文档库 最新最全的文档下载
当前位置:文档库 › 古田溪一级水电站设计洪水复核的研究

古田溪一级水电站设计洪水复核的研究

古田溪一级水电站设计洪水复核的研究
古田溪一级水电站设计洪水复核的研究

古田溪一级水电站设计洪水复核的研究- 水文&水资源

简介:为研究古田溪一级水库提高汛限水位的可行性,我们根据1959年建库以来积累的新的水文气象资料和水电站运行纪录,对入库洪水计算方法、特大洪水处理、资料代表性分析、频率计算和成果的合理性论证,作了比较系统的探讨,保证了一级水电站设计洪水复核成果的准确、可靠,为进一步研究提高汛限水位的可行性打下扎实的基础。关键字:可行性设计洪水复核合理性分析古田溪是闽江下游北岸支流之一,全河分四级开发,一级水电站控制集水面积1325km2,占全流域的78.4%,总库容6.4亿m3,为年调节水库,二级龙亭水电站,三级高洋水电站,四级宝湖水电站,集水面积分别为1551km2、1697km2和1722km2,库容甚小均为日调节水库。一级水库对于各个梯级的发电、防洪起着举足轻重的作用,是设计洪水复核的重点。一级水电站建于1959年,至今已40多年了。随着时间的推移,各个水文站积累了一大批观测资料和梯级水库运行纪录,情况也发生了很大变化。为确保水库的防洪安全和提高防洪、发电效益,研究提高汛限水位的可行性,于是提出了对梯级电站设计洪水进行复核的工作。本次设计洪水的复核,包括洪水资料可靠性、代表性、一致性审查、特大洪水论证与处理、设计洪水频率计算、设计洪水过程线推求和成果可靠性分析等。1. 资料的审查水文资料是水文分析计算的依据,它直接影响着此次设计洪水计算的精度、可靠性,是设计洪水计算的基础。该项工作包括资料的可靠性、代表性和一致性审查三个方面1.1资料可靠性分析古田溪一级水库以上有大桥、前垅、达才、钱板、平

湖(源里)等5个水文站和十五个雨量站。资料每年按规范要求整编和送福建省水文总站汇审,具有良好精度。建库后,电厂对一级水库库水位、泄洪、发电、下游水位、入库站流量均有系统完整的观测记录,因此用水量平衡法反算入库洪水,是可靠的。关于古田溪历史特大洪水调查先后进行过两次,第一次是1954年7月水电总局101工程勘测队开展的,沿溪测量了1952年特大洪水痕迹,同时还调查了1948年洪水。第二次是1956年9月上海院会同古田水文站进行的,调查和推算了1952、1931、1948年特大洪水。1964年上海院最后确认一级水库坝址1952、1931、1948年特大洪水洪峰流量依次为4200、3430、3170m3/s,估计1952年洪水重现期约为80~200年,1931年约为30年,1948年属一般洪水。1964至今36年来尚未发生比1931年更大的洪水,因此,可将1952年的洪水重现期认定为116-236年,平均约为180年;1931年约为60年。特大洪量的重现期难于调查,除一天洪量与洪峰流量关系密切可认为与洪峰同频率外,其它洪量重现期均难以确定,从安全考虑将作一般洪水看待。1.2资料一致性分析根据防洪计算要求,设计洪水应为建库条件下的入库洪水,对此进行调洪计算,推求设计洪水位和校核洪水位。因此必须把1931、1946~1958年建库前的实测坝址洪水和1959年建库后实测的库水位、泄流、发电资料全部转换为入库洪水,以保证洪水系列的一致性。坝址洪水转换,参照华东院1987年研究成果,入库洪水与坝址洪水的洪峰流量、一天洪量、二天洪量、四天洪量的比值分别为1.16、1.04、1.00、1.00,按此将建库前实测的坝址洪水转换为入库洪水。建库后

的入库洪水,按照下述水量平衡方程反算:式中是时段的平均净入库流量(即已扣除了水库的蒸发、渗漏损失),取1小时;、分别为时段初、末的蓄水容积,由库水位纪录查库容曲线求得;为溢洪道泄流和发电流量之和,分别由泄流记录和发电负荷纪录计算。1.3资料代表性分析一级水库洪水系列具有1946~1958年的实测流量记录和1959年至今反算的入库洪水,洪水系列长达50多年,如图1所示,包括多个丰枯周期性变化(每个周期约11年左右),并有可靠的历史特大洪水资料,具备了良好的代表性要求。以上表明,一级水库洪水系列具有良好的可靠性、一致性和代表性,根据设计洪水计算要求,可以采用由流量资料推求设计洪水。图1 多年洪峰流量变化过程2.设计洪峰洪量计算2.1洪水频率分析古田溪一级水电站为二级工程,按规范确定大坝设计洪水标准为100年一遇,即p=1%;校核标准为千年一遇,p=0.1%。按规范要求,考虑特大洪水作用,对一级水库入库洪峰、洪量系列按统一样本法计算经验频率,按矩法初估统计参数—均值、Cv和Cs,分布函数选用P-Ⅲ型,最后以适线法确定理论频率曲线,如图2为洪峰流量的理论频率曲线,得设计洪峰、洪量见表1:表1 古田溪一级水库入库洪水频率计算成果表项目成果名称洪峰流量Qm(m3/s)洪量W(106m3)一天二天四天统计参数均值171966.191.3122.6Cv0.490.460.450.43Cs/Cv3.5线型P-Ⅲ设计值频率(%)0.1637022931039914622169229298图2 一级水库洪峰流量理论频率曲线 3.设计洪水过程线推求采用典型洪水同频率控制放大法推求设计洪水过程线,即首先选择典型洪水,然后按推求的设计洪峰、

洪水调节课程设计计算书详细(三大)

