文档库 最新最全的文档下载
当前位置:文档库 › 第7章参数估计习题及答案

第7章参数估计习题及答案

第7章参数估计习题及答案
第7章参数估计习题及答案

第7章 参数估计 ----点估计

一、填空题

1、设总体X 服从二项分布),(p N B ,10<

计量=p

? X

N

. 2、 设 总 体)p ,1(B ~X

, 其 中 未 知 参 数 01<

本, 则 p 的 矩 估 计 为_∑=n 1i i X n 1_, 样本 的 似 然 函 数 为_i

i X 1n

1

i X )p 1(p -=-∏__。

3、 设 12,,,n X X X L 是 来 自 总 体 ),(N ~X 2σμ的 样 本, 则 有 关 于 μ及 σ2

的 似 然 函 数2

12(,,;,)n L X X X μσ=L _2

i 2

)X (21n

1

i e

21

μ-σ

-

=∏

σ

π__。

二、计算题

1、设总体X 具有分布密度(;)(1),01f x x x α

αα=+<<,其中1->α是未知参数,

n X X X Λ,,21为一个样本,试求参数α的矩估计和极大似然估计.

解:因?

?++=+=

10

1

1α1α1αdx x dx x x X E a

)()()(2

α1

α2α1α102++=

++=

+|a x 令2α

++==??)(X X E

X

X --=∴112α

?为α的矩估计 因似然函数1212(,,;)(1)()n n n L x x x x x x α

αα=+L L

∑=++=∴n

i i X n L 1

α1αln )ln(ln ,由∑==++=??n

i i X n

L 101ααln ln 得,

α的极大似量估计量为)ln (?∑=+-=n

i i

X

n

1

2、设总体X 服从指数分布 ,0

()0,

x e x f x λλ-?>=??其他 ,n X X X Λ,,21是来自X 的样本,(1)

求未知参数λ的矩估计;(2)求λ的极大似然估计.

解:(1)由于1

()E X λ

=

,令

1

1X X

λλ

=?=

,故λ的矩估计为1?X λ

= (2)似然函数1

12(,,,)n

i

i x n

n L x x x e

λ

λ=-∑=L

11

1

ln ln ln 0n

i

i n

i n

i i

i L n x d L n n x d x

λλλλλ====-=-=?=∑∑∑

故λ的极大似然估计仍为

1

X

。 3、设总体()

2~0,X N σ,12,,,n X X X L 为取自X 的一组简单随机样本,求2

σ的极大似

然估计;

[解] (1)

似然函数2

221

i x n

i L σ-==

()

2

2

1

222

2n

i i x n e

σπσ=-

-∑=?

于是22

2

1ln ln 2ln 222n

i i x n n L πσσ

==---∑ 2

2241

ln 122n i i d L n x d σσσ==-+∑, 令2

ln 0d L d σ

=,得2

σ的极大似然估计:2211n i i X n σ∧

==∑. 4、设总体X 服从泊松分布()P λ, 12,,,n X X X L 为取自X 的一组简单随机样本, (1)求未知参数λ的矩估计;(2)求λ的极大似然估计.

解:(1)令?()E X X X λλ

==?=,此为λ的矩估计。 (2)似然函数1

121

(,,,)!

n

i

i x n n n

i

i e L x x x x λ

λ

=-=∑=

∏L

1

1

11ln ln ln !

ln 0n n

i i i i n n

i i i i L x n x x x d L n x

d n

λλλλλ=====--=-=?==∑∑∑∑故λ的极大似然估计仍为X 。

第七章 参数估计 ----点估计的评价标准

一、填空题

1、 设321,,X X X 是取自总体

X 的一个样本,则下面三个均值估计量

32133212321112

1

4331?,1254131?,2110351

?X X X u

X X X u X X X -+=++=++=μ

都是总体均值的无偏估计,则 2?μ

最有效. 2、 设n X X X Λ,,21是取自总体),0(2

σN 的样本,则可以作为2σ的无偏估计量是( A ).

A 、∑=n i i X n 12

1

B 、∑=-n i i X n 12

11

C 、∑=n

i i X n 11

D 、∑=-n

i i X n 1

11

二、计算题

1、设n X X X Λ,,21为从一总体中抽出的一组样本,总体均值μ已知,用∑=--n

i i X n 1

2)(11μ去估计总体方差2

σ,它是否是2

σ的无偏估计,应如何修改,才能成为无偏估计.

解:因∑∑==--=--n i n i i

i X E n X n E 112

2)(11])(11[μμ221

σσ≠-=n n ∑=--∴n

i i X n 12)(11μ不是2σ的无偏估计 但∑=-n i i X n 1

2)(1μ是2

σ的无偏估计 2、设n X X X Λ,,21是来自总体),(2

σμN 的一个样本,若使∑-=+-?1

1

21

)(n i i i X X

C 为2σ的无

偏估计,求常数C 的值。 解:

11

2

2111

1

1

22111

1

222221

22[()][()]

[2]

[2]

12(1)2(1)

n n i i i i i i n i i i i i n i E C X X C E X X C EX EX EX EX C n C C n μσμσμσσ--++==-++=-=?-=-=+-=+++-=-=?=

-∑∑∑∑

第七章 参数估计 ----区间估计

一、选择题

1、设总体),(~2

σμN X ,2

σ未知,设总体均值μ的置信度α-1的置信区间长度l ,那

么l 与a 的关系为( A ).

A 、a 增大,l 减小

B 、a 增大,l 增大

C 、a 增大,l 不变

D 、a 与l 关系不确定

2、设总体),(~2

σμN X ,且2

σ已知,现在以置信度α~1估计总体均值μ,下列做法中

一定能使估计更精确的是( C ).

A 、提高置信度α-1,增加样本容量

B 、提高置信度α-1,减少样本容量

C 、降低置信度α-1,增加样本容量

D 、降低置信度α-1,减少样本容量

二、计算题

1、设总体)9.0,(~2

μN X ,当样本容量9=n 时,测得5=X ,求未知参数μ的置信度为

的置信区间.

解:μ

的置信区间为2

2

(X Z X Z α

α

-+

05.0=α 9=n 9.0=σ 5X =

0.052

1.96Z =

μ的置信区间为)588.5,412.4(。

2、设总体2

~(,),X N μσ已知0,σσ=要使总体均值μ的置信水平为1α-的置信区间的长度

不大于L ,问需要抽取多大容量的样本。

解:μ

的置信区间为2

2

(X Z X Z αα

-+,

220

2

2

2

42Z Z L n L

n

αασ?

≤?≥

3、某车间生产自行车中所用小钢球,从长期生产实践中得知钢球直径),(~2

σμN X ,现从某批产品里随机抽取6件,测得它们的直径(单位:mm)为:

,,,,,,置信度95.01=-α(即05.0=α) (1)若06.02

,求μ的置信区间

(2)若2

σ未知,求μ的置信区间

(3)求方差2

σ,均方差σ的置信区间. 解:(1)2

σ

已知,则

μ的置信区间为2

2

(,)X Z X Z n

n

αα

-?

