文档库 最新最全的文档下载
当前位置:文档库 › 深基坑支护体系研究

深基坑支护体系研究

深基坑支护体系研究
深基坑支护体系研究

深基坑支护结构研究现状

摘要:分析了国内外基坑工程的发展和研究现状,详细介绍了我国基坑工程的主要支护类型,包括水泥土墙、土钉墙、锚杆、排桩与地下连续墙等。最后分析了我国基坑工程存在的主要问题,并展望了今后的发展趋势。

关键词:基坑工程;综述;水泥土墙;土钉墙;锚杆;排桩与地下连续墙

0引言

随着我国国民经济的飞速发展,城市化进程不断加快,土地资源紧张的矛盾也日益突出,城市建设向高空、地下争取建筑物空间已然成为了一种发展趋势,越来越多的高层建筑物、地下工程大规模兴建。这些工程的共同特点是都要进行大规模地下开挖,必然导致大量的基坑工程产生[1]。基坑工程是一个古老而具有划时代特点的综合性的岩土工程课题,既涉及土力学中典型的强度和变形问题,又涉及到土体与支护结构的相互作用问题。对于这些问题的认识及其对策的研究,将随着土力学理论、计算技术、测试技术以及施工机械、施工技术的发展而逐步完善。

1国内外研究现状

1.1国外研究现状

早在20世纪40年代,Terzaghi和Peck等人就已经开始研究基坑工程中的岩土工程问题并提出了预估挖方稳定程度和支撑荷载大小的总应力法,这一理论一直沿用至今,只不过有了许多改进与修正;50年代Bjeruum和Eide给出了分析深基坑底板隆起的方法;60年代开始在奥斯陆和墨西哥城软黏土深基坑中使用仪器进行监测,此后大量的实测资料提高了预测的准确性,并从70年代起产生了相应的指导开挖的法规。在以后的时间里,世界各国的许多学着都投入研究,并不断地在这一领域取得丰硕成果。90年代以来,随着城镇建设中高层及超高层建筑的大量涌现,深基坑工程越来越多,同时密集的建筑物、复杂的深坑形式,使得基坑开挖的条件越来越复杂。因此,对基坑开挖与支护的计算与设计理论、施工技术等的要求也越来越高[2]。

1.2国内研究现状

基坑工程在我国出现较晚,20世纪70年代,国内只在少数大工程项目中有开挖深度达10 m以上的基坑工程,而且是在较少或者没有相邻建筑物和地下结构物的地区。80年代以来,我国首先在北京、上海、广州、深圳等大型城市大量兴建高层建筑,而高层建筑多数带有地下室,基坑支护工程随之剧增,基坑支护设计、施工与监测成为基础工程中的新热点。90年代以后,大多数城市都进入了大规模的旧城改造阶段,从而进一步促进了深基坑开挖技术的研究与发展,产生了许多先进的设计计算方法,众多新的施工工艺也不断付诸实施,出现了许多技术先进的成功的工程实例。但由于基坑工程的复杂性以及设计、施工的不当,工程事故的概率仍然很高[3-4]。

基坑支护技术在我国相对较年轻,无论是设计计算,还是施工、监控等方面都处在不断进步和发展的过程中。我国基坑工程的特点可以概括为“深、差、密、多、低”五个字,亦即我国的基坑越挖越深,工程地质条件越来越差,四周已建或在建建筑物密集或紧靠市政公路,基坑支护方法多,但是支护的成功率低。因此对于基坑工程还应进行精心设计与施工,提高对支护结构的要求,而且在建筑物稠密地区更应注意对于环境的保护,这样一来,虽然工期和施工费用均要提升,但是工程质量与安全性却可以得到相当的保证。

2基坑工程设计理念和方法的演进

2.1基坑工程设计理念的演变

我国基坑工程发展的重要方向是设计理念的演变。早期的设计出发点往往以考虑地下工程施工、为施工创造条件为主,设计中一般考虑承载能力极限状态,而较少关注周边环境保护,又由于缺乏设计规范指导,工程设计与施工或以经验为主,或以理论为主。如今基坑工程的设计首先考虑环境保护,设计不仅满足承载能力极限状态,而且满足正常使用极限状态,即满足环境保护要求。作为经验科学的基坑工程在设计和施工中必须坚持“理论和经验相结合”。

2.2基坑工程设计方法的发展

早期的基坑支护结构设计主要依据古典的土力学原理,采用静力平衡的解析法,古典方法主要有:卜鲁姆(H. Blum)的极限平衡法、求解入土深度的盾恩法、考虑板桩或支撑合理受力的等弯矩法及等反力法等,这些古典方法解决了一些基坑的基本问题,但计算仅限于力的平衡,较少考虑实际施工工况,采用这些计算方法所得到的计算结果用于基坑支护结构分析时,内力与实际情况的误差较大,难以反映复杂地下工程的施工工况,一般只适用于小型的简单基坑。之后提出了一种近似计算方法—等值梁法,它与实际吻合度较好,计算方法简单,在工程中逐渐广泛运用,并在单支点等值梁计算法的基础上,通过适当假定,形成了多支点板桩墙的计算模式,使之成为当时基坑设计常用的方法。在基坑支护结构日趋复杂的情况下,需要进行不同工况的分析,于是就提出了考虑施工工况的设计方法,但至此为比,基坑设计仍是以力平衡的解析法为主,无法进行变形分析。进一步的发展则是弹性基床系数法。在水平基础梁的弹性地基梁分析方法解决地基、基础梁两者的力健变形关系的基础上,提出将支护结构看作一竖向放置的梁,采用与水平基础梁分析相同的方法,形成了竖向弹性地基梁法(竖向弹性支点法),以后被我国有关基坑设计的规范采纳,它较好地解决了力和变形的计算问题,成为目前设计的主要方法之一,也是我国基坑工程现行规范推荐的主要计算方法。

武亚军等在对基坑开挖的有限元模拟中,土体刚度矩阵、外荷载和开挖荷载等都随开挖深度的变化而变化[5-6],得到由开挖和支护引起的力学效应为:

11111([K][K][K]){u}{F}([K][K]){u}sr pr p sr pr i i i i i i i i -----++=-+

图1 有限元计算模型

随着计算机技术、有限元分析方法以及商用软件的推广,考虑基坑开挖过程中的多种因素,例如作用在支护结构上水土压力的变化、模拟开挖过程、土体和结构共同作用等成为可能。继而在基坑中开始采用平而弹性地基杆系有限元法、空间有限元法等,这些方法都能较好地解决上述工程实际问题,使分析更为精细化,并可考虑土的弹塑性分析。

此外,从经典的太沙基(Terzaghi )、普朗特尔(Prandtl)等理论至今,在基坑整体稳定性等方而的分析和计算也在实践中得到不断发展。包括整体稳定性、抗倾覆稳定、坑底隆起稳定以及抗承压水稳定等,计算方法不断完善。

基坑工程的“时空效应”是中国工程院院士刘建航提出的基坑设计施工基本原理,对指

导基坑设计与施工具有很强的实际意义。简言之,基坑工程的“时空效应”就是基坑支护结构的变形和周边地层的变形随时间推移而发展,也因开挖的空间尺度、开挖后的坑底暴露而积而不同,它在软土地基的条件下尤为突出,是一个典型的施工力学问题。根据“时空效应”的原理,工程界总结出土方开挖的“分层、分块、对称、平衡、限时”原则己在大量工程中得到贯彻,理论和工程实践都证明了它的科学性和有效性。

除了计算方法的发展,近年来,信息化设计和施工也运用于基坑工程,在基坑工程进行实时监测和反分析以及基坑工程的风险分析和设计,实现了基坑的预测和预控。

3基坑工程施工技术的发展

20世纪80年代前,由于基坑规模小、工程量少,支护形式多为放坡、钢板桩支护等简单形式,而今,土钉墙、水泥土墙、排桩和地下连续墙等支挡式结构都己广泛应用[7]。

3.1水泥土墙工程

水泥土墙是重力式支护结构的主要形式,主要包括水泥土搅拌桩和高压喷射注浆法两种。

水泥土搅拌桩是以水泥作为固化剂的主剂,通过特制的搅拌机械边钻边往软土中喷射浆液或雾状粉体,在地基深处就地将软土和固化剂强制搅拌,由固化剂和软土之间所产生的一系列物理化学作用,形成抗压强度比天然土强度高得多,并具有整体性、水稳性的水泥加固土桩柱体,由若干根这类加固土桩柱体和桩间土构成复合地基。水泥搅拌桩适用于加固各种成因的软黏土,能够增加软土地基的承载能力,同时减少沉降量,提高边坡的稳定性。

高压喷射注浆法是把注浆管放入预定深度后,通过地面的高压设备使装置在注浆管上的喷嘴喷出20- 40 MPa的高压射流冲击切割地基土体,与此同时,注入浆液使之与冲下的土强制混合,待凝结后,在土中形成具有一定强度的固结体,以达到加固改良土体的目的,增强地基强度。主要适用于软弱土层,如第四纪的冲积层、残积层以及人工填土等,这些正是建筑物地基常出现病害,需要进行地基处理的地层。