洪水调节课程设计

《洪水调节课程设计》任务书 一、设计目的 1、洪水调节目的:定量地找出入库洪水、下泄洪水、拦蓄洪水的库容、水库 水位的变化、泄洪建筑物型式和尺寸间的关系,为确定水库的有关参数和泄洪建筑型式选择、尺寸确定提供依据; 2、掌握列表试算法和半图解法的基本原理、方法、步骤及各自的特点; 3、了解工程设计所需洪水调节计算要解决的课题; 4、培养学生分析问题、解决问题的能力。 二、设计基本资料 某水利枢纽工程以发电为主,兼有防洪、供水、养殖等综合效益,电站装机为5000KW,年发电量1372×104 kw·h,水库库容0.55亿m3。挡水建筑物为混凝土面板坝,最大坝高84.80m。溢洪道堰顶高程519.00m,采用2孔8m×6m(宽×高)的弧形门控制。水库正常蓄水位525.00m。电站发电引用流量为10m3/s。 本工程采用2孔溢洪道泄洪。在洪水期间洪水来临时,先用闸门控制下泄流量q并使其等于洪水来水量Q,使水库水位保持在防洪限制水位不变;当洪水来水量Q继续增大时,闸门逐渐打开;当闸门达到全开后,就不再用闸门控制,下泄流量q随水库水位z的升高而增大,流态为自由流态,情况与无闸门控制一样。 上游防洪限制水位Xm(注:X=524.5+学号最后1位/10,即524.5m-525.4m),下游无防汛要求。 三、设计任务及步骤 分别对设计洪水标准、校核洪水标准,按照上述拟定的泄洪建筑物的类型、尺寸和水库运用方式,分别采用列表试算法和半图解法推求水库下泄流量过程,以及相应的库容、水位变化过程。具体步骤: 1、根据工程规模和建筑物的等级,确定相应的洪水标准; 2、用列表试算法进行调洪演算: a)根据已知水库水位容积关系曲线V~Z和泄洪建筑物方案,用水力学公 式求出下泄流量与库容关系曲线q~Z,并将V~Z,q~Z绘制在图上; b)决定开始计算时刻和此时的q1、V1,然后列表试算,试算过程中,对每 一时段的q2、V2进行试算; c)将计算结果绘成曲线:Q~t、q~t在一张图上,Z~t曲线绘制在下方。 3、用半图解法进行调洪计算: a)绘制三条曲线:V/△t-q/2=f1(z)、V/△t+q/2=f2(z)、q=f(z); b)进行图解计算,将结果列成表格。

某水库大坝安全复核报告

某水库大坝安全复核报告

XX市 XX区 SS水库大坝安全复核 报告 XX市XX区水利勘测设计队 二OXX年X月

批准:审查:校核:编写:

目录 1 工程概况 (1) 1.1 工程概况 (1) 1.2 枢纽布置及建筑物现状 (2) 1.2.1 大坝 (2) 1.2.2 溢洪道 (2) 1.2.3 放水隧洞 (2) 2 工程等级及洪水标准复核 (5) 2.1工程等别及建筑物级别 (5) 2.2洪水标准及设计洪水 (5) 2.2.1洪水标准 (5) 2.2.2 设计洪水 (5) 2.2.3调洪计算 (10) 3 工程地质复查 (17) 3.1 坝基坝址地质 (17) 3.1.1 地形地貌 (17) 2.5.1.2 地层岩性 (17) 2.5.1.3 地质构造 (17) 4 大坝渗流稳定复核 (19) 5 坝体材料及填筑质量评价 (21) 5.1坝址勘探 (21) 5.3岩土物理力学参数试验 (21)

5.4填筑质量评价 (21) 6 坝体结构安全复核 (22) 6.1坝顶高程复核 (22) 6.1.1 基本参数 (22) 6.1.2 坝顶超高及坝顶高程复核 (22) 6.2上游坝面抗风浪能力复核 (23) 6.3坝体边坡稳定复核 (24) 6.3.1物理力学参数 (24) 6.3.2计算工况 (25) 6.3.3计算方法 (25) 6.3.4最小安全系数 (25) 6.3.5 坝坡稳定分析 (26) 7 水库抗洪能力 (27) 7.3水库抗洪能力复核 (27) 2.3.1抗洪能力复核 (27) 2.3.2泄流安全性复核 (27) 2.3.3应急措施 (27) 8 结论与建议 (28) 8.1结论及建议 (28) 8.1.1结论 (28) 2.4.2建议 (28)

5×50MW水电站的设计说明

1.绪论 1.1课题的背景和发展情况 1.1.1背景 电力工业是能源工业、基础工业,在国家建设和国民经济发展中占据十分重要的地位,正常运行,发出来的电能顺利输送到电网的非常重要的环节。因此,电厂设备和元器件选择和保护设计方案的确定,对于电厂的安全稳定运行有重要的意义。对发电厂电气部分及元件保护设计进行科学的设计很有必要[2]。 1.1.2发电厂在国外的发展情况 当前国际上全球围的电力体制逐步打破垄断、非管制化,引入竞争机制,形成有限电力市场己成为必然趋势。最大限度的在电力系统中引入竞争,己被大多数国家所接受。在这种情势下,电力系统优化设计以及火电厂电气部分设计己成为许多国家的一项主要研究课题。整个电力工业可以划分为发电、输电、配电和供电四大领域。发电部分属于理论兼实践研究领域。对整个电力系统起着至关重要的作用,火电厂电气部分设计是关系到整个电力系统运行可靠性的最关键一步。对于火电机组运行优化,从国外的发展趋势看,其优化计算机模块程序的应用起到了真正指导运行,降低能耗的目的。美国、德国等先进国家在机组运行优化管理方面的工作己有近十年的经验。例如,德国斯蒂亚克电力公司的机组运行优化管理系统,通过系统优化及控制,可对各个薄弱环节及整个过程经济性的影响做出评价。目前我国电力市场的改革趋向是“厂网分开,竞价上网”,即将电网经营企业拥有的发电厂与电网分开,建立规的、具有独立法人地位的发电实体,市场也只对发电侧开放。发电的电力市场的主体是各独立发电企业与电网经营企业,电网经营企业负责组织各发电公司的竞争,政府负责对电力市场进行监督管理。与英国、澳大利亚等目的电力市场不同,中国电力市场继续保持着输、配一体的模式,保留供电营业区,每个供电营业区只有一个指定的供电向终端用户供电。同时,根据“省为实体”的方针,我国的电力市场以省级电力市场为主,各省电力公司是其省电力市场竞争的组织者。电力工业经过长期的改革和发展,目前从技术、人员、观念等方面对于火力发电厂电气设计创造了有利的条件。但是,技术方面并为达到差强人意的要求[3]。 1.2设计任务 1.2.1设计目的 (1)培养学生综合运用所学理论和技能解决实际问题的能力; (2)学习专业工程设计的方法,进行设计技能、设计方法的初步训练,进行科学研究方法的初步训练,发挥学生的创造性,培养学生的思维能力和分析能力。 1.2.2技术指标 某南方山区建设一座装机容量为5×50 MW的水电站,附近30 km处某国防厂及邻

山东省小型水库洪水核算办法

山东省小型水库洪水核算办法(试行)