+,

2

5,0.05, 1.96n Z αα===

代入则得μ的置信区间)15.15,75.14(

(2)2

σ未知,则μ的置信区间为2

2

(,)X t X t n n α

α-+?,05.0,5==αn 查表得0.052

2.5706t =,代入得μ的置信区间为)19.15,71.14(

(3)

2

22

(1)~(1)n S n χσ

--

2

σ的置信区间22

2212

2

(1)(1)(,)(1)(1)

n S n S n n ααχχ-----

5,05.0==n α 代入得2σ的置信区间为:)3069.0,0199.0(。

均方差σ的置信区间为(0.0199,0.3069)(0.1411,0.2627)=

4、 设从正态总体X 中采用了n = 31个相互独立的观察值 , 算得样本均值 61.58=X 及

样本方差 22

)8.5(=S

, 求总体X 的均值和方差的90%的置信区间

解:,8.5s ,31n ,95.02

1,05.02,

9.01===α

-=α=α- 0.05(30) 1.6973t = 的 90%的置信区间为 : 2

(((56.84,60.38)X t n n

α±-= 22

0.050.95(30)43.77

(30)18.49χχ== ,S =

2

σ的 (1-a )%的置信区间为 :

222

2221(1)(1),(1)(1)n s n s n n ααχχ-??

-- ? ?--??

即 6.541.2349.188

.333077

.4364.333022<

的 90%的 置 信 区 间 为 : ,

5、 设 某 种 灯 泡 的 寿 命 X 服 从 正 态 分 布 N(μ , ) , μ , 未 知 , 现 从 中 任 取 5个灯 泡 进 行 寿 命 测 试 (单 位 : 1000小 时 ), 得 :

, , , , ,

求 方 差 及 均 方 差 的 90%的 置 信 区 间 .

解:995.0)(41,6.115151

2

251=-===∑∑==i i i i x x S x x

41,95.02

1,05.02

,

9.01=-=-

==-n α

α

α

22

0.050.95(4)9.488,(4)0.711x x ==

598.5711

.0995

.04,419.0488.9995.04=?=?

及 的 90%的 置 信 区 间 为 , 及 )366.2,647.0()598.5,419.0(=

6、 二正态总体N( , ) , N( , )的参数均未知 ,依次取容量为 n =10 , n=11的二独立样本 ,测得样本均值分别为121.2, 2.8x x ==,样本方差分别为

29.0,34.02

221==S S ,

(1) 求二总体均值差12μμ-的90%的置信区间。(2)求二总体方差比90%的置信区间。

解:1210.9,0.05,

19,1102

n n α

α-==-=-=

(1)2

90.34100.29

0.313719

w s ?+?=

=,0.05(19) 1.729t =,

12μμ-的90%的置信区间为

(1.2 2.8 1.729 2.8 1.729( 2.0231, 1.1769)

---+=--

(2)0.05(9,10) 3.02F =

0.950.0511(9,10)(10,9) 3.14

F F =

=

17.129

.034

.022

2

1==

S S 2

221/σσ∴的 90%的 置 信 区 间 为 : )67.3,39.0()14.317.1,02

.31

17.1(=??

