐石化分公司提出的再生后催化剂质量要求,在物性分析检查的基础上,温州瑞博催化剂有限公司首先对AT-505、FH-5加氢催化剂进行了实验室模拟再生,并根据本公司设备特点制定出了工业再生的方案和操作条件。在确保安全和再生剂质量的前提下组织了本次工业再生工作。现将催化剂再生前后,实验室再生和工业再生的综合样品分析结果列于下表: AT-505加氢催化剂物化分析数据

FH-5加氢催化剂物化分析数据 三、催化剂再生前后物料平衡

加氢精制再生催化剂的合理使用

加氢精制再生催化剂的合理使用 摘要:简要讨论了加氢精制再生催化剂的特点,说明了再生催化剂降级使用的技术方案是完全可行的,并介绍了在再生催化剂装填和硫化过程中,与新鲜催化剂的差别,及应该注意的事项。 关键词:加氢精制再生催化剂合理使用 前言 石油馏分的加氢工艺技术是目前生产清洁燃料应用最广泛、最成熟的主要加工手段之一,在石油化工企业中所占的地位越来越重要。近年来,随着炼油企业加氢精制工业装置加工量的逐渐增加,所使用加氢催化剂的品种越来越多,数量也越来越大,经过烧焦再生后继续使用的再生催化剂的品种和数量也越来越多。目前,全世界约有18 kt/a加氢催化剂需要再生[1],而预计其中的加氢精制催化剂至少在10 kt/a以上。因此,如何合理使用加氢精制再生剂,使之发挥更大的作用,提高炼油企业的经济效益变得越来越重要。 加氢精制催化剂经过1 个周期的运转,由于积炭等原因造成活性下降,必须经过烧焦再生处理后才能使催化剂的活性得到恢复,并继续使用。在正常使用的情况下,加氢精制催化剂可以再生1~2 次,催化剂总寿命在6~9 a之间。加氢精制再生催化剂的开工过程原则上与新鲜催化剂是一致的,但是也有一些不同之处。这主要是因为:再生催化剂的物理性质,如比表面积、孔容积和机械强度等都发生了变化;再生剂的催化活性要比新鲜剂低一些;再生剂上残留的硫、炭和其它杂质,对开工中催化剂的硫化过程会产生一定的影响。如果再生催化剂完全按新鲜催化剂的开工方法进行,将会造成开工成本提高,和因过量的硫化氢对设备腐蚀而造成的安全隐患,以及不能充分发挥催化剂的活性和稳定性,影响工业装置长周期安全稳定运转。本文主要讨论了加氢精制催化剂再生剂的合理使用及开工工艺过程中应当注意的一些问题。 1 加氢精制再生催化剂的特点 再生催化剂与新鲜催化剂相比,孔容积和比表面积都比新催化剂略有降低。这主要是由于积炭和杂质沉积堵塞催化剂孔道,降低了孔容积和比表面积,使催化剂活性金属的利用率降低,造成再生后的催化剂活性有所下降。表1列出了某柴油加氢精制催化剂新鲜剂与再生剂的理化性质。 表1 新鲜催化剂与再生剂的理化性质 Table1 The physicochemical properties of fresh catalyst and regenerated catalyst 催化剂再生剂新鲜剂 孔容积/(mL?g-1) 0.46 0.48 表面积/(m2?g-1) 218 226 耐压强度/(N?cm-1) 172 168 堆积密度/(g?cm-3) 0.90 0.88 硫含量,% 0.58 - 碳含量,% 0.22 - 由表1可以看出,再生催化剂的孔容积和表面积较新鲜催化剂要小;新催化剂上没有硫和碳,

