文档库 最新最全的文档下载
当前位置:文档库 › 羧甲基淀粉水处理絮凝剂的制备与应用研究

羧甲基淀粉水处理絮凝剂的制备与应用研究

羧甲基淀粉水处理絮凝剂的制备与应用研究
羧甲基淀粉水处理絮凝剂的制备与应用研究

羧甲基淀粉水处理絮凝剂的制备与

应用研究

摘要

本文以淀粉为原料,系统研究了羧甲基淀粉制备过程中不同因素与取代度的关系、对产物的结构变化及其理化性质的影响。

采用溶剂法以淀粉(种类)为原料,以乙醇为溶剂,氢氧化钠为碱化剂,一氯乙酸为醚化剂,对羧甲基淀粉的制备工艺进行了研究。考察了一氯乙酸用量、氢氧化钠用量、乙醇用量、反应时间、反应温度对醚化反应的影响,采用络合滴定法测定羧甲基淀粉的取代度。实验结果表明:在一定的范围内,羧甲基淀粉的取代度随着一氯乙酸用量、氢氧化钠用量、乙醇用量、反应时间、反应温度的增加、延长、升高均呈现出先增后减的规律。在单因素实验的基础上,选取一氯乙酸用量、氢氧化钠用量、乙醇用量、反应时间、反应温度五个因素为变量,以羧甲基淀粉的取代度为控制指标,通过五因素四水平正交试验得出这五个因素与取代度的关系,确定了制备羧甲基淀粉的最佳制备条件为:一氯乙酸0.075mol、氢氧化钠0.2mol、反应温度50℃、反应时间90min、无水乙醇70ml。

用上面制备的羧甲基淀粉再进行絮凝实验。以高岭土悬浊液为处理体系,探讨了羧甲基淀粉的絮凝性能,烧杯絮凝评价实验表明:羧甲基淀粉投加量为4mg/L时,剩余浊度可降至3.2NTU。若以羧甲基淀粉为助凝剂,实验结果表明,当投加8mg/L 聚合氯化铝(PAC)以及1mg/L羧甲基淀粉(CMS)则浊度去除率可达90%以上。

关键字:淀粉,羧甲基,取代度

Abstract

In this paper,with starch as material,the factors which affect DS of Carboxymethyl starch 、the properties and the structure of Carboxymethyl starch were studied

Carboxymethyl starch was prepared in alcohol medium by chloroactic acid and sodium hydroxide. We studied the different factors in preparation on degree of substitution (DS) of Carboxymethyl starch,which include the dosage of chloractic acid,the dosage of sodium hydroxide,the concentration of ethanol,by the reaction temperature and the reaction time. The result indicated that at first the DS of Carboxymethyl starch increased then decreased in a range of dosage. On the basis of one-factor experiments ,we select the ration of starch,chloractic acid and sodium hydroxide,the concentration of ethanol,the reaction temperature and the reaction time as the variables,DS as the experiments index,using L16(45) orthogonal experiment,we obtain the optimum processing conditions for preparation starch:chloroactic acid 0.075mol,sodium hydroxide0.2mol,reaction temperature 50℃,ethanol 70ml.

The properties of carboxymethyl starch flocculation are studies in kaolinite containing suspension. The experimental results show that. The remaining turbidity in treated water decreased to 3.2NTU after adding 4mg/L carboxymethyl starch.. the flocculation experiment of carboxymethyl starch as coagulant aid indicated that

turbidity removal ratios are larger than 90%.after adding 8mg/L PAC within 1mg/L

carboxymethyl starch.

Key words:Carboxymethyl starch,orthogonal test,solvent method

目录

引言 (6)

1.1 淀粉 (6)

1.1.1 淀粉的化学结构与性质 (6)

1.2 改性淀粉 (11)

1.3 羧甲基淀粉的性质及应用 (15)

1.4 本课题研究的主要内容及意义 (18)

1.4.1溶剂法制备羧甲基淀粉影响因素的研究 (18)

1.4.2溶剂法制备羧甲基淀粉最佳工艺参数的确定 (18)

1.4.3羧甲基淀粉(做助絮凝剂)的应用试验 (18)

1.4.4本课题研究的目的意义 (18)

第二章制备 (20)

2.1 羧甲基淀粉的制备 (20)

2.1.1 干法工艺 (20)

2.1.2 湿法工艺 (21)

2.1.3 溶剂工艺 (21)

2.2单因素实验实验部分: (22)

2.2.1对氯乙酸单因素进行试验: (25)

2.2.2 NaOH用量单因素进行试验: (27)

2.2.3温度单因素进行试验: (28)

2.2.4.时间单因素进行试验: (29)

2.2.5无水乙醇(乙醇浓度) (31)

2.3正交实验: (33)

第三章性能分析 (37)

3.1试验的基本原理、仪器及操作步骤 (37)

3.1.1 主要药剂与仪器 (38)

3.1.2 实验方法及操作步骤 (38)

3.1.3 CMS的絮凝效果; (38)

3.1.5 影响因素pH对絮凝效果的影响 (42)

3.1.6 CMS作助凝剂的絮凝实验 (44)

第四章结论与展望 (47)

致谢 (49)

参考文献 (50)

引言

1.1淀粉

淀粉是植物光合作用的产物,是由生物合成的可再生资源,是一种取之不尽、用之不竭的有机原料。出于环境保护及可持续发展战略的提出,人们的目光转向可再生资源,对淀粉的开发和利用,引起许多国家的重视。目前天然淀粉广泛应用于各工业领域,但随着工业生产技术的发展,新产品的不断涌现,对淀粉性质的要求将越来越苛刻。因此,有必要对淀粉进行变性处理,使之符合新工艺应用的要求。

淀粉来源丰富,自然界里分布很广,主要存在于植物的种子、块茎或根部、果实和叶子的细胞组织中。目前用于工业的品种主要为马铃薯、玉米、木薯和小麦淀粉。

目前生物经济正成为世界经济又一个新的经济增长点,以可再生资源含淀粉的生物质为原料采用生物技术生产生物能源和生物化学品可以部分替代石油能源和石油化工产品,正是生物工程急待发展的一个领域,也是淀粉工业发展的一个新的经济增长点,必将促进淀粉工业进一步发展。

1.1.1淀粉的化学结构与性质

了解淀粉的化学结构和重要物理性状,对于科学地掌握淀粉的改性方法和水处理中淀粉的应用技术具有重要的意义。

1.1.1.1 淀粉的结构

淀粉是由葡萄糖失水缩合而成的高分子化合物,组成淀粉分子的葡萄糖单位为C 6H 10O 5,所以淀粉的分子式为(C 6H 10O 5)n ,式中C 6H 10O 5为脱水葡萄糖单位,n 为聚合度,即组成淀粉高分子脱水葡萄糖单元的数量,表示淀粉分子是由许多个葡萄糖单位组成。

淀粉主要由碳、氢、氧三种元素组成。淀粉的来源,依靠在植物体内天然合成。植物的绿叶以叶绿素为催化剂,通过光合作用将二氧化碳和水合成为葡萄糖,其反应式为:

2261262666CO H O C H O O +???→+日光叶绿素

葡萄糖又经一系列的生物化学反应,最后生成淀粉、纤维素等多聚糖。早在十九世纪初期已经知道淀粉是由葡萄糖组成的,淀粉经过水解又生成葡萄糖。

普通天然淀粉有直链和支链两种分子结构,二者在性质与结构上有一定区别。一般所指的淀粉大都由这两种淀粉混合组成。天然淀粉是以白色固体颗粒存在,外层为支链淀粉,即淀粉皮质,内层为直链淀粉,即淀粉颗粒质。用热水处理时,直链淀粉可溶解,而支链淀粉不溶解。直链分子和支链分子的侧链都是直链,趋向平行排列,相邻羟基之间经氢键结合成散射状结晶“束”结构。直链淀粉和支链淀粉往往是以构成大分子链的葡萄糖基连接方式和分子链的形状加以区别。

1)直链淀粉:直链淀粉是由葡萄糖单位通过1,4糖苷键连接,接成直链状分子,见下图,可被淀粉酶水解为麦芽糖。直链淀粉没有一定的分子大小,差别很大,一般由300~800个葡萄糖分子连接而成。

直链淀粉分子结构

同一粮种直链淀粉在分子大小方面也有很大差别,不同粮种的差别就更大了。玉米、小麦等谷类直链淀粉的分子较小,马铃薯、木薯等薯类直链淀粉的分子较大。

直链淀粉分子的一个尾端葡萄糖单位的C1碳原子含有还原羟基,具有还原性,称为还原尾端基,分子另一端的葡萄糖单位没有还原性,称为非还原尾端基。

2)支链淀粉:支链淀粉的结构除了在直链结构部分以1,4糖苷链连接,而在支叉结构部分以1,6糖苷键连接。支链淀粉具有A、B和C三种链,链的尾端都具有一个非还原性尾端基。

图X-X 支链淀粉分子结构

支链淀粉含有1000~3000个葡萄糖单位。支链淀粉大约每20~30个葡萄糖单位上就有一个分支。每条分支链大约由23~27个葡萄糖单位组成。用淀粉酶水解支链淀粉时,只有外围的支链可被水解为麦芽糖。

直链淀粉与支链淀粉的性质也不同。直链淀粉难溶于水且水溶液不稳定,凝沉性强。支链淀粉易溶少水,溶液稳定,凝沉性弱。直链淀粉能制成强度高、柔软性好的纤维和透明薄膜,无味、无臭、无毒,具有抗水和抗油性能。支链淀粉也能制成透明薄膜,但强度很差,遇水立即溶解。