图2 高压喷射注浆法

3.2土钉墙

土钉墙技术是在基坑边壁土体中放置一定长度和分布密集的土钉,土钉与周围土体紧密结合共同工作,形成复合土体,提高了土体的整体刚度,弥补了土体自身强度的不足,从而显著提高基坑边坡的整体稳定性。土钉墙由土钉、混凝土面层和防水系统组成。主要适用于土质较好地区,我国华北和华东北部一带应用较多,目前我国南方地区亦有应用,有的已用于坑深10 m以上的基坑,稳定可靠、施工简便且工期短、效果较好、经济性好、在土质较

好地区应积极推广。

图3 土钉墙

3.3锚杆工程

锚杆支护是一种较新的深基坑支护技术,是挡土结构与外拉系统相结合的一种深基坑组合式支护结构。锚杆是一种受拉杆件,它的一端与工程结构物或挡土桩墙联结,另一端锚固于地基的土层或岩层中,以承受结构物的上托力、拉拔力、倾侧力或挡土墙的土压力,它利用地层的锚固力维持结构物的稳定,锚杆主要由锚头、锚拉杆、锚固体3部分组成。目前锚杆的施工长度可达50 m以上,在黏性土中抗拔力可达1000 kN,被锚固的挡土墙可达40 m 以上。锚杆作为一项新技术,它是施工走在前头,设计理论落在后面,即施工工艺领先于其设计理论,目前在很多方面主要凭经验取得成功,因此它还有待于理论上的完善。

3.4排桩与地下连续墙

排桩墙支护体系,是由桩排式围护墙或地下连续墙组成的围护墙、支撑体系、防渗结构所构成的防水挡土体系。支护墙体的主要形式有:钢板桩、钢筋混凝土板桩、H型钢木挡板、钻孔灌注桩、SMW支护结构和地下连续墙[8-9]。

图4多级梯次联合支护体系典型剖面图

钢板桩是一种施工简单,投资经济的支护方法,它由钢板桩、锚拉杆(或内支撑、锚旋结构、腰梁等)组成。由于钢板桩本身柔性较大,如支撑或锚拉系统设置不当,其变形会增

大。基坑深度7m以上的软土地层,基坑不宜采用钢板桩支护,除非设置多层支撑或锚拉杆。钢板桩适用于柔软地基及地下水位较高的深基坑支护,施工简便,其优点是止水性能好,可以重复使用。

钢筋混凝土板桩是一种传统的支护结构,截面带企口有一定挡水作用。钢筋混凝土板桩施工方便,速度快,打桩后可立即开挖,工期短,与地下连续墙相比较造价低,经济效果显著。其支护强度高、刚度较大、变形小,打桩时的振动,挤土及噪声对周围环境影响较大,因此不适合在建筑物及地下管线密集的区域使用。接头外企口具有一定的防水效果,但在高水位软土地区,仍需注意防止接头处漏水所引起的水土流失,在硬土层中打设施工困难,不适合使用。

H型钢木挡板是国内外常见的基坑支护结构,能充分发挥H型钢抗弯能力强的特点,减少所需支撑或拉锚道数。适用于土质较好、不需抗渗止水或是地下水位较低的基坑,如果在含水地层中使用时,需要采用人工降低地下水位或配合明沟排水,保证施工作业面的干燥环境,对水土流失的封闭作用差,需采取隔水降水措施。由于该种支护墙体形式基底以下无挡板,必要时需采取措施保证基底稳定性。

钻孔灌注桩将单个桩体并排连续起来便可形成排桩式挡墙,施工工艺简单、成本低、平面布置灵活,墙身强度高,刚度大,支护稳定性好,变形小,但整体性差,在地下水位较高的地区不能单独起到挡水的作用,需设置挡水帷幕墙来挡水。适用于软黏土质和砂土地区,在砂砾层和卵石中施工困难,在重要地区、特殊工程及开挖深度较大的基坑中应用时特别需要慎重。

SMW支护结构是在水泥搅拌桩内插入H型钢或其它种类的受拉材料,形成支护和防水的复合结构,在日本称为SM W工法,同时具有受力和防渗两种功能。在日本结合多道支撑已经应用于开挖深度达20 m的基坑,近年来我国国内开始将其用于开挖深度在6-14 m的基坑支护。它施工噪声小,对周围环境影响小,结构强度可靠,凡是适合应用水泥搅拌桩的场合都可以使用,特别适合于以黏土和粉细砂为主的软土地层,挡水防渗性能好,不必另设挡水帷幕。如果能够采取一定施工措施成功收回H型钢等受拉材料,在费用上则大大低于地下连续墙,具有较广阔的发展前景。

地下连续墙最早于1950年出现在意大利,用于大坝或贮水池的防渗墙。我国于1958年开始采用排桩式地下连续墙作为水坝防渗墙。近几十年来,我国地下连续墙技术在工程实践和理论研究上都获得了很大成就。地下连续墙是在地面上用专门的挖槽设备,在泥浆护壁的条件下,分段开挖深槽,并向槽内吊放钢筋笼,用导管法在水泥浆下浇筑混凝土,便在地下形成一段墙段,以此逐段施工,从而形成一条连续的钢筋混凝土墙体。作为基坑支护结构,在基坑工程中它一般兼有挡土或截水防渗之作用,同时往往还“二墙合一”,即与地下主体结构一起作为建筑承重结构。地下连续墙刚度大,止水效果好,是支护结构中最强的支护型式,适用于地质条件差和复杂,基坑深度大,周边环境要求较高的基坑,但是造价较高,施工要求专用设备[10]。

4基坑工程存在的主要问题及展望

基坑工程与其隶属的岩土工程学科一样,是实用性,经验性极强的学科,是随着工程实践不断提高的学科。近些年的工程实践已经证明,在基坑工程这一领域,我们取得了许多值得骄傲的成就,但是也必须承认同时出现了很多工程事故。造成基坑事故的原因很复杂,唐业清等曾对103项深基坑工程事故的原因进行调查,统计结果表明,其中由于深基坑设计失误、水处理不当、结构和基坑失稳事故,占总事故的80%,其所造成的经济损失也相当严重目前基坑存在的问题大体可表现在两个方面:设计阶段存在的问题和施工阶段存在的问题。

设计阶段存在的问题:主要是基坑工程结构选型不合理。基坑支护及撑锚方法较多,为

了达到同一目的,可以有多种方法,而每一种方法都有其独特的优点,有的速度快、有的投资少、有的噪音小等[11]。我国土地辽阔,自然地理环境不同,土质各异,地基条件区域性较强,在选择建筑场地时,应尽量选择地质条件良好的场地从事建设。除地基土类别的不同外,地下水位的高低、土的物理力学性质指标以及周围环境条件等,都直接与支护结构的选型有关。

施工阶段存在的问题:深基坑施工中地下水的处理不当。基坑施工中,地下水的处理是一个难点,因土质与地下水位的差异,基坑开挖施工的方法也随之不同,尤其是在沿海等高水位地区或者表层滞水很丰富的地区,深基坑工程施工中地下水的处理是整个工程成败的关键。降低地下水位可能引起地面沉降,对环境造成不良影响,尤以深井降水影响最大,在很多失败的深基坑工程中,有很多是因为基坑施工中地下水的降排水没有处理好。唐业清等曾对103项深基坑工程事故的原因进行调查,其中仅水处理不当就占总事故的21.4%;信息化施工的程度不高。信息化施工是一项很有发展前途的新技术,具有代价小成效大的优点,安全监测是深基坑工程安全的重要保证条件之一,基坑监测与工程的设计、施工也被称为深基坑工程施工的三大基本要素。基坑工程在发生事故前或多或少都有预兆,因为基坑工程支护结构的破坏要经历一个由量变到质变的过程,通过信息化施工可以不断地优化设计方案,确保基坑开挖安全可靠而又经济合理。

在今后的发展中,基坑工程发展趋势主要表现在以下几个方面:

(1)深基坑支护结构选型。支护结构型式选择合理,就能做到安全可靠、施工顺利、缩短工期,带来可观的经济与社会效益。如型式选择不恰当,不但会危急基坑以及整个建筑物的安全,还会影响周边环境,所以今后深基坑工程发展的一个必然趋势就是如何使支护结构选型更加恰当。

(2)施工工艺上的发展。随着土钉墙方案的大量运用,喷射混凝土技术得到了充分的运用和发展;受地下空间的限制,内支撑或新型锚杆逐渐得以推广和运用;防渗技术也不断得到发展;在软土地区深层搅拌桩或注浆技术大量运用。因此,随着基坑支护新技术的大量运用,必将促进施工工艺的不断发展。

(3)信息监测与信息化施工技术。信息化施工可以对基坑土层性状、支护结构变位和周边环境条件的变化,进行各种观测及分析,并将观测结果及时反馈,以指导设计与施工。为确保基坑开挖安全可靠又经济合理,信息监测与信息化施工技术必将成为基坑工程发展的必然趋势。

为了满足社会主义现代化建设的需要,相信在以后的基坑工程实践中,随着我国经济建设的持续高速的发展和基坑支护理论与新技术的不断发展,基坑工程技术水平将会不断提高和发展,深基坑工程必将日益完善。

参考文献

[1]占丰林,周玉莹.基坑工程的研究动态及发展趋势[J].山西建筑,2005,31(11):3-5.