附件: 山东省小型水库洪水核算办法(试行) 前言 《山东省小型水库洪水核算办法》(试行)是为适应新形势下小型水库除险加固需要而制定的。本办法依据水利部《水利水电工程等级划分及洪水标准》SL252-2000、《水利水电工程设计洪水计算规范》(SL44-2006)、《碾压式土石坝设计规范》(SL274-2001)和《山东省水文图集》的有关分析成果,在原山东省水利局暴雨洪水组1979年6月编印的《山东省小型水库洪水核算方法》基础上修订完成的。在山丘区小型水库防洪安全复核、控制运用、加固设计等工作中应以本办法为主,其它各法可作验证参考。 本办法提供了洪峰流量、洪水总量以及调洪演算方法,适用我省流域面积在1到30平方千米的小型水库保安全洪水核算使用。对有闸控制或流域面积大于30平方千米的小型水库,应使用《山东省大、中型水库防洪安全复核洪水计算办法》进行核算,设计洪水流量过程应采用瞬时单位线法,其中流域面积小于50平方千米的水库时段长建议取0.5小时,瞬时单位线参数M1与0.5小时单位线关系表可参考《山东省水文图集》。流域面积小于1平方千米的小(2)型水库,应按本办法计算的洪峰、洪量分别加大10%后,再进行调洪。 请各单位在使用过程中注意结合实际, 及时总结经验,如有问题请函告省水利厅。

1小型水库设计洪水标准 小型水库设计洪水标准,按照水利部《水利水电工程等级划分及洪水标准》(SL252-2000)选取。小型水库永久性水工建筑物的洪水标准,应按山区、丘陵区或平原、滨海区分别确定。山区、丘陵区永久性水工建筑物洪水标准[重现期(年)]按表1选用。平原、滨海区永久性水工建筑物洪水标准[重现期(年)]按表2选用。 当山区、丘陵区的小型水库坝高低于15m,上下游最大水头差小于10m时,且失事后对下游防洪影响不大时,其洪水标准宜按平原、滨海区标准确定;当平原、滨海区的小型水库坝高高于15m,且上下游最大水头差大于10m时,其洪水标准宜按山区、丘陵区标准确定。 小(1)型、小(2)型水库的消能防冲建筑物洪水重现期分别取20年、10年。 表1 山区、丘陵区小型水库设计洪水标准表 表2 平原、滨海区小型水库设计洪水标准表 注:特别重要小型水库系指可能危及下游城镇、工矿区,铁路干线或其它重要政治经济意义设施或梯级水库。一般是否特别重要应由上一级主管部门确定。

水库大坝现场安全检查报告

××省××县 水库大坝现场安全检查报告 水库大坝现场安全检查组 二OO三年十二月 ..

报告编写: 报告审核: 报告校核: 参编人员: ..

水库大坝现场安全检查报告 第一章概述 第二章现场安全检查发现的问题 一、大坝存在的主要问题 二、溢洪道防洪安全问题 三、输水隧洞存在的问题 四、放水涵洞存在的问题 五、通讯观测设施的问题 六、防汛公路问题 七、管理设施存在的问题 第三章安全鉴定工作建议 一、水库洪水复核 二、大坝稳定、渗流及变形分析 三、溢洪道安全复核 四、输水隧洞安全复核 五、工程老化分析 六、大坝抗震稳定分析 七、大坝安全鉴定综合报告 附件一:水库现场安全检查提纲 附件二:水库安全检查表 附件三:1、水库工程位置图 ..

2、水库枢纽工程平面布置图 3、水库工程部分照片 ..

第一章概述 水库位于××县××镇村境内,属××河流域××河上游,距××县城25km,属小(一)型水库。 水库工程始建于1958年9月,主体工程1965年基本竣工。是一座以灌溉、防洪为主兼顾发电、养殖的小型水利工程。 水库枢纽工程由大坝、输水隧洞、放水涵洞、溢洪道及水电站等组成。水库集雨面积28.4km2,总库容751万m3(原库容825万m3)。50年一遇的设计水位54.72m(原设计水位55.13m),500年一遇的校核水位55.78m(原校核水位56.43m),兴利水位52.20m,死水位39.93m,死库容8.5 万m3,兴利库容424万m3,防洪库容323.57万m3。水库多年平均降雨量1083mm,多年平均径流量2272万m3。水库有坝后式电站一座,装机3×75千瓦。水库可灌溉农田1.36万亩,水库下游防洪保护面积42km2,涉及××镇14个行政村,1.9万人口,近3万亩耕地,206国道和下游一批厂矿企业的安全。 一、大坝为粘土铺盖心墙砂壳坝,现有坝顶高程58.77m,最大坝高21.8m,坝顶长195m,坝顶宽度3m,上游边坡1:2.5,下游边坡分别为1:2.5、1:3.0,戗台高程为51.00m。 二、输水隧洞:输水隧洞为圆拱直墙式压力隧洞,位于坝头左山上从溢洪道下穿过,1984年施工开挖,1986年完工。输水隧洞全长236.8m,其中泄洪洞长167.8m,进口高程41.00m,出口高程为39.80m,上游设排架启闭机台,下游设竖井控制输水隧洞至溢洪道,最大泄量28.0m3/s。发电支洞长69.0m(泄洪洞与发电隧洞分岔点至出口),设计灌溉流量 1.35m ..

水电站电气部分设计说明

题目:水电站电气部分设计

容摘要 电力的发展对一个国家的发展至关重要,现今300MW及其以上的大型机组已广泛采用,为了顺应其发展,也为了有效的满足可靠性、灵活性、及经济性的要求,本设计采用了目前我国应用最广泛的发电机—变压器组单元接线,主接线型式为双母线接线,在我国已具有较多的运行经验。设备的选择更多地考虑了新型设备的选择,让新技术更好的服务于我国的电力企业。并采用适宜的设备配置及可靠的保护配置,具有较好的实用性,能满足供电可靠性的要求。 关键词:电气主接线;水电站;短路电流;

目录 容摘要 .............................................................. I 1 绪论 . (1) 1.1 水电站的发展现状与趋势 (1) 1.2 水电站的研究背景 (1) 1.3 本次论文的主要工作 (2) 2 电气设计的主要容 (3) 2.1 变电所的总体分析及主变选择 (3) 2.2 电气主接线的选择 (4) 2.3 短路电流计算 (4) 2.4 电气设备选择 (10) 2.5 高压配电装置的设计 (19) 3 变电所的总体分析及主变选择 (21) 3.1 变电所的总体情况分析 (21) 3.2 主变压器容量的选择 (21) 3.3 主变压器台数的选择 (21) 3.4 发电机—变压器组保护配置 (22) 4 电气主接线设计 (24) 4.1 引言 (24) 4.2 电气主接线设计的原则和基本要求 (24) 4.3 电气主接线设计说明 (25) 5 短路电流计算 (27) 5.1 短路计算的目的 (27) 5.2 变电所短路短路电流计算 (27) 6 结论 (30) 参考文献 (31)