因直链淀粉和支链淀粉的结构和特性有很大的差异,因而淀粉的差异性大,改异性的差异更大。改性淀粉属多糖类高分子化合物,种类繁多。

1.1.1.2淀粉的物理、化学性质

1)淀粉颗粒的外部形状:淀粉粒存在于植物组织细胞中,用肉眼观察呈白色粉末状,在显微镜下观察,是一些形状和大小都不同的透明小颗粒组成。颗粒的形状,因植物种类的不同而不同,一般分为圆形,椭圆形或卵形和多角形

三种。例如马铃薯和甘薯的淀粉颗粒为卵形或圆形,而甘薯和玉米淀粉粒有圆形和多角形二种。同种淀粉的颗粒形状和大小也不一致。

2)淀粉颗粒的大小:因品种不同差别很大,即使是同一品种的淀粉颗粒,大小也不一致。一般含水分高、蛋白质少的植物淀粉颗粒都比较大,如马铃薯淀粉颗粒平均直径为15~100微米,含水分少的淀粉颗粒比较小,如玉米淀粉颗粒,平均直径约为5~26微米。

3)淀粉的水份含量:淀粉中的水分含量很高,但是由于淀粉分子中的羟基和水分子相互生成氢键,因此淀粉呈干燥的粉末状。不同品种淀粉的水分含量也不同,这是由于淀粉分子羟基自行结合和与水分子结合的程度不同的缘故。例如马铃薯、甘薯淀粉含水约为,玉米淀粉含水约为左右。虽然它们含有这样高的水份,却不显潮湿而呈干燥的粉末状。玉米淀粉分子的经基自行结合程度比马铃薯淀粉大,所以能通过氢键与水分子相结合的游离轻基数目相对减少,故玉米淀粉的水分含量较低。淀粉具有吸水性,通常情况下,淀粉所含的水份与其环境空气的水份呈平衡状态,空气湿度增大,淀粉水份含量也随之增高空气湿度降低,淀粉散失水,而使水份含量降低。

4)淀粉的重要性质:

糊化:淀粉的糊化(胶化)温度(Gelatinization Temperature,GT)淀粉在冷水中经搅拌成为淀粉乳,停止搅拌静置后,淀粉沉淀于下部。这是因为淀粉不溶于水,其比重比水大的缘故。若将淀粉乳加热,淀粉颗粒可逆地吸水膨胀,温度继续上升,颗粒继续膨胀,当加热至某一温度时,颗粒急剧膨大继而解体,晶体结构消失,变成粘稠状液体,称为淀粉糊,即使停止搅拌,淀粉也不会再行沉淀。这种由淀粉乳转变为淀粉糊的现象称为淀粉的糊化。发生糊化所需的最低温度称为糊化温度。糊化温度的测定方法有偏光显微镜法、分光光度法、电导法和差示扫描量热法。各种淀粉的糊化温度是不同的,较大的颗粒容易糊

化,能在较低的温度下达到糊化。

1.2. 改性淀粉

在原淀粉具有固有特性的前提下,利用物理、化学或酶的方法进行处理,改变淀粉的结构和性质,增强其某些机能或形成新的特性而制成的淀粉称为改性淀粉。天然高分子是大自然的永不枯竭的高分子资源,它既能生物降解又可再生,因此随着对资源和绿色化工的日益重视,在世界经济日益变化、人口激增以及资源巨大消耗的今天,研究天然高分子及其衍生物的结构、改性方法和作为新材料的应用就显得十分重要。

由于天然淀粉虽具亲水性,但又不溶于水,随着温度升高还会有膨胀糊化、糊液又不稳定、易老化、被膜差、粘度上升、流动性差、耐机械搅拌性和热稳定性也差,缺乏耐水性和乳化能力等等自然属性,使其在使用方面受到很大的限制。因此它的应用受到了限制,不能适应食品、医药、造纸、纺织、冶金、建筑以及农林等方面发展变化的要求。

变性淀粉具有广泛的用途,可用于食品医疗造纸日用化工等很多领域。羧甲基淀粉是改性淀粉的代表产品,其物化性质与羧甲基纤维素(CMC)相似,外观比CMC 更为均匀细腻,生产成本比CMC 低,又称变性羧甲基淀粉钠,简称CMS。它是在淀粉葡萄糖的羟基上引入羧甲基后形成羧甲基淀粉醚结构,大大改变淀粉的理化性质。羧甲基淀粉为无毒无臭的白色或淡黄色粉末,亲水性强,透明度好,冻溶稳定性好,糊粘度高,因此得到了广泛的应用。

我国具有丰富的淀粉资源,CMS 作为CMC 的代替品,具有明显的资源优势和价格优势,但目前国内生产的CMS,在品种、质量和产量上还不能完全满足各行各业的需求。因此,国内应进一步加强CMS 的生产和应用研究,不断

改进生产工艺和设备,提高质量,扩大产量,降低成本,形成规模效益,并重视新品种的研制,以满足各行各业对CMS 的需求。

为了进一步提高经济效益,更为广泛地应用这类天然高分子,使其能在工业领域使用,人们用化学、物理等方法对淀粉进行改性,使其性能有明显变化,改善原淀粉的某些机能、高分子属性或增加新的性状,使它们具有比原淀粉更优良的性质,起到原淀粉达不到的特殊效能,使之适于各种不同用途的要求,使得资源得到更合理的利用。

现有改性淀粉品种名目繁多,有些品种是经化学、物理或酶的综合处理的产物,对它们的分类很难明确细分。这类高分子化合物含有各种活性基团,如羟基、酚羟基等,表现出较活泼的化学性质,通过羟基的酯化、醚化、氧化、交联、接枝共聚等化学改性,其活性基团大大增加,聚合物呈枝化结构,分散了絮凝基团,对悬浮体系中颗粒物有更强的捕捉与聚沉作用,提高了絮凝效果以满足不同混凝沉淀工艺的要求。

由于所用的化学试剂不同,反应条件的不同,取代程度或聚合程度的不同,所以能制得不同的淀粉衍生产品,以符合各种用途的要求。

酯化淀粉是指淀粉羟基被无机酸或有机酸酯化而得到的产品,目前用于水处理絮凝剂的酯化淀粉主要有以下几种:(1)磷酸脂淀粉;(2)乙酸酯淀粉;(3)黄原酸酯淀粉,在碱性条件下,二硫化碳与淀粉分子中的羟基起酯化反应,得到黄原酸酯淀粉。这种改性淀粉的一个突出特色就是能与重金属离子进行离子交换。

(4)尿素淀粉,利用一定质量配比的尿素与淀粉在高温下混合反应而制得。尿素起着交联剂和取代基的作用,淀粉经交联后分子量增加,同时引进了具有良好絮凝性能的氨基甲酸酯基团,并且具有很好的除色效果。此外,还有硫酸酯淀粉、烯基琥珀酸酯淀粉、磺酸基丁二酸酯淀粉等多种,但制备工艺稍显复杂,制备成本也偏高,所以在水处理中应用较少。

醚化淀粉醚化淀粉是指淀粉分子中的羟基与反应活性物质反应生成的淀粉取代基醚,由于淀粉的醚化作用提高了粘度和稳定性,且在强碱性条件下醚键不易发生水解,因此醚化淀粉较多地被应用在水处理的混凝工艺之中。主要的醚化淀粉有以下几种:(1)羟乙基淀粉羟乙基淀粉是由淀粉与环氧乙烷或氯乙醇在碱性条件下发生亲核取代反应而制得的,高取代度的羟乙基淀粉具有热塑性和水溶性,其醚键对酸、碱、热和氧化剂作用的稳定性好,是一种有发展前途的有机絮凝剂。(2)羧甲基淀粉(CMS)羧甲基淀粉是由淀粉在碱性条件下,与一氯乙酸或其钠盐起醚化反应而制得的。它是一种阴离子淀粉醚,为溶于冷水的聚电解质,粘度较高,具有羧基所固有的螯合、离子交换、多聚阴离子的絮凝作用,也具有大分子溶液的性能,如增稠、水分吸收、粘附性及成膜性,经过磷酸盐交联的CMS有着很强的絮凝能力。但CMS的水溶液耐盐能力较差,易与金属离子生成沉淀,化学性质不够稳定,而且容易被空气中的细菌分解而失去絮凝能力,因此贮存时间短,一般只有4~6天,在实际应用中受到很大的限制。(3)阳离子淀粉淀粉与胺类化合物反应生成含有氨基和铵基的醚衍生物,氮原子上带有正电荷,因此称为阳离子淀粉。根据胺类化合物的结构或产品的特性,可分为叔胺型、季胺型、伯胺型阳离子淀粉,双醛阳离子淀粉、络合阳离子淀粉以及两性阳离子淀粉,其中以叔胺型、季胺型和两性阳离子淀粉在应用上更为普遍。与羧甲基淀粉或羟乙基淀粉相比,阳离子淀粉带有的正电荷在处理原水中带负电荷的胶体颗粒可以起到电性中和及吸附架桥的双重功能,而且糊粘度稳定,凝沉性弱,是一种性能良好的高分子絮凝剂。其实用性的关键正是在于它对带阴电荷的物质有亲合性.因为活性、直接、酸性等染料含有阴电荷基团(如羧基、磺酸基等),所以阳离子淀粉可作为絮凝剂用于染料废水处理中.