[2]刘建航,候学渊.基坑工程手册[K].北京:中国建筑工业出版社,1997,1-5.

[3]赵杰,邵龙谭,李淑英.基坑工程发展现状及存在的问题[C]//第十三届全国结构工程学术会议论文集,南昌,2004:371-376.

[4]龚晓南.高有潮.深基坑设计施工于册[K].北京:中国建筑工业出版社,1999.

[5]武亚军,张国军,栾茂田.深基坑工程施工的力学分析方法[J].建筑结构,2005,35(5):55-56.

[6]胡孔国,吴京.深基坑开挖和支护全过程分析的弹塑性有限元法[J].建筑结构,1999(3):34-36.

[7]黄运飞.深基坑工程实用技术[M].北京:兵器工业出版社,2000.

[8]翁其平,王卫东.多级梯次联合支护体系在上海虹桥综合交通枢纽基坑工程中的设计与实践[J].建筑结构,2012,42(5):172-176.

[9]王德强,曹淑敏,郑玉华.高压旋喷止水帷幕在深基坑支护工程中的应用[J].建筑技术,2007,38(2):120-122.

[10]黄木佳,陈添泉.深基坑支护内支撑的优化设计[J].工业建筑,2008(z1):823-825.

[11]谢文利,王方.何琴.深基坑工程存在的问题以及发展展望[J].山西建筑.2007,33(10):146-148.

大跨度深基坑支护技术的研究与应用

地铁洪湖里车站大跨度深基坑支护技术的研究与应用 地铁洪湖里车站大跨度深基坑 支护技术的研究与应用 贾利亨赵明好丁文兵 天津第三市政公路工程有限公司二分公司 天津市南开区长江道向阳路64号 300113 【摘要】:地铁车站工程施工中围护结构是重要的一个环节。本文以天津地铁洪湖里车站为例对灌注桩加搅拌桩内撑式支护结构型式的设计计算、土方开挖、支撑架设、体系转换、信息化监测等进行了研究与应用介绍。 【关键词】:深基坑、支护体系、时空效应、体系转换、信息化监测。 前言 随着经济水平和城市建设的迅速发展地下工程愈来愈多,开发和利用地下空间的要求日显重要。地下铁道、地下车库、地下商场、地下仓库、地下人防工程高层建筑的多层地下室等构筑物日益增多。 近年来,国内兴建了许多大型地下设施,如北京、上海的地铁、地下停车场、地下变电站和污水处理工程等,伴随着深基坑工程规模和深度的不断加大,开挖深度在10m以下的基坑已不少见,地铁车站的开挖深度最大已接近20m。大量深基坑工程的出现,促进了设计计算理论的提高和施工工艺的发展,通过大量的工程实践和科学研究,逐步形成了基坑工程学这一新兴学科。在土木工程领域中,目前基坑工程学是发展最迅速的学科之一,也是工程实践要求最迫切的学科之一。基坑工程正确、科学的设计和施工,配合切实有效的信息监测手段,能带来巨大的经济效益和社会效益,对加快施工进度、保护环境发挥了重要作用,否则将会招致严重的后果,大量工程实践已经证明了这一点。 基坑开挖的施工工艺一般有两种:无支护开挖(放坡开挖)和有支护开挖。在城市中心地带,建筑物稠密地区,往往不具备放坡开挖的条件,只能在支护结构保护下进行垂直开挖。对支护结构的要求,一方面是创造条件便于基坑土方的开挖,但在建(构)筑物及地下管线密集地区更重要的是保护周围环境,因此对支护结构应进行精心的设计和施工,并辅以必要的监测手段,以确保基坑安全。 基坑土方开挖是基坑工程的一个重要内容。基坑土方如何组织开挖,不但影响工期、造价,而且还影响支护结构的安全和变形,并危及周围环境。为此对较大的基坑工程必须编制详细的施工方案,运用时空效应理论,确定挖土机械、挖土工况、挖土顺序、支撑架设方法等。在软土地区和地下水丰富的地区,土方开挖还常常辅以基坑降水,以确保基坑安全和便于施工,保护环境。在施工过程中跟踪施工活动,对周围土体位移和附近建筑物、地下管线等保护对象的变形及受力情况进行量测,所取得的数据与预测值和计算值相比较,能可靠地反映工程施工所造成的影响,能较准确地以量的形式反映这种影响程度。在地下工程中,由于地质条件、荷载条件、施工方法和外界其它因素的复杂影响,很难单纯从理论上预测工程中可能遇到的所有问题,而且理论预测值还不能全面、准确地反映工程的各种变化。所以,在理论分析指导下有计划地进行现场工程信息检测十分必要。

基坑支护常见类型及设计要点

基坑支护常见类型及设计要点 摘要:通过对几种常见基坑支护类型各自优缺点的介绍和比较,引导并探索基坑支护的发展前景,从而确保建筑基础工程施工质量。 关键词:基坑支护、放坡开挖、水泥土维护墙、高压旋喷桩、槽钢钢板桩、钢筋混凝土板桩、钻孔灌注桩、地下连续墙、土钉墙 进入21世纪后我国城市高层建筑迅速发展,地下停车场、高层建筑埋深、人防、城市地铁工程统统涉及大量的基坑支护工程。普遍深度5m~10m,甚至达到20m~30m。由于基坑工程大多在城市中进行开挖,基坑周围通常存在交通要道、已建建筑或管线等各种构筑物,这就涉及到基坑开挖的一个很重要内容,要保护其周边构筑物的安全使用。而一般的基坑支护大多又是临时结构、投资太大也易造成浪费,但支护结构不安全又势必会造成工程事故。因此,如何安全、合理地选择合适的支护结构并根据基坑工程的特点进行科学的设计是基坑工程要解决的主要内容。以下简单介绍当前基坑工程中常见的支护结构类型及不同地基土条件下的基坑工程支护结构选型原则。 1、基坑支护的类型及其特点和适用范围 1、1 放坡开挖 适用于周围场地开阔,周围无重要建筑物,只要求稳定,位移控制五严格要求,价钱最便宜,回填土方较大。 1、2 高压旋喷桩 高压旋喷桩所用的材料亦为水泥浆,它是利用高压经过旋转的喷嘴将水泥浆喷入土层与土体混合形成水泥土加固体,相互搭接形成排桩,用来挡土和止水。高压旋喷桩的施工费用要高于深层搅拌水泥土桩,但其施工设备结构紧凑、体积小、机动性强、占地少,并且施工机具的振动很小,噪音也较低,不会对周围建筑物带来振动的影响和产生噪音等公害,它可用于空间较小处,但施工中有大量泥浆排出,容易引起污染。对于地下水流速过大的地层,无填充物的岩溶地段永冻土和对水泥有严重腐蚀的土质,由于喷射的浆液无法在注浆管周围凝固,均不宜采用该法。 1、3 槽钢钢板桩 这是一种简易的钢板桩围护墙,由槽钢正反扣搭接或并排组成。槽钢长6~8m ,型号由计算确定。其特点为:槽钢具有良好的耐久性,基坑施工完毕回填土后可将槽钢拔出回收再次使用;施工方便,工期短;不能挡水和土中的细小颗粒,在地下水位高的地区需采取隔水或降水措施;抗弯能力较弱,多用于深度≤4m的较浅基坑或沟槽,顶部宜设置一道支撑或拉锚;支护刚度小,开挖后变形较大。

浅谈双排灌注桩深基坑支护结构计算

浅谈双排灌注桩深基坑支护结构计算 摘要:深基坑双排灌注桩支护是在单排悬臂桩支护技术基础上新开发的一项技术。它仍属于悬臂式支护结构类型。工程实践证明:在稳定性较好的一般粘性土和砂土层中采用这种支护型式,与单排悬臂桩相比具有刚度大、位移小、支护高度大、节约投资等特点。 关键词:基坑支护;土压力;内力计算 0前言 单排悬臂桩支护已有较成熟的设计计算方法,而双排桩支护结构的设计计算则还处于研讨中,本文中依据作者近年来的工程施工设计实践经验,提出一套设计分析方法,供类似工程参考。 1 双排桩支护的受力特性 双排桩支护型式简单,前后排桩按一定排距布置成三角形或矩形平面,桩顶用现浇钢筋混凝土连梁或板连接起来,形成桩脚嵌固的刚架型式。它虽属于悬臂支护型式,但受力机理与单排悬臂桩有本质的区别。即桩间土对双排桩有土压力作用,而且作用力的大小与桩的排距大小有关,故双排桩支护结构可看成前后排桩都受到大小不等土压力作用的平面刚架。把土视为弹性体,并取矩形平面单元,把桩视为梁单元,利用有限元法分析得后排桩失去挡土作用的距离b max 为: 式中:h—桩的挡土高度;t—桩的理论埋深;μ—土 的波松比,μ≤0.5; 偏保守地取μ=0.5,t=0.2h代入式(1)得:b max≈1.6 h;同理,经分析得:后排桩受力超过前排桩的临界点满足: 因此,可将双排桩土压力分布大致分为三种情况: (1)当b ≤.125h时,后排桩承受全部土压力,前排桩通过横梁受到桩顶推力;双排桩土压力分布如图1(a);按库仑强度理论,图1中滑楔与水平面夹角为45°+ 。 (2)当1.6h>b>0.125h时,前、后排桩同时受到土压力作用,横梁可能受