医学统计学名词解释复习资料

1. 总体(population):根据研究目的所确定的同质观察单位的全体。只包括(确定的时间和空间范围内)有限个观察单位的总体,称为有限总体(finite population)。假想的,无时间和空间概念的,称为无限总体(infinite population)。 2. (总体)参数(parameter):总体的统计指标或特征值。总体参数是事物本身固有的、不变的。 3. 样本(sample):从总体中随机抽取的部分个体。 4. 样本含量(sample size):样本中所包含的个体数。 5. 变量(variable):观察对象个体的特征或测量的结果。由于个体的特征或指标存在个体差异,观察结果在测量前不能准确预测,故称为随机变量(random variable),简称变量(variable)。变量的取值称为变量值或观察值(observation)。根据变量的取值特性,分为数值变量和分类变量。 6. 数值变量(Numerical variable):又称为计量资料、定量资料,指构成其的变量值是定量的,其表现为数值大小,有单位。对每个观察单位用定量的方法测定某项指标的数值,组成的资料。 7. 计数资料:将全体观测单位按照某种性质或特征分组,然后再分别清点各组观察单位的个数。 8. 抽样(sampling):从总体中抽取部分观察单位的过程称为抽样。 9. 抽样误差(sampling error):由于抽样造成的统计量与参数之间的差别,特点是不能避免的,可用标准误描述其大小。 10. 误差(error):统计上所说的误差泛指测量值与真值之差,样本指标与总体指标之差。主要有以下二种:系统误差和随机误差 。 11. 可信区间(confidence interval, CI):按一定的概率或可信度(1-α)用一个区间估计总体参数所在范围,这个范围称作可信度1-α的可信区间,又称置信区间。 12. 总体均数的可信区间:按一定的概率大小估计总体均数所在的范围(CI)。常用的可信度为95%和99%,故常用95%和99%的可信区间。 13. 变异(variation):同质事物间的差别。由于观察单位通常即为观察个体,故变异亦称为个体变异(individual variation)。 16. 平均数(average):也叫平均值,是一组(群)数据典型或有代表性的值。这个值趋向于落在根据数据大小排列的数据的中心,包括算术平均数(arithmetic mean)、几何平均数(geometric mean)、中位数(median)等。 17. 中位数(median):将一组观察值按升序或降序排列,位次居中的数,常用M 表示。适用于偏态分布资料或不规则分布资料和开口资料。所谓“开口”资料,是指数据的一端或两端有不确定值。当n 为奇数时,M=X (n+1)/2;当n 为偶数时,M=[X n/2+ X n/2+1]/2。 18. 百分位数(percentile):是一种位置指标,以P x 表示,一个百分位数Px 将全部观察值分为两个部分,理论上有x%的观察值小于Px 小,有(1-x%)的观察值大于Px 。 19. 变异系数(coefficient of variance, CV):亦称离散系数(coefficient of dispersion),为标准差与均数之比,常用百分数表示。100%X s/CV ?=, 变异系数没有度量衡单位,常用于比较度量单位不同或均数相差悬殊的两组或多组资料的离散程度。 20. 频率(relative frequency):在n 次随机试验中,事件A 发生了m 次,则比值 22. 概率(probability):在重复试验中,事件A 的频率,随着试验次数的不断增加将愈来愈接近一个常数p ,这个常数p 就称为事件A 出现的概率(probability),记作P(A)或P 。 描述随机事件发生的可能性大小的数值,常用P 来表示。 23. 统计量(statistic):由样本所算出的统计指标或特征值。 24. 相关系数(correlation coefficient):用以说明具有直线关系的两个变量间相关关系的密切程度和相关方向的指标,称为相关系数,又称为积差相关系数(coefficient of product-moment correlation),总体相关系数用希腊字母ρ表示,而样本相关系数用r 表示,取值范围均为[-1, 1]。 25. 回归系数(regression coefficient):直线回归方程Y ?= a+b X 的系数b 称为回归系数,也就是回归直线的斜率(slope),表示X 每增加一个单位,Y 平均改变 b 个单位。 26. 参考值范围(reference range):也称为正常值范围(normal range),医学上常把绝大多数正常人的某指标值范围称为该指标的正常值范围。绝大多数:可以是90%、95%、99%等等,最常用的是95%。正常人:不是指健康人,而是指排除了影响所研究指标的疾病和有关因素的同质人群。又称参考值范围,是指特定健康人群的解剖、生理、生化等各种数据的波动范围。习惯上是确定包括95%的人的界值。 28. 统计推断(statistic inference):从总体中随机抽取一定含量的样本进行研究,目的是通过样本的信息判断总体的特征,这一过程称为统计推断。 29. 标准误(standard error, SE):在统计理论上将样本统计量的标准差称为标准误,用来衡量抽样误差的大小。据此,样本均数的标准差X σ称为标准误。 30. 参数估计(parameter estimation):由样本信息估计总体参数。它包括两种:点估计和区间估计。 点估计:直接用样本统计量作为对应的总体参数的估计值。 区间估计:按一定的概率或可信度(1-α)用一个区间估计总体参数所在范围,这个范围称作可信度1-α的可信区间(confidence interval, CI ),又称置信区间。这种估计方法称为区间估计。 33. 95%可信区间含义:如果重复若干次样本含量相同的抽样,每个样本均按同一方法构建95%可信区间,则在这些可信区间中,理论上有95个包含了总体参数,还有5个未估计到总体均数。 34.Ⅰ类错误(type Ⅰerror):统计学上规定,拒绝了实际上成立的H 0,这类“弃真”的错误称为Ⅰ型错误或第一类错误,Ⅰ型错误的概率用α表示。 35.Ⅱ类错误(type Ⅱerror):统计学上规定,不拒绝实际上不成立的H 0,这类“存伪”的错误称为Ⅱ型错误或第二类错误,Ⅱ型错误的概率用β表示。 36. 检验效能(power of a test):又称把握度,即两总体确有差别,按α水准能发现它们有差别的能力。 37. 参数检验:总体分布已知,对其中一些未知参数进行估计或检验。这类统计推断的方法叫参数统计或参数检验。 38. 参数检验:假定比较数据服从某分布,通过参数的估计量(x , s)对比较总体的参数(μ)作检验,统计上称为参数法检验(parametric test)。如t 、u 检验、方差分析。 39. 率(rate):又称频率指标,用以说明某现象发生的频率或强度。常以百分率(%)、千分率(‰)、万分率(1/万)、十万分率(1/10万)等表示。其计算公式为: 40. 构成比(proportion):又称构成指标,它说明一种事物内部各组成部分所占的比重或分布,常以百分数表示。 41. 比(ratio):又称相对比,是A 、B 两个有关指标之比,说明A 为B 的若干倍或百分之几,它是对比的最简单形式。其计算公式为:比=A/B 。 统计学(Statistics ):运用概率论、数理统计的原理与方法,研究数据的搜集;分析;解释;表达 的科学。 总体(population ):大同小异的研究对象全体。更确切的说,总体是指根据研究目的确定的、同质的全部研究单位的观测值。 样本(sample ):来自总体的部分个体,更确切的说,应该是部分个体的观察值。样本应该具有代表性,能反映总体的特征。利用样本信息可以对总体特征进行推断。

选修4-4 坐标系与参数方程知识点及经典例题

坐标系与参数方程 *选考内容《坐标系与参数方程》高考考试大纲要求: 1.坐标系: ① 理解坐标系的作用. ② 了解在平面直角坐标系伸缩变换作用下平面图形的变化情况. ③ 能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化. ④ 能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义. 2.参数方程:① 了解参数方程,了解参数的意义. ② 能选择适当的参数写出直线、圆和圆锥曲线的参数方程. 第一讲 一、平面直角坐标系 伸缩变换:设点),(y x P 是平面直角坐标系中的任意一点,在变换???>?='>?='). 0(,y y 0), (x,x :μμλλ?的作用 下,点),(y x P 对应到点),(y x P ''',称?为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。

方法1:求伸缩变换后的图形。 由伸缩变换公式解出x、y,代入已知曲线方程就可求得伸缩变换后的曲线方程。 例::在一个平面直角坐标系中,求下列方程所对应的图形经过伸缩变换后的图形。 方法2:待定系数法求伸缩变换。 求伸缩变换时,先设出变换,再代入原方程或变换后的方程,求出其中系数即可。 例:在同一平面直角坐标系中,求下列图形变换的伸缩变换:

二、极坐标 1.极坐标系的概念:在平面内取一个定点O ,叫做极点;自极点O 引一条射线Ox 叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系。 2.点M 的极坐标:设M 是平面内一点,极点O 与点M 的距离||OM 叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的xOM ∠叫做点M 的极角,记为θ。有序数对),(θρ叫做点M 的极坐标,记为),(θρM . 极坐标),(θρ与)Z )(2,(∈+k k πθρ表示同一个点。极点O 的坐标为)R )(,0(∈θθ. 3.若0<ρ,则0>-ρ,规定点),(θρ-与点),(θρ关于极点对称,即),(θρ-与),(θπρ+表示同一点。如果规定πθρ20,0≤≤>,那么除极点外,平面内的点可用唯一的极坐标),(θρ表示;同时,极坐标),(θρ表示的点也是唯一确定的。 4.极坐标与直角坐标的互化: 如图所示,把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,且长度单位相同,设任意一点M 的直角坐标与极坐标分别为(x ,y ),(ρ,θ). (1)极坐标化直角坐标 (2)直角坐标化极坐标 ? ????ρ2=x 2+y 2,tan θ=y x (x ≠0).