接枝淀粉淀粉经物理或化学方法引发,与丙烯腈、丙烯酰胺、丙烯酸、乙酸乙烯、甲基丙烯酸甲酯、苯乙烯等单体进行接技共聚反应,形成接枝淀粉。

它们既有多糖化合物分子间的作用力和反应活性,又有合成高分子的机械和生物作用稳定性和线性长链的伸展能力,因此在促进水体中絮凝体成长方面有着优异的性能。主要的接枝淀粉有以下几种:(1)聚丙烯酰胺(PAM)聚丙烯酰胺是一种线型的水溶性聚合物,在水处理领域中被广泛地用作有机高分子絮凝剂。它是由丙烯酰胺单体与淀粉通过接枝共聚反应得到的,一般采用铈离子或过氧化氢等作为引发剂。PAM的分子主链上带有大量侧基-酰胺基。酰胺基的化学活性很大,它能与多种可形成氢键的化合物结合,同时聚丙烯酰胺分子链很长,这就使它能在原水中存在的胶体颗粒之间架桥,加速粒子的沉降。并且其水溶液对电解质有很好的忍耐性,可以保持较长的贮存时间,因此是一种很好的絮凝剂和助凝剂。但近年来国内外对PAM反应后的残余单体—丙烯酰胺的毒性的关注也越来越多,普遍认为对哺乳类动物的神经有毒害作用,因此各国对PAM 的投量有着严格的限制。(2)聚丙烯酸(钠)它是以丙烯酸钠为原料,在水溶液中以过氧化氢为引发剂,经过聚合、浓缩而得到的。它有着很好的水溶性,具有活性吸附功能,能将悬浮颗粒吸附在其表面上,使得悬浮颗粒相互凝聚,形成大块絮凝团,因此是一种很好的助凝剂和助滤剂。而且聚丙烯酸盐分子链上有许多羧酸根离子,对阳离子产生很强的束缚作用,所以它也被用来去除化工废水中的重金属离子。

环状糊精环糊精(CD)是由Bacillus属杆菌所产生的环糊精糖苷转移酶与淀粉作用生成的含有6~12个葡萄糖分子,以α-1,4糖苷键相连接而成。自从1891年Villier发现它并将其命名为“Celulosine”以来,环糊精研究经历了两个重要发展时期:1970年以前,主要从事结构和化学性质的研究。1970年以后,则进入应用开发阶段。近三十年来,各种CD及其衍生物在国外已广泛应用于医药、化工、农业、日用消费品及生物技术等领域中。1999年美国Los Alamos实验室的研究人员最早提出利用改性(化学表面修饰)后的β-环糊精高效地吸收和截留

水中的一些用常规净水工艺和材料很难或无法降解的有机污染物质[4]。德国等欧洲国家也相继针对当地的水质情况,很快开展了一系列相关材料的机理性和应用研究。目前国外大多利用烷基化环糊精或多支链的高聚物,通过适当的工艺条件,制备出这种具有多孔内部结构的纳米海绵材料,并且将其做成粒状固体、粉末以及光学镀膜等等各种不同的形式,以满足水处理设施的不同需要。例如,如果将这种纳米材料加工成滤膜的形式,就可以安装在家用水龙头上,象传统过滤器那样用于饮用水的净化。不过它与传统过滤器相比,不仅净化效果要好得多,而且不会增加水中的硬度。迄今为止,研究者已经利用这种聚合物来处理含有三氯乙烯、甲苯、羟基衍生物等有机污染物的水体以及含有大量的印染化合物的工业废水,均取得了理想的处理效果。

1.3.羧甲基淀粉的性质及应用

羧甲基淀粉是一种阴离子淀粉醚,是能溶于水的高分子电介质,它是淀粉在碱性条件下与一氯乙酸起醚化反应而得的,最早问世于年,由Chowdhuri

制得。

羧甲基淀粉(Carboxymethyl Starch)简称 CMS,是淀粉在碱性条件下与一氯乙酸或其钠盐进行醚化反应生成的一种阴离子淀粉醚。

1.3.1.反应机理

羧甲基淀粉的制备是利用淀粉分子葡萄糖残基上C2、C3和C6上的羟基所具有的醚化反应能力,与CH2ClCOOH 在NaOH 存在的碱性环境中发生双分子亲核取代反应,反应分两步进行:

第一步为碱化反应:

ROH + NaOH →RONa + H2O

NaOH 使葡萄糖残基上羟基变为负氧离子,提高其亲核性,所生成的淀粉钠盐是进行醚化反应的活性中心。

第二步为醚化反应:

RONa + CH2ClCOOH →ROCH2COONa + NaCl + H2O

同时,NaOH 还可与CH2ClCOOH 发生下列副反应:

CH2ClCOOH + 2NaOH →HOCH2COONa + NaCl + H2O 副反应的发生,使得醚化剂失活,转化率降低,避免的方法除控制碱用量外,合成过程中的其它条件亦很重要。

反应程度用平均每个脱水葡萄糖单位中羟基被取代的数量表示,称为取代度(Degree of Substitution),常用英文缩写DS 表示,葡萄糖单位共有3个羟基,因此取代度最高为3。

结构:

性质:阴离子淀粉醚,为溶于冷水的聚电解质,粘度较高,具有羧基所固有的螯合、离子交换、多聚阴离子的絮凝作用,也具有大分子溶液的性能,如增稠、水分吸收、粘附性及成膜性,经过磷酸盐交联的CMS有着很强

的絮凝能力。但CMS的水溶液耐盐能力较差,易与金属离子生成沉淀,化学性质不够稳定,而且容易被空气中的细菌分解而失去絮凝能力,因此贮存时间短,一般只有4~6天,在实际应用中受到很大的限制。

应用:CMS 具有良好的水溶性、溶液透明性、保水性、成膜性、胶凝性,同时又无异味,所以它得到了广泛地应用。

食品工业,CMS 可作为品质改良剂,在食品工业中可作为增稠剂、稳定剂、保水剂和果蔬成膜剂等,改善产品性能提高产品质量。

纺织印染工业,CMS 是经纱上浆、印染粘合及后整理加工的理想浆料。

医药工业,在医药上是很好的崩解剂,还可用作血浆体积扩充剂,滋糕型制剂的增绸剂,口服药物的悬浮剂和分散剂,膏药、软膏、药丸和片剂的基粒及粘合剂。

造纸工业,CMS 在涂布纸张中用做粘合剂,可使涂料具有良好的均涂性和黏度稳定性。

石油工业,CMS 在石油钻井泥浆中用作降失水剂,以保护油层不受泥浆的污染,且具有携带钻屑及使泥饼致密的作用。

日用化学工业,CMS 可作为多功能洗涤助剂用于洗涤剂配剂。它能很好地封闭重金属离子,具有良好的悬浮能力、分散能力,以及防止固体污垢再沉淀的能力。CMS 可生物降解,不会造成环境污染。此外,CMS 还可用作化装品和牙膏中的增稠剂。

粘合剂工业,CMS 的保水性和成膜性在瓦楞纸板粘合剂、胶带粘合剂和纸张粘合剂中得到应用。

其他用途,CMS 用作煤浆或油煤混合燃料浆的减粘剂,使其具有良好的悬浮稳定性和流动性。建筑行业将羧甲基淀粉作为墙体腻子中的胶料用量较大。CMS 还可用作水基乳胶漆的增粘剂、涂料粘合剂、石印板表面保护剂、重金属污水处理整合剂等。近年来国外在羧甲基淀粉的应用方面也有不少进展。较有价值的应用主要有化肥控制释放和种子包衣剂等。化肥控制释放是先将化肥造粒,用CMC 或羧甲基淀粉等多糖类聚合物与PVC 树脂混合制成胶囊包裹化肥,可以使化肥缓慢的向土壤中扩散释放,提高肥效;种子包衣剂是将CMC 或羧甲基淀粉水解降低粘度,配制成30%高含固量溶液,用于种子涂覆包衣剂的胶料,易干燥,成膜致密,在土壤中吸水,保水性强,应用效果良好。

1.4.本课题研究的主要内容及意义

1.4.1.溶剂法制备羧甲基淀粉影响因素的研究

对羧甲基淀粉制备工艺进行单因素试验研究,研究不同的反应条件,包括一氯乙酸(醚化剂)用量、氢氧化钠(碱化剂)用量、乙醇用量、反应时间、反应温度对反应产物羧甲基淀粉取代度的影响。

1.4.

2.溶剂法制备羧甲基淀粉最佳工艺参数的确定

在单因素试验的基础上确定了各因素的水平,绘制五因素四水平的正交表进行正交试验,并对试验结果运用“综合平衡法”分析,得出最佳制备工艺条件。

1.4.3.羧甲基淀粉(做助絮凝剂)的应用试验

利用烧杯实验,对制备成品的絮凝性能进行研究,比较羧甲基淀粉(CMS)与聚合氯化铝(PAC)单独作用,以及羧甲基淀粉(CMS)作絮凝剂下的絮凝效果。探索pH值对浊度去除效率的影响。

1.4.4.本课题研究的目的意义

羧甲基淀粉生产和应用方面的不足,

由于社会的进步,人们越来越关注环境因素对健康的影响。作为广泛使用于水质净化的絮凝剂,其使用过程中的不安全性和对环境造成的二次污染,也

越来越受到重视。然而,随着时间的推移,人工合成的有机和无机水处理剂日益显出其致命弱点,

它们大多数或呈微毒,会通过食物链进入人体,影响人体健康。或处理残渣会对环境造成二次污染。例如聚丙烯酞胺可能会产生微毒致癌物,聚合氯化铝残留铝离子会致人衰老,而金属矿物水处理剂吸附重金属后其污泥即成为难以处理的二次污染源,继续进入生物链,危害健康。而改性淀粉作为天然高分子碳水化合物改性而得的水处理剂,在这方面显现出不可比拟的优点,它对环境无毒无害,且其处理残渣易被微生物降解。因此,不会对环境造成二次污染。被改性淀粉絮凝或吸附的污染物比较容易回收利用。在残渣无污染的前提下,可直接作农肥,或在堆肥的过程中自然降解。对有毒的如吸附重金属的沉渣,可通过高温碳化或化学方法减量。

