文档库 最新最全的文档下载
当前位置:文档库 › 手把手教你天线设计——用MATLAB仿真天线方向图

手把手教你天线设计——用MATLAB仿真天线方向图

手把手教你天线设计——用MATLAB仿真天线方向图
手把手教你天线设计——用MATLAB仿真天线方向图

手把手教你天线设计——

用MATLAB仿真天线方向图

吴正琳

天线是一种变换器,它把传输线上传播的导行波,变换成在无界媒介(通常是自由空间)中传播的电磁波,或者进行相反的变换。在无线电设备中用来发射或接收电磁波的部件。无线电通信、广播、电视、雷达、导航、电子对抗、遥感、射电天文等工程系统,凡是利用电磁波来传递信息的,都依靠天线来进行工作。此外,在用电磁波传送能量方面,非信号的能量辐射也需要天线。一般天线都具有可逆性,即同一副天线既可用作发射天线,也可用作接收天线。同一天线作为发射或接收的基本特性参数是相同的。这就是天线的互易定理。天线的基本单元就是单元天线。

1、单元天线

对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。两臂长度相等的振子叫做对称振子。每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子。

对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。两臂长度相等的振子叫做对称振子。每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子。

1.1用MATLAB画半波振子天线方向图

主要是说明一下以下几点:

1、在Matlab中的极坐标画图的方法:

polar(theta,rho,LineSpec);

theta:极坐标坐标系0-2*pi

rho:满足极坐标的方程

LineSpec:画出线的颜色

2、在方向图的过程中如果rho不用abs(f),在polar中只能画出正值。也就是说这时的方向图只剩下一半。

3、半波振子天线方向图归一化方程:

Matlab程序:

clear all

lam=1000;%波长

k=2*pi./lam;

L=lam/4;%天线臂长

theta=0:pi/100:2*pi;

f1=1./(1-cos(k*L));

f2=(cos(k*L*cos(theta))-cos(k*L))./sin(theta);

rho=f1*f2;

polar(theta,abs(rho),'b');%极坐标系画图

2、线性阵列天线

2.1方向图乘积定理

阵中第i 个天线单元在远区产生的电场强度为:

2(,)i

j i i i i i

e E K I

f r π

λθ?-=式中,i K 为第i 个天线单元辐射场强的比例常数,i r 为第i 个天线单元至观察点的距离,(,)i f θ?为第i 个天线单元的方向图函数,i I 为第i 个天线单元的激励电流,可以表示成为:

B

ji i i I a e φ-?=式中,i a 为幅度加权系数,B φ?为等间距线阵中,相邻单元之间的馈电相位差,亦称阵内相移值。

在线性传播媒质中,电磁场方程是线性方程,满足叠加定理的条件。因此,在远区观察点P 处的总场强E 可以认为是线阵中N 个辐射单元在P 处辐射场强之和,因此有:

21100(,)i j r N N i i i i i i i

e E E K I

f r πλθ?---====?

∑∑若各单元比例常数=1i K ,各天线单元方向图(,)i f θ?

相同,则总场

强表示为:

210(,)i B j r N ji i i i

e E

f a e r πλφθ?---?==?

∑假设观察点P 距离天线阵足够远,则可认为各天线单元到该点的射线互相平行。根据远场近似:

00cos i i y

r r r r id α=???=-??对幅度:对相位:因为cos cos sin y αθ?

=将(2.5)、(2.6)式带入(2.4)式,总场强可进一步简化为:21i(dcos sin )0(,)B N j i i E f a e

πθ?φλ

θ?--?==∑定义式(2.7)中21i(dcos sin )0(,)B N j i i F a e

πθ?φλθ?--?==∑为阵列因子,则该式说

明了天线方向图的一个重要定理——乘法定理。即阵列天线方向图函数(,)E θ?等于天线单元方向图函数(,)f θ?与阵列因子

21i(dcos sin )0(,)B N j i i F a e

πθ?φλθ?--?==∑的乘积。

2.2、MATLAB 仿真阵列天线方向图

本文对单元间距19mm,频率为8.5GHz 的20单元的线阵方向图进行了仿真分析具体分析如下:

根据仿真需求,完成天线仿真MATLAB 程序如下:

此程序能够完成各种线阵天线收发、和差方向图,应用此软件我们做了如下试验:

2.2.1、和方向图对相位误差的敏感性分析

A、理想条件

下图方向图参数如下:

频率:8.5GHz

间距:19mm

加权:泰勒加权-30dB

波束指向:0°

引入误差:理想条件,未引入相位误差。

程序设置和方向图如下图:

B、20°相位误差

下图方向图参数如下:频率:8.5GHz

间距:19mm

加权:泰勒加权-30dB 波束指向:0°

引入误差:引入20°随机相位误差。程序设置和方向图如下图:

B、10°相位误差

下图方向图参数如下:

频率:8.5GHz

间距:19mm

加权:泰勒加权-30dB

波束指向:0°

引入误差:引入10°随机相位误差。

程序设置和方向图如下图:

结论:相位随机误差会对天线负瓣影响较大。在天线负瓣要求≤-25dB的情况下,用Taylor-30dB加权理想情况下能达到-30dB负瓣,但实际使用中一般会引入系统随机误差,股很难达到-30dB负瓣,从仿真来看,20°以内的随机相位误差会对负瓣产生影响,但仍能满足