水电站课程设计

水电站课程设计——水轮机选型设计说明书 学校: 专业: 班级: 姓名: 学号: 指导老师:

第一节基本资料 (3) 第二节机组台数与单机容量的选择 (4) 第三节水轮机型号、装置方式、转轮直径、转速、及吸出高度与安装高程的确定 (5) 第四节水轮机运转特性曲线的绘制 (11) 第五节蜗壳设计 (13) 第六节尾水管设计 (16) 第七节发电机选择 (18) 第八节调速设备的选择 (19) 参考资料 (20)

第一节基本资料 一、水轮机选型设计的基本内容 水轮机选型设计包括以下基本内容: (1)根据水能规划推荐的电站总容量确定机组的台数和单机容量; (2)选择水轮机的型号及装置方式; (3)确定水轮机的轮转直径、额定出力、同步转速、安装高程等基本参数; (4)绘制水轮机的运转特性曲线; (5)确定蜗壳、尾水管的型式及它们的主要尺寸,以及估算水轮机的重量和价格;(6)选择调速设备; (7)结合水电站运行方式和水轮机的技术标准,拟定设备订购技术条件。 二、基本设计资料 某梯级开发电站,电站的主要任务是发电,并结合水库特性、地区要求可发挥水产养殖等综合效益。电站建成后投入东北主网,担任系统调峰、调相及少量的事故备用容量,同时兼向周边地区供电。该电站水库库容小不担任下游防洪任务。经比较分析,该电站坝型采用混凝土重力坝,厂房型式为河床式。经水工模型试验,采用消力戽消能型式。 经水能分析,该电站有关动能指标为: 水库调节性能日调节 保证出力 4万kw 装机容量 16万kw 多年平均发电量 44350 kwh 最大工作水头 39.0 m 加权平均水头 37.0 m 设计水头 37.0 m 最小工作水头 35.0 m 平均尾水位 202.0 m 设计尾水位 200.5 m 发电机效率 98.0%

设计洪水分析计算

设计洪水分析计算 1、洪水标准 依据《水利水电工程等级划分及洪水标准》(SL44-2006),确定该工程等级为五等,按20年一遇洪水标准设计,200年一遇洪水校核。 本水库上游流域面积为1.6平方千米,属于小于30平方千米范围,按《山东省小型水库洪水核算办法》(试行)进行洪水计算。 2、设计洪水推求成果 1、基本资料 流域面积F=1.6平方公里,干流长度L=2.1千米,干流平均比降j=0.02。 根据山东省小型水库洪水核算办法,查《山东省多年平均二十四小时暴雨等值线图》,该流域中心多年平均二十四小时暴雨H24=85毫米。 该水库水位、库容关系表如下:

设计溢洪道底高程177.84米,相应库容23.29万立米。 2、最大入库流量Q m计算 (1)、流域综合特征系数K 按下式计算K=L/j1/3F2/5 (2)、设计暴雨量计算 查《山东省最大二十四小时暴雨变差系数C v等值线图》,该流域中心C v=0.6,采用C s=3.5C v应用皮尔逊3型曲线K p值表得,20年一遇K p=2.20,200年一遇K p=3.62,则20年一遇最大24小时降雨量H24=2.2*85=187毫米,200年一遇最大24小时降雨量H24=3.62*85=307.7毫米。 (3)单位面积最大洪峰流量计算 经实地勘测,该工程地点以上流域属丘陵区,查泰沂山北丘陵区q m- H24-K关系曲线,得20年一遇单位面积最大洪峰流量及200年一遇单位面积最大洪峰流量q m。 (4)洪水总量及洪水过程线推求 已算得20年一遇最大24小时降雨量H24=187毫米及200年一遇最大24小时降雨量H24=307.7毫米,取其75%为P 。设计前期影响雨量P a取40毫米,计算P+P a,查P+P a与设计净雨h R关系曲线,得20年一遇及 00年一遇h R。 洪水总量按下式计算W=0.1*F*h R,由此可计算得20年一遇及200年一遇洪水总量W。

(安全生产)安装水库大坝安全复核报告初稿最全版

(安全生产)安装水库大坝安全复核报告初稿

天柱县白市镇安装水库大坝安全评价报告 贵州省大坝安全监测中心 二零壹零年壹月 工程名称:天柱县安装水库工程 工程阶段:大坝安全复核阶段 批准:罗恒 审查:严斌张健民 校核:宫相伟 汇编:张兴林 参加工作人员:王开品宫相伟杨刚张兴林 陈英会罗康理 单位名称:贵州省大坝安全监测中心 单位地址:贵州·贵阳·宝山南路27号凯尼大厦19楼邮编:550002 联系电话:(0851)55844245584427 传真:(0851)5584526 电子邮箱:dbaqjc@https://www.wendangku.net/doc/469721932.html,

目录 目录1 前言1 1 工程概况3 1.1概述3 1.2水文气象3 1.3工程特性3 1.3.1工程等级和防洪标准3 1.3.2主要建筑物4 1.4工程现状及存在的主要问题4 1.5大坝安全鉴定情况5 2 工程质量评价8 2.1概述8 2.2区域地质概况8 2.2.1 地形地貌8 2.2.2 地层岩性8 2.2.3 地质构造及地震动参数10 2.2.4岩溶水文地质条件10 2.3水库工程地质条件11 2.3.1 地质概述11 2.3.2 水库渗漏11 2.3.3 库岸稳定12 2.3.4 水库淤积12 2.3.5 水库地震12 2.4坝址及主要建筑物工程地质条件12 2.4.1 基本地质条件12 2.4.2 大坝坝基(肩)岩体及坝体物理力学参数13 2.4.3 大坝建基面工程地质条件13 2.4.4 坝基(肩)水文地质条件14 2.5坝基(肩)稳定分析14 2.6坝体质量评价14 2.7溢洪道工程质量评价15 2.8放水涵洞工程质量评价15 2.9结论及建议16 3大坝运行管理评价18