深基坑支护技术现状综述

深基坑支护技术现状综述 摘要 对相关文献进行总结和归纳,梳理出本文的文献综述。主要概述了深基坑支护的研究背景和特点。本文对工程应用和数值模拟进行了综述。总结了现阶段深基坑支护技术存在的问题和发展前景。也提出了自己的看法。通过阅读本文可以掌握深基坑支护技术的设计与施工现状。 一、介绍 早在20世纪30年代,太沙基等人就开始研究基坑工程中的岩土工程问题,并提出了开挖稳定性预测和支护荷载大小全应力法。从那时起,世界各地的许多学者都致力于这方面的研究,并取得了巨大的成就。我国基坑工程起步较晚。20世纪70年代以前,北京、上海等地的高层和多层建筑的地下室相对较浅,约为4m单层地下室,其他城市的基坑发展较慢。 近年来,随着我国经济的快速发展,城市基础设施的规模逐渐增大。地下空间越来越不能满足发展的需要,地下空间的利用越来越受到重视,对基坑工程的要求也越来越高。现有的深基坑工程一般集中在城市建筑物附近,对周围建筑物影响很大,影响附近居民的正常生活。此外,深基坑支护工程在土方施工、挡土结构施工、降水施工等工程中都会影响周围的地质结构,并受到周围环境的不良影响。因此,深基坑支护稳定性问题越来越复杂,从而进一步推动深基坑开挖支护技术的研究和发展,产生了许多先进的设计计算方法,许多新的施工技术已经投入使用。 二、深基坑支护 (一)深基坑工程的主要特点 深基坑是指基坑开挖深度大于5m或地下室三层以上,或深度不超过5m,但地质条件、周边环境和地下管线是特别复杂的工程。深基坑工程的主要特点包括:建筑物越来越高,基坑的深度越来越深。 基坑开挖面积大,长度和宽度可达数百米,这使得基坑支护结构体系更难以保持基坑的稳定性。 在软弱土层中,基坑开挖会产生较大的位移和沉降,这将影响地下管线和周围建筑物的地基。 深基坑施工时间长,施工场地狭窄,降雨和重载堆积不利于基坑的稳定性。 在相邻场地的施工中,打桩、降水、挖孔、基础浇筑混凝土等过程将相互制约和

深基坑支护结构类型及其与适用范围

深基坑支护结构类型及其与适用范围 深基坑必须进行支护设计。根据不同的基坑深度、地质、环境与荷载情况采用不同的支护结构。常见的深基坑支护结构类型及其适用范围为: ⑴深层搅拌桩支护[1]。它是利用水泥、石灰等材料作为固化剂通过深层搅拌机械, 将软土和固化剂( 浆液或粉体) 强制搅拌, 利用固化剂和软土之间所产生的一系列物理化学反应, 使软土硬结成具有整体性、水稳定性和一定强度的桩体( 水泥土搅拌桩) , 利用搅拌桩作为基坑的支护结构。水泥搅拌桩适宜于各种成因的饱和粘性土, 包括淤泥、淤泥质土、粘土和粉质粘土等, 加固深度可从数米至50~60 米。由于其抗拉强度远小于抗压强度, 故常适用于基坑深度不大( 5~7 米) 、可采用重力式挡墙结构形式的基坑。这种支护结构防水性能好,可不设支撑, 基坑能在开敞的条件下开挖, 具有较好的经济效益。 ⑵排桩支护。排桩包括钢板桩、钢筋混凝土板桩及钻孔灌注桩、人工挖孔桩等, 其支护形式包括: ①柱列式排桩支护: 当边坡土质较好、地下水位较低时, 可利用土拱作用, 以稀疏的钻孔灌注桩或挖孔桩作为支护结构; ②连续排桩支护: 在软土中常不能形成土拱, 支护桩应连续密排, 并在桩间 做树根桩或注浆防水; 也可以采用钢板桩、钢筋混凝土板桩密排。 ③组合式排桩支护: 在地下水位较高的软土地区, 可采用钻孔灌注桩排桩与 水泥搅拌桩防渗墙组合的形式。对于开挖深度小于6 米的基坑,在无法采用重力式深层搅拌桩的情况下, 可采用600mm 密排钻孔桩, 桩后用树根桩防护, 也可采用打入预制混凝土板桩或钢板桩, 板桩后注浆或加搅拌桩防渗, 顶部设圈梁和支撑; 对于开挖深度为6~10 米的基坑, 常采用800~1000mm 的钻孔桩, 后面加深层搅拌桩或注浆防水, 并设置2~3 道支撑; 对于开挖深度大于10 米的基坑,可采用地下连续墙加支撑的方法, 也可采用800~1000mm 大直径钻孔桩 加深层搅拌桩防水, 设置多道支撑。 ⑶地下连续墙支护[2]。当在软土层中基坑开挖深度大于10 米、周围相邻建筑或地下管线对沉降与位移要求较高时常采用地下连续墙作基坑的支护结构。地下连续墙具有如下优点: ①墙体刚度大、整体性好, 因而结构和地基变形较小, 可用于超深的支护结构; ②适用于各种地质条件。特别是遇到砂卵石地层或要求进入风化岩层时, 钢板桩难于施工, 可采用地下连续墙支护; ③可减少工程施工时对环境的影响。但是造价高、对废浆液难于处理。 ⑷土钉墙支护。土钉墙支护是在基坑开挖过程中将较密的细长杆件钉置于原位

8种常见的基坑支护形式

8种常见的基坑支护形式 基坑支护的目的与作用 1.保证基坑四周的土体的稳定性,同时满足地下室施工有足够空间的要求,这是土方开挖和地下室施工的必要条件。 2.保证基坑四周相邻建筑物和地下管线等设施在基坑支护和地下室施工期间不受损害,即坑壁土体的变形,包括地面和地下土体的垂直和水平位移要控制在允许范围内。 3.通过截水、降水、排水等措施,保证基坑工程施工作业面在地下水位以上。 基坑支护结构的类型及其适用条件 1.放坡开挖 优势:只要求稳定,价钱最便宜。 劣势:回填土方较大。 适用:场地开阔,周围无重要建筑物的工程 2.围护墙深层搅拌水泥土 深层搅拌水泥土围护墙是采用深层搅拌机就地将土和输入的水泥浆强行搅拌,形成连续搭接的水泥土柱状加固体挡墙。 优势:由于一般坑内无支撑,便于机械化快速挖土;具有挡土、止水的双重功能;

一般情况下较经济;施工中无振动、无噪声、污染少、挤土轻微。 劣势:位移、厚度相对较大,对于长度大的基坑,需采取中间加墩、起拱等措施以限制过大的位移;施工时需注意防止影响周围环境。 适用:闹市区工程。 3.高压旋喷桩 高压旋喷桩所用的材料亦为水泥浆,它是利用高压经过旋转的喷嘴将水泥浆喷入土层与土体混合形成水泥土加固体,相互搭接形成排桩,用来挡土和止水。 优势:施工设备结构紧凑、体积小、机动性强、占地少,并且施工机具的振动很小,噪声也较低,不会对周围建筑物带来振动影响和产生噪声等。 劣势:施工中有大量泥浆排出,容易引起污染。对于地下水流速过大的地层,无填充物的岩溶地段永冻土和对水泥有严重腐蚀的土质,由于喷射的浆液无法在注浆管周围凝固,均不宜采用该法。 适用:施工空间较小的工程。

深基坑支护结构类型

深基坑支护结构类型 摘要:基坑是建筑工程中的一个重要部分,其发展与建筑业的发展有着密切的关系,同时,深基坑支护的选型都是工程施工的技术难点,以下介绍了几种常用的深基坑支护结构的类型,以及它们的特点和适用范围。 关键字:深基坑、支护结构、围护墙、支撑体系。 众所周知,,近年来随着我国城镇建设中高层及超高层建筑的大量涌现,以及大型市政设施建设工程的高速发展及大量地下空间的开发,必然会有大量的深基坑工程产生。然而无论是高层建筑还是其他设施的深基坑工程,由于都是在城市中进行开挖,基坑周围通常存在交通要道、已建建筑或管线等各种构筑物,加上密集的建筑物、基坑周围复杂的地下设施使得放坡开挖基坑这一传统技术不再能满足现代城镇建设的需要,因此,深基坑支护的选型都是工程施工的技术难点,深基坑开挖与支护引起了各方面的广泛重视。 同时,深基坑支护工程是一种特殊的工程构筑物,它具有复杂性、可变性和临时性的特点。无论采用何种支护结构,对支护结构的强度、嵌入深度、支护受力及构造都必须进行设计和详细计算,一定要做到结构可靠、经济合理、确保安全。 支护结构的种类很多,合理地选择支护结构的类型应根据场地地质条件、周围环境要求、工程功能、当地的常用施工工艺设备以及经济技术条件综合考虑而因地制宜地选择围护结构类型,那么常见的支