与人工合成有机絮凝剂相比,天然改性高分子絮凝剂具有成本低、来源广、低毒害、易于生物降解等优点,越来越受到人们的重视,在水和废水处理中的研究和应用也日渐深入和广泛。开发新型高效的天然高分子絮凝剂,作为有机合成高分子絮凝剂的替代产品,从环境可持续发展角度来看,具有十分重要的意义和广阔的应用前景。鉴于改性淀粉水处理剂对环境无害,但是在当前作水处理剂其应用效能一般的局面,本课题将主要研究改性淀粉在不同污水中的絮凝性能和机理,进一步探讨改性淀粉絮凝剂的絮凝效果与值、温度、絮凝剂用量等因素的关系。

第二章制备

2.1.羧甲基淀粉的制备

羧甲基淀粉的制备工艺按照反应物态大体分为两种:湿法和干法,湿法又分水溶法和有机溶剂法。

2.1.1.干法工艺

干法反应是淀粉在少量水存在的状态下与一氯乙酸反应。按混合工艺的不同,该法又可分为如下方法:

1)一步加碱法淀粉与氢氧化钠、一氯乙酸一次性混合反应。

2)二步加碱性淀粉与部分氢氧化钠混合碱化后,再加入剩余的NaOH和一氯乙酸,升温反应。

3)流化法淀粉与氢氧化钠、一氯乙酸一次性干混,再通过高温成流化床反应。

干法工艺无生产污染,反应效率≥90%,反应时间短,生产成本较低。但反应不均匀,副产物难以去除,故生产高品质羧甲基淀粉(CMS)较为困难。

羧甲基淀粉的干法制备工艺,设备要求较高,在干燥条件下,反应原料的混合比较困难,而且接触不是十分充分,需要将氢氧化钠喷淋于淀粉中,还要求高速混合搅拌机,考虑到实际情况,这种干法工艺不利于在实验室开展研究。

羧甲基淀粉水处理絮凝剂的制备与应用研究

羧甲基淀粉水处理絮凝剂的制备与 应用研究

摘要 本文以淀粉为原料,系统研究了羧甲基淀粉制备过程中不同因素与取代度的关系、对产物的结构变化及其理化性质的影响。 采用溶剂法以淀粉(种类)为原料,以乙醇为溶剂,氢氧化钠为碱化剂,一氯乙酸为醚化剂,对羧甲基淀粉的制备工艺进行了研究。考察了一氯乙酸用量、氢氧化钠用量、乙醇用量、反应时间、反应温度对醚化反应的影响,采用络合滴定法测定羧甲基淀粉的取代度。实验结果表明:在一定的范围内,羧甲基淀粉的取代度随着一氯乙酸用量、氢氧化钠用量、乙醇用量、反应时间、反应温度的增加、延长、升高均呈现出先增后减的规律。在单因素实验的基础上,选取一氯乙酸用量、氢氧化钠用量、乙醇用量、反应时间、反应温度五个因素为变量,以羧甲基淀粉的取代度为控制指标,通过五因素四水平正交试验得出这五个因素与取代度的关系,确定了制备羧甲基淀粉的最佳制备条件为:一氯乙酸0.075mol、氢氧化钠0.2mol、反应温度50℃、反应时间90min、无水乙醇70ml。 用上面制备的羧甲基淀粉再进行絮凝实验。以高岭土悬浊液为处理体系,探讨了羧甲基淀粉的絮凝性能,烧杯絮凝评价实验表明:羧甲基淀粉投加量为4mg/L时,剩余浊度可降至3.2NTU。若以羧甲基淀粉为助凝剂,实验结果表明,当投加8mg/L 聚合氯化铝(PAC)以及1mg/L羧甲基淀粉(CMS)则浊度去除率可达90%以上。 关键字:淀粉,羧甲基,取代度

Abstract In this paper,with starch as material,the factors which affect DS of Carboxymethyl starch 、the properties and the structure of Carboxymethyl starch were studied Carboxymethyl starch was prepared in alcohol medium by chloroactic acid and sodium hydroxide. We studied the different factors in preparation on degree of substitution (DS) of Carboxymethyl starch,which include the dosage of chloractic acid,the dosage of sodium hydroxide,the concentration of ethanol,by the reaction temperature and the reaction time. The result indicated that at first the DS of Carboxymethyl starch increased then decreased in a range of dosage. On the basis of one-factor experiments ,we select the ration of starch,chloractic acid and sodium hydroxide,the concentration of ethanol,the reaction temperature and the reaction time as the variables,DS as the experiments index,using L16(45) orthogonal experiment,we obtain the optimum processing conditions for preparation starch:chloroactic acid 0.075mol,sodium hydroxide0.2mol,reaction temperature 50℃,ethanol 70ml. The properties of carboxymethyl starch flocculation are studies in kaolinite containing suspension. The experimental results show that. The remaining turbidity in treated water decreased to 3.2NTU after adding 4mg/L carboxymethyl starch.. the flocculation experiment of carboxymethyl starch as coagulant aid indicated that turbidity removal ratios are larger than 90%.after adding 8mg/L PAC within 1mg/L carboxymethyl starch. Key words:Carboxymethyl starch,orthogonal test,solvent method

絮凝剂溶解液的制备与分析

絮凝剂溶解液的制备与分析 摘要:基于模糊控制的絮凝剂溶解液制备、自动添加控制装置和检测装置的相互间的有机组合,同时在不同选煤厂进行试验研究应用,分析影响控制煤泥水溢流浓度效果的因素。通过有效控制煤泥水溢流的浓度,从而有效地降低沉降成本。 关键词:煤泥水,絮凝剂溶解液,模糊控制 Study of Flocculants Dissolving and Analysis Abstract:Based on the fuzzy control of the flocculating agent dissolved liquid preparation, automatic add control device and testing device of mutual organic combination, and at the same time in different coal preparation plant experiment research and application, analyzed the control of the coal slime water overflow concentration effect factors. Through the effective control of the coal slime water overflow concentration, so as to effectively reduce the cost of settlement. Keywords:Slime water; flocculants dissolving liquids; fuzzy control 目前,处理煤泥水的典型工艺是先沉降浓缩后压滤。浓缩工艺是使浓缩池中的煤泥颗粒在重力作用下实现自由沉淀,达到煤泥与水的分离[1-2]。为了提高煤泥水处理效果,常向煤泥水中加入絮凝剂溶解液[3],目前选煤厂煤泥水处理主要是添加絮凝剂[4]。在不同入料(絮凝剂)方式下,研究了浓缩池内的流速规律、表层流线,进一步分析了不同入料方式对煤泥沉降效果的影响[5]。通过絮凝剂溶解规律曲线试验和不同溶剂温度下絮凝沉降后的透光率与时间的关系,得出煤泥沉降分布规律的数学方程,为煤泥水的沉降处理和间接检测临界面提供重要理论依据,具有深远的实践意义。 1 煤泥水絮凝沉降影响因素分析 煤泥水硬度对絮凝剂絮凝效果有很大影响[6],煤泥水中Mg2+,Ca2+浓度则是影响水硬度的主要因素[7],当水的硬度较小时,煤泥水中的Mg2+,Ca2+无法大量中和带负电荷的煤泥颗粒,煤泥颗粒由于相对稳定的排斥力呈悬浮状态;当水的硬度较大时,煤泥水中的Mg2+,Ca2+大量中和带负电荷的煤泥颗粒,降低了颗粒表面的电位,颗粒间相互排斥力降低,从而使小颗粒逐渐凝聚,实现固、液的彻底分离。 本文所研究絮凝剂为阴离子聚丙烯酰胺,如果单独添加到煤泥水中,则由于煤泥水中分子结构和煤泥固体颗粒均带负电,互相排斥,对煤泥水沉降作用不大。若使煤泥水中Ca2+,Mg2+离子含量增多,煤泥水中的正、负电荷相互中和,固体颗粒之间的排斥力降低,增强了煤泥水的絮凝沉降效果,此时再向煤泥水中加入絮凝剂,由于煤泥水中的胶体颗粒失稳,不但可以减少药剂用量,还将大大提高絮凝效果。因此利用煤泥水中高含量Ca2+,Mg2+实现了一定的凝聚作用,增强了煤泥沉降效果,降低了生产成本,避免了过量凝聚剂带来的沉淀物不密实的问题。 2 絮凝剂溶解液制备机理 本文通过分析絮凝剂本身的物理、化学性质,运用多次试验数据分析总结得出其溶解规律,为絮凝剂溶解液制备装置的设计提供相关依据。 2.1 絮凝剂溶解规律 絮凝剂溶解过程不是瞬间完成的,而是一个复杂而缓慢的过程。絮凝剂在水中溶解要克服分子间的相互作用力,又要移动大分子链的重心。溶解时,絮凝剂分子链自身带有的酸胺基团能相互结合为氢键,氢键在水中有很强的吸附性,氢键不断结合且逐渐变大,然后慢慢