钌系催化剂在不对称催化氢化反应中的应用

钌系催化剂在不对称催化氢化反应中的应用 何伟平20083310 应化08-1班 摘要:潜手性酮不对称加氢生成的手性仲醇是合成手性药物和精细化学品的重要中间体,钌催化剂对催化无论是简单酮还是β-酮酸酯的不对称加氢反应具有显著的优越性。 关键字:不对称氢化、钌、酮、β-酮酸酯。 不对称催化反应作为一个手性增量过程已成为人工合成旋光性产物最有效的手段之一。其中不对称氢化反应发展较快,是研究得较多的一类反应。不对称催化具有容量大、产率高、反应速度快、产物分离相对容易、催化剂的手性易于通过改变配体来修饰等优点,使该领域成为国际化学家研究的热点。酮的不对称催化加氢已成为合成手性醇最重要的方法之一,而钌催化剂对催化酮的不对称加氢反应具有的高活性和高对映选择,使它一直被各国化学家所关注。本文对钌系催化剂不对称催化氢化简单酮和β-酮酸酯的最新进展进行综述。 1 简单酮的不对称氢化 对不含官能团的简单芳香酮来说,由于除酮羰基外不具有与催化剂中心金属进行配位的辅助功能基团, 因此导致钌-膦配合物催化剂对这类酮加氢的对映选择性不高。直到1995年Noyori发现Ru(Ⅱ) –BINAP-diam ineKOH催化体系后,才使得简单芳香酮的不对称催化加氢在催化活性和对映选择性上有了突破性的进展。此后,膦配体、钌、手性二胺形成的三元配合物常用作简单酮进行不对称催化氢化反应的催化剂。图1 可能的过渡态机理研究表明,手性双胺双膦钌催化剂之所以获 得很高的催化活性和对映选择性. 一个可能的原因 是:在反应过程中,上述催化剂可与反应底物酮生成 催化活性的六元环过渡态。首先,手性胺膦钌络合物 在碱的作用下生成Ru-H 络合物,红外光谱已证实了 该结构的存在。此外,手性配体中的“NH”官能团, 在催化反应过程中,通过形成氢—氧键,可能生成电 荷交替的六元环过渡态(图1)。 同时,催化剂各配体的存在使底物酮只能沿着特 定的反应通道与催化剂络合,从而有利于单一对映体产物的生成。 厦门大学李岩云等根据金属原子簇络合物含有多个金属中心,可望发挥多个金属原子间的协同作用,参与对底物的有效络合与活化的依据,成功设计并合成了用羰基钌原子簇 Ru 3(CO) 12 作为催化剂的前体,分别与手性双胺双膦配体组合的手性原子簇催化体系。相对 于单核钌催化剂,其转化率和ee值均有大幅提高(表 1)。 表 1 原子簇/手性胺膦配体混和体系催化芳香酮的不对称转移氢化 酮手性催化剂产率 (%) ee (%) 1 苯乙酮 Ru3(CO)12/5 91 81 2 苯乙酮 Ru3(CO)12/1 11 83

加氢裂化催化剂再生技术总结

加氢裂化催化剂再生技术总结 摘要:催化剂是加氢裂化工艺的核心,特别是加氢裂化催化剂,直接决定了油品 转换的方向。在精制反应器与裂化反应器串联使用的生产工艺中,裂化催化剂失 活的主要原因为结焦或积碳,通过再生处理能够使其恢复活性。加氢裂化催化剂 选择专业的公司进行器外再生,再生剂质量好、活性损失少,能够满足装置生产 运行要求。 关键词:加氢裂化催化剂结焦积碳再生 1前言 加氢裂化催化剂不仅要求有加氢性能,且有适宜的酸性,因此多含有沸石酸 性组分。加氢处理和加氢裂化操作中,多种因素导致催化剂暂时或永久失活,运 转周期一般为6个月到4~5年,视装置类型和操作条件苛刻度而定,在运转过 程中催化剂失活,可由提高反应温度来弥补,直至产品质量、数量限制而停止升温,确定停运进行再生。再生可以除去焦炭、清除覆盖活性中心及堵塞孔口的焦 炭和杂质,同时使活性金属重新分散,恢复催化剂活性[1]。通过分析裂化催化剂 使用情况,委托专业厂家对催化剂进行再生,再生剂活性较好,使用效果满足生 产需求。 2加氢裂化催化剂失活现象 造成加氢裂化催化剂失活的主要原因有催化剂结焦、催化剂中毒以及催化剂 中金属聚集、分散变差[2]。结合催化剂使用情况来看,该裂化剂串联在精制催化 剂之后使用,其发生催化剂中毒和金属沉积的可能性较小。通过收集分析催化剂 运行数据,显示该裂化剂在第一运行周期中未出现局部热点,通过温度补偿的方 式基本能够满足反应深度的需求。因此,该裂化剂失活的主要原因为结焦或积碳,通过再生处理能够使其恢复活性。 3加氢裂化催化剂再生的要求 加氢裂化催化器外再生需要确保催化剂晶体结构稳定、损坏程度微小,活性 金属凝聚度降至最低,使得比表面积、孔容及径向压碎强度得到良好的恢复。通 常要求如下; 表 1 再生剂性能指标要求 注:Rx—实验室再生样品的分析值。 一般通过过筛分离脱除反应器卸下催化剂中的碳粉、杂质、瓷球等物,将剩 余的待生剂进行烧焦再生,烧焦脱除待生剂中的碳和硫,使其比表面积、孔体积 得以恢复。最后还要对完成烧焦的再生剂再次进行过筛分离,脱除粉尘和碎粒, 确保其颗粒完整,回装反应器后不影响流体分布。由于多数加氢裂化催化是分子 筛型催化剂,其特殊的分子筛结构决定了对其再生过程温度的控制要更加严格, 必须防止再生过程中超温对催化剂载体结构的破坏[3]。因此,催化剂再生时要求 厂家严格控制预热的空气流量和烧嘴条件,准确控制温度使催化剂得以良好再生。3再生剂效果评价 3.1物理性质评价 将某加氢裂化催化剂HC-A待生剂、HC-A实验室再生剂及HC-A再生剂的物 化性能汇总于表1。由表1可见,通过再生后的HC-A裂化催化剂S、C含量大幅 降低,比表面积、孔容及径向压碎强度均有了明显改善。积碳是催化剂活性下降 的主要原因,但催化剂通过再生,随着积碳的烧除,催化剂活性将得到一定程度