护结构类型主要有: 1、深层搅拌水泥土挡墙,将土和水泥强制拌和成水泥土桩,结硬后成为具有一定强度的整体壁状挡墙,用于开挖深度3~6m的基坑,适合于软土地区、环境保护要求不高,施工低噪声、低振动,结构止水性较好,造价经济,但围护挡墙较宽,一般需3~4m。 2、钢板桩,主要有两种(槽钢钢板桩和热轧锁扣钢板桩),用槽钢正反扣格接组成,或用U型、H型和Z型截面的锁口钢板桩。用打入法打入土中,相互连接形成钢板桩墙,既用于挡土又用于挡水,用于开挖深度3~10m的基坑。钢板桩具有较高的可靠性和耐久性,在完成支挡任务后,可以回收重复使用;与多道钢支撑结合,可适合软土地区的较深基坑,施工方便、工期短。但钢板桩刚度比排桩和地下连续墙小,开挖后绕度变形较大,打拔桩振动噪声大、容易引起土体移动,导致周围地基较大沉陷。 3、型钢横挡板,型钢横挡板围护墙亦称桩板式支护结构。这种围护墙由工字钢桩和横挡板组成,再加上围檩、支撑等则形成一种支护体系。施工时先按一定间距打设工字钢或H型钢桩,然后在开挖土方时边挖边加设横挡板。施工结束拔出工字钢或H型钢桩,并在安全允许条件下尽可能回收横挡板。另外,横档板长度取决于工字钢桩的间距,而厚度由计算确定,多用厚度60mm的木板或预制混凝土薄板。型钢横挡板围护墙多用于土质较好、地下水位较低的地区。 4、钻孔灌注桩挡墙,常用桩径直径600~1000mm,桩长15~30m,组成排桩式挡墙,顶部浇筑钢筋混凝土圈梁,多用于开挖深度为7~

基坑支护的作用与八种类型

基坑支护的作用与八种类型 因基坑作业易引发群死群伤,所以在建设施工中对基坑进行支护是尤为重要的,了解本篇,掌握基坑支护的八种常见形式。 一、基坑支护的目的与作用 1、基坑支护是保证基坑四周的土体的稳定性,同时满足地下室施工有足够空间的要求,这是土方开挖和地下室施工的必要条件。 2、保证基坑四周相邻建筑物和地下管线等设施在基坑支护和地下室施工期间不受损害。即坑壁土体的变形,包括地面和地下土体的垂直和水平位移要控制在允许范围内。 3、通过截水、降水、排水等措施,保证基坑工程施工作业面在地下水位以上。 4、基坑支护的重要作用是保障施工作业的安全,也可以理解为就是一种土体安全防护。 、基坑支护的形式 1、钢板桩 钢板桩这种建筑施工技术是一种相对比较简单的支护的设计方法,而且投资比较低。这种设计方法通常用于软地层。 2、地下连续墙 这种墙体结构的设计能够有效地提高整个建筑的刚度,提高整个建筑的防渗性。此结构通常情况下,用于软粘土及沙土等各种地质结构比较复杂的施工环境中。 3、柱列式的灌注桩的排桩支护 这种支护技术的设计方式主要分为疏排设计和密排设计两种形式。这种支护的设计在桩顶的设计过程中一定要注意浇注相对比较大的截面的钢筋,并且一定要确保混凝土梁帽连接的可靠性。为了防止地下水及其杂质在空隙内流入深基坑内,在建筑过程中应该使用高压注浆的操作方法。 除此之外,在建筑的深基坑支护的设计中还有土钉墙支护、锚杆喷射支护、锚索支护、桩锚支护、锚板墙支护、水泥土桩的深层搅拌支护等各种不同的施工技术。 4、边坡开挖

其适用于场地开阔, 土质较好, 周边无复杂地形, 无临边建筑物或构筑物的的条 件下施工。 5、SMW 工法桩 SMW 工法亦称劲性水泥土搅拌桩法,即在水泥土桩内插入H 型钢等(多数为H 型 钢,亦有插入拉伸式钢板桩、钢管等 ) ,将承受荷载与防渗挡水结合起来 ,使之成为 同时具有受力与抗渗两种功能的支护结构的围护墙。 施工时基本无噪声 ,对周围环境影响小 ;结构强度可靠 ,凡是适合应用水泥土搅拌 桩的场合都可使用 ;挡水防渗性能好 ,不必另设挡水帷幕 ;可以配合多道支撑应用 于较深的基坑 ;此工法在一定条件下可代替作为地下围护的地下连续墙 ,在费用上 如果能够采取一定施工措施成功回收 H 型钢等受拉材料 ;则大大低于地下连续墙 因而具有较大发展前景。 6、高压旋喷桩 ,它是利用高压经过旋转的喷嘴将水泥浆喷入 ,相互搭接形成排桩 ,用来挡土和止水。 7、钻孔灌注桩 施工时无振动、无噪声等环境公害 ,无挤土现象 ,对周围环境影响小 ;墙身强度高 , 刚度大,支护稳定性好,变形小;当工程桩也为灌注桩时 ,可以同步施工 ,从而施工有 利于施工组织、工期短。 8、土钉墙 这是一种边坡稳定式的支护 ,其作用与被动的具备挡土作用的上述围护墙不同 ,它 是起主动嵌固作用 ,增加边坡的稳定性 ,使基坑开挖后坡面保持稳定。 、深基坑支护施工 10 大基本要求 1、深基坑围护必须根据设计要求,深度及现场环境工程进度来确定施工方案, 纺制后经单位总工程师审批, 并报总监理工程师审批, 符合规范及法律法规要求 才能施工。 2、深基坑施工必须解决地下水位,一般采用轻型井点抽水,使地下水位降到基 坑底1.0m 以下,须有专人负责24h 值班抽水,并应做好抽水记录,当采取明沟 排水时,施工期间不得间断排水,当构筑物未具备抗浮条件时,严禁停止排水。 3、深基坑土方开挖时,多台挖土机之间间距应大于 10m ,挖土由上而下,逐层 进行,不得深挖。 4、深基坑上下应挖好阶梯或支撑靠梯,禁止踩踏支撑上下作业,基坑四周应设 置安全栏杆。 5、人工吊运土方时应检查起吊工具,工具是否牢靠,吊斗下面不得站人 6、 在深基坑边上侧堆放材料及移动施工机械时,应与挖土边缘保持一定距离, 当土质良好时,应离开 0.8m 以外,高度不得超过 1.5m 。 高压旋喷桩所用的材料亦为水泥浆 土层与土体混合形成水泥土加固体

基坑围护结构类型

基坑围护结构类型 什么是基坑围护结构,现阶段,我国基坑围护结构类型有哪些?基本情况怎么样?以下是相关基坑围护结构类型相关内容,基本情况如下: 基坑围护结构主要承受基坑开挖卸荷所产生的水压力和土压力,并将此压力传递到支撑,是稳定基坑的一种施工临时挡墙结构。 基坑围护结构类型主要包括:板桩式基坑围护、柱列式基坑围护、地下连续墙基坑围护、自立式水泥土挡墙基坑围护、组合式基坑围护、沉井法基坑围护类型,下面梳理相关常用处理方式,基本情况如下: ⑴深层搅拌桩支护。 它是利用水泥、石灰等材料作为固化剂通过深层搅拌机械, 将软土和固化剂( 浆液或粉体) 强制搅拌, 利用固化剂和软土之间所产生的一系列物理化学反应, 使软土硬结成具有整体性、水稳定性和一定强度的桩体( 水泥土搅拌桩) , 利用搅拌桩作为基坑的支护结构。水泥搅拌桩适宜于各种成因的饱和粘性土, 包括淤泥、淤泥质土、粘土和粉质粘土等, 加固深度可从数米至50~60 米。由于其抗拉强度远小于抗压强度, 故常适用于基坑深度不大( 5~7 米) 、可采用重力式挡墙结构形式的基坑。这种支护结构防水性能好,可不设支撑, 基坑能在开敞的条件下开挖, 具有较好的经济效益。 ⑵排桩支护。 排桩包括钢板桩、钢筋混凝土板桩及钻孔灌注桩、人工挖孔桩等, 其支护形式包括:

①柱列式排桩支护: 当边坡土质较好、地下水位较低时, 可利用土拱作用, 以稀疏的钻孔灌注桩或挖孔桩作为支护结构; ②连续排桩支护: 在软土中常不能形成土拱, 支护桩应连续密排, 并在桩间做树根桩或注浆防水; 也可以采用钢板桩、钢筋混凝土板桩密排。 ③组合式排桩支护: 在地下水位较高的软土地区, 可采用钻孔灌注桩排桩与水泥搅拌桩防渗墙组合的形式。对于开挖深度小于 6 米的基坑,在无法采用重力式深层搅拌桩的情况下, 可采用600mm 密排钻孔桩, 桩后用树根桩防护, 也可采用打入预制混凝土板桩或钢板桩, 板桩后注浆或加搅拌桩防渗, 顶部设圈梁和支撑;对于开挖深度为6~10 米的基坑, 常采用800~1000mm 的钻孔桩, 后面加深层搅拌桩或注浆防水, 并设置2~3 道支撑; 对于开挖深度大于10 米的基坑,可采用地下连续墙加支撑的方法, 也可采用800~1000mm 大直径钻孔桩加深层搅拌桩防水, 设置多道支撑。

毕业论文(深基坑支护技术研究)

毕业设计(论文)评语及成绩

毕业设计(论文)任务书

毕业设计(论文)开题报告

深基坑支护技术研究 Research on supporting technology of deep foundation pit 2010届土木工程专业 学号 201001032 学生王鑫 指导教师严任苗 完成日期 2014年 8月20日

摘要 近年来,随着经济的发展,我国的各类地下工程的飞速发展,地下空间与地铁等日益受到人们的关注,与之相关的深基坑问题相继出现。在施工过程中,怎样保证经济合理地处理好地基沉降和基坑支护等方面的问题在整个建筑工程中占有重要地位。在基坑支护方面,地下连续墙及刚支撑由于施工振动小,噪音低,非常适于城市施工而得到广泛使用。 本次毕业论文的设计容为市7号线地铁车站基坑设计与分析。设计容包括土压力结构力计算、基坑稳定性分析、支撑设计、基坑变形估算以及控制降水设计;设计中首先根据本基坑的勘查报告和基坑周围的环境情况对将要采取的方案做出初步的估计,然后根据相关规要求对上述方案做出修改和优化。降水井的设计包括井点类型的选择,井深,井径及基坑周围总井数的确定;支护结构设计包括支护结构的选型,边坡稳定性验算等以及在设计上部结构荷载作用下复合地基承载力和沉降量 的验算。 设计中包括对所选择的降水井方案,支护结构方案及地下连续墙支护处理方案在具体施工过程中的各个工序的施工流程编制,每道工序在整个施工顺序中的合理安排,以及施工过程中应该注意的事项等。为保证按期优质完工,必须合理的编制施工计划,并严格按照计划进行施工。 关键词:深基坑;地连墙;地铁;沉降;深基坑设

地铁深基坑各种常见支护形式

地铁深基坑各种常见支护类型施工总结 中铁一局第五工程有限公司陈国康 1 前言 1.1深基坑支护的作用 深基坑不论何种支护形式,它的作用主要是为了挡土、截水、保证坑底稳定的作用,同时可以承担必要的施工荷载、控制土体变形、保证基坑周边已有建筑物在施工过程中的安全,同时为在建地下结构工程施工提供起码的施工条件。 1.2深基坑支护形式的选择 随着我国城市建设的规模越来越大,地铁和高层建筑基础设计越来越深,对深基坑支护要求越来越高,基坑开挖支护项目愈来愈多,而基坑支护技术具有技术复杂、综合性强的特点,它与水文地质勘察、支护计算、开挖作业方式、施工质量要求、监控和现场管理等诸多因素有密切关联,同时对工程工期、造价、和临近建筑物又有举足重轻的影响,而深基坑支护工程大多为临时性工程,设计院一般会综合考虑支护结构的安全、经济性、便利性及参考业主意见,合理选择支护方式。 2 地铁深基坑常见的几种支护方式 地铁基坑支护应综合考虑场地工程地质与水文地质条件、基坑开挖深度、降排水条件、基础类型、周边环境对基坑侧壁变形控制的要求、基坑周边荷载、施工季节及施工条件、支护结构使用期限等因素,做到因地制宜、因时制宜,基坑支护常见方式:1、放坡开挖+喷锚支护、土钉墙、钢筋混凝土板桩、槽钢钢板桩、SMW工法桩、深层搅拌水泥土围护墙、地下连续墙、钻孔围护桩+旋喷桩止水帷幕+钢支撑(锚索)等。 3 各种支护形式的适用范围和施工方法 3.1放坡开挖+喷锚(短钉)支护 3.1.1适用范围

本支护形式适用于周围场地开阔,周围无重要建筑物,地质条件主要以回填土、粘土、亚粘土、少量砂卵层及强风化岩层,只要求稳定,位移控制无严格要求,不适用于粉砂层厚和周边有承压水的基坑,本支护方式是价钱最便宜,回填土方较大。 我公司施工的长沙地铁项目西广场明挖地铁区间和出入段线明挖地铁区间使用的本 支护方式。 3.1.2施工方法 ⑴开挖施工 基坑采用挖掘机配合自卸车开挖,预留0.2m的边坡保护层人工刷坡,开挖作业高度确定每层挖深为1.5m~2m左右,分段开挖长度根据混凝土喷射机的生产能力确定纵向100m左右。 ⑵刷坡 边坡预留的0.2m保护层采用人工刷坡,使岩面形成平整而规则的坡面,并清除坡面松土。 ⑶喷射第一层混凝土 开挖形成平整坡面后立即喷射第一层混凝土,厚度为50mm左右。 ⑷施工短钉 为保证坡面稳定,放坡开挖边坡上一般设计挂网,挂网用短土钉固定,短钉一般长度为1~3m,钢筋直径一般为22mm左右,当封闭层喷射混凝土达到设计强度70%后,及时施打短土钉,土体内的短和岩层短钉选用小型钻孔机具即可,然后逐孔注浆锚固。 ⑸挂网 当锚杆水泥净浆达到设计强度的70%后,即可挂网,并使其紧贴坡面,钢筋网与锚杆焊接在一起。 ⑹喷射第二层混凝土

基坑支护结构类型概况

基坑支护结构概况 1.概述 土木工程施工中首先要解决的就是“三通一平”,“一平”指施工场地的平整。城市地下工程施工中,常见的土方工程施工有如下几种形式:场地平整、基坑与沟槽的挖方与填方、地坪与路基填筑等。土木施工过程包括降水、土方开挖和土方回填等。 尤其是软土工程中的土方工程施工,工程量大,直接改变场地地貌,直接或间接影响场地周围的环境,且受施工地质情况、气候与水文等条件影响较大,所以必须在施工前对所在地区的土层性质、施工环境做好充分调查,选择合理的施工方案,做好地下水的降水和排水措施,以减小对环境的影响 土方工程中必须理解土层的性质,与施工密切的、反应图层性质的物理力学指标主要为:土的容重γ、土的相对密度G、土的天然含水量ω、土的孔隙比e和孔隙率n、土的饱和度S r、以及土的干容重γd、土的渗透系数k、土的相对密实度D r。 2.大开挖土方工程的边坡稳定 2.1大开挖土方工程 是指不采用支撑形式而采用直立或者放坡施工方法进行开挖的基坑工程。 使用条件:基坑挖深较浅、施工场地开阔、周围建筑物和地下管线及市政设施距离基坑较远。 2.2边坡失稳的破会形式和原因 基坑边坡破坏形式与土层的岩土性质、地面超载以及边坡形状等因素密切相关主要形式有: (1)沿近似圆弧的滑动面转动,这种破坏常常发生在较为均质的粘性土层; (2)沿近似平面的滑动,这种破坏常常发生在无粘性土层。 边坡的失稳常常是在外界不理因素的影响下触发和加剧的,一般有如下几种原因可能导致边坡原来受力状态失去平衡: (1)受荷:或由于地震或临近基坑打桩、车辆行驶、爆破等原因,使得侧向水平压力增加,破坏了原来的平衡状态。 (2)土体抗剪强度降低:由于水的作用而发生风化、淋溶、矿物成分的变化,或当边坡暴露时,雨水和地面水渗入边坡,导致含水量增加及孔隙水压力上升和土体软化, 或发生蠕变,从而最终造成土体的抗剪强度降低;对饱和砂性土,打桩、车辆行驶、爆破、地震等引起的振动导致土体的液化,从而降低土体的抗剪强度。 (3)静水压力的作用:降水或认为因素导致地下水位升高,增加了边坡的侧向静水压力。 2.3基坑边坡失稳的防止措施 (1)边坡修坡:可坡顶卸土、坡度减小、台阶放坡; (2)设置边坡护面:护面可做成10cm混凝土面层,为增加抗裂强度,内部可配置一定的构造钢筋(Φ6@300); (3)边坡坡脚抗滑加固。 3.深基坑支护结构