(完整word版)110KV变电站课程设计说明书DOC

成绩 课程设计说明书 题目110/10kV变电所电气部分课程设计 课程名称发电厂电气部分 院(系、部、中心)电力工程学院 专业继电保护 班级 学生姓名 学号 指导教师李伯雄 设计起止时间: 11年 11月 21日至 11年 12 月 2日

目录 一、对待设计变电所在系统中的地位和作用及所供用户的分 析 (1) 二、选择待设计变电所主变的台数、容量、型式 (1) 三、分析确定高、低压侧主接线及配电装置型式 (3) 四、分析确定所用电接线方式 (6) 五、进行互感器配置 (6) 六.短路计算 (9) 七、选择变电所高、低压侧及10kV馈线的断路器、隔离开关 (10) 八、选择10kV硬母线 (13)

一、对待设计变电所在系统中的地位和作用及所供用户的分析 1.1、待设计变电所在系统中的地位和作用 1.1.1 变电所的分类 枢纽变电所、中间变电所、地区变电所、终端变电所 1.1.2 设计的C变电所类型 根据任务书的要求,从图中看,我设计的C变电所属于终端变电所。 1.1.3 在系统中的作用 终端变电所,接近负荷点,经降压后直接向用户供电,不承担功率转送任务。电压为110kV及以下。全所停电时,仅使其所供用户中断供电。 1.2、所供用户的分析 1.2.1 电力用户分类、对供电可靠性及电源要求 (1)I类负荷。I类负荷是指短时(手动切换恢复供电所需的时间)停电也可能影响人身或设备安全,使生产停顿或发电量大量下降的负荷。I类负荷任何时间都不能停电。对接有I类负荷的高、低压厂用母线,应有两个独立电源,即应设置工作电源和备用电源,并应能自动切换;I类负荷通常装有两套或多套设备;I类负荷的电动机必须保证能自启动。 (2)II类负荷。II类负荷指允许短时停电,但较长时间停电有可能损坏设备或影响机组正常运行的负荷。II类负荷仅在必要时可短时(几分钟到几十分钟)停电。对接有II类负荷的厂用母线,应有两个独立电源供电,一般采用手动切换。 I类、II类负荷均要求有两个独立电源供电,即其中一个电源因故停止供电时,不影响另一个电源连续供电。例如,具备下列条件的不同母线段属独立电源:①每段母线接于不同的发电机或变压器;②母线段间无联系,或虽然有联系,但其中一段故障时能自动断开联系,不影响其他段供电。所以,每个I类、II 类负荷均应由两回接于不同母线段的馈线供电。 (3)III类负荷。III类负荷指较长时间(几小时或更长时间)停电也不致直接影响生产,仅造成生产上的不方便的负荷。III类负荷停电不会造成大的影响,必要时可长时间停电。III类负荷对供电可靠性无特殊要求,一般由一个电源供电,即一回馈线供电。 1.2.2 估算C变电所的回路数目 根据上述要求,重要负荷(I类、II类)比例是55%,重要负荷需用双回线,每回10kV馈线输送功率1.5~2MW,经计算,高压侧回路数为2,低压侧回路数为18÷1.5=12。

若水电站初步设计——毕业设计说明书 精品

目录 一基本资料 概述 (4) 水文气象资料 (4) 工程地质与水文地质 (7) 设计基本数据 (11) 二坝址、枢纽布置方案及坝型选择 坝轴线的选择 (13) 坝型方案比较 (14) 枢纽总体布置 (15) 三闸孔尺寸比选 过闸设计流量及校核流量 (16) 堰型选择 (16) 门叶选择 (16) 闸孔单孔净宽(b )、闸墩型式和厚度拟 (17) 堰顶高程确定和闸孔孔数、尺寸拟定 (17) 堰顶高程和闸孔孔数、尺寸的结论 (26) 四 WES堰的尺寸拟定 (27) 五水面线的确定 (28) 六坝顶高程确定 (31) 七消能工的设计 消能工计算与分析 (33) 消力池计算 (38) 消力池构造设计 (39) 八公路桥尺寸拟定 布置影响因素 (41) 结构形式及结构图 (42) 十一坝基面稳定及应力计 工程概况 (57) 工程等别和建筑物级别 (57) 所要分析在四种工况 (57) 荷载具体计算 (58) 稳定计算与分析 (68) 应力计算与分析 (70) 十二防渗及地基处理设计 地基开挖 (73)

坝基的固结灌浆 (73) 坝基帷幕灌浆目的和条件 (74) 坝基排水 (75) 断层破碎带和软弱夹层处理 (75) 谢辞 (77) 主要参考文献及规范 (78) 附录 若水电站上坝线枢纽总布置图rs1 若水电站上坝线大坝平面布置图rs2 上坝线大坝上、下游立视图rs3 闸坝消力池段标准断面图rs4 闸坝护坦段标准断面图rs5 公路桥结构图及挡水坝段断面图rs6 消力池段溢流面钢筋平面图rs7 消力池段溢流面钢筋剖面图rs8 中墩钢筋图rs9 消力池段溢流面钢筋平面布置图及中墩钢筋图rs10

古田溪流域水环境基本情况分析

3流域环境概况 3.1流域概括 3.1.1流域整体概括 古田溪位于我省东部,地理位置于东经118°35'至119°00',北纬26°25'至28°00'之间,属闽江干流中游北岸支流之一。其发源于屏南县境内鹫峰山脉南麓,即屏南县岭下乡,源头为长桥溪,在平湖附近汇入长潭溪后称古田溪。其干流分别流经屏南县的屏城、长桥乡、古田的平湖镇,途经新舫村汇入古田溪一级水库,是古田水库的重要水源,由古田溪水库而下,南出半坑亭、龙亭、流经闽清县桔林乡后洋,于古田县水口镇注入闽江。流域面积1794km2,河道长123km,平均坡降6.6‰,古田溪干支流河道特性见表3.1.1,古田溪流域地理位置图见图3-1。 流域内山峰耸峙,沟壑纵深,最高峰位于上游屏南境内的东峰尖,海拔1820m。地势由西北向东南、东北向西南倾斜,域内呈三高两低,状似W形地势。地表切割强烈,水系非常发育,多山地、盆地、平原狭小,除在河谷之间呈现有小片冲击盆地外,大部分是低山、丘陵,其中最大的盆地古田县旧城关已被开发成古田溪一级水库。