指标要求。由此可见,工程应用时,最好根据实际情况保证天线相位随机误差在一定的范围内。

2.2.2、阵列天线出现栅瓣的情况仿真分析

下图方向图参数如下:

频率:8.5GHz

间距:19mm

加权:泰勒加权-30dB

波束指向:-20°

引入误差:理想条件,未引入相位误差。

运行结果和方向图如下图:

下图方向图参数如下:

频率:8.5GHz

间距:19mm

加权:泰勒加权-30dB

波束指向:-40°

引入误差:理想条件,未引入相位误差。运行结果和方向图如下图:

下图方向图参数如下:

频率:8.5GHz

间距:19mm

加权:泰勒加权-30dB

波束指向:-60°

引入误差:理想条件,未引入相位误差。

运行结果和方向图如下图:

结论:由此可见,在间距19mm的情况下,此天线扫描到-20°、-40°时方向图、增益、负瓣均只有小幅变化;当扫描到-60°出现下明显栅瓣,波束宽度剧烈展宽(未考虑单元方向图),增益大幅下降(从13.5dB(-40°)下降到7.8dB(-60°))。

2.2.3、阵列天线差方向图、不加权方向图等的情况仿真

频率:8.5GHz

间距:19mm

加权:泰勒加权-30dB

波束指向:-40°

引入误差:理想条件,未引入相位误差。

是否为差方向图:是

方向图如下图:

频率:8.5GHz

间距:19mm

加权:泰勒加权-30dB

波束指向:0°

引入误差:理想条件,未引入相位误差。是否为差方向图:是

方向图如下图:

频率:8.5GHz

间距:19mm

加权:泰勒加权-30dB

波束指向:0°

引入误差:引入20°随机相位误差。是否为差方向图:是

方向图如下图:

频率:8.5GHz

间距:19mm

加权:不加权

波束指向:0°

引入误差:理想条件,未引入相位误差。是否为差方向图:是

方向图如下图:

频率:8.5GHz

间距:19mm

加权:泰勒加权-30dB

波束指向:-40°

引入误差:引入20°随机相位误差是否为差方向图:是

方向图如下图:

3、MATLAB程序获取

此软件为本文作者设计,已上传作者百度文库,版权归作者所有,如需使用搜索百度文库:手把手_方向图_matlab。

手把手教你结构设计(入门到熟练)

手把手教你结构设计(入门到熟练) 1.结构设计的过程(了解) 本文是送给刚接触结构设计及希望从事结构设计的新手的,其目的是使新手们对结构设计的过程以及结构设计所包括的内容有一个大致的了解,请前辈们不要见笑了,新人们有什么问题也可以在贴中提出来,大家共同讨论,共同进步。 1,看懂建筑图 结构设计,就是对建筑物的结构构造进行设计,首先当然要有建筑施工图,还要能真正看懂建筑施工图,了解建筑师的设计意图以及建筑各部分的功能及做法,建筑物是一个复杂物体,所涉及的面也很广,所以在看建筑图的同时,作为一个结构师,需要和建筑,水电,暖通空调,勘察等各专业进行咨询了解各专业的各项指标。在看懂建筑图后,作为一个结构师,这个时候心里应该对整个结构的选型及基本框架有了一个大致的思路了. 2,建模(以框架结构为例)(关键) 当结构师对整个建筑有了一定的了解后,可以考虑建模了,建模就是利用软件,把心中对建筑物的构思在电脑上再现出来,然后再利用软件的计算功能进行适当的调整,使之符合现行规范以及满足各方面的需要.现在进行结构设计的软件很多,常用的有PKPM,广厦,TBSA等,大致都差不多。这里不对软件的具体操作做过多的描述,有兴趣的可以看看,每个软件的操作说明书(好厚好厚的,买起来会破产)。每个软件都差不多,首先要建轴网,这个简单,反正建筑已经把轴网定好了,输进去就行了,然后就是定柱截面及布置柱子。柱截面的大小的确定需要一定的经验,作为新手,刚开始无法确定也没什么,随便定一个,慢慢再调整也行。柱子布置也需要结构师对整个建筑的受力合理性有一定的结构理念,柱子布置的合理性对整个建筑的安全与否以及造价的高低起决定性作用...不过建筑师在建筑图中基本已经布好了柱网,作为结构师只需要对布好的柱网进行研究其是否合理.适当的时候需要建议建筑更改柱网.当布好了柱网以后就是梁截面以及主次梁的布置.梁截面相对容易确定一点,主梁按1/8~1/12跨度考虑,次梁可以相对取大一点主次梁的高度要有一定的差别,这个规范上都有要求。而主次梁的布置就是一门学问,这也是一个涉及安全及造价的一个大的方面.总的原则的要求传力明确,次梁传到主梁,主梁传到柱.力求使各部分受力均匀。还有,根据建筑物各部分功能的不同,考虑梁布置及梁高的确定(比如住宅,在房中间做一道梁,本来层就只有3米,一道梁去掉几十公分,那业主不骂人才怪...)。梁布完后,基本上板也就被划分出来了,当然悬挑板什么的现在还没有,需要以后再加上...,梁板柱布置完后就要输入基本的参数啦,比如混凝土强度啊,每一标准层的层高啊,板厚啊,保护层啊,这个每个软件设置的都不同,但输入原则是严格按规范执行.当整个三维线框构架完成,就需要加入荷载及设置各种参数了,比如板厚啊,板的受力方式啊,悬挑板的位置及荷载啊什么的,这时候模形也可以讲基本完成了,生成三维线框看看效果吧,可以很形象的表现出原来在结构师脑中那个虚构的框架. 2.计算 计算过程就是软件对结构师所建模型进行导荷及配筋的过程,在计算的时候我们需要根据实际情况调整软件的各种参数,以符合实际情况及安全保证,如果先前所建模型不满足要求,就可以通过计算出的各种图形看出,结构师可以通过对计算出的受力图,内力图,弯矩图等等对电算结果进行分析,找出模型中的不足并加以调整,反复至电算结果满足要求为止,这时模型也就完全的确定了.然后再根据电算结果生成施工图,导出到CAD中修改就行了,通常电算的只是上部结构,也就是梁板柱的施工图,基础通常需要手算,手工画图,现在通常采用平面法出图了,也大大简化了图纸有利于施工. 3.绘图 当然,软件导出的图纸是不能够指导施工的,需要结构师根据现行制图标准进行修改,这就看每个人的绘图功底了,施工图是工程师的语言,要想让别人了解自己的设计,就需要更为详细的说明,出图前结构师要确定,别人根据施工图能够完整的将整个建筑物再现于实际中,这是个复杂的过程,需要仔细再仔细,认真再认真。结构师在绘图时还需要针对电算的配筋及截面大小进一步的确定,适当加强薄弱环节,使施工图更符合实际情况,毕竟模型不能完完全全与实际相符.最后还需要根据现行各种规范对施工图的每一个细节进行核对,宗旨就是完全符合规范,结构设计本就是一个规范化的事情.我们的设计依据就是那几十本规范,如果施工图中有不符合规范要求的地方,那发生事故,设计者要负完全责任的......总的来讲,结构施工图包括设计总说明,基础平面布置及基础大样图,如果是桩基础就还有桩位图,柱网布置及柱平面法大样图,每层的梁平法配筋图,每层板配筋图,层面梁板的配筋图,楼梯大样图等,其中根据建筑复杂程度,有几个到几十个结点大样图. 4.校对审核出图 当然,一个人做如此复杂的事情往往还是会出错,也对安全不利,所以结构师在完成施工图后,需要一个校对人对整个施工图进行仔细的校对工作,校对通常比较仔细资格也比较老,水平也比较高,设计中的问题多是校对发现的,校对出了问题后返回设计者修改。修改完毕交总工审