岩土工程深基坑支护技术研究

岩土工程深基坑支护技术研究 发表时间:2017-03-28T15:08:31.780Z 来源:《基层建设》2016年36期作者:耿振华 [导读] 摘要:深基坑支护施工作为岩土工程重要的施工环节,在进行实际的施工中受到多种因素的影响。 江苏省核工业二七二地质大队江苏南京 210000 摘要:深基坑支护施工作为岩土工程重要的施工环节,在进行实际的施工中受到多种因素的影响,虽然在进行实际操作中不断更新技术以及施工理念,但是在具体操作中仍旧会出现不足之处,因此需要专业人士不断的探索新技术、新方法,不断深入实际进行研究,从而更好地为深基坑施工做出重大的贡献。 关键词:岩土工程;深基坑支护;施工技术;应用 基坑工程作为建筑工程的基础工程,其重要性不言而喻,尤其是深基坑工程,其施工环境复杂、施工难度高,再加上众多因素的影响,如果没有采取有效的措施进行处理,将会导致深基坑出现坍塌或者基坑壁变形的问题,严重威胁建筑安全以及施工人员的生命安全。深基坑支护施工技术的应用,能够有效地解决上述问题。因此,文章针对岩土工程深基坑支护施工技术应用的研究具有非常重要的现实意义。 1 工程案例 文章以某岩土工程为例,基坑的深度为16.5m,该工程南面和西面为道路工程,北面有2栋4层、2栋5层建筑,东面有2栋7层建筑与1栋5层建筑。该工程的基土按照岩性和力学特征分层,由下到上依次为:粉质粘土,含有少量的钙质结核,层底埋深介于18.0~2O.5m之间;粉土,韧性低、干强度低,层底埋深介于17.5~18.5m之间;粉土夹粉质粘土,含有大量的贝类碎片,韧性低、干强度低,密实,层底埋深介于14.3~17.5m之间;粉土,韧性低、干强度低,层底埋深介于11.2~15.0m之间;粉质粘土夹粉土,土质均匀,干强度中等,切面光滑,层底埋深介于9.5~12.8m之间;粉土,韧性低,中密,局部有砂感,层底埋深介于6.2~8.5m之间;粉土夹粉质粘土,干强度低、无光泽、中密,局部夹粉质粘土,层底埋深介于4.2~7.5m之间;杂填土,密实度不均匀,杂色,含有砖块、混凝土块以及树根等杂质,层底埋深介于0.3~3.5m之间。水位埋深在自然地面下3.5~5.0m之间,大气降水为地下水的主要补给来源。由于该工程基坑深度为16.5m,技能侧壁变形控制等级与安全等级都为一级,在施工的过程中必须做好基坑支护施工,以此保证深基坑施工能够安全、有序地进行。因此,该工程施工单位在工程施工中应用了深基坑支护施工技术。 2深基坑支护施工方案 该岩土工程施工量大,施工单位采用土钉支护施工技术和锚杆支护施工技术两种支护施工技术相结合的方式,具体表现为: 2.1土钉支护施工技术 土钉支护施工技术是利用土体和土钉之间的相互作用来对边坡进行加固,以此提高土体的稳定性与整体性。在拉力与弯矩的影响下,土体会发生一定的变形,在应用土钉支护施工技术时,应该根据现场的实际状况以及相关规范,合理地确定土钉的强度与拉力。在进行土钉支护施工时应该注意以下几个方面:(1)严格按照施工规范和标准进行土钉拉拔试验,这样能够保证土钉的拉拔力能够满足工程的实际需求,在进行土钉拉拔力检测时,应该有具有相应资质的第三方进行,同时,还应该严格地控制注浆力度与注浆量。(2)根据钻机的总长度计算土钉支护的孔深,标注好所有孔的深度,成孔施工孔距的最大允许偏差为±5mm土钉墙坡面泄水孔预埋D50PVC管,各泄水孔之间应该间距20cm,为后续施工奠定坚实的基础。(3)在进行土钉支护施工时,应该严格地按照相关设计标准和规范,控制外加剂的种类与数量,浆液的水灰比等,注浆施工应该依靠浆液的重力作用来完成,直至浆液将孔注满为止,值得注意的是,在浆液初凝之前,应该根据实际状况进行补浆施工。 2.2土层锚杆支护施工技术 土层锚杆支护施工作为基坑支护用的锚杆是在基坑围护结构施工完成的灌注桩、钢筋混凝土桩,在进行基坑开挖施工时,挖至锚杆设计深度后,向土层内部进行锚杆施工。土层锚杆支护施工技术的工艺流程表现为:成孔施工,采用旋转冲孔式钻孔机、螺旋式钻孔机进行钻孔施工,现阶段最常采用的成孔工艺为压水钻进法,在进行钻孔施工时,钻孔、出渣与清孔施工同时进行,如果钻进施工过程中没有地下水,应该采用螺旋钻干作业法进行成孔施工;拉杆安放施工,在安放拉杆施工之前应该对锚杆进行除锈处理,锚杆的长度应该根据工程实际状况确定,但是不能低于10m,不能超过30m;灌浆施工,灌浆施工是土层锚杆施工的关键环节,锚杆灌浆施工通常采用纯水泥浆,水泥一般采用普通硅酸盐水泥,如果地下水具有一定的腐蚀性,应该采用防酸水泥,将水灰比控制在0.4左右,为了防止降低水灰比、干缩或者泌水的问题,应该适当地添加木质素磺酸钙,灌浆施工通常采用一次灌浆施工的方式,通过压浆泵把水泥浆压入到拉杆中,并通过拉杆管进入到锚孔中,通常将灌浆压力控制在0.5MPa左右,当浆液从孔口流出后,采用湿粘土将孔口堵塞,进行捣实,补浆施工的压力控制在500kPa左右,稳压10min左右,完成注浆施工;锚杆张拉施工,锚杆灌浆施工完成后,还应该进行锚固张拉施工,当锚固体、太作混凝土的强度超过15MPa时,再进行锚固张拉施工。 3排水施工 深基坑施工的过程中,出现积水或者地下水位过高的现象时,如果不能够及时地将积水排出,将会导致深基坑出现坍塌、变形等问题,因此必须做好排水施工。排水施工应该注意以下几个方面:应该在基坑上设置集水井、挡水墙、排水沟以及截水沟等,集水井、排水沟应该做好防渗管理,排水系统离基坑的距离必须超过1.5m;如果在施工的过程中需要进行局部降水,应该在电梯、基坑集水井位置设置井点降水;对于坑内排水系统,应该设置集水井、盲沟、排水沟,距离基坑边的距离应该超过0.5m。 4深基坑支护检测施工 当深基坑支护施工完成之后,应该加强检测,以此保证深基坑支护施工质量。具体包括以下几个方面:采用抗拔试验对土钉的抗拔承载力进行检测,抗拔试验包括基本试验与验收试验,基本试验检测的数量不能低于3个,验收试验检测的数量不能小于总数的1%,并且必须超过3个;当锚杆的体龄超过15天后,进行土层锚杆的验收试验,检测锚杆的承载力能否满足工程要求,检测数量不能小于锚杆总数的5%,至少3根;随时对深基坑的地下管线变形状况、周围建筑以及边坡的变形状况进行检测,然后采取针对性的措施进行处理,防患于未然。 5结语 总之,施工企业应该根据岩土工程现场的实际状况,加强地质勘察,并以勘察结果为依据,制定科学、合理的深基坑支护施工方案,

常见基坑支护类型

桩锚支护 建筑术语。 当一个建筑物施工时,如果需要开挖的基础很深,基坑边的土容易倒塌。为了能正常施工,就必须对基坑进行支护。 桩锚支护就是支护方法之一。 在开挖前沿基坑周边打一圈竖直的桩,用桩来阻挡土的坍塌。为防止开挖时桩倒塌,用水平方向的锚杆来拉住桩。锚杆也可以看作是水平方向的桩。 桩和锚杆共同构成的支护体系就叫桩锚支护。 悬臂式挡土墙 科技名词定义 悬臂式挡土墙 cantilever retaining wall 定义: 由底板及固定在底板上的悬臂式直墙构成的主要靠底板上的填土重量维持稳定的挡土墙。 应用学科:水利科技(一级学科);水工建筑(二级学科);挡水建筑物(三级学科) 悬臂式挡土墙【cantilever retaining wall】指的是由立壁、趾板、踵板三个钢筋混凝土悬臂构件组成的挡土墙。 面坡常用1:0.02~1:0.05,背坡可直立。 顶宽>0.15m,路肩墙>0.2m,踵板采用等厚,趾板端部厚度可减薄,但不小于0.30m。扶壁式挡土墙的立壁,常为等厚,间距常取墙高的1/3~1/2,厚度约为间距的1/8~1/6,但不小于0.3m 。 悬臂式挡土墙构造简单,施工方便,能适应较松软的地基,墙高一般在6m-9m之间。当墙高较大时,立壁下部的弯矩较大,钢筋与混凝土的用量剧增,影响这种结构形式的经济效果,此时采用扶壁式挡土墙。