羧甲基淀粉胶黏剂的制备

攀枝花学院实验报告 实验课程:化工工艺方向专业实验实验项目:羧甲基淀粉胶黏剂的制备实验日期:院系: 班级:姓名:学号: 组员 【实验目的】 1、学习改性淀粉胶黏剂的基本知识。 2、掌握羧甲基淀粉胶黏剂的制备方法和操作技术。 【产品性能与功能】 用淀粉配置胶黏剂已有悠久的历史。淀粉不溶于水,仅能在热水中糊化,糨糊就是它的糊化物。淀粉的糊化温度较高,所制的的糨糊黏合力低,而且稠度过大,不利于在制备和使用时机械化操作。 用物理、化学或生物的方法对淀粉进行改性便可改变淀粉的溶解、黏度、以及相关性能, 是制备淀粉基胶黏剂的有效方法。淀粉分子中含有糖苷键和活性羟基, 能和许多物质发生化学反应, 是对淀粉进行化学改性的基础,其中氧化、酯化、醚化、交联、接枝等是常用的化学改性方法。 在本实验中,用氯乙酸处理淀粉,使分子中羟甲基上的氢被羧甲基取代(发生醚化),生成羧甲基淀粉,也能达到提高水溶性的目的。在淀粉的葡萄糖残基中,只有C6连接的羟基是伯醇羟基,因此在羧甲基化反应中此羟基优先被醚化。由于羧基有酸性,因此淀粉经羧甲基化和成盐以后,水溶性也就大大增加了。 羧甲基淀粉胶黏剂是一种重要的改性淀粉,它具有糊化温度低、胶合力强、稳定性较高、保水性和对纸张的渗透力好等优点。而且流动性好,便于涂覆,有利于机械化生产,特别适合于作楞纸产品的胶黏剂。 【实验仪器设备、药品、器材】 仪器设备:烧杯(500ml、200ml、100ml)、真空泵、水浴锅、量筒(100ml)、PH试纸、电子天平、电热套、玻璃棒 药品:30g淀粉(小麦、玉米淀粉或木薯淀粉)、氢氧化钠、1.6g氯乙酸(ClCH2COOH)、0.4g硼砂(Na2B4O7·10H2O)、蒸馏水、1g丙烯酰胺、0.6g1% 双氧水(H 2O 2 )、2gL-抗坏血酸 O O OH H CH 2 OH 【实验原理】 羧甲基淀粉(CMS)是以淀粉和氯乙酸为原料,在碱性催化剂的作用下反应而制的。 羧甲基淀粉经碱处理,制成载体糊料;经硼砂处理,制成主体糊料。将两种糊料按比例混合,即成为产品羧甲基淀粉胶黏剂。

羧甲基淀粉钠CMS的生产方法和工艺流程

羧甲基淀粉钠CMS作为一种重要的化工助剂以其独特的性能和较高的经济效益在工业生产的各个领域有着广泛的应用。 天然淀粉已广泛应用于工业生产的各个领域,而且对于不同的领域,对淀粉的要求又不尽相同。随着工业生产技术的不断发展,人们对淀粉的性质的要求越来越苛刻,因此,淀粉化学品作为淀粉的改性产品因其独特的性能和较高的经济效益越来越得到人们的青睐。羧甲基淀粉钠作为一种新型的淀粉化学品因其对环境的友好性和良好的性能在工业生产的各个领域越来越得到重视,其市场需求迅速增加。羧甲基淀粉钠CMS 又名羧甲基淀粉或是羧甲基淀粉醚,为白色或略带黄色的粉末状固体,无毒无味,具有一定的吸潮性,可直接溶于冷水,但不溶于醇和醚,常温下溶于水形成胶体状溶液,在碱性或弱酸性溶液中稳定。羧甲基淀粉钠最基本的宏观表征是其水溶液的粘度,其大小取决于聚合度、取代度以及杂质含量、温度、浓度、PH值等。 羧甲基淀粉钠的分子单元结构与羧甲基纤维素CMC相同,性状也很相似,因而在许多领域有相同或相似的使用性能和效果。但由于淀粉来源广,成本较低,生产时醚化剂用量少,工艺较简单,加之该产品优良的水溶性、膨胀性、分散乳化性及稳定性等,在应用上已远远胜过了羧甲基纤维素,是一种开发利用前景十分广阔的精细化工产品。 羧甲基淀粉钠的合成羧甲基淀粉是淀粉在碱性条件下,与一氯醋酸起醚化反应而成的一种阴离子淀粉醚。商业品羧甲基淀粉一般以其钠盐的形式存在,具有良好的溶液性能,如增稠、糊化、水分吸收、粘附性及成膜性,也包括羧基固有的性能,如螯合作用、离子交换、多聚阴离子的絮凝作用及酸性功能。 羧甲基淀粉钠的合成方法制取不同取代度的羧甲基淀粉可采用三种不同的制取方法:水媒法淀粉直接悬浮于水中,制成一定浓度的淀粉乳,加入与淀粉等摩尔量的乙醇及一氯醋酸,在40 / 506温度下反应。该方法因羧甲基淀粉随取代度增高而溶于水的特性决定了只适合生产低取代度的羧甲基淀粉。水媒法工艺流程:淀粉+碱化+醚化+过滤+干燥+粉碎+包装。 固法固法反应是淀粉在少量水存在的状态下与一氯羧甲基淀粉钠(CMS)的合成与应用现状造纸化学品与醋酸反应。按混合工艺的不同,该法又可分为如下方法:一步加碱法,干淀粉与乙醇一次性混合碱化,再加入一氯醋酸反应。二步加碱性,干淀粉与部分乙醇混合碱化后,再加入剩余的乙醇和一氯醋酸,升温反应。流化法,干淀粉与乙醇、一氯醋酸一次性干混,再通过高温成流化床反应。固法工艺无生产污染,反应效率快,反应时间短,生产成本较低。但反应不均匀,副产物难以去除,故生产高品质羧甲基淀粉较为困难。固法工艺流程:淀粉+干混+流化反应+干燥+粉碎+包装。 有机溶剂法羧甲基淀粉不溶解于醇、酮等有机溶剂。需生产冷水可溶的高取代度羧甲基淀粉。产品的理想方法是将淀粉悬浮于一定含水量的溶剂中,加入片碱和一氯醋酸进行反应。该工艺流程相对复杂且需消耗溶剂,但其产品质量好,适合生产高品质羧甲基淀粉。 综合以上几种工艺方法的优缺点,有机溶剂法生产工艺是制取羧甲基淀粉的理想工艺,因而被广泛应用。有机溶剂法工艺的流程溶剂法工艺过程主要分四个步骤碱化淀粉悬浮于溶剂中加碱反应生产淀粉钠盐。醚化反应淀粉钠盐与一氯醋酸进行取代反应生成羧甲基淀粉。精制反应物用酸中和,然后用醇—水液洗涤除等副产物,分离、干燥、粉碎得商品羧甲基淀粉。溶剂回收溶剂经精馏回收循环使用。 由于CMS的主要原料淀粉来源丰富,价格低廉,因而生产成本及市场价格远远低于CMC,但性能却优于CMC,比CMC的粘度高,稳定性好,所以CMS应用范围更为广泛,国内产量不足万吨,而市场需求量却已达( 万吨,因而CMS的经济效益十分显著,市场也十分广阔。

污水处理絮凝剂

污水处理絮凝剂 一、概述 造纸生产中用水多、消耗化学药品多、污染非常严重,在造纸工业中的污水处理剂也是一种非常重要的化学助剂。污水处理最常用的是絮凝沉淀剂。絮凝剂是能使溶胶变成絮状沉淀的凝结剂。絮凝剂能使分散相从分散介质中分离出絮状沉淀,其凝结作用称为絮凝作用。用于促进废液中废物沉降、过滤、澄清等过程的普通絮凝剂,包括无机物和有机高分子。两者可单独使用,也可配合使用,但配合使用比单独使用效果更佳。 1.絮凝原理制浆造纸的废液中所含杂质范围很大,从呈稳定的胶体状态的杂质,到只有流动状态下的悬浮,以至在静止时沉淀的较大颗粒等杂质。它们在水中不容易沉淀,必须添加药剂改变物质的界面特性,使分散的胶体聚合,然后形成大颗粒,使这些胶体粒子易于沉降或浮上分离,此过程称为絮凝。在废水处理中,水中胶体粒子多数带负电荷,这些带负电荷的粒子吸引水中的阳离子,而排斥阴离子,这也是胶体粒子得以稳定的原因。因此,在胶体粒子表面附近,阳离子浓度高,阴离子浓度低。这样胶体粒子表面形成Zeta电位。絮凝剂多为电解质,加人水中电离出带相反电荷的部分与腔体粒子的电荷中和,粒子间斥力作用也随之消失,便可形成大颗粒而沉降,水即可澄清。一般认为,如果将粒子表面Zeta 电位降到±5V,可以得到良好的絮凝效果。由此看出,微小粒子聚集形成大颗粒的絮凝作用是由于静电力、化学力或机械力的作用或三者共同作用的结果,这就是一般絮凝的原理。 2.絮凝过程及其影响因素絮凝过程主要包括4个阶段 ①向废水中添加絮凝剂; ②絮凝剂在液体中扩散; ③为了使絮凝剂和悬浮物粒子接触而进行搅拌; ④为了使接触后的粒子成为大而重的颗粒而进行的搅拌。实际上这些阶段有的也很难分开。 从以上过程看,絮凝是一种物理化学过程,所以,影响因素较多,除了废液中胶体粒子的种类、胶体粒子的大小、表面特性、胶体粒子的浓度和絮凝剂的种类与特性等因素外,还包括溶液的pH值,共存物质(特别是盐类)的种类和浓度,反应温度和温度变化,搅拌的方法及絮凝剂用量等等。 总之,胶体粒子的絮凝是较复杂的过程,影响因素是多方面的。所以,最好的方法是对实际废水进行絮凝试验,选出最佳絮凝剂及其絮凝条件。 从诸多因素影响来看,只要废液和絮凝剂一定,最为重要的影响因素就是胶体粒子浓度和搅拌条件。胶体粒子越浓,粒径犬小越不均匀,粒子间接触的几率越大,絮凝效果越好。同时搅拌仅对絮凝效果有很大影响。为了便于胶体粒子与絮凝剂有良好的接触,搅拌越剧烈效果越好。而在絮凝颗粒生长过程中,搅拌太剧烈则使颗粒破坏或长不大,此时则应缓慢搅拌。所以絮凝过程中,加入絮凝剂后搅拌应先快后慢。加入絮凝剂在溶液中电离出离子的电荷和絮凝剂的用量也影响很大。一般电离出离子电荷越高,浓度越大,絮凝效果越好。除化学法外,造纸厂废水处理还可采用机械法、沉降法、过滤法、离心分离法、生物化学法等,且各种方法均有一定的效果。废水应用何种方法处理,需要根据其中所含物质的成分及浓度、要求净化的程度、排放标准、回收废物的综合利用等诸多因素来考虑。为了提高废水处理的效率,可将多种方法合用。常常采取的是多级综合处理法: 一级处理:即预处理,常用物理机械法和化学法如筛选、沉降、混凝、浮选、调整pH 值等除去固体物、酸、碱等。 二级处理:一般采用生化处理,以除去被微生物分解或氧化的有机物和悬浮体。.如废