基于MATLAB的智能天线及仿真

基于M A T L A B的智能天 线及仿真 This model paper was revised by the Standardization Office on December 10, 2020

摘要 随着移动通信技术的发展,与日俱增的移动用户数量和日趋丰富的移动增值服务,使无线通信的业务量迅速增加,无限电波有限的带宽远远满足不了通信业务需求的增长。另一方面,由于移动通信系统中的同频干扰和多址干扰的影响严重,更影响了无线电波带宽的利用率。并且无线环境的多变性和复杂性,使信号在无线传输过程中产生多径衰落和损耗。这些因素严重地限制了移动通信系统的容量和性能。因此为了适应通信技术的发展,迫切需要新技术的出现来解决这些问题。这样智能天线技术就应运而生。智能天线是近年来移动通信领域中的研究热点之一,应用智能天线技术可以很好地解决频率资源匮乏问题,可以有效地提高移动通信系统容量和服务质量。开展智能天线技术以及其中的一些关键技术研究对于智能天线在移动通信中的应用有着重要的理论和实际意义。 论文的研究工作是在MATLAB软件平台上实现的。首先介绍了智能天线技术的背景;其次介绍了智能天线的原理和相关概念,并对智能天线实现中的若干问题,包括:实现方式、性能度量准则、智能自适应算法等进行了分析和总结。着重探讨了基于MATLAB的智能天线的波达方向以及波束形成,阐述了music和capon两种求来波方向估计的方法,并对这两种算法进行了计算机仿真和算法性能分析; 关键字:智能天线;移动通信;自适应算法;来波方向; MUSIC算法 Abstract With development of mobile communication technology,mobile users and communication,increment service are increasing,this make wireless services increase so that bandwidth of wireless wave is unfit for development of communication,On the other hand,much serious Co-Channel Interruption and the Multiple Address interruption effect utilize rate of wireless wave’s bandwidth,so the transported signals are declined and wear down,All this has strong bad effect on the capacity and

天线设计指南

天线设计指南?........................................................................................................................... 2 简介?...........................................................................................................................................?2 天线原理?...................................................................................................................................?3 天线类型?...................................................................................................................................?5 天线的选择?............................................................................................................................... 7 天线馈电的考量?..................................................................................................................... 13 芯片天线?.................................................................................................................................?21 各种天线的比较?..................................................................................................................... 25 环境对天线性能的影响?......................................................................................................... 25 塑料外壳的影响?..................................................................................................................... 27 调试 PCB 空板?......................................................................................................................... 32 使用塑料和人体接触来调整调试?......................................................................................... 38?