不对称催化在有机化学中的应用

不对称催化在有机化学中的应用 1110712 胡景皓 不对称催化反应是使用非外消旋手性催化剂进行反应的,仅用少量手性催化剂,可将大量前手性底物对映选择性地的转化为手性产物,具有催化效率高、选择性高、催化剂用量少、对环境污染小、成本低等优点。经过40年的研究,不对称催化已发展成合成手性物质最经济有效的一种方法。 不对称催化领域最关键的技术是高效手性催化剂的开发,因为手性催化剂是催化反应产生不对称诱导和控制作用的源泉。美国孟山都公司的Knowles和德国的Homer在1968年分别发现了使用手性麟一锗催化剂的不对称催化氢化反应,从此不对称催化反应迅速发展。近几十年来手性配体的开发是不对称催化领域最为关注的焦点,并已合成出上千种手性配体,其中BINAP和(DHQD)2PHAL等已实现工业化应用,对映选择性已达到或接近100%,在氢化、环氧化、环丙烷化、烯烃异构化、氢氰化、氢硅烷化、双烯加成、烯丙基烷基化等几十种反应中取得成功,同时在均相催化剂负载化、水溶性配体固载化等研究中也取得了突出成果。以下是不对称催化研究的一些实例。 一、脯胺酸及其衍生物催化的不对称Michael加成反应 Listd、组在2001年首次用脯氨酸作催化剂研究了不对称Michael成反应。以DMSO为溶剂进行催化反应,获得了较好的收率,但是选择性却很差。这与之前报道的脯氨酸催化的不对称Aldol反应相比,e.e值明显降低。 随后,2002年Endersd、组对该反应进行了进一步的探索。在筛选L.脯氨酸用量时,发现反应中实际起催化作用的是溶解于溶剂DMSO中的L.脯氨酸,为此于体系中加入一定量甲醇或以甲醇为溶剂来增大L.脯氨酸的溶解度,同时加大催化剂的用量,该反应的e.e.能够提高到57%,但是反应时间大大延长。

不对称催化

课程名称:不对称催化合成 姓名:文霞 学号: 201337120040 专业:化学工程

不对称催化合成试题 1.什么是不对称合成反应?什么是不对称催化合成反应? 答: 不对称合成(Asymmetric synthesis),也称手性合成、立体选择性合成、对映选择性合成,是研究向反应物引入一个或多个具手性元素的化学反应的有机合成分支。按照Morrison和Mosher的定义,不对称合成是“一个有机反应,其中底物分子整体中的非手性单元由反应剂以不等量地生成立体异构产物的途径转化为手性单元”。这里,反应剂可以是化学试剂、催化剂、溶剂或物理因素。不对称催化合成反应是通过使用手性催化剂来实现不对称合成反应。 2.命名手性化合物的方法有哪几种?主要用什么来表示手性化合物的光学纯度?测量对映体组成的方法主要有哪几种? 答:手性化合物命名的方法有R/S标记法,D/L标记法,赤式苏式标记法。主要用ee值表示光学纯度,测量对映体组成的方法有测定比旋度、核磁共振法、层析法(气相色谱和液相色谱)、毛细管电泳法、X射线衍射法等。 3.除了不对称碳中心的手性化合物外,还有哪些结构具有手性? 答:轴手性、平面手性、螺手性、八面体结构及其他手性结构体。 4.不对称催化剂的设计主要要考虑哪些因素?为什么说它是一个结构工程,同时又是一个功能工程? 答:手性分子催化剂由活性的金属中心和手性配体构成,金属中心决定催化剂的活性,手性配体则控制立体化学,即对映选择性。不对称催化是一种四维的化学,只有当理想的三维结构(x,y,z)和适当的动力(t)结合在一起时才能达到高效率,此时的催化剂设计不叫考虑其结构,还要使其达到催化的功能。5.不对称氢化反应研究发展过程中具有较大影响的研究有哪些?做出突出贡献的有哪几个研究者?不对称氢化反应的的底物主要哪些,其结构特点是什么,为什么? 答:用过渡金属进行对映性催化氢化的新方法 William S. Knowles 和 Ryoji Noyori 不对称氢化反应的的底物主要:烯烃的不对称氢化,包括N-acyl dehydroaminoacids,特别是Rh的双膦配体催化L-DOPA的商业化生产;Enamides 的不对称氢化反应,烯丙基型的化合物的不对称氢化,高烯丙醇型化合物以及α,