表3.1.1 古田溪干支流河道特性表 流域北部属上游区,主要包括屏南县路下、五溪、门里、柏源、岑洋、高溪等村,上游地带急剧下切,形成典型的V字型河谷地貌,河道蜿蜒曲折,狭窄陡峭,水流湍急,落差较大,人烟稀少,生态资源丰富。 流域中部包括古田县的凤埔乡、平湖、吉巷乡、大桥镇、泮洋乡五个乡镇及闽清县桔林乡的部分乡村。本区为低山区,山峦重叠,河谷表现为壮年期的峡谷形态,两岸峭壁挺拔,江中岩石裸露,礁石起伏。域内支流密布期间,水资源较丰富,雨量充沛,水能条件优越,发电地形条件好。平均海拔较高,耕地较为分散,垅排田占大部分,易旱、易涝,主要靠引水灌溉,农业耕作以中单晚稻为主,兼种经济作物和食用菌。 流域南部属下游区。主要包括湖滨乡、松吉乡和新城镇。下游河段河面较宽,河床较缓,流速平稳。本区是古田县工业、商品粮、蔬菜产区,地势相对较低,旱涝灾害较重。区内有古田溪梯级电站(装机25.6万kW)。新城镇地势平坦,交通

水库复核

目录 1水库概况......................................... 错误!未定义书签。 1.1 流域水文、气象............................ 错误!未定义书签。 1.2 工程概况及规模............................ 错误!未定义书签。 1.3 水库主要建筑物............................ 错误!未定义书签。 1.3.1 大坝................................. 错误!未定义书签。 1.3.2 溢洪道............................... 错误!未定义书签。 1.3.3 输水洞............................... 错误!未定义书签。 1.4 工程效益及主要任务........................ 错误!未定义书签。 1.5 水库现状及存在的问题...................... 错误!未定义书签。 1.5.1 大坝................................. 错误!未定义书签。 1.5.2 溢洪道............................... 错误!未定义书签。 1.5.3 输水洞............................... 错误!未定义书签。 1.6复核标准依据................................ 错误!未定义书签。 2 水库库容及泄量关系复核.......................... 错误!未定义书签。 2.1 水库水位~面积、库容曲线.................. 错误!未定义书签。 2.1.1 水库水位面积、库容关系............... 错误!未定义书签。 2.1.2 水库水位面积关系曲线................. 错误!未定义书签。 2.1.3水库水位~库容关系曲线................ 错误!未定义书签。 2.2 水库溢洪道水位~泄量复核计算.............. 错误!未定义书签。 2.3半截水库输水洞水位~泄量复核计算............ 错误!未定义书签。 3 防洪标准复核.................................... 错误!未定义书签。 3.1 不同频率设计暴雨复核...................... 错误!未定义书签。 3.1.1 设计暴雨均值P均的计算............... 错误!未定义书签。 3.1.2 设计暴雨面雨量P 的计算............. 错误!未定义书签。 P面 计算.................. 错误!未定义书签。 3.1.3 设计暴雨强度i p 3.2 不同频率设计洪水复核...................... 错误!未定义书签。 3.2.1 不同频率设计洪水复核计算............. 错误!未定义书签。

计算某流域水电站保证出力和多年平均发电量

计算某流域水电站保证出力和多年平均发电量 1、确定设计保证率 根据设计资料可知,湖北省电网中水电比重占57%,由《水利水电工程水利动能设计规范》可查得其对应的水电站设计保证率为95%~98%。取95%为隔河岩水电站的设计保证率。选取95%、50%、1-95%,在年水量频率曲线上分别确定设计枯水年、设计中水年和设计丰水年的年水量。 2、选取典型年 根据年水量法选取典型年 将表1-6所给的数据根据年年水量由大到小排序,并计算其对应的频率,计算结果如表所示。 表1 序号频率(%) 年份年平均流量(m3/s) 年水量(亿m3) 1 3.4 54-55 602.3 190.08 2 6.9 58-59 517.2 163.23 3 10.3 75-76 497.2 156.91 4 13.8 73-74 487.8 153.95 5 17.2 63-64 482.4 152.24 6 20. 7 71-72 475.4 150.03 7 24.1 69-70 449.3 141.8 8 27.6 67-68 447.2 141.13 9 31.0 64-65 429.6 135.58 10 34.5 62-63 422.2 133.24 11 37.9 68-69 419 132.23 12 41.4 52-53 405.9 128.1 13 44.8 77-78 403.7 91.3 14 48.3 70-71 401 126.55

15 51.7 74-75 361.5 114.09 16 55.2 60-61 350.9 110.74 17 58.6 76-77 335.2 105.79 18 62.1 65-66 320.5 101.15 19 65.5 57-58 303.4 95.75 20 69.0 61-62 295.2 93.16 21 72.4 56-57 290.3 91.62 22 75.9 78-79 289.3 91.3 23 79.3 59-60 287.8 90.83 24 82.8 72-73 282.1 89.03 25 86.2 51-52 270.1 85.24 26 89.7 55-56 270 85.21 27 93.1 53-54 254.9 78.71 28 96.6 66-67 249.4 77.61 绘制经验频率曲线,如图所示。 在绘制的经验频率曲线上找出95%、50%、5%所对应的年水量值,查图可知设计枯水年的年水量为79亿m3,设计中水年年水量为115亿m3,设计丰水年年水量为180亿m3。 选取与设计年水量接近的年份作为设计典型年: 选取66-67年作为设计枯水典型年,其年水量为78.7亿m3,放大倍比K枯=79/78.7=1.004; 表2 流量(m3/s) 选取60-61年作为设计中水典型年,其年水量为110.7亿m3 放大倍比K中=115/110.7=1.309;

水库水文计算全过程

2水文 2.1流域概况 ××水库位于××西南方向,坝址高程1760m,径流面积0.78km2,主河长1.6km,平均坡降为88‰,流域平均高程1880m,径流量条形状。 ××水库属珠江水系西洋江流域源头支流,地处珠江流域与红河流域的分水岭上。河流自北向南,在坝址下游500m向西转,进入溶洞,流入其龙得河,又通过地下暗河进入头河,汇入西洋江,流域水系分布详见《××水库水系图》。 ××水库流域地处中低山区,森林种类较多,主要分布有灌木、杂草、杉木等植物,目前,森林林植被完好,覆盖率在80%以上,径流内有少量的泉点出露,来水主要靠地表径流。 2.2气象特性 西洋江流域属中亚热带高原季风气候区。夏季受东南太平洋和孟加拉湾暖湿气流影响,5~10间湿热多雨,水量充沛,其降水量占年降水量的85%左右,此期间又多集中在6—8月,占全年降水量的50%左右。冬季,受周围山脉作屏障作用,阻滞北方冷空气的入侵,使本流域干燥,凉爽少雨(11—4月),据××县象站资料统计,多年平均降水量为1046.00mm,蒸发量(d=20m)为1637.6mm,多年平均气温为16.7℃,极高最高气温为36.7℃,最低为-5.5℃。多年无霜期为306天,雨季相对湿率82%,绝对浊率19.9hp a,旱季相对湿度76%,绝 页脚内容22