手把手教你做 无线奶粉罐天线

二、奶粉罐天线: DIY精神就是利用手头的资源,发挥最大的作用,我们身边很多的金属罐子,奶粉罐是最常见的了。 下面介绍下DIY 奶粉罐天线的过程: 根据测试,首先确定自己DIY的数据: 各数据如下: 中心频点=2.445G 圆筒直径=127mm 圆筒长度=111mm 振子长度=31mm 振子距圆筒底部边距=37mm 你一定会问这个数值是哪里来的?微波天线的制作精度相当高,起码要达到毫米级,否则很容易导致天线不可用,由于每个人得到的圆筒不同,这里有一个圆筒天线的通用计算器,可以精确的计算各参数,从而使这款天正在制作上达到实用化! 通用计算器:http://www.saunalahti.fi/elepa l/antenna2calc.php

从图片可以看出,馈线的屏蔽网连接金属圆筒,信号通过圆筒反射到振子上,当然振子就是馈线的芯线了,芯线与金属筒是绝缘的,这点必须注意! 很多爱好者都喜欢在圆筒加装N座或BNC 座,然后在馈线的连接处做对应的N头或B NC头,用于连接。但mr7觉得虽然该方法对使用十分方便,但同时也对信号造成了损耗(估计1-2DBI),尤其在2.4G的频段更加明显!因此,mr7决定把屏蔽网直接焊在圆筒上(焊接前先把外壳打磨光滑),而作为振子的芯线则保留其原来的泡沫绝缘。这样一来把损耗减到最低。有点专线专用的

味道了! 建议大家最好在焊接前找根直径稍比馈线粗一点的小铜管和热缩套管,先把铜管套在馈线上,然后跟屏蔽网一起焊牢在金属圆筒的外壳上,然后用热风筒把热缩套管来回吹多次,把馈线固定在铜管上,这样一来可以很好的减低由于调节天线时给馈线和振子带来的影响! 是选用双屏蔽的RG-58电缆,接头是SMA

14元阵列天线方向图及其MATLAB仿真

14元阵列天线方向图及其MATLAB仿真

阵列天线方向图及其MATLAB 仿真 1设计目的 1.了解阵列天线的波束形成原理写出方向图函数 2.运用MATLAB 仿真阵列天线的方向图曲线 3.变换各参量观察曲线变化并分析参量间的关系 2设计原理 阵列天线:阵列天线是一类由不少于两个天线单元规则或随机排列并通过适当激励获得预定辐射特性的特殊天线。 阵列天线的辐射电磁场是组成该天线阵各单元辐射场的总和—矢量和由于各单元的位置和馈电电流的振幅和相位均可以独立调整,这就使阵列天线具有各种不同的功能,这些功能是单个天线无法实现的。 在本次设计中,讨论的是均匀直线阵天线。均匀直线阵是等间距,各振源电流幅度相等,而相位依次递增或递减的直线阵。均匀直线阵的方向图函数依据方向图乘积定理,等于元因子和阵因子的乘积。 二元阵辐射场: 式中: 类似二元阵的分析,可以得到N 元均匀直线振的辐射场: 令 ,可得到H 平面的归一化方向图函数,即阵因子的方向函数: 式中:ζφθψ+=cos sin kd 均匀直线阵最大值发生在0=ψ 处。由此可以得出 ])[,(212121ζθθθ?θj jkr jkr m e r e r e F E E E E --+=+=12 cos ),(21jkr m e F r E E -=ψ?θθζ φθψ+=cos sin kd ∑-=+-=10)cos sin (),(N i kd ji jkr m e e r F E E ζ?θθ?θ2πθ=)2/sin()2/sin(1)(ψψψN N A =kd m ζ?-=cos

这里有两种情况最为重要。 1.边射阵,即最大辐射方向垂直于阵轴方向,此时 ,在垂直于阵轴的方向上,各元观察点没有波程差,所以各元电流不需要有相位差。 2.端射振,计最大辐射方向在阵轴方向上,此时0=m ?或π,也就是说阵的各元电流沿阵轴方向依次超前或滞后kd 。 3设计过程 本次设计的天线为14元均匀直线阵天线,天线的参数为:d=λ/2,N=14相位滞后的端射振天线。基于MATLAB 可实现天线阵二维方向图和三维方向图的图形分析。 14元端射振天线H 面方向图的源程序为: a=linspace(0,2*pi); b=linspace(0,pi); f=sin((cos(a).*sin(b)-1)*(14/2)*pi)./(sin((cos(a).*sin(b)-1)*pi/2)*14); polar(a,f.*sin(b)); title('14元端射振的H 面方向图 ,d=/2,相位=滞后'); 得到的仿真结果如图所示: 14元端射振天线三维方向图的源程序为: y1=(f.*sin(a))'*cos(b); z1=(f.*sin(a))'*sin(b); x1=(f.*cos(a))'*ones(size(b)); surf(x1,y1,z1); 2 π?±=m

手把手教你学FPGA 设计思想篇

泽屹电子 手把手教你学FPGA 设计思想篇 阿东团队编著

手把手教你学FPGA 设计思想篇

目录 写在前面...................................................................................................................................... - 4 - 1 什么是设计思想.................................................................................................................... - 6 - 2 概述........................................................................................................................................ - 6 - 3 代码简单化............................................................................................................................ - 6 - 4 注释层次化............................................................................................................................ - 7 - 5 交互界面清晰化.................................................................................................................... - 7 - 6 模块划分最优化.................................................................................................................... - 7 - 7 代码工具化............................................................................................................................ - 8 - 8 方案精细化............................................................................................................................ - 8 - 9 资源合理化............................................................................................................................ - 9 - 10 时序流水化.......................................................................................................................... - 9 - 11 资源优化方法.................................................................................................................... - 10 - 12 代码自检............................................................................................................................ - 10 - 13 通用电路BB化.................................................................................................................. - 10 -