由废催化剂制备加氢处理催化剂的方法

xxxxxxxx 1/5页一种由废催化剂制备加氢处理催化剂的方法技术领域 [0001] 本发明涉及一种由废催化剂制备加氢处理催化剂的方法,特别是由废加氢催化剂制备的渣油沸腾床加氢处理催化剂的方法。 技术背景 [0002] 在石油化学工业中需要大量的催化剂,催化剂在使用过程中,由于失去其原有活 性而成为废弃物,这些富含金属的废催化剂弃之不用,不仅是资源上的浪费,而且污染环境。最近,环保法规对废催化剂的丢弃越来越严格。废加氢催化剂被美国环境保护机构(USEPA)认为是危险废弃物。废催化剂有几种处理方法,如填埋处置、回收金属,再生或重复使用,利用其作为原材料生成其它有用产品来解决废催化剂问题。从环境和经济的观点,利用废催化剂为原料来生成其它有价值的产品是一个理想的选择。 [0003] USP7335618公开了一种生成加氢处理催化剂及金属回收的方法。该方法是将加氢处理工艺中的废催化剂经过热处理,研磨后得到再生粉末。再生粉末根据金属含量进行筛分、成型、干燥和焙烧得到再生催化剂,该再生催化剂中直径5-200nm 的孔所占孔容至少为0.2mL/g ,直径>200nm 的孔所占孔容小于0.1mL/g 。该工艺中要求再生后金属含量(Ni+V)总和为1.5~10wt %,同时对废催化剂粉末进行筛分,原料范围较窄且工艺过程较为复杂。 [0004] USP6030915公开了一种大孔加氢处理催化剂的制备工艺。该工艺包括废加氢处理催化剂通过热处理除去部分碳和硫,研磨热处理后的催化剂,把研磨后催化剂与至少一种添加剂混合,混合物料成型形成新的加氢催化剂。催化剂中氧化铝作为粘结剂,添加剂为铝矾土、硅藻土、高岭土及海泡石等。该工艺特别适用于制备沸腾床催化剂。该专利仅仅解决了催化剂孔结构和酸性质的改变,没有对活性金属进行恢复,来提高其加氢活性。并且处理过程复杂,能耗较高。 [0005] CN03133558.6公开了一种废催化剂制备加氢精制催化剂的方法。该方法是将废的加氢催化剂研磨后,加入加氢活性金属氧化物或活性金属盐类,加入粘结剂混捏成型。将成型后的物料经过再生处理来得到新的加氢精制催化剂。该专利中催化剂的再生处理要经过四个阶段,且需要对活性金属进行补充,对催化剂的孔结构上改变很少。 发明内容 [0006] 针对现有技术的不足,本发明目的是提供一种有效利用废加氢处理催化剂的方法,该方法不仅解决了废弃催化剂的污染问题,而且制备出适用于沸腾床加氢工艺的新催化剂,且技术容易实施,催化剂加氢活性高。 [0007] 本发明由废加氢处理催化剂制备新加氢处理催化剂的方法包括以下步骤: [0008] (1)将废加氢处理催化剂研磨粉碎; [0009] (2)向步骤(1)中的粉末加入氧化铝、粘结剂及酸溶液或碱性溶液等原料混捏、成型; [0010] (3)将步骤(2)中得到的样品经过干燥、焙烧得到新加氢处理催化剂。 说 明 书 CN 102441440 A 3

催化氢化反应安全操作原则(通用版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 催化氢化反应安全操作原则(通 用版) Safety management is an important part of production management. Safety and production are in the implementation process