絮凝剂配方工艺

新资料目录: 1 .X 用于水处理的絮凝剂的制备方法 2 .2 一种聚合有机硫酸铝絮凝剂配方及制备方法 3 .3 一种高效藻絮凝剂及其用于治理赤潮及水华的方法 4 . 5 结构改性的聚合物絮凝剂 5 .X 油水分离絮凝剂及油水分离絮凝方法 6 . 7 有机无机复合型絮凝剂及其生产方法 7 .0 一种絮凝剂及生产方法 8 .8 造纸纸浆和包含酸性含水氧化铝溶胶的絮凝剂 9 .4 生态安全复合高效絮凝剂 10 .6 双机絮凝剂 11 .3 一种有机高分子絮凝剂及其制备方法 12 .3 新型复合絮凝剂及其制备方法 13 .3 聚硅铝絮凝剂的制备方法 14 .3 一种制备絮凝剂的方法及其设备 15 .5 木质素季铵盐阳离子絮凝剂合成工艺 16 采用新型施胶用絮凝剂进行中性-碱性造纸 17 一种水处理方法及其絮凝剂 18 .0 聚合氯化铝絮凝剂生产工艺 19 .2 碱式氯基硫酸铝,其制法及作为絮凝剂的应用 20 .0 用煤渣粉生产复合絮凝剂的方法 21 .4 一种絮凝剂的生产方法 22 .9 含铝、镁有机高分子絮凝剂及制法 23 .5 高分子复合絮凝剂的生产方法 24 .X 用于回收蛋白质的新型絮凝剂 25 .5 聚合硅酸-盐液体絮凝剂及制备方法 26 .5 聚合硅酸-盐絮凝剂及制备方法 27 .3 水处理用的絮凝剂 28 .1 吸附絮凝剂的制备 29 .6 聚合硅酸-铝复合絮凝剂及制备方法 30 .6 用于水处理的絮凝剂及其生产方法 31 .0 水处理用无机复合絮凝剂及其制备方法 32 .X 多氯聚硫钨酸铝絮凝剂的生产方法 33 .2 絮凝剂的回收方法 34 .7 用水淬渣或飞灰生产硅酸系絮凝剂的方法 35 .7 一种生产聚合氯化铝絮凝剂的工艺 36 .9 新型阳离子絮凝剂 37 .0 生产絮凝剂中的脱水方法 38 .7 聚硅酸锌絮凝剂的制备方法及用途 39 .3 一种处理造纸黑液的絮凝剂 40 .2 硅钙复合型聚合氯化铝铁絮凝剂及其生产方法 41 .8 施胶用絮凝剂及其制法

羧甲基淀粉

羧甲基淀粉 一、CMS简介 1. 淀粉可以看作是葡萄糖的高聚体。淀粉除食用外,工业上用于制糊精、麦芽糖、葡萄糖、酒精等,也用于调制印花浆、纺织品的上浆、纸张的上胶、药物片剂的压制等。可由玉米、甘薯、野生橡子和葛根等含淀粉的物质中提取而得。淀粉有直链淀粉和支链淀粉两类。直链淀粉含几百个葡萄糖单元,支链淀粉含几千个葡萄糖单元。在天然淀粉中直链的占20%~26%,它是可溶性的,其余的则为支链淀粉。当用碘溶液进行检测时,直链淀粉液呈显蓝色,而支链淀粉与碘接触时则变为红棕色。 淀粉是植物体中贮存的养分,贮存在种子和块茎中,各类植物中的淀粉含量都较高,大米中含淀粉62%~86%,麦子中含淀粉57%~75%,玉蜀黍中含淀粉65%~72%,马铃薯中则含淀粉超过90%。淀粉是食物的重要组成部分,咀嚼米饭等时感到有些甜味,这是因为唾液中的淀粉酶将淀粉水解成了二糖--麦芽糖。食物进入胃肠后,还能被胰脏分泌出来的唾液淀粉酶水解,形成的葡萄糖被小肠壁吸收,成为人体组织的营养物。支链淀粉部分水解可产生称为糊精的混合物。糊精主要用作食品添加剂、胶水、浆糊,并用于纸张和纺织品的制造(精整)等。淀粉燃点约为380℃。 2. 羧甲基淀粉(Carboxymethyl starch sodium,CMS),分子式:[C6H7O2(OH)2OCH2COONa]n,是改性淀粉的代表产品,是醚类淀粉的一种,是以小麦、玉米、土豆、红薯(任何一种均可)等淀粉为原料,经物理、化学反应精制而成。羧甲基淀粉可部分的替代羧甲基纤维素(CMC)的应用,它是能溶于冷水的高分子电解质。首次制成羧甲基淀粉是在1924年,1940年已工业化生产。它无味、无毒、不易霉变、当取代度大于0.2以上时易溶于水。它是一种无毒无味的白色或浅黄色粉末状固体,能迅速溶于冷热水中,形成无色透明胶状液,黏度高,而且对光、热皆稳定,具有极好的分散力、结合力、吸湿性及乳化性(其水溶液可作油/水型或水/油型乳化剂,对油和蜡质均有乳化能力),但不溶于乙醇、乙醚、丙酮等有机溶剂。CMS属天然食品,对人体无害,能被人体α-淀粉酶分解,具有生物可消化性,易被人体吸收,同时还可抑制肿瘤增长且增加免疫力,无环境污染,是环保型产品。 二、CMS用途

絮凝剂在污水处理中的应用

中国石油大学(华东)油田化学实验报告 实验日期:2015.05.13成绩: 班级:石工12-班学号:12021367姓名:善人教师: 同组者: 实验九絮凝剂在污水处理中的应用 一、实验目的 1. 观察絮凝剂(即混凝剂与助凝剂)净化水的现象,了解絮凝剂在污水处理中的作用机理和使用性质。 2. 掌握一种寻找絮凝剂最适宜质量浓度的方法。 二、实验原理 水的净化可使用各种絮凝剂。在絮凝剂中,能使水中泥沙聚沉的物质叫混凝剂。常用的混凝剂主要有无机阳离子型聚合物,如羟基铝、羟基锆等,这些无机阳离子型聚合物可在水中解离,给出多核羟桥络离子,中和固体悬浮物表面的负电性。此外,也可用三氯化铁、三氯化铝和氧氯化锆等化学剂通过水解、络合、羟桥作用,形成多核羟桥络离子,起到羟基铝、羟基锆同样的作用。 混凝剂并非用得越多越好。因混凝剂使用浓度过高将使泥沙表面吸附过量的铁离子而带正电,致使铁的多核羟桥络离子对它失去聚沉作用。因此,混凝剂的使用应有一个最适宜的质量浓度。 配合混凝剂使用,从而使它的净化效果提高、用量减少的物质叫助凝剂。助凝剂多是水溶性高分子。高分子的分子(或其缔合分子)可将被混凝剂聚结起来的泥沙颗粒进一步聚结,从而加快它的聚沉速度。常用的助凝剂有部分水解聚丙烯酰胺、钠羧甲基纤维素和褐藻酸钠等。 同样,助凝剂也并非用得越多越好。因助凝剂超过一定质量浓度,就可在水中形成网状结构,反而妨碍了泥沙颗粒的聚沉。因此,助凝剂的使用也有一个最适宜的浓度。 三、实验仪器、药品与材料 1. 实验仪器 电子天平(感量0.001g)、具塞比色管、小滴瓶、小烧杯、温度计。

2. 药品与材料 三氯化铁(化学纯)、部分水解聚丙烯酰胺(工业品)。污水(在1L 水中加入60g 高岭土,高速搅拌20min 后,在室温下密闭养护24h) 四、设计实验内容 实验过程中用目视比色法观察絮凝剂的净水现象和作用效果,以表格形式记录实验现象和实验数据。 1、单独使用混凝剂,测定实验条件下净化污水所需混凝剂的最适宜浓度。 2、单独使用助凝剂,测定实验条件下助凝剂的最适宜使用浓度。 3、助凝剂配合混凝剂使用,确定在助凝剂存在下混凝剂的最适宜浓度。 五、数据处理 计算净化污水所用混凝剂和助凝剂的最适宜质量浓度(用mg/L表示)。 絮凝剂在污水处理中的作用与原始数据记录表 混 (滴) 凝 剂