用matlab 仿真不同天线阵列个天线的相关系数

2.3.1 阵列几何图 天线阵可以是各种排列,下图所示分别为圆阵(UCA)、线阵(ULA)、矩形阵(URA)排列方式与空间来波方向关系图,为简化整列分析,假设阵元间不考虑耦合,L 为天线数目,天线间距相等且均为d ,为入射在阵列上的水平波达角,为垂直波达角。 图2- 1 阵列排列方式与空间来波方向的关系 1) 圆阵排列方式的天线响应矢量为: 011cos() cos() cos() cos() (,)[,,...,,...,]l L j j j j T U C A a e e e e ξ?ψξ?ψξ?ψξ?ψ θ?-----= 公 式2- 1 其中2/,0,1,...,1l l L l L ψπ==-为第l 天线阵元的方位角,sin(),w w k r k ξθ=为波 数 2) 线阵排列方式的天线响应矢量为: cos sin (1)cos sin (,)[1,,...,]w w jk d jk d L T U LA a e e ?θ ?θ θ?-= 公式2- 2 3) 矩形阵列方式的天线响应矢量为: (1)()[(1)] (1)[(1)(1)](,)(()())[1,,...,,,,... ,...,,...,] T jv j p v ju j u v u URA N p j u p v j N u j N u p v T a vec a u a v e e e e e e e θ?-++---+-== 公式2- 3 ,N P 分别为x ,y 方向的天线数目,这里设x y d d =, (1)()[1,,...,]ju j N u T N a u e e -=; cos sin w x u k d ?θ=; (1)()[1,,...,]jv j p v T p a v e e -=;

天线设计

5. 2.4G PCB 天线设计 本节主要讨论的是2.4G PCB 天线,如果不考虑成本及体积,可以选用其它天线,如贴片天 线(小尺寸、中性能、中成本)或外置的鞭状天线(大尺寸、高性能、高成本),而PCB 天线是最低成本、中等尺寸,只要设计得当又能获得足够性能的天线。 本节中包括三种天线: ◆ 超小型PIFA 天线:用于Nano Dongle 的PCB 天线,由于PCB 空间受限,最大增益会 比其它几种天线小6dB 左右,即工作距离会短一半。由此天线及MCU 做成的完整板子大小为11mm*18mm 左右。 ◆ 正常PIFA 天线:用于Normal Module 的PCB 天线,所占PCB 空间最大,最大增益可 以达到1.5dB ,如PCB 面积足够,建议用此天线。由此天线做成的RF Module 板子大小为15mm*18mm 左右。 ◆ 正常Wiggle 天线:用于Normal Module 的PCB 天线,所占PCB 空间比第二种稍小, 增益也稍差1dB ,可以用于对体积稍有要求的无线终端,如对于空间比较紧凑的无线鼠标等设备。由此天线做成的RF Module 板子大小为13mm*18mm 左右。 5.1. 小尺寸Nano Dongle 用PIFA 天线设计 天线具体尺寸如下图(板材为两层FR4,板厚0.6mm ): 其中天线线宽A :0.15mm ;B :0.25mm ;C : 0.4mm 图表11 Nano Dongle PIFA 天线

天线性能S11如下,工作频段覆盖整个2.4G ISM 频段 : 图表12 Nano Dongle PIFA 天线S11 2D 和3D 增益如下,该天线最大增益只有-5dB 左右:

手把手教你天线设计——用MATLAB仿真天线方向图

手把手教你天线设计—— 用MATLAB仿真天线方向图 吴正琳 天线是一种变换器,它把传输线上传播的导行波,变换成在无界媒介(通常是自由空间)中传播的电磁波,或者进行相反的变换。在无线电设备中用来发射或接收电磁波的部件。无线电通信、广播、电视、雷达、导航、电子对抗、遥感、射电天文等工程系统,凡是利用电磁波来传递信息的,都依靠天线来进行工作。此外,在用电磁波传送能量方面,非信号的能量辐射也需要天线。一般天线都具有可逆性,即同一副天线既可用作发射天线,也可用作接收天线。同一天线作为发射或接收的基本特性参数是相同的。这就是天线的互易定理。天线的基本单元就是单元天线。 1、单元天线 对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。两臂长度相等的振子叫做对称振子。每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子。 对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。两臂长度相等的振子叫做对称振子。每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子。

1.1用MATLAB画半波振子天线方向图 主要是说明一下以下几点: 1、在Matlab中的极坐标画图的方法: polar(theta,rho,LineSpec); theta:极坐标坐标系0-2*pi rho:满足极坐标的方程 LineSpec:画出线的颜色 2、在方向图的过程中如果rho不用abs(f),在polar中只能画出正值。也就是说这时的方向图只剩下一半。 3、半波振子天线方向图归一化方程: Matlab程序: clear all lam=1000;%波长 k=2*pi./lam;

知识:手把手教你计算光电参数,设计高光效产品

知识:手把手教你计算光电参数,设计高光效产品 作为一个光学设计师,在工作中经常遇到关于光电参数计算的问题,以前100lm/W灯管就是好产品,但随着LED的发展,要求也水涨船高,现在很多工程案例为了节能,光效从120涨到150、甚至180lm/W,让人非常头疼。 下面结合实例,谈一谈怎么设计一款光电满足要求的灯具。 标称值一般指产品稳定后的测试数据。 你首先必须知道灯具测试的标准,大部分灯具可以直接通过积分球完成光电测试,依据IESLM79提供的方法,需要待灯具稳定后来测试,至于一些参数虚标的产品可以无视。