总时差双代号网络图时间计算参数-计算题及答案

总时差(用TFi-j表示),双代号网络图时间计算参数,指一项工作在不影响总工期的前提下所具有的机动时间。用工作的最迟开始时间LSi-j与最早开始时间ESi-j之差表示。 自由时差,指一项工作在不影响后续工作的情况下所拥有的机动时间。用紧后工作的最早开始时间与该工作的最早完成时间之差表示。 网络图时间参数相关概念包括: 各项工作的最早开始时间、最迟开始时间、最早完成时间、最迟完成时间、节点的最早时间及工作的时差(总时差、自由时差)。 1总时差=最迟完成时间—尚需完成时间。计算结果若大于0,则不影响总工期。若小于0则影响总工期。 2拖延时间=总时差+受影响工期,与自由时差无关。 3自由时差=紧后最早开始时间—本工作最早完成时间。 自由时差和总时差-----精选题解(免B) 1、在双代号网络计划中,如果其计划工期等于计算工期,且工作i-j的完成节点j在关键线路上,则工作i-j的自由时差()。 A.等于零 B.小于零 C.小于其相应的总时差 D.等于其相应的总时差 答案:D 解析:

本题主要考察自由时差和总时差的概念。由于工作i-j的完成节点j在关键线路上,说明节点j为关键节点,即工作i -j的紧后工作中必有关键工作,此时工作i-j的自由时差就等于其总时差。 2、在某工程双代号网络计划中,工作M的最早开始时间为第15天,其持续时间为7天。 该工作有两项紧后工作,它们的最早开始时间分别为第27天和第30天,最迟开始时间分别为第28天和第33天,则工作M的总时差和自由时差()天。 A.均为5 B.分别为6和5 C.均为6 D.分别为11和6 答案:B 解析: 本题主要是考六时法计算方法 1、工作M的最迟完成时间=其紧后工作最迟开始时间的最小值所以工作M 的最迟完成时间等于[28,33]=28 2、工作M的总时差=工作M的最迟完成时间-工作M的最早完成时间等于28-(15+7)=6 3、工作M的自由时差=工作M的紧后工作最早开始时间减工作M的最早完成时间所得之差的最小值: [27-22;30-22]= 5。 3、在工程网络计划中,判别关键工作的条件是该工作()。

参数方程典型例题分析

参数方程典型例题分析 例1在方程(为参数)所表示的曲线上一点的坐标是().(A)(2,-7)(B)(,)(C)(,)(D)(1,0) 分析由已知得可否定(A)又,分别将,,1代入上式得,,-1,∴(,)是曲线上的点,故选(C).例2直线(为参数)上的点A,B所对应的参数分别为, ,点P分所成的比为,那么点P对应的参数是(). (A)(B)(C)(D) 分析将,分别代入参数方程, 得A点的横坐标致为,B点的横坐标为, 由定比分点坐标公式得P的横坐标为 , 可知点P所对应的参数是故应选(C). 例3化下列参数方程为普通方程,并画出方程的曲线. (1)(为参数,)

(2)(为参数); (3)(为参数), 解:(1)∵ ∴, ∴或 故普通方程为(或),方程的曲线如图. (2)将代入得 ∵普通方程为(),方程的曲线如图.

(3)两式相除得代入得 整理得 ∵ ∴普通方程为(),方程的曲线如图. 点评(l)消去参数的常用方法有代入法,加减消元法,乘除消元法,三角消元法等;(2)参数方程化普通方程在转化过程中,要注意由参数给出的,的范围,以保证普通方程与参数方程等价. 例4已知参数方程 ①若为常数,为参数,方程所表示的曲线是什么? ②若为常数,为参数,方程所表示的曲线是什么? 解:①当时,由(1)得,由(2)得,

∴,它表示中心在原点, 长轴长为,短轴长为焦点在轴上的椭圆. 当时,,, 它表示在轴上的一段线段. ②当()时,由(1)得, 由(2)得.平方相减得, 即 它表示中心在原点,实轴长为,虚轴长为, 焦点在轴上的双曲线. 当()时,,它表示轴; 当()时,, ∵(时)或(时) ∴,∴方程为(), 它表示轴上以(-2,0)和(2,0)为端点的向左和向右的两条射线. 点评本题的启示是形式相同的方程,由于选择参数的不同,可表示不同的曲线,因此要注意区分问题中的字母是常数还是参数. 例5直线(为参数)与圆(为参数)相切,则直线的倾斜角为().

【重磅】双代号网络图时间参数计算

双代号网络图时间参数计算 双代号网络图时间参数计算 双代号网络图是应用较为普遍的一种网络计划形式。它是以箭线及其两端节点的编号表示工作的网络图。 双代号网络图中的计算主要有六个时间参数: ES:最早开始时间,指各项工作紧前工作全部完成后,本工作最有可能开始的时刻; EF:最早完成时间,指各项紧前工作全部完成后,本工作有可能完成的最早时刻 LF:最迟完成时间,不影响整个网络计划工期完成的前提下,本工作的最迟完成时间;LS:最迟开始时间,指不影响整个网络计划工期完成的前提下,本工作最迟开始时间;TF:总时差,指不影响计划工期的前提下,本工作可以利用的机动时间; FF:自由时差,不影响紧后工作最早开始的前提下,本工作可以利用的机动时间。 双代号网络图时间参数的计算一般采用图上计算法。下面用例题进行讲解。 例题:试计算下面双代号网络图中,求工作C的总时差? 早时间计算: ES,如果该工作与开始节点相连,最早开始时间为0,即A的最早开始时间ES=0; EF,最早结束时间等于该工作的最早开始+持续时间,即A的最早结束EF为0+5=5; 如果工作有紧前工作的时候,最早开始等于紧前工作的最早结束取大值,即B的最早开始FS=5,同理最早结束EF为5+6=11,而E工作的最早开始ES为B、C工作最早结束(11、8)

取大值为11。 迟时间计算: LF,如果该工作与结束节点相连,最迟结束时间为计算工期23,即F的最迟结束时间LF=23;LS,最迟开始时间等于最迟结束时间减去持续时间,即LS=LF-D; 如果工作有紧后工作,最迟结束时间等于紧后工作最迟开始时间取小值。 时差计算: FF,自由时差=(紧后工作的ES-本工作的EF); TF,总时差=(本工作的最迟开始LS-本工作的最早开始ES)或者=(本工作的最迟结束LF-本工作的最早结束EF)。 该题解析: 则C工作的总时差为3. 总结: 早开就是从左边往右边最大时间 早结=从左往右取最大的+所用的时间 迟开就是从右边往右边最小时间 迟开=从右往左取最小的+所用的时间 总时差=迟开-早开;或者;总时差=迟结-早结 自由差=紧后工作早开-前面工作的早结 希望你看懂啦。呵呵 工作最早时间的计算:顺着箭线,取大值 工作最迟时间的计算:逆着箭线,取小值 总时差:最迟减最早 自由时差:后早始减本早完 1.工作最早时间的计算(包括工作最早开始时间和工作最早完成时间):“顺着箭线计算,依次取大”(最早开始时间--取紧前工作最早完成时间的最大值),起始结点工作最早开始时间为0。用最早开始时间加持续时间就是该工作的最早完成时间。 2.网络计划工期的计算:终点节点的最早完成时间最大值就是该网络计划的计算工期,