对湿度10.8hp a。以上结果表明,流域具有气候温和,降水量年际变化小,年内分配均匀,集中程度高,干湿分明的特点。该气候特点决定了径流由降水补给,径流与降水规律一致。 2.3年径流分析 拟建的××水库坝址附近属无测水文气象资料地区,水库设计年径流量根据其地理位置及气候成固相似性的特点,采用查径流深等直线图和移用西洋街(二)站径流模数两种方法分析,再作综合论证后取值。 2.3.1移西洋街(二)站径流模数法 西洋街(二)站属国家基本水文站,观测内客有水位、流量、降水、蒸发,观制面积2473km2。该站有1964—2001年的流量统计系列,且该系列已具有一定的代表性,统计年限满足规范要求,用适线法将该径流系列进行频率计算,矩法初估参数,取倍比系数C5=2.5C V,计算结果如表2-1 页脚内容22

水电站设计说明书

目录 第一章枢纽基本情况及设计参考资料 一、枢纽情况 二、地质条件 三、电站厂房枢纽布置 四、设计依据及资料 第一章枢纽基本情况及设计参考资料 一、枢纽情况 某水利枢纽位于XX河上游,坝址处河流迂回曲折,就自然地理来说属于丘陵地形,河流两岸山势高出水面60米至80米,.河床水流浅窄、坡陡流急、难通舟。 此水利枢纽,是一座以灌溉为主结合发电、防洪和养鱼等综合性的中型水利枢纽。主体工程由土坝、溢洪道和水电站三部分组成。 二、地质条件 厂址位于隧洞出口低洼的沟谷处,该处为灰岩地带,岩石强度较高,是建站的有利条件,距隧洞出口约150米以外则为泥质和钙质页岩。该页岩因受大地构造影响,形成构造破碎岩。强度较低,拳击可碎,不宜建站。 三、电站厂房枢纽布置 此电站为引水式开发方式,它由引水隧洞,调压室、压力隧洞、主付厂房、主变场、开关站等组成。主洞内径6.0米,调压室后分为二支洞,支洞内径4.2米,每支洞再分岔供二台机组。厂房内共装置四台混流立式机组,出线方向为下游,有公路通过厂区。 四、设计依据及资料 l、水文资料 站址、百年洪水位113.00米。

站址、水位~ 流量关系曲线。 装机容量4×1万千瓦 水轮机型式HL230-LJ-200 蜗壳型式及包角钢蜗壳,包角345 尾水管型式4H 允许吸出高-0.5米转轮带轴重15吨 发电机型式SF10-28/425 转子带轴重60吨转子带轴长 4.9米 最大水头52.9米计算水头42.4米 最小水头32.1米单机最大引用流量28m3/s 3、供电情况和电气主结线 本电站主要用户为距电站8~12公里处的三个机械制造厂。负荷约16000千瓦,剩余的功率用110千伏线路送往50公里处的变电站并入电力系统。根据要求,本电站采用110千伏,35干伏及发电机电压6.3千伏三种电压等级送电。 4、水力机械附属设备 (1)、调速系统(尺寸见附图) 调速器形式DT-l00 油压装置形式YZ-2.5 (2)、蝴蝶阀 蝶阀为卧轴,双接力器油压操作式,活门直径2.6米,尺寸见附图。 (3)、油系统 压力滤油机2台; 离心滤油机l台; 齿轮油泵2台; 滤纸烘箱l台; 透平油桶(容积7.0米) 3只; 绝缘油桶(容积15.0米) 4只。(4)、压缩空气系统 调速器压力油槽充气25Kg/cm 机组制动用气7kg/cm 凤动工具及设备吹扫用气7kg/cm 机组调相压力充气7kg/cm

水电站设计方案

坝后式水电站毕业设计 5.1 设计内容 5.1.1 基本内容 5.1.1.1 枢纽布置 (1) 依据水能规划设计成果和规范确定工程等级及主要建筑物的级别; (2) 依据给定的地形、地质、水文及施工方面的资料,论证坝轴线位置,进行坝型选择; (3) 论证厂房型式及位置; (4) 进行水库枢纽建筑物的布置(各主要建筑物的相对位置及形式,划分坝段),并绘制枢纽布置图。 5.1.1.2 水轮发电机组选择 (1) 选择机组台数、单机容量及水轮机型号; (2) 确定水轮机的尺寸(包括水轮机标称直径D1、转速n、吸出高度Hs、安装高程Za); (3) 选择蜗壳型式、包角、进口尺寸,并绘制蜗売单线图; (4) 选择尾水管的型伏及尺寸; (5) 选择相应发电机型号、尺寸,调速器及油压装置。 5.1.1.3厂区枢纽及电站厂房的布置设计 (1) 根据地形、地质条件、水文等资料,进行分析比较确定厂房枢纽布置方案; (2) 核据水轮发甴机的资料,选择相应的辅助设备,进行主厂房的各层布置设计; (3) 确定主厂房尺寸; (4) 副厂房的布置设计; (5) 绘制主厂房横剖面图、发电机层平面图、水轮机层和蜗壳层平面图各?张。 5.1.0 选作内容 5.1.2.1 引水系统设计 (1) 进水口设计。确定进水口高程、型式及轮廓尺寸; (2) 压力管道的布置设计。确定压力管道的直径;确定压力管道的布置方式和各段尺寸;

5.2 基本资料 本水电站在MD江的下游,位于木兰集村下游2km处。坝址以上流域控制面积30200km2。 本工程是一个发电为主,兼顾防洪、灌溉、航运及养鱼等综合利用的水利枢纽。电站投入运行后将承担黑龙江东部电网的峰荷,以缓解系统内缺乏水电进行调峰能力差的局面。 本工程所在地点交通比较方便,建筑材料比较丰富,是建设本工程的有利条件。电站地理位置图见图5-1。