图1.IES LM79中对灯具稳定的要求 为什么一定是稳定后的数据,大部分LED产品从瞬态到稳态都有一个衰减,而这些衰减很大,不能够忽视。 通过测试这些衰减大小,可以等到一个相对的热衰减系数,可以参看红字部分。 表2市场上8-9W球泡灯的测试参数 LED灯珠选型与测试 设计的时候,首先是LED选型,LED规格书好多页,让你眼花缭乱。主要有额定功率、光通量、电压、色温、显色指数、色容差等等。如果继续深究下去,支架有ppa、pct、emc 几种,芯片尺寸有好多种,荧光粉、硅胶、金线、支架金属都有很大的猫腻,这些对光源寿命都有着很大影响。 对LED而言,最重要的就是额定电流下光通量,比如现在最常用2835颗粒,额定60mA 的光通量24-26lm。那是不是我将100pcs该LED焊在灯条上,60mA测试时光通量就是240-260lm?

答案是否定的,以下是一些误差的来源,最后测试报告一定是以自己仪器测试为准,所以就需要弄清楚这些系数。 表3 一些误差汇总 然而这些系数有时候推算比较麻烦,也少不了很多一对一测试。所以我的思路是,直接将厂商的标准LED灯珠焊在灯板上,用大积分球测试,直流供电,测试多个电流下的数据。 如果你设计一款常规的产品,对光效没有要求,额定电流下测试就可以了。但如果你需要更高光效的产品,那些方法就不适用了,要么选择更亮的灯珠,要么就是降低电流使用,更多的时候两者需要结合来使用。 表4 一款颗粒的测试数据 LED灯珠数量计算 做好以上一些工作后了,你还缺少两个重要的参数,一个是灯具电源转换效率,另外一个就是灯具的光学效率,可以通过如下公式计算,有时候面对全新的灯具无从入手,可以根据经验进行一些估算。

MATLAB仿真天线阵代码

天线阵代码 一、 clc clear all f=3e9; N1=4;N2=8;N3=12; a=pi/2; %馈电相位差 i=1; %天线电流值 lambda=(3e8)/f; %lambda=c/f 波长 d=lambda/2; beta=2.*pi/lambda; W=-2*pi:0.001:2*pi; y1=sin((N1.*W./2))./(N1.*(sin(W./2))); %归一化阵因子 y1=abs(y1); r1=max(y1); y2=sin((N2.*W./2))./(N2.*(sin(W./2))); %归一化阵因子 y2=abs(y2); r2=max(y2); y3=sin((N3.*W./2))./(N3.*(sin(W./2))); %归一化阵因子 y3=abs(y3); r3=max(y3); %归一化阵因子绘图程序, figure(1) subplot(311);plot(W,y1) ; grid on; %绘出N=4等幅等矩阵列的归一化阵因子 xlabel('f=3GHz,N=4,d=1/2波长,a=π/2') subplot(312);plot(W,y2) ; grid on; %绘出N=8等幅等矩阵列的归一化阵因子 xlabel('f=3GHz,N=8,d=1/2波长,a=π/2') subplot(313);plot(W,y3) ; grid on; %绘出N=12等幅等矩阵列的归一化阵因子 xlabel('f=3GHz,N=12,d=1/2波长,a=π/2') %--------------------- %只有参数N改变的天线方向图 t=0:0.01:2*pi; W=a+(beta.*d.*cos(t)); z1=(N1/2).*(W);

手把手教你设计限制性股票和股票期权方案

手把手教你设计限制性股票和股票期权方案2018-08-08 11:38 限制性股票和股票期权是国内上市公司应用最广泛的两种股权激励方式,也是有明确政策规范的两种股权激励方式,本文将讲述如何设计限制性股票和股票期权方案。 一、基本原则 由于非上市公司并无股票,因此上市公司和非上市公司在方案的设计和应用层面会有如下不同之处: 二、政策要求 上市公司在设计限制性股票和股票期权计划的时候,会有明确的政策规范,最主要的规范如下表:

上表中,虽然对限制性股票和股票期权的授予价和行权价有明确规定,但并不绝对,只要给出证监会充分合理解释也能获批。例如,2017年苏泊尔限制性股票激励案例,股票来源是通过二级市场回购,公告草案前一日收盘价是37.07元/股,但是公司授予价格是1元/股,远远低于规定的价格,公司在公告中披露,该定价目的为考虑激励对象整体薪酬水平的竞争力。 非上市公司在方案设计中,可以不受上述政策约束,根据公司实际情况自行设计。

三、方案设计 股权激励方案设计需遵守四步法原则,方能保证方案的切实有效,四步分别是激励分析、激励基础、激励保障和激励实施。 1)激励分析 对公司的人员情况、业务发展和资本现状进行分析。而对于限制性股票和股票期权两种方案,大致可以总结出以下几种情况: ?人员较稳定,能力较确定的,可采取限制性股票的方式;人员还有待观察的,但又确实十分重要的,可采取股票期权的方式; ?初创公司一般倾向于股票期权;上市公司一般倾向于限制性股票; ?未来企业估值明显提升的、或者上市公司股价肯定上涨的,采用股票期权的较多; 股价平缓甚至略微不稳定导致可能下降的,采用限制性股票的较多。 当然,限制性股票和股票期权各有特色,企业到底采取哪种方式还有很多影响因素,需要全盘考虑才能更加周详。 2)激励基础 激励基础是一些基本的股权激励规则,包括选人机制、分配机制、发放机制、定价机制和收益机制。