《医学统计学》第5版单选题

《医学统计学》单项选择题 摘自:马斌荣主编.医学统计学.第5版.北京:人民卫生出版社,2008 第一章医学统计中的基本概念 1. 医学统计学研究的对象是 A. 医学中的小概率事件 B. 各种类型的数据 C. 动物和人的本质 D. 疾病的预防与治疗 E.有变异的医学事件 2. 用样本推论总体,具有代表性的样本指的是 A.总体中最容易获得的部分个体B.在总体中随意抽取任意个体 C.挑选总体中的有代表性的部分个体D.用配对方法抽取的部分个体 E.依照随机原则抽取总体中的部分个体 3. 下列观测结果属于等级资料的是 A.收缩压测量值B.脉搏数 C.住院天数D.病情程度 E.四种血型 4. 随机误差指的是 A. 测量不准引起的误差 B. 由操作失误引起的误差 C. 选择样本不当引起的误差 D. 选择总体不当引起的误差 E. 由偶然因素引起的误差 5. 收集资料不可避免的误差是 A. 随机误差 B. 系统误差 C. 过失误差 D. 记录误差 E.仪器故障误差 答案: E E D E A 第二章集中趋势的统计描述 1. 某医学资料数据大的一端没有确定数值,描述其集中趋势适用的统计指标是 A. 中位数 B. 几何均数 C. 均数 D. P百分位数 95 E. 频数分布

2. 算术均数与中位数相比,其特点是 A.不易受极端值的影响B.能充分利用数据的信息 C.抽样误差较大D.更适用于偏态分布资料 E.更适用于分布不明确资料 3. 一组原始数据呈正偏态分布,其数据的特点是 A. 数值离散度较小 B. 数值离散度较大 C. 数值分布偏向较大一侧 D. 数值分布偏向较小一侧 E. 数值分布不均匀 4. 将一组计量资料整理成频数表的主要目的是 A.化为计数资料 B. 便于计算 C. 形象描述数据的特点 D. 为了能够更精确地检验 E. 提供数据和描述数据的分布特征 5. 6人接种流感疫苗一个月后测定抗体滴度为1:20、1:40、1:80、1:80、1:160、1:320,求平均滴度应选用的指标是 A. 均数 B. 几何均数 C. 中位数 D. 百分位数 E. 倒数的均数 答案: A B D E B 第三章离散程度的统计描述 1. 变异系数主要用于 A.比较不同计量指标的变异程度 B. 衡量正态分布的变异程度 C. 衡量测量的准确度 D. 衡量偏态分布的变异程度 E. 衡量样本抽样误差的大小 2. 对于近似正态分布的资料,描述其变异程度应选用的指标是 A. 变异系数 B. 离均差平方和 C. 极差 D. 四分位数间距 E. 标准差 3. 某项指标95%医学参考值范围表示的是 A. 检测指标在此范围,判断“异常”正确的概率大于或等于95% B. 检测指标在此范围,判断“正常”正确的概率大于或等于95% C. 在“异常”总体中有95%的人在此范围之外 D. 在“正常”总体中有95%的人在此范围 E. 检测指标若超出此范围,则有95%的把握说明诊断对象为“异常”

2参数方程知识讲解及典型例题

参数方程 一、定义:在取定的坐标系中,如果曲线上任意一点的坐标x 、y 都是某个参数 t 的函数,即 ?? ?==)()(t f y t f x ,其中,t 为参数,并且对于t 每一个允许值,由方程组所确定的点M (x ,y )都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系x 、y 之间关系的变数t 叫做参变数,简称参数. 1 y x Eg1(1 Eg2(1总结:参数方程化为普通方程步骤:(1)消参(2)求定义域 2、椭圆的参数方程: 中心在原点,焦点在x 轴上的椭圆: θ θsin cos b y a x == (θ为参数,θ的几何意义是离心角,如图角AON 是离心角)

注意:离心率和离心角没关系,如图,分别以椭圆的长轴和短轴为半径画两个同心圆,M 点的轨迹是椭圆,中心在(x 0,y 0 θ θ sin cos 00b y y a x x +=+= Eg 3, 4 pt y pt x 222 == (t 为参数,p >0,t 的几何意义为过圆点的直线的斜率的倒数) 直线方程与抛物线方程联立即可得到。 三、一次曲线(直线)的参数方程 过定点P 0(x 0,y 0),倾角为α的直线, P 是直线上任意一点,设P 0P=t ,P 0P 叫点P 到定点P 0的有向距离,在P 0两侧t 的符号相反,直线的参数方程

αα sin cos 00t y y t x x +=+= (t 为参数,t 的几何意义为有向距离) 说明:①t 的符号相对于点P 0,正负在P 0点两侧 ②|P 0P |=|t | 直线参数方程的变式: bt y y at x x +=+=00,但此时t 的几何意义不是有向距离,只有当 t 得 y x Eg

单代号搭接网络计划时间参数计算

单代号搭接网络计划时间参数计算 在一般的网络计划(单代号或双代号)中,工作之间的关系只能表示成依次衔接的关系,即任何一项工作都必须在它的紧前工作全部结束后才能开始,也就是必须按照施工工艺顺序和施工组织的先后顺序进行施工。但是在实际施工过程中,有时为了缩短工期,许多工作需要采取平行搭接的方式进行。对于这种情况,如果用双代号网络图来表示这种搭接关系,使用起来将非常不方便,需要增加很多工作数量和虚箭线。不仅会增加绘图和计算的工作量,而且还会使图面复杂,不易看懂和控制。例如,浇筑钢筋混凝土柱子施工作业之间的关系分别用横道图、双代号网络图和搭接网络图表示,如下图所示。 施工过程 名 称 施工进度(天) 1 2 3 4 5 6 7 8 9 10 11 一.搭接关系的种类及表达方式 单代号网络计划的搭接关系主要是通过两项工作之间的时距来表示的,时距的含义,表示时间的重叠和间歇,时距的产生和大小取决于工艺的要求和施工组织上的需要。用以表示搭接关系的时距有五种,分别是STS (开始到开始)、STF (开始到结束)、FTS (结束到开始)、FTF (结束到结束)和混合搭接关系。 (一)FTS (结束到开始)关系 结束到开始关系是通过前项工作结束到后项工作开始之间的时距(FTS )来表达的。如下图所示。 扎钢筋 浇筑混凝土 支模1 支模2 支模3 1 2 4 3 5 6 8 7 9 10 支模1 2 支模2 2 支模3 2 扎筋2 1 扎筋3 1 扎筋1 1 浇筑混凝土1 2 浇筑混 凝土2 2 浇筑混 凝土3 2 支模 6 扎钢筋 3 浇筑 6 STS=4 FTF=1 STS=1 FTF=4 i j FTS i j FTS D i D j