水处理絮凝剂研究进展

2003年第1期 矿 产 与 地 质第17卷2003年2月M I N ERAL R ESOU RCES AND GEOLO GY总第94期 水处理絮凝剂研究进展① 肖筱瑜,张 静,李 蘅 (桂林矿产地质研究院,广西桂林541004) 摘 要:概述了国内外无机絮凝剂、合成有机高分子絮凝剂、天然高分子絮凝剂和复合絮凝剂的研 究进展和应用。 关键词:水污染防治工程;絮凝剂;综述;研究进展 中图分类号:X703 文献标识码:B 文章编号:1003-5663(2003)01-0090-06 水是生命的起源,是人类和生物赖以生存的物质。目前世界水污染问题日趋严重,水处理问题也变得越来越严峻。絮凝沉淀法作为一种成本较低的水处理方法被广泛采用[1]。其水处理效果的好坏很大程度上取决于絮凝剂的性能,絮凝剂是絮凝法水处理技术的核心[2]。通常,絮凝剂可分为四类:①无机絮凝剂; ②合成有机高分子絮凝剂;③天然高分子絮凝剂;④复合型絮凝剂[1]。 1 无机絮凝剂 1.1 无机盐类絮凝剂 无机盐类絮凝剂主要分为铝盐和铁盐。19世纪末美国首先将硫酸铝用于给水处理。常用铝盐有硫酸铝、氯化铝和明矾;铁盐有氯化铁和硫酸铁等。铁盐形成的矾花比重大,易沉降,处理低温浊水比铝盐好,适宜的pH值在5.0~11之间,较之铝盐的5.5~8要宽得多。但氯化铁溶液的腐蚀性强,易造成设备的腐蚀,而且处理后的水的色度比用铝盐时高[3~4],A l3+在水中的高残留量会导致二次污染,进入人体后可诱发老年痴呆症、铝性骨病、铝性贫血症等。因此,目前常用铁盐类絮凝剂。 1.2 无机盐聚合类絮凝剂(IPF) 为了克服二次污染及腐蚀设备的问题,在20世纪60年代末开发出聚合氯化铝絮凝剂[5]。目前,日本、西欧聚合类絮凝剂的生产已达工业化和规模化,其生产占絮凝剂总产量的30%~60%。我国1983年也成功研制了聚合硫酸铁并用于电厂水处理。无机高分子絮凝剂在我国已形成系列产品,但生产厂家大多规模不大,工业化程度不高,产品质量也不够稳定。可喜的是汤鸿霄等对聚铝和聚铁的溶液化学与形态研究已达世界水平[6]。近年,无机高分子絮凝剂的生产单位日渐增多,规模亦有所扩大。在我国絮凝剂市场上,无机高分子絮凝剂占絮凝剂总产量的80%。絮凝剂种类主要有:聚合氯化铝(PA C)、聚合硫酸铝(PA S)、聚合硫酸铁(PFS)、聚合氯化铁(PFC)、聚合硫酸氯化铝(PA CS)、聚合硫酸氯化铝铁(PA FCS)、聚合硅酸铝(PA S I)、聚合硅酸铁(PFS I)、聚合硅酸铁铝(PFA S I)、聚合硫酸硅酸铁(PFSS)和聚磷酸氯化铝(PPA C)等[6]。 1.2.1 聚合氯化铝(PA C) 在各类无机高分子絮凝剂中,聚合氯化铝产量最大,应用范围最广。其制备过程可以为:在一定量的A lC l3(2.5m o l L)溶液中加入适量经加热的去离子水溶解后的无水N a2CO3,再经物化处理得到PA C。其分子式为[A l2(O H)n C l6-n]m(其中n为1~5之间的任一整数,m为≤10的整数)。在PA C中,A l3+和C l-的半径比能形成四次配位,具有一定的配位效应。同时与O H-具有相似的配位构型,能够出现羟氯铝配位体,电性影响相对减弱[5]。PA C较稳定,对高浓度、高色度及低温水都有较好的混凝效果,它形成矾花快,且颗粒大而重,易沉淀,絮凝效果是传统铝盐 09 ①收稿日期:2002-11-06 作者简介:肖筱瑜(1975-),女,广西桂林市人,助理工程师,主要从事环保材料研究。

絮凝剂制备装置使用说明书

. .. . ────HSJ/A系列──── 一体化絮凝剂制备装置 使用说明书 金海晟环保设备

目录 一.产品简介 2 二.工作原理 2 三.系列号说明 3 四.技术参数 3 五.设备安装 4 六.设备调试 4 七.操作说明 5 八.故障与维护7 九.零配件更换7 十.注意事项及安全说明8

一.产品简介 絮凝剂是水处理中经常用到的投加药剂,一般多为有机高分子物质,这类物质在水中溶解的过程中,因其粘度较高,常使溶解过程变得复杂,而且容易结块,加大了人工操作的强度,也使投加的自动化程度降低。 为解决此类难题,金海晟环保设备在吸收目前国际上最先进工艺技术基础上,研制开发了HSJ/A系列一体化絮凝剂制备装置。它是集溶药、熟化、投加于一体的全自动加药系统。该设备根据所需药液的浓度,控制投加的药剂量,自动将絮凝剂进行搅拌、溶解、熟化,再由加药泵投加到处理水中,大大降低了絮凝剂使用过程中的复杂程度,并使投加过程自动、准确,而且节省药量。 HSJ /A系列装置占用空间小,安装简单,自动化程度高,使用寿命长,可广泛应用于城市给水处理、污水处理以及电力等行业的水处理,真正为用户解除因药剂投配所带来的烦恼。 二.工作原理 2.1系统组成 HSJ/A系列一体化絮凝剂制备装置主要由箱体、干粉进料机和自动控制系统三部分组成(见图HSJ/A-T1)。 2.1.1 箱体 箱体6由PP或PVC材料制成,分为三格(HSJ/A-500型设备箱体分为两格),即制备格、熟化格和投配格,每格装有1个电动搅拌器1,便于充分混和药液。在投配格中装有液位计13,检测最高和最低液位,保证整个系统不间断供药。在制备格上还有一个混合器9,起到浸润药剂的作用。 2.1.2 干粉进料机 干粉进料机包括料斗16、进料电机3、投配螺旋17和混合器9。电机由控制箱7的变频器调整转速,从而控制投配螺旋17的转速,调整投加药量,控制制备药液的浓度。 2.1.3 自动控制系统 自动控制系统主要包括控制箱7、各种传感器(如液位计13、料位计15)和控制部件。通过它实现全自动控制——全自动运行、报警、停止及再启动。自动控制系统使整套设备安全运行,从而延长设备使用寿命。 2.2工作原理

干法制备羧甲基淀粉

2015届毕业论文 题目干法制备羧甲基淀粉 专业班级化工04班 学号1106010409 学生姓名刘玉洁 学院化工与制药学院 指导教师金士威/欧阳贻德 指导教师职称教授/讲师 完成日期:2015 年 6 月8 日

干法制备羧甲基淀粉Dry Process Preparation of Carboxymethyl Starch 学生姓名刘玉洁 指导教师欧阳贻德/金士威

摘要 羧甲基淀粉(CMS)是一种非常重要的阴离子型醚化淀粉,其用途十分广泛。当今社会对其需求量的日益增大,对其性能要求越来越高,对羧甲基淀粉的研究已逐步受到关注,目前,羧甲基淀粉的生产工艺存在诸多问题,不能完全满足工业生产需要。 以玉米淀粉为原料,采用干法制备高取代度的羧甲基淀粉。反应分为碱化和醚化2个阶段,以异丙醇(体积分数为60%)为溶剂,氢氧化钠为碱化剂,氯乙酸钠为醚化剂,对羧甲基淀粉工艺进行了研究。考察了碱化温度、碱化时间、醚化温度、醚化时间等因素对羧甲基淀粉取代度的影响,最终确定最佳的碱化温度为35℃,碱化时间为60min,醚化温度为70℃,醚化时间为150min,在此条件下制得的羧甲基淀粉的取代度为0.32,产品的外观得到改善,淀粉糊的黏度稳定性得到加强。 关键词:羧甲基淀粉;干法;制备;取代度;醚化

Abstract Carboxymethyl starch (CMS) is an important kind of anionic etherified starch, and is widely applied in many areas. With the increasing demand of society, people have paid more attention to study carboxymethyl starch gradually, which has become a hot spot in recent years. Currently, there is a low degree of substitution, the viscosity instability of the starch paste, poor appearance and other shortcomings on the industrial production of carboxymethyl starch and therefore that greatly limits its application. Highly substituted carboxymethyl starch was produced by dry method used corn starch as raw material. The process was made up of two steps, that was the alkalizing reaction and the etherifying reaction. The isopropyl alcohol (whose volume fraction was 60%)was used as a solvent, alkalizing agent was sodium hydroxide and the etherifying agent was sodium chloroacetate. The effects of the alkalizing temperature and reaction time, the etherifying temperature and reaction time on the degree of substitution were considered.Ultimately, the best alkalizing temperature is 35 ℃, the reaction time is 60 minutes,the etherifying temperature is 70 ℃and the reaction time is 150 minutes. Under the above conditions, the degree of substitution of carboxymethyl starch can reach 0.32, and the appearance of the product has improved, the viscosity stability of starch paste has been strengthened too. Keywords: carboxymethyl starch; dry method; preparation; degree of substitution; etherification