MATLAB仿真天线阵代码

天线阵代码 .pudn./downloads164/sourcecode/math/detail750575.htm l 一、 clc clear all f=3e9; N1=4;N2=8;N3=12; a=pi/2; %馈电相位差 i=1; %天线电流值 lambda=(3e8)/f; %lambda=c/f 波长 d=lambda/2; beta=2.*pi/lambda; W=-2*pi:0.001:2*pi; y1=sin((N1.*W./2))./(N1.*(sin(W./2))); %归一化阵因子 y1=abs(y1); r1=max(y1); y2=sin((N2.*W./2))./(N2.*(sin(W./2))); %归一化阵因子 y2=abs(y2); r2=max(y2); y3=sin((N3.*W./2))./(N3.*(sin(W./2))); %归一化阵因子 y3=abs(y3);

r3=max(y3); %归一化阵因子绘图程序, figure(1) subplot(311);plot(W,y1) ; grid on; %绘出N=4等幅等矩阵列的归一化阵因子 xlabel('f=3GHz,N=4,d=1/2波长,a=π/2') subplot(312);plot(W,y2) ; grid on; %绘出N=8等幅等矩阵列的归一化阵因子 xlabel('f=3GHz,N=8,d=1/2波长,a=π/2') subplot(313);plot(W,y3) ; grid on; %绘出N=12等幅等矩阵列的归一化阵因子 xlabel('f=3GHz,N=12,d=1/2波长,a=π/2') %--------------------- %只有参数N改变的天线方向图 t=0:0.01:2*pi; W=a+(beta.*d.*cos(t)); z1=(N1/2).*(W); z2=(1/2).*(W); W1=sin(z1)./(N1.*sin(z2)); %非归一化的阵因子K1 K1=abs(W1); %---------------------- W=a+(beta.*d.*cos(t));

天线设计的经典笔记

HF Antenna Design Notes Technical Application Report 11-08-26-003 Sept 2003 Radio Frequency Identification Systems

Contents Edition 3 – September 2003 (i) About this Manual (ii) 1Reader Requirements (2) 2Tools Required (2) 2.1VSWR Meter (2) 2.2Antenna Analyzer (3) 2.3Oscilloscope (3) 2.4Charge Level Indicator (4) 2.5Software Tools (5) 3Antenna Design Considerations (5) 3.1What is the Read Distance Required? (5) 3.2What is the Inlay Orientation? (5) 3.3At What Speed is the Inlay Traveling? (6) 3.4What is the Inlay Separation? (6) 3.5How Much Data is Required? (6) 4Environmental issues (7) 4.1What are the Governmental (PTT/FCC) limits? (7) 4.2Is there Electrical Noise? (7) 4.3Is there Metal in the Environment? (7) 4.4Proximity of other Antennas (7) 5Materials (8) 6Loop Antennas (9) 6.1Loop Antenna Resonant Theory (10) 6.2Inductance Measurement (11) 6.2.1Calculation (11) 6.2.2Measurement at 1 kHz (LCR Meter) (11) 6.2.3Accurate measurement of LCR parameters (11) 6.2.4Resonance Capacitance (12) 6.3Determining the Q (12) 6.4Measuring the Quality Factor (14) 7Antenna Matching (16) 7.1Gamma Matching (16) 7.2T-Matching (20) 7.3Transformer Matching (22) 7.4Matching Transformer (22) 7.5Baluns (23) 7.6Capacitance Matching (27) 8Coupling between Antennas (31) 8.1Nulling Adjacent Antennas (31) 8.2Reflective Antennas (31) 8.3Two Antennas on a Splitter (in Phase) (31) 8.4Two Antennas on a Splitter (Out-of-Phase) (32) 8.5Rotating Field Antennas (32) 8.6Complementary Antennas (33) 8.7All Orientations (360o) Detection (36) Appendix A Return Loss (38) Appendix B Reactance & Resonance Chart (39) Appendix C Coax-cable Splitter (40) Appendix D Component Suppliers (41)