(完整版)参数方程高考真题专题训练

高考真题专题训练——参数方程专题(6.11-6.12) 1、(2012课标全国Ⅰ,理23,10分)在直角坐标系xOy 中,曲线C 1的参数方程为 2cos 22sin x y α α =?? =+?(α为参数)M 是C 1上的动点,P 点满足2OP OM =u u u v u u u u v ,P 点的轨迹为曲线C 2 (Ⅰ)求C 2的方程 (Ⅱ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3 πθ=与C 1的异于极点的交点 为A ,与C 2的异于极点的交点为B ,求AB . 2、(2012课标全国Ⅱ,理23,10分)已知曲线1C 的参数方程是)(3sin y 2cos x 为参数??? ???==,以坐 标原点为极点,x 轴的正半轴为极轴建立坐标系,曲线2C 的坐标系方程是2=ρ,正方形ABCD 的顶点都在2C 上,且,,,A B C D 依逆时针次序排列,点A 的极坐标为(2,)3π (1)求点,,,A B C D 的直角坐标; (2)设P 为1C 上任意一点,求2 2 2 2 PA PB PC PD +++的取值范围。 3、(2013课标全国Ⅰ,理23,10分)选修4—4:坐标系与参数方程 已知曲线C 1的参数方程为45cos , 55sin x t y t =+??=+?(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴 建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ. (1)把C 1的参数方程化为极坐标方程; (2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).

4,(2013课标全国Ⅱ,理23,10分)已知动点P ,Q 都在曲线C :2cos , 2sin x t y t =??=?(t 为参数)上, 对应参数分别为t =α与t =2α(0<α<2π),M 为PQ 的中点. (1)求M 的轨迹的参数方程; (2)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点. 5、(2014课标全国Ⅰ,理23,12分)已知曲线C :22 149x y +=,直线l :222x t y t =+??=-?(t 为参 数)(Ⅰ)写出曲线C 的参数方程,直线l 的普通方程; (Ⅱ)过曲线C 上任一点P 作与l 夹角为o 30的直线,交l 于点A ,求||PA 的最大值与最小值. 6、(2014课标全国Ⅱ,理23,10分)在直角坐标系xoy 中,以坐标原点为极点,x 轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2πθ??∈????. (Ⅰ)求C 的参数方程; (Ⅱ)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.

医学统计学 (2)

第一单元概述 1.研究设计应包括那几方面内容? 答:包括:专业设计和统计设计。 专业设计是针对专业问题进行的研究设计,如选题、形成假说等。统计设计是针对统计数据收集和分析进行的设计,如样本来源、样本量等。统计设计是统计分析的基础。任何设计上的缺陷,都不能在统计分析阶段弥补和纠正。 第二单元资料描述性统计 1.描述计量资料的集中趋势和离散趋势的指标有哪些?各指标的适用范围如何? 答:集中趋势的指标有:算术均数、几何均数、中位数。算术均数适用于描述对称分布资料的集中位置,尤其是正态分布资料;几何均数用来描述等比资料和对数正态分布资料的集中位置;中位数可用于任何资料。 描述离散趋势有:极差、四分位数间距、方差、标准差和变异系数。极差和四分位数间距可用于任何分布,但两个指标都不能反映变异程度;方差和标准差常用于资料为近似正态分布;变异系数可用于多组资料间量纲不同或均数相差较大时变异程度间的比较。 2.变异系数和标准差有何区别和联系? 答:区别:1.计算公式不同:CV=S/X*100%,标准差是方差的平方根。2.单位不同:变异系数无量纲,标准差量纲和原指标一致。3.用途不同。联系:都是适用于对称分布的资料,尤其是正态分布的资料,并且由公式所知,在均数一定时,CV与s呈正比。 3.频数表的用途有哪些? 答:1.描述资料的频数分布的特征;2.便于发现一些特大或特小的可疑值;3.将频数表作为陈述资料的形式,便于进一步的统计分析和处理;4.当样本量足够大时,可以以频数表作为概率的估计值。 4.用相对数时应注意哪些问题? 答:1.在实践工作中,应注意各相对数的含义,避免以比代率的错误现象。2.计算相对数时分母应该有足够的数量,如资料的总数过少,直接报告原数据更为可取。3.正确计算频数指标的合并值。4.相对数的比较具有可比性。5.在随机抽样的情况下,从样本估计值推断总体相对数应该考虑抽样误差,因此需要对相对数指标进行参数估计和假设检验。 第三单元医学统计推断基础 1.正态分布和标准正态分布的联系和区别? 答:联系:均为连续型随机变量分布。区别:标准正态分布是一种特殊的正态分布(均数为0,标准差为1)。一般正态分布变量经标准化转换后的新变量服从标准正态分布。 4.简述二项的应用条件? 答:条件为:1.每次试验只会发生两种互斥的可能结果之一,即两种互斥结果的概率之和为1;2.每次试验产生某种结果固定不变;3.重复试验是相互杜立的,即任何一次试验结果的出现不会影响其他试验结果的概率。 5.简述Q-Q图法的基本原理? 答:u-变换可以把一个一般正态分布变量变换为标准正态分布变量,反之,u-变换的逆变换也可以把一个标准正态分布变量变换为一个正态变量。Q-Q图法实际上就是首先求的小于某个x的积累频率,再通过该积累频率求得相应的u值,如果该变量服从正态分布,则点(u,x)应近似在一条直线上(u-变换直线),否则(u,x)不会近似在一条直线上。Q-Q图法正是根据(u,x)是否近似在一条直线上来判断是否为正态分布。 第四单元参数估计与参考值范围的估计 1.均数的标准差和标准误的区别和联系? 答:区别和联系:标准差是描述个体值变异程度的指标,为方差的算术平方根,该变异不能

最新极坐标与参数方程经典练习题-带详细解答

1.极坐标系与直角坐标系xoy 有相同的长度单位,以原点O 为极点,以x 轴正半轴为 极轴.已知直线l 的参数方程为122x t y ?=+?? ??=??(t 为参数),曲线C 的极坐标方程为 2sin 8cos ρθθ=.(Ⅰ)求C 的直角坐标方程;(Ⅱ)设直线l 与曲线C 交于,A B 两 点,求弦长||AB .2.已知直线l 经过点1 (,1)2P ,倾斜角α=6 π ,圆C 的极坐标方程 为)4 π ρθ= -. (1)写出直线l 的参数方程,并把圆C 的方程化为直角坐标方程; (2)设l 与圆C 相交于两点A 、B ,求点P 到A 、B 两点的距离之积. 3.(本小题满分10分)选修4-4:坐标系与参数方程 已知直线l 的参数方程是)(242 2 2 2 是参数t t y t x ??? ? ?? ? +==,圆C 的极坐标方程为 )4 cos(2π θρ+=. (I )求圆心C 的直角坐标;(Ⅱ)由直线l 上的点向圆C 引切线,求切线长的最小值. 4.已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中x 轴的正半轴 重合,且两坐标系有相同的长度单位,圆C 的参数方程为12cos 12sin x y αα=+??=-+? (α为参数), 点Q 的极坐标为7 )4 π。 (1)化圆C 的参数方程为极坐标方程; (2)直线l 过点Q 且与圆C 交于M ,N 两点,求当弦MN 的长度为最小时,直线l 的直角坐标方程。 5.在极坐标系中,点M 坐标是)2, 3(π ,曲线C 的方程为)4 sin(22π θρ+ =;以极点 为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,斜率是1-的直线l 经过点M .