地下连续墙 科技名词定义 中文名称:地下连续墙 英文名称:underground diaphragm wall 定义: 在地面以下用于支承建筑物荷载、截水防渗或挡土支护而构筑的连续墙体。 定义 由于目前挖槽机械发展很快,与之相适应的挖槽工法层出不穷;有不少新的工法已经 地下连续墙施工 不再使用膨润土泥浆;墙体材料已经由过去以混凝土为主而向多样化发展;不再单纯用于防渗或挡土支护,越来越多地作为建筑物的基础,所以很难给地下连续墙一个确切的定义。 一般地下连续墙可以定义为:利用各种挖槽机械,借助于泥浆的护壁作用,在地下挖出窄而深的沟槽,并在其内浇注适当的材料而形成一道具有防渗(水)、挡土和承重功能的连续的地下墙体。

深基坑支护技术现状及发展趋势

深基坑支护技术现状及发展趋势 李钟 (中建一局西诺公司,北京) 1 基坑工程发展概况 基坑工程是一个古老而又有时代特点的岩土工程课题。放坡开挖和简易木桩围护可以追溯到远古时代。人类土木工程活动促进了基坑工程的发展。特别是到了本世纪,随着大量高层、超高层建筑以及地下工程的不断涌现,对基坑工程的要求越来越高,出现的问题也越来越多,促使工程技术人员以新的眼光去审视基坑工程这一古老课题,使许多新的经验和理论的研究方法得以出现与成熟。 在本世纪30年代,Terzaghi等人已开始研究基坑工程中的岩土工程问题。在以后的时间里,世界各国的许多学者都投入研究,并不断地在这一领域取得丰硕的成果。基坑工程在我国进行广泛的研究是始于80年代初,那时我国的改革开放方兴未艾,基本建设如火如荼,高层建筑不断涌现,相应地基础埋深不断增加,开挖深度也就不断发展,特别是到了90年代,大多数城市都进入了大规模的旧城改造阶段,在繁华的市区内进行深基坑开挖给这一古老课题提出了的新的内容,那就是如何控制深基坑开挖的环境效应问题,从而进一步促进了深基坑开挖技术的研究与发展,产生了许多先进的设计计算方法,众多新的施工工艺也不断付诸实施,出现了许多技术先进的成功的工程实例。但由于基坑工程的复杂件以及设计、施工的不当,工程事故发生的概率仍然很高。 任何一个工程方面的课题的发展都是理论与实践密切结合并不断相互促进的成果。基坑工程的发展往往是一种新的围护型式的出现带动新的分析方法的产生,并遵循实践、认识、再实践、再认识的规律,而走向成熟。早期的开挖常采用放坡的形式,后来随着开挖深度的增加,放坡面空间受到限制,产生了围护开挖。迄今为止,围护型式已经发展至数十种。从基坑围护机理来讲,基坑围护方法的发展最早有放坡开挖,然后有悬臂围护、内撑(或拉锚)围护、组合型围护等。放坡开挖需要有较大的工作面,且开挖土方量较大。在条件允许的情况下,至今仍然不失是基坑围护的好方法。悬臂围护是指不带内撑和拉锚的围护结构,可以通过设置钢板桩或钢筋混凝土桩形成围护结构。它也可以通过对基坑周围土体进行南改良形成,如水泥土重力式挡墙结构。为了改善悬臂式围护结构的受力性能和变形特性,满足较深基坑的支档土体要求,发展了内撑式围护和拉锚式围护结构。为了挖掘围护结构材料的潜在能力,使围护结构形式更加合理,并能适合各种基坑形式,综合利用“空间效应”,发展了组

简述深基坑支护形式

简述深基坑支护形式 深基坑支护方案的选择应综合全面的考虑,深基坑支护是一种施工临时性辅助结构物。 这周的施工工艺课我们班参观了学校的深基坑实训基地。 (一)土钉墙支护结构 最开始看到就是土钉墙支护结构,土钉墙支护是在开挖边坡表面铺钢筋网喷射细石砼,并每隔一定距离埋设土钉,使边坡土体形成复合体,共同工作,从而有效提高边坡稳定的能力,增强土体的延性。土钉墙支护为一种边坡稳定式支护结构,适用于淤泥、淤泥土质、黏土、粉质黏土、粉土等基地,地下水位较低,基坑开挖深度在12m以内时采用。 施工工艺方法:按设计要求自上而下分段、分层开挖工作面→修整坡面(平整度允许偏差±20mm)→埋设喷射砼厚度控制标志→喷射第一层砼→钻孔、安设土钉→注浆、安设链接件→绑扎钢筋网,喷射第二层砼→设置坡顶、坡面和坡脚的排水系统。如土质较好,也可采取如下顺序:开挖工作面、修坡→绑扎钢筋网→成孔→安设土钉→注浆→安设连接件→喷射砼面层。

(二)重力式支护结构 深层搅拌水泥挡土墙是以深层搅拌机就地将边坡土和压入的水泥浆强力搅拌形式连续搭接的水泥土桩挡墙。依靠抗弯强度和水平抗力进行挡土和保持坑壁稳定。具有良好的抗渗透性能(渗透系数≤10~7cm/s),能止水防渗,起到挡土防渗双重作用。适用于软黏土地区开挖深度在6m左右的基坑工程。有的水泥搅拌桩内插有H型钢,使之成为既能受力又能抗渗两种功能的支护结构围护墙,下图就是插有H型钢的连续支护结构围护墙。可用于较深(8~10m)的基坑支护,水泥渗入比为20%,这种桩称为劲性水泥土搅拌桩。 (三)桩(板)式支护结构 型钢桩横档板支护是沿挡土位置先设型钢桩到顶定深度,然后边挖方边将挡土板塞进两型钢桩之间,组成型钢桩与挡土板复合而成的挡土壁。和下图有些像。型钢施工也可采用打入法,也可采用预先用螺栓钻或普通钻机在桩位处形成孔后,再插入型钢桩的埋人桩法。但不能止水,且易导致周边地基产生下沉。适用于土质较好,地下水位较低,开挖深度6m。 挡土灌注桩支护作用:挡土适用:粘性土,面积大,深度6m。 排桩内支撑支护作用:挡土不能止水适用:松软土层,软土地基。 挡土灌注桩与深层搅拌水泥土桩组合支护作用:挡土止水 (四)锚固支护结构 我们在基地看到的是钢花管锚固支护,由两部分组成,即钢花管锚固和喷射钢筋砼面层。 (五)平台 我们在基地中间看到的是四个平台,分别是人工挖孔桩及平台;预应力管桩及承台;钢筋砼灌注桩排桩支护和机械挖灌注桩。 (六)其他 基坑四周设有阻水坑和防护栏杆排水沟及排水收集井。护坡高度3m,最大护角75°

建筑基坑支护考题汇总

1、为保证地下结构施工及基坑周边环境的安全,对基坑侧壁及周边环境采用的支挡、加固 与保护措施,这就是基坑支护。()2、基坑支护技术主要包括基坑的勘察、设计、施工及检测技术,同时包括地下水的控制和 土方开挖。() 3、水泥土搅拌桩施工前应根据设计进行工艺性试桩,数量不得少于3根。(×) 4、土钉可用钢管、角钢等作为钉体,采取直接击入的方法置入土中。土钉依靠与土体之间 的界面粘结力或摩擦力,在土体发生变形的条件下被动受力,并主要承受拉力作用。 (√) 5、钢筋混凝土拱墙结构的混凝土强度等级不宜低于C20。(×) 6、地下连续桩的构造要求,顶部不设钢筋混凝土冠梁。(×) 7、桩长主要取决于基坑开挖深度和嵌固深度,同时应考虑桩顶嵌入冠梁内的长度。一般嵌 入长度不少于50mm。(√) 8、支撑系统包括围檩及支撑,支撑一般超过15m,在支撑下还要有立柱及相应的立柱桩。 (√) 9、喷射混凝土面板起到对坡面变形的约束作用,面板约束力与土钉表面与土的摩阻力无 关。(×) 10、基坑变形监测二级基坑不监测支护结构水平位移。(×) 二、填空题 1、基坑支护结构极限状态分为承载能力极限状态正常使用极限状态。 2、基坑开挖深度小于7m,且周围环境无特别要求的基坑为三级基坑。 3、合理选择支护结构的类型应根据基坑周边环境、开挖深度、工程地质与水文地质、施工作业设备和施工季节等条件综合考虑。 4、作用在支护结构上的荷载主要有土压力和水压力。 5、基坑土体稳定性分析主要内容有整体稳定性分析、支护结构踢脚稳定性分析、基坑底部土体抗隆起稳定性分析、基坑渗流稳定性分析及土体突涌稳定性分析。 6、支护结构设计计算目前实际工程中以等值梁法和弹性支点法为主。 7、排桩、地下连续墙支护结构的施工主要包括排桩、冠梁、地下连续墙、支撑系统锚杆等施工内容。 8、基坑边缘堆置土方和建筑材料,或沿挖方边缘移动运输工具和机械,一般应离基坑上部边缘不少于2m ,弃土高度不大于1.5m。 三、名词解释 1、排桩、地下连续墙嵌固的构造要求。 2、支撑体系。 3、支撑体系中的腰梁。 四、简答题 1、土钉墙的施工工艺。 2、简述危险行性较大的深基坑工程专项施工方案的内容。 3、简述岩土工程勘察报告中与基坑工程有关的方案内容。

相关文档
相关文档 最新文档