水电站设计说明书参考

石门子水利枢纽工程厂房设计 1.设计资料 1.1.工程概况 石门子水利枢纽工程位于新疆昌吉州玛纳斯县西南塔西河中游河段上,距乌伊公路45km。本工程以灌溉为主,兼顾发电、防洪、是一个综合利用的中型水利枢纽工程。 塔西河流域总面积2010km2。水库建成后,可以增加灌溉面积,保证棉花种植面积的扩大,为玛纳斯县发展商品棉基地发挥重要作用。此外,枢纽本身的防洪、发电效益也对当地工农业的发展起到积极作用。 本枢纽工程的主要建筑物由碾压混凝土拱坝、粘土心墙副坝、上下游围堰、导流兼引水发电隧洞、发电站厂房、碾压混凝土拱坝、坝身泄水孔等组成,最大坝高110m,装机6.4MW。年发电量为2490万KWh,年利用小时数为3890小时。一期工程计划于1999年底部分蓄水,2000年6月30日建成。 玛纳斯县塔西河一级石门子水电站为塔西河石门子水利枢纽的二期工程,包括引水隧洞进口事故闸门及启闭机、导流洞改建为发电洞,发电洞与导流洞卸接的龙抬头弯段、钢筋砼衬砌段、钢板衬砌段、钢管分岔段、发电站厂房、高压开关站、尾水闸门及启闭机、尾水渠连接段等部分组成。 1.2.水文 塔西河流域位于新疆昌吉州玛纳斯县境内,该河地处天山山脉北支依连哈比尔尕山的北麓东侧,该河流域北望准噶尔盆地,东以干河子呼图壁县为邻,西与玛纳斯河流域相伴。地理位置介于北纬43?31’~44?30’,东经85?50’~86?32’之间,属独立水系,为典型的内陆河流。据石门子水文站观测资料统计,多年平均气温4.1?C ,多年平均降水量430mm,多年平均蒸发量1410.8mm。主要特征水位如下:正常蓄水位为?1389 死水位为?1356 最高洪水位?1391.75 设计洪水位?1389 下游设计洪水位?1317 下游最低尾水位?1316.5

古田基本概况

古田概况 地理位置古田位于闽中部偏东北方,分别由西北向东南、东北向西南倾斜,呈两高两低马鞍状,其间重山叠嶂,溪谷遍布。地理坐标北纬26.299-26.882,东经118.555-119.400,毗邻福州、南平两地区,是福州、南平、宁德三市交汇的中心点,东距宁德市133千米,东南距省会福州市146千米。地势以东、西两侧向中部古田溪和古田水库倾斜。 气候状况古田溪纵贯西部,属中亚热带湿润气候,夏长冬短,春秋对峙,海洋性、大陆性气候兼之。年均气温16~21℃,年降雨量1400~2100毫米,日照时数1894.9小时,无霜期276天。主要自然灾害有寒潮、干旱、洪涝、大风和冰雹。 基本概况外福铁路,316国道,101、203、309省道公路纵横境内,闽江航道有34千米。土地面积2385平方公里,其中:耕地40.15万亩、山地296.89万亩、水域15.8万亩。总人口42.6万,其中农业人口36.1万人,全县辖2个街道、7个镇、5个乡,分别为城东街道、城西街道、平湖镇、大桥镇、黄田镇、鹤塘镇、杉洋镇、凤都镇、水口镇、吉巷乡、泮洋乡、凤埔乡、卓洋乡、大甲乡、280个村(居)委会,是闽东土地面积第一、人口总数第四的山区农业大县,素有“水电之乡”、“食用菌之乡”、“华侨之乡”、“体育之乡”、“文化之乡”之称。方言有古田话、粤语、闽南话。纪念地有古田会议纪念碑、闽浙赣游击纵队成立地。名胜古迹有宋吉祥寺塔、临水宫、朱熹“蓝田书院”遗址。 解放后政区1949年6月14日古田解放,成立县人民民主政府,将县以下15个乡(镇)改设为民主乡(镇)公所,沿用保甲制,成立行政村,实行乡(镇)保甲制。同年7月,撤民主乡(镇)公所,设14个区公所(原西溪乡并入凤埔区)。8月,缩编为7个区公所,即一区城区、二区平湖、三区 凤都、四区局下、五区谷口、六区沂洋、七区鹤塘。9月,县人民民主政府改称县人民政府,12月,区公所改称区人民政府。 1950年5月,进行整编,废除保甲,实行区乡村制。区人民政府进行调整,第四(局下)区撤销,并入第一(城关)区,并从第六(永安)区划出部分辖区成立新四区,增设第八(杉洋)区。同时,增设89乡和9个街。一区城关局下,区委会设在城关,辖城内9个街道,城郊10个乡;二区平湖、凤埔,区委会设在平湖,辖13个乡;三区凤都、桃溪,区委会设在凤都,辖9个乡;四区横洋、泮洋,区委会设在横洋,辖10个乡;五区黄田、谷口,区委会设在谷口,辖11个乡;六区永安、北墩,区委会设在永安,辖11个乡;七区鹤塘、卓洋,区委会设在鹤塘,辖13个乡;八区杉洋、大甲,区委会设在杉洋,辖12个乡。是年11月,区人民政府改称区公所。 1952年6月,增设第九(卓洋)、第十(凤埔)、第十一(局下)3个区公所,析全县为11个区公所。1955年9月,以驻地命名,11个区公所即城关、平湖、凤都、横洋、谷口、永安、鹤塘、杉洋、卓洋、凤埔、局下区公所。是年12月,城关区公所改称城关镇人民委员会。1956年2月,撤销凤都、凤埔区公所,9月撤销卓洋区公所,全县为7个区公所和1个镇人民委员会。 1958年10月,实行人民公社化,撤区并社,全县建立8个人民公社。1959~1965年先后增设5个人民公社和1个城关镇,镇辖街居委会,社辖生产大队。至1982年,全县有13个公社,1个城关镇,261个生产大队,5个居委会,1490个自然村、片村及农点。 千年古县古田人民勤劳创业,历史上以产铁、铸锅、造曲、制茶而出名,又因朱熹流寓而称为“先贤过化之乡”。解放前,这里是闽东游击区,在这片红色土地上留下许多可歌可泣的革命史迹。而今古田成为库区大县,全县总面积2385.2平方公里。县内资源丰富,交通方便,有铁路、公路、水路;这里林业发达,水果甚多,食用菌生产居世界第一,出口量为全国之冠;这里水力资源人均占有量居全国之首,古田溪水电站为全国第一个地下电站;这里是著名侨乡之一,旅外华侨、外籍华人达20多万人;这里体育、文化发展迅速,曾分别被评为全国体育先进县和全国文化模范县。现古田各方面都发生深刻变化,正由传统的农业县向开放型的山区县迈进。

相关文档
相关文档 最新文档