羧甲基淀粉钠项目可研

*********有限*** 年产50000吨羧甲基淀粉钠项目 可行性研究报告 第一章总论 一、项目建设背景 羧甲基淀粉(CMS)是一种以淀粉为原料,经醚化反应制成的变性淀粉。CMS可部分地替代羧甲基纤维素(CMC)应用,它是能溶于水的高分子电解质。通常的产品是基钠盐,即淀粉乙酸钠,在日本被指定为食品添加剂,德国把它叫做超支链淀粉,它在造纸、纺织、印染、医药、废水处理、选矿、铸造、胶粘剂、化妆品、建材、食品、皮革、油田开发以及日用化学工业等众多领域都有应用,市场前景广阔。羧甲基淀粉(CMS)和羧甲基纤维素(CMC)都被化工部列为“九五“计划中重点开发的六种精细化工产品之一,是十大支柱工业中必不可少的原料,羧甲基淀粉是以小麦、玉米、土豆、红薯(任何一种均可)等淀粉为原料,经物理、化学反应精制而成。近20年来,国外淀粉深加工工业发展十分迅速,品种已有数千种,产量达600万吨,已占淀粉总量的50%,我国是淀粉产量大国,但淀粉深加工工业却极为落后,到目前为止,其品种只有几十种,年产量30万吨,而需求量在50万吨以上。

据专家预测,淀粉深加工工业在我国将很快形成一大产业,市场销售潜力极大,亦可出口创汇。因此,谁先投资生产,将会获得巨大经济效益。到2008年,我国需淀粉衍生物约80万吨/年,目前我国的生产能力仅为35万吨/年,所以开发羧甲基淀粉市场前景广阔。本项目利用美国阳光药业有限***技术,将玉米淀粉制成羧甲基淀粉钠,将取得明显的经济效益,***经调研,决定在******,征地100亩,建设年产50000吨羧甲基淀粉钠项目。 二、可研报告编制依据 1)依据相关的法规、文件、资料。 2)***县招商引资相关政策。 3)根据项目需要进行调查和收集的基础资料。 4)双方签订的项目咨询合同。 三、可研报告编制原则 1)根据***县发展的规划,合理确定项目的建设规模、系统方案,合理安排工程计划,全面提高经济效益。 2)根据可行性研究报告编制的原则、规范等。 四、项目建设主要内容 生产50000吨羧甲基淀粉钠的厂房建设,成套设备安装,

絮凝剂在污水处理中的应用

中国石油大学油田化学实验报告 实验日期: 2011/11/1 成绩: 班级:石工09-10 学号: 09021452 姓名:任 婷教师: 同组者:周霞 絮凝剂在污水处理中的应用 一、实验目的 1.观察絮凝剂(即混凝剂与助凝剂)净化水的现象,了解絮凝剂在污水处理中的作用机理和使用性质。 2.掌握一种寻找絮凝剂最适宜质量浓度的方法。 二、实验原理 水的净化可使用各种絮凝剂。在絮凝剂中,能使水中泥沙聚沉的物质叫混凝剂。常用的混凝剂主要有无机阳离子型聚合物,如羟基铝、羟基锆等,这些无机阳离子型聚合物可在水中解离,给出多核羟桥络离子,中和固体悬浮物表面的负电性。此外,也可用三氯化铁、三氯化铝和氧氯化锆等化学剂通过水解、络合、羟桥作用,形成多核羟桥络离子,起到羟基铝、羟基锆同样的作用。 混凝剂并非用得越多越好。因混凝剂使用浓度过高将使泥沙表面吸附过量的铁离子而带正电,致使铁的多核羟桥络离子对它失去聚沉作用。因此,混凝剂的使用应有一个最适宜的质量浓度。 配合混凝剂使用,从而使它的净化效果提高、用量减少的物质叫助凝剂。助凝剂多是水溶性高分子。高分子的分子(或其缔合分子)可将被混凝剂聚结起来的泥沙颗粒进一步聚结,从而加快它的聚沉速度。常用的助凝剂有部分水解聚丙烯酰胺、钠羧甲基纤维素和褐藻酸钠等。 同样,助凝剂也并非用得越多越好。因助凝剂超过一定质量浓度,就可在水中形成网状结构,反而妨碍了泥沙颗粒的聚沉。因此,助凝剂的使用也有一个最适宜的浓度。 三、仪器、药品与材料 1.实验仪器 电子天平(感量0.001g)、具塞比色管、小滴瓶、小烧杯、温度计。 2.药品与材料 三氯化铁(化学纯)、部分水解聚丙烯酰胺(工业品)。

水处理药剂概述及絮凝剂种类和特点

水处理药剂概述及絮凝剂的种类和特点 1 我国工业废水现状 我国对废水污染的治理与西方发达国家相比起步较晚,在借鉴国外先进处理技术经验的基础上,引进、消化并开发了大量的废水处理新技术,某些项目已达到国际先进水平。这些新技术的投产运行为缓解中国严峻的水污染现状,改善水环境发挥了至关重要的作用。 据相关资料显示,在我国工业废水排放量中,化工、造纸、纺织及煤炭行业废水排放总和几乎占到一半,是工业废水排放大户。 近年来,我国工业废水处理量达到300-370亿吨,处理率约为62%,虽然已取得显著进步,但仍有很大提升空间。 在当前国污水处理实际应用中,传统的、比较成熟的技术和设备还是以下几种常用的处理方法。 1.1工业废水的物理处理 定义:应用物理作用没有改变废水成分的处理方法称为物理处理法。 操作单元:气浮、吸附、萃取、沉淀、过滤、磁选等。废水经过物理处理过程后不会改变污染物的化学本性,适用于简单的将污染物和水分离的情况。1.2工业废水的化学处理

定义:应用化学原理和化学作用将废水中的污染物成分转化为无害物质,使废水得到净化的方法称为化学处理。 操作单元:中和、化学沉淀、药剂氧化还原、臭氧氧化、电解、光氧化法等。污染物在经过化学处理过程后改变了化学本性,处理过程中总是伴随着化学变化。 1.3工业废水的物理化学处理 定义:废水中的污染物在处理过程中是通过相转移的变化而达到去除的目的的处理方法称为物理化学处理。 操作单元:混凝、气浮、吸附、离子交换、电渗析、扩散渗析、反渗透、超滤等。污染物在物化过程中可以不参与化学变化或化学反应,直接从一相转移到另一相,也可以经过化学反应后再转移。 1.4工业废水的生物处理 定义:是利用微生物的代作用氧化、分解、吸附废水中可溶性的有机物及部分不溶性有机物,并使其转化为无害的稳定物质从而使水得到净化的方法称为生物处理。 操作单元:好氧生物处理、厌氧生物处理,生物处理过程的实质是一种由微生物参与进行的有机物分解过程,分解有机物的微生物主要是细菌,其它微生物如藻类和原生动物也参与该过程,但作用较小。 2 水处理中使用的药剂种类

羧甲基淀粉钠

羧甲基淀粉钠说明 宁波北仑雅旭化工有限公司优质生产商,羧甲基淀粉钠的厂家电话,羧甲基淀粉钠的CAS 号,羧甲基淀粉钠的粘度,羧甲基淀粉钠最新报价,羧甲基淀粉钠的价格,羧甲基淀粉钠的作用,羧甲基淀粉钠厂家总代理,羧甲基淀粉钠厂家最新报价,羧甲基淀粉钠的添加量。英文:Sodium carboxymethyl starch食品级。 CAS:9063-38-1 通常使用的是它的钠盐,又称(CMS-Na) 形状: 白色或黄色粉末,无臭、无味、无毒、热易吸潮。溶于水形成胶体状溶液,对光、热稳定。不溶于乙醇、乙醚、氯仿等有机溶剂。本品水溶液在碱中较稳定,在酸中较差,生成不溶于水的游离酸,粘度降低,因此不适用于强酸性食品。水溶液在80℃以上长时间加热,则粘度降低,具有增稠、悬浮、分散、乳化、粘结、保水、保护胶体等多种性能。可作为乳化剂、增稠剂、分散剂、稳定剂、上浆剂、成膜剂、保水剂等,广泛用于石油、纺织、日化、卷烟、造纸、建筑、食品、医药等工业部门,被誉为"工业味精"。是CMC的替代产品。在某些领域可替代聚乙烯醇。与CMC不同的是,本品水溶液会被空气中的细菌部分分解(产生α-淀粉酶)易液化,是粘度降低。因此配制的水溶液不易长时间存放,不易用于调味番茄酱等。?title]溶解方法: 根据所需浓度,按比例将水加入本品中充分搅拌可完全溶解。或先用少量乙醇润湿后,再用水溶解效果更好。特性及用途:本品具有增稠、悬浮、分散、乳化、粘结、保水、保护胶体等多种性能。可作为乳化剂、增稠剂、分散剂、稳定剂、上浆剂、成膜剂、保水剂等,广泛用于石油、纺织、日化、卷烟、造纸、建筑、食品、医药等工业部门,被誉为"工业味精"。是CMC的替代产品。在某些领域可替代聚乙烯醇。与CMC不同的是,本品水溶液会被空气中的细菌部分分解(产生α-淀粉酶)易液化,是粘度降低。因此配制的水溶液不易长时间存放,不易用于调味番茄酱等。 溶解方法:根据所需浓度,按比例将水加入本品中充分搅拌可完全溶解。或先用少量乙醇润湿后,再用水溶解效果更好。 食品级羧甲基淀粉钠(CMS)是一种用羧甲基醚化的变性淀粉,它无味、无毒、不易霉变、易溶于水。应用于不同的食品中表现出增稠、悬浮、乳化、稳定、保形、成膜、膨化、保鲜、耐酸和保健等多种功能,性能优于羧甲基纤维素(CMC)是取代CMC的最佳产品。食品级羧甲基淀粉钠广泛应用于牛奶、饮料、冷冻食品、快餐食品、糕点、糖浆等产品。此外,CMS 在生理学上是惰性的,没有热值,因此用来制造低热值的食品也可以获得理想的效果。

相关文档