双代号网络图时间参数的计算

双代号网络图时间参数的计算 参数名称符号英文单词 工期 计算工期TCComputer Time 要求工期TR RequireTime 计划工期T P Plan Time 工作的 时间参数 持续时间D i-jDay 最早开始时间ES i-j Earliest Starting Tim e 最早完成时间EF i—j Earliest Finishing Time 最迟完成时间LFi—jLatest Finishing Time 最迟开始时间LSi—jLatest Starting Time 总时差TFi-j Total Float Time 自由时差FF i-j Free Float Time 二、工作计算法 【例题】:根据表中逻辑关系,绘制双代号网络图,并采用工作计算法计算各工作的时间参数。 工作A B C DEFGHI 紧前-A A B B、C C D、E E、 F H、G 时间333854422

(一)工作的最早开始时间ESi—j —-各紧前工作全部完成后,本工作可能开始的最早时刻。 (二)工作的最早完成时间EF i—j EF i-j=ES i-j + D i—j 1。计算工期Tc等于一个网络计划关键线路所花的时间,即网络计划结束工作最早完成时间的最大值,即T c=max{EF i—n} 2.当网络计划未规定要求工期Tr时, Tp=T c 3.当规定了要求工期Tr时,T c≤T p,T p≤T r —-各紧前工作全部完成后,本工作可能完成的最早时刻。

(三)工作最迟完成时间LFi-j 1.结束工作的最迟完成时间LFi-j=T p 2.其他工作的最迟完成时间按“逆箭头相减,箭尾相碰取小值”计算. --在不影响计划工期的前提下,该工作最迟必须完成的时刻。 (四)工作最迟开始时间LS i-j LSi—j=LFi—j—D i-j --在不影响计划工期的前提下,该工作最迟必须开始的时刻。

极坐标全参数方程高考练习含问题详解(非常好的练习题)

极坐标与参数方程高考精练(经典39题) 1.在极坐标系中,以点(2,)2C π 为圆心,半径为3的圆C 与直线:()3l R π θρ=∈交于,A B 两点.(1)求圆C 及直线 l 的普通方程.(2)求弦长AB . 2.在极坐标系中,曲线2:sin 2cos L ρθθ=,过点A (5,α)(α为锐角且3tan 4α=)作平行于()4 R πθρ=∈的直线l ,且l 与曲线L 分别交于B ,C 两点. (Ⅰ)以极点为原点,极轴为x 轴的正半轴,取与极坐标相同单位长度,建立平面直角坐标系,写出曲线L 和直线l 的普通方程;(Ⅱ)求|BC|的长. 3.在极坐标系中,点M 坐标是)2,3(π ,曲线C 的方程为)4 sin(22πθρ+=;以极点为坐标原点,极轴为x 轴的正半 轴建立平面直角坐标系,斜率是1-的直线l 经过点M . (1)写出直线l 的参数方程和曲线C 的直角坐标方程; (2)求证直线l 和曲线C 相交于两点A 、B ,并求||||MB MA ?的值.

4.已知直线l 的参数方程是)(242222是参数t t y t x ???????+==,圆C 的极坐标方程为)4cos(2πθρ+=. (1)求圆心C 的直角坐标;(2)由直线l 上的点向圆C 引切线,求切线长的最小值. 5.在直角坐标系xOy 中,直线l 的参数方程为()为参数t t y t a x ,3???=+=.在极坐标系(与直角坐标系xOy 取相同的长 度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为θρcos 4=. (Ⅰ)求圆C 在直角坐标系中的方程; (Ⅱ)若圆C 与直线l 相切,数a 的值. 6.在极坐标系中,O 为极点,已知圆C 的圆心为(2,)3π,半径r=1,P 在圆C 上运动。 (I )求圆C 的极坐标方程;(II )在直角坐标系(与极坐标系取相同的长度单位,且以极点O 为原点,以极轴为x 轴正半轴)中,若Q 为线段OP 的中点,求点Q 轨迹的直角坐标方程。

医学统计学课后选择题课件.doc

第一章。 1.医学统计学研究的对象是 A.医学中的小概率事件 B.各种类型的数据 C.动物和人的本质 D.有变异的医学事物 E.残疾的预防与治疗 2.用样本推断总体具有代表性的样本,通常指的是 A.总体中最容易获得的部分个体 B.在总体中随意抽取的任意一个 C.挑选总体中的有代表性的部分个体 D.用方法抽取的部分个体 E.依照随机原则抽取总体中的部分个体 3.下列观测结果属于有序数据的是 A.收缩压测量值 B.脉搏数 C.住院天数 D.病情程度 E.四种血型 4.随机测量误差指的是 A.有某些固定的因素引起的误差 B.由不可预知的偶然因素引起的误差, C.选择样本不当引起的误差 D.选择总体不当引起的误差 E.由操作失误引起的误差 5.系统误差指的是 A.有某些固定的因素引起的误差, B.由操作失误引起的误差 C.选择样本不当引起的误差 D.样本统计量与总体参数之间的误差 E.由不可预知的偶然因素引起的误差 6.抽样误差指的是 A.有某些固定的因素引起误差 B.由操作失误引起的误差 C.选择样本不当引起的误差 D.样本统计量与总体参数间的误差 E.由不可预知的偶然因素引起的误差 7.收集数据不可避免的误差 A.随机误差 B.系统误差 C.过失误差, D.记录误差 E.仪器故障误差 8.统计学中所谓的总体通常指的

A.自然界中的所有研究对象 B.概括性的研究结果, C.同质观察单位的全体 D.所有的观察数据 E.具有代表性意义的数据 9.统计学中所谓的样本通常是 A.可测量的生物性样品 B.统计量 C.某一变量的测量值 D.数据中有代表性的一部分 E.总体中有代表性的部分观察单位 10.10.医学研究中抽样误差的主要来源是 A.测量仪器不够准确, B.检验出现错误 C.统计设计不合理 D.生物个体的变异 E.样本不够 第二章 1.某医学资料数据大的一端没有确定数值描述其集中趋势适用的统计指标 A.中位数 B.几何均数 C.均数 D.百分位数 E.频数分布 2.算术均数与中位数相比,其特点是。 A.不易受极端数值的影响 B.能充分利用数据的信息, C.抽样误差较大, D.更适用于偏态分布资料, E.更适用于分布不明确资料。 3.将一组计量资料整理成评述表的主要目的是 A.化为计数资料 B.便于计算 C.提供原始数据, D.为能够更精确的检验 E.描述数据的分布特征。 4.六人接种流感疫苗的一个月后测定抗体滴度为1:20、1:40、1:80、1:80、1:160、1:320 求平均滴度应选用的指标是 A.均数 B.几何均数 C.中位数 D.百分位数 E.倒数的均数 5.变异系数主要用于