手把手教您设计一堂微课

手把手教您设计一堂微课 转载2016-09-19 ~嘿,老师们,微课制作今天教您 微课成为当下流行的授课方式,它时间短、制作简单,容量小、易搜索、易传播的特点,以及适合学习者自主学习、探究学习的优点备受老师和学生的青睐。的作用,启示,解惑”同时,它也打破了传统课堂讲课的方式,在五分钟内达到“让优质的教育资源得到充分的利用与整合,我们的学生学习也更加轻松快乐高效。 短短五很多老师在制作微课的过程中呢,会遇到各种各样的困难和疑惑,但是,分钟的微课有时怎么都做不精彩,吸引不了学生的注意。 将所有微接续本周翻转课堂专题,小编特意给老师们推出四步搞定微课,今天,! 课的小技巧全都罗列出来,大家一目了然,简单又快捷 ! 轻轻松松搞定四步制作微课 青花瓷我很忙周杰伦- 1选题有重点微课的选题是微课制作最关键的一环,良好的选题可以事半功倍的进行讲解、录制,不好的选题同样可以使得微课变得平凡乃至平庸。 1、选择教学中的重点难点 一节微课一般讲授一个知识点,对于这个知识点的选择,关乎知识结构的设计,对于教学中的重点难点用来制作微课,是一个较好的选择,较为符合微课制作的初衷:教学资源分享,为学生(教师)解惑,启发教学。 2、要适合用多媒体表达 微课作为一种媒体,内容的设计要适合使用多媒体特性,对于不适合使用多媒体因为也许使用黑板教学或进行活动实践制作的结果也许是徒劳的,表达的内容,的教学效果更佳。 同时也会使教学过程平庸无奇,令观看者失去学习欲望。因而微课选题要适合使用多媒体表达,适合加入丰富的图形图像、多姿的动画、声色兼有的视频。 2总有一款微课适合您 1、讲授类 适用于教师运用口头语言向学生传授知识。这是最常见、最主要的一种微课类型。 2、问答类 适用于教师按一定的教学要求向学生提出问题,要求学生回答,并通过问答的形

matlab仿真天线辐射图

微波技术与天线作业 电工1001,lvypf(12) 1、二元阵天线辐射图matlab实现 1)matlab程序: theta = 0 : .01*pi : 2*pi; %确定θ的范围 phi = 0 : .01*pi : 2*pi; %确定φ的范围 f = input('Input f(Ghz)='); %输入频率f c = 3*10^8; %常量c lambda = c / (f*10^9); %求波长λ k = (2*pi) / lambda; %求系数k d = input('Input d(m)='); %输入距离d zeta = input('Input ζ='); %输入方向系数ζ E_theta=abs(cos((pi/2)*cos(theta))/sin(theta))*abs(cos((k*d*sin(theta)+zeta)/2)); %二元阵的E面方向图函数 H_phi=abs(cos((k*d*cos(phi)+zeta)/2)); %二元阵的H面方向图函数 subplot(2,2,1); polar(theta,E_theta); title('F_E_θ') subplot(2,2,2); polar(phi,H_phi); title('F_H_φ'); subplot(2,2,3); plot(theta,E_theta); title('F_E_θ'); grid xlim([0,2*pi]) subplot(2,2,4); plot(phi,H_phi); grid xlim([0,2*pi]) title('F_H_φ');

2)测试数据生成的图形: a)f=2.4Ghz,d=lambda/2,ζ=0 图1,f=2.4Ghz,d=lambda/2,ζ=0 b)f=2.4Ghz,d=lambda/2,ζ=pi 图2,f=2.4Ghz,d=lambda/2,ζ=pi

天线设计软件4nec2的简易教程

天线设计软件4nec2的简易教程 (看了之后就能够自己动手制作自己的天线) By sanking bluesanking@https://www.wendangku.net/doc/4f9343686.html, 这个软件要学精也许要有比较全面的无线天线方面的知识,但是如果只是拿来设计一下自己天线或是改进一下某个天线,应该已经够了。 界面是英文,基本上英文能看懂几个的基本上能上手的,我在下面做的工作无非是翻译兼解释。本教程分两部分,第一部分是天线的制作,第二部分是天线的优化。 天线的制作 首先打开4nec2X.exe,出现程序主界面。 这里要说一下,这个软件用F2, F3, F4…F12…当做快捷键来调出相应的窗口。这是很方便的。F2就是主界面。(下面我会用F2之类的简称来说某个窗口)。 另外还有一点就是,一个窗口的调出有很多种方法,有时候我会挑最简单的来说,其它另外的方法大家可以自己研究。(图1) 我们要先建立一个,以.nec为后缀的文件,我们天线所有数据都会在这个文件里面。 要建立.nec文件,最简单的方法是Ctrl+F4,在跳出的窗口上的菜单里选,File ?Save 然后取个你自己中意的文件名保存。就OK了。(图2)

保好后,就开始设计天线。在这里我以叠双菱为例来说。 先点Symbols,按下图填好数据(不明白的看下面详细说明和图解)。注意,下图的最左下角的Scaling里要点选Meters,也就是单位是要米,如果是英制的单位那就全乱套了。(图3) 下面的是先有一个变量(字母),再等号后面给出了数量,这个变量在后面优化天线的时候要用到。单位是米,所以0.030米也就是3厘米。 L=0.030 第一个双菱(振子)的泛义边长,为什么叫泛义边长呢,因为有下面G=0.00125的缘故,菱形的边长是不一样的。有些长有些短,但是这个L是个基数。 F=45 双菱的(角度/2) 这个角度是用来计算坐标用的 Z=L*sin(F) 振子的Z坐标基数 Y=L*cos(F) 振子的Y坐标基数 Ld=0.03 第二个双菱(导向器)的边长(由于不需要Gap所以直接就是边长) Zd=Ld*sin(F) 导向器的Z坐标基数 Yd=Ld*cos(F) 导向器的Y坐标基数 G=0.00225 馈线接点处的间隔(Gap)的一半(说明一下,一般2mm直径的线做的双菱,中间的Gap是2.5也就是这个G应该是2.5+2的一半) R=0.001 铜丝线的半径 H=0.030 反射面与振子中心点的距离 Hd=0.030 导向器中心点与振子中心点的距离 RW=0.2 反射面的宽 RH=0.2 反射面的高 (图4)

相关文档
相关文档 最新文档