催化氢化反应安全操作原则(通用版) 1.催化剂领用量应遵循按需领用的原则。需要多少领多少,要避免一次领用过多,长期放置不用,而导致催化剂活性降低甚至失活,或者干燥失水甚至自燃。暂时存放须用氮气保护。 2.仪器设备的检查与使用 (1)实验室里进行催化氢化反应,实施前必须仔细检查所用仪器,不得使用有明显破损、有裂痕以及有大气泡的玻璃仪器; (2)对所使用的氢气袋子必须用氮气检查是否漏气,不得使用漏气的氢气袋子; (3)检查所用的胶管是否老化不可用以及接头处是否松动; 对于使用高压釜进行的催化氢化反应,初次使用高压釜前必须有专人进行培训。使用设备前必须按规定逐项检查,主要内容包括:(1)场地是否整洁有序,避免摆放杂乱导致的安全隐患; (2)氢气及氮气的压力表头使用前必须进行打压试验,确认正

常后方可使用; (3)氢气及氮气钢瓶压力; (4)管路是否有裂纹,是否畅通; (5)各阀门是否漏气,并对确认其开/关状态; (6)热电耦温度计是否正常可用,线路是否完好不露电,插热电偶时注意插到底,使之真实反应体系温度等; 3.投料:向容器中加入溶剂和原料,搅拌溶解后,向容器中吹入氮气一段时间,使体系处于惰性气氛中,再加入催化剂。加入催化剂的动作要快,以尽可能减少催化剂自燃并引燃溶剂的可能性。或者先将催化剂加到溶剂中再一起转入反应器,再加入主原料,但因为体系呈黑色难以观察。 置换体系:用真空抽尽体系中的空气后,用氮气袋向体系中通入氮气,再抽尽氮气,如此重复操作3-5次,然后再抽尽氮气,用氢气袋通入氢气,如此重复操作2-3次,最后通入氢气进行反应。在高压釜中,要求置换次数均要多一些。 4.反应中间取样:取样前,先用氮气置换体系2-3此,或者吹

废催化剂处理(DOC)

石油化工废催化剂中往往含有一些有毒成分,主要是重金属和挥发性有机物,具有很大的环境风险,对其进行无害化处理处置显得尤为重要。此外,石油化工废催化剂中有较高含量的贵金属或其他有价金属,有些甚至远高于某些贫矿中的相应组分的含量,金属品位高,可将其作为二次资源回收利用。对石油化工废催化剂进行综合利用既可以提高资源利用率,更可以避免废催化剂带来的环境问题,实现可持续发展。 1、废催化剂有多少? 据报道,全球每年产生废催化剂50万~70万吨,其中,废炼油催化剂占很大的比例。随着我国炼油催化剂销量的逐年递增,废炼油催化剂的产生量也逐年增加。如果不对废炼油催化剂加以科学管理,其中的有毒有害成分会污染环境并危害人体健康,并且其中的一些贵重金属资源也会流失。因此,对废炼油催化剂进行有效的处理和利用已成为一个十分重要的课题 。

目前,FCC催化剂的使用量占据了较大的市场份额,约为炼油催化剂总使用量的68.9%;加氢精制、加氢裂化和催化重整催化剂所占比例分别为9.4%,6.2%,3.3%;其他种类的炼油催化剂所占比例约为12.2%。2015年我国石油消费量达到5.85亿吨(估算值),废炼油催化剂的产生量也达到20.7万吨(估算值)。 2、主要成分及含量 几种催化裂化、加氢精制、加氢裂化和催化重整新鲜催化剂的主要成分及含量见表2。 由于催化剂反应活性的需要,有些新鲜催化剂本身就含有有毒有害成分。如加氢精制与加氢裂化催化剂中含有NiO,属于致癌性物质。

炼油过程中,原油中的一些有毒有害成分会进入到催化剂中,废炼油催化剂的主要成分及含量见表3~4。 由表3可见,废FCC催化剂表面可能沉积有Ni,V,Fe等重金属,少量的Na,Mg,P,Ca,As,Cu等元素也会沉积在废催化剂上。另外,为了使沉积在催化剂上的重金属活性受到抑制,通常会向系统中加入一定量的钝化剂,而钝化剂中含有Sb,也是一种有毒物质。废加氢精制催化剂上会有Ni和V等金属沉积,根据进料的不同,As、Fe、Ca、Na及黏土等杂质也会沉积在催化剂上使其活性降低甚至失活。因催化重整工艺对原料的要求很严格,故其废催化剂中有毒有害成分很少,废催化剂表面以积碳居多,由于装置运转时间较长,原油中的硫、氮、金属等也会在催化剂表面累积。

相关文档