工程网络计划有关时间参数的计算典型例题

工程网络计划有关时间参数的计算典型例题 例题1:某工程双代号网络计划如下图所示(单位:天)。该网络计划的关键线路为()。 A.①→③→⑤→⑥ B.①→③→④→⑤→⑥和①→②→③→④→⑤→⑥ C.①→②→⑤→⑥和①→②→③→④→⑥ D.①→②→③→⑤→⑥ 【正确答案】B 【答案解析】按工作计算法可知,总工期为14天,关键线路为:①→③→④→⑤→⑥和①→②→③→④→⑤→⑥两条。参见教材P128. 例题2:[背景资料]某施工企业与业主签订了某工程的施工承包合同。经监理工程师审核批准的施工进度计划如下图所示(时间单位:天)。 根据上述背景资料,回答下列第1~4小题: 第1小题:双代号网络图中虚箭线表示()。 A.资源消耗程度B.工作的持续时间C.工作之间的逻辑关系D.非关键工作 【正确答案】C

【答案解析】在双代号网络图中,为了正确地表达图中工作之间的逻辑关系,往往需要用虚箭线。虚线是实际工作中并不存在的一项虚设工作,故它们既不占用时间,也不消耗资 源。 在双代号网络图中,任意一条实箭线都要占用时间、消耗资源。参见教材P116. 第2小题:监理工程师审核批准的施工进度计划工期是()天。 A.210 B.245 C.280 D.300 【正确答案】D 【答案解析】本题实质就是计算该网络计划的工期。计算得到的最早开始时间、最早完成时间、最迟开始时间、最迟完成时间、总时差和自由时差。由图可知计划工期是300天。由于该网络计划图较简单,也可以分别计算四条线路的持续时间,关键线路的长就是计划工 期。参见教材P127. 工期泛指完成任务所需要的时间,一般有以下3种; (1)计算工期,根据网络计划时间参数计算出来的工期,用T c表示; (2)要求工期,任务委托人所要求的工期,用T r表示; (3)计划工期,根据要求工期和计算工期所确定的作为实施目标的工期,用T p表示。 网络计划的计划工期T p应按下列情况分别确定:当已规定了要求工期T r时,T p≤T r; 当未规定要求工期时,可令计划工期等于计算工期,T p=T r。 计算过程见下图所示:

典型极坐标参数方程练习题带答案

极坐标参数方程练习题 1.在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求C 1,C 2的极坐标方程; (2)若直线C 3的极坐标方程为θ=π 4(ρ∈R ),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积. 解:(1)因为x =ρcos θ,y =ρsin θ,所以C 1的极坐标方程为ρcos θ=-2, C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0. (2)将θ=π 4代入ρ2-2ρcos θ-4ρsin θ+4=0,得ρ2-32ρ+4=0,解得ρ1=22, ρ2= 2.故ρ1-ρ2=2,即|MN |= 2. 由于C 2的半径为1,所以△C 2MN 的面积为1 2. 4.(2014·,23,10分,中)将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C . (1)写出C 的参数方程; (2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程. 解:(1)设(x 1,y 1)为圆上的点,经变换为C 上点(x ,y ),依题意,得?????x =x 1,y =2y 1, 由 x 2 1+y 21=1 得x 2 +? ?? ??y 22 =1. 即曲线C 的方程为x 2 +y 2 4=1. 故C 的参数方程为?????x =cos t , y =2sin t (t 为参数). (2)由???x 2 +y 2 4=1, 2x +y -2=0解得?? ???x =1,y =0或?????x =0, y =2.

高考极坐标参数方程含答案(经典39题)

1 3的圆C 与直线交于,A B 两点. (1)求圆C 及直线l 的普通方程.(2 2.在极坐标系中,曲线2 :sin 2cos L ρθθ=,过点A (5,α)(α 的直线l ,且l 与曲线L 分别交于B ,C 两点. (Ⅰ)以极点为原点,极轴为x 轴的正半轴,取与极坐标相同单位长度,建立平面直角坐标系,写出曲线L 和直线l 的普通方程;(Ⅱ)求|BC|的长. 3.在极坐标系中,点M 坐标是,曲线C 的方程为轴为x 轴的正半轴建立平面直角坐标系,斜率是1-的直线(1)写出直线l 的参数方程和曲线C 的直角坐标方程; (2)求证直线l 和曲线C 相交于两点A 、B ,并求||||MB MA ?的值. 4.已知直线l 的参数方程是 C (1)求圆心C 的直角坐标;(2)由直线 l 上的点向圆C 引切线,求切线长的最小值. 5.在直角坐标系xOy 中,直线l 在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为θρcos 4=. (Ⅰ)求圆C 在直角坐标系中的方程; (Ⅱ)若圆C 与直线l 相切,求实数a 的值. 6.在极坐标系中,O 为极点,已知圆C r=1,P 在圆C 上运动。 (I )求圆C 的极坐标方程;(II )在直角坐标系(与极坐标系取相同的长度单位,且以极点O 为原点,以极轴为x 轴正半轴)中,若Q 为线段OP 的中点,求点Q 轨迹的直角坐标方程。

7.在极坐标系中,极点为坐标原点O ,已知圆C ,直线l 的极坐 (1)求圆C 的极坐标方程;(2)若圆C 和直线l 相交于A ,B 两点,求线段AB 的长. 8.平面直角坐标系中,将曲线?? ?==ααsin cos 4y x (α为参数)上的每一点纵坐标不变,横坐标变为原来的 一半,然后整个图象向右平移1个单位,最后横坐标不变,纵坐标变为原来的2倍得到曲线1C .以坐标原点为极点,x 的非负半轴为极轴,建立的极坐标中的曲线2C 的方程为θρsin 4=,求1C 和2C 公共弦的长度. 9.在直角坐标平面内,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方 程是θρcos 4=,直线l (t 为参数)。求极点在直线l 上的射影点P 的极坐标;若M 、N 分别为曲线C 、直线l 上的动点,求 10.已知极坐标系下曲线C 的方程为θθρsin 4cos 2+=,直线l 经过点 (Ⅰ)求直线l 在相应直角坐标系下的参数方程; (Ⅱ)设l 与曲线C 相交于两点B A 、,求点P 到B A 、两点的距离之积.

相关文档
相关文档 最新文档