文档库 最新最全的文档下载
当前位置:文档库 › 基本初等函数(整理)

基本初等函数(整理)

基本初等函数(整理)
基本初等函数(整理)

1.1 初等函数图象及性质

1.1.1 幂函数

1函数(μ是常数)叫做幂函数。

2幂函数的定义域,要看μ是什么数而定。

但不论μ取什么值,幂函数在(0,+ ∞ )总有定义。

3最常见的幂函数图象如下图所示:[如图]

4

2

-551015

-2

-4

-6

4①α>0时,图像都过(0,0)、(1,1

注意α>1与0<α<1的图像与性质的区别.

②α<0时,图像都过(1,1)点,在区间(0

无限接近y轴,向右无限接近x轴.

③当x>1时,指数大的图像在上方.

1.1.2 指数函数与对数函数

1.指数函数

1函数(a是常数且a>0,a≠ 1)叫做指数函数,它的定义域是区间(-∞ ,+∞ )。

2因为对于任何实数值x,总有,又,所以指数函数的图形,总在x轴的上方,且通过点(0,1)。若a>1,指数函数是单调增加的。若0

a>1 0<a<1

(1)定义域:R

(2)值域:(0,+∞)

(3)过点(0,1)

(4)在R上增函数(4)在R上减函数

有理指数幂的意义、幂的运算法则:

①m n m n

a a a+

?=;②()m n mn

a a

=;③()n n n

ab a b

=(这时m,n是有理数)

分数指数幂:

n m

n

m

n

n

n m

n

m

n

n

a

a

a

a

a

a

a

a

1

,

1

,

,

1

=

=

=

=-

-。

2.对数函数

由此可知,今后常用关系式,

如:

指数函数的反函数,记作(a是常数且a>0,≠a1),叫做对数函数。它的定义域是区间(0,+∞)。

对数函数的图形与指数函数的图形关于直线y = x 对称(图1-22)。 的图形总在y 轴上方,且通过点(1,0)。

若a>1,对数函数是单调增加的,在开区间(0,1)函数值为负,而在区间(1,+∞ )函数值为正。 若0

对数函数的图象和性质

重要公式:

⑴负数与零没有对数; ⑵log a 1=0,log a a =1

⑶对数恒等式N a

N

a =log

(4) log a a b =b 运算法则

若a >0,a ≠1,M >0,N >0,则 (1)log a (MN )=log a M +log a N ;

(2)log a M

N =log a M -log a N ;

(3)1

log log ;log log n

a a a a M n M M n

==

对数换底公式:

log a N =log m N

log m a (a >0,a ≠1,m >0 ,m ≠1,N >0)

1.1.3 三角函数与反三角函数

1.三角函数

,奇函数、有界函数、周期函数;

,偶函数、有界函数、周期函数;

,的一切实数,奇函数、

周期函数

,的一切实数,奇函数、

周期函数;

;;

正弦函数和余弦函数都是以2π为周期的周期函数,它们的定义域都是区间(-∞ ,+∞ ),值域都是必区间[-1,1]。

正弦函数是奇函数,余弦函数是偶函数。

正切函数和余切函数都是以π为周期的周期函数,它们都是奇函数。[如图]

;。

双曲函数与反双曲函数双曲正弦:,奇函数,单调增函数;

双曲余弦:,偶函数,时,单调减,时,单调增;

双曲正切:,奇函数,单调增函数。

函数的图形见书P27~P28。

下面公式成立

反双曲正弦

反双曲余弦,

反双曲正切

函数图形的变换

平移

①由的图形,作的图形。图形右移,,图形左移。如:由图形作的图形。由的图形作的图形。

②由的图形作的图形。,图形上移,,图形下移。如:由的图形作的图形。

翻转

①由图形作的图形。(以轴为对称轴翻)

如:由的图形作的图形。

②由图形作的图形。(以轴为对称轴翻)如:由的图形作的图形。

迭加与放缩(略)

基本初等函数、函数的应用(小题)

基本初等函数、函数的应用(小题) 热点一 基本初等函数的图象与性质 1.指数函数y =a x (a >0,a ≠1)与对数函数y =log a x (a >0,a ≠1)互为反函数,其图象关于y =x 对称,它们的图象和性质,分01两种情况,着重关注两函数图象中异同. 2.幂函数y =x α的图象和性质,主要掌握α=1,2,3,1 2,-1五种情况. 例1 (1)(2019·天津市十二重点中学联考)已知a =0.313 log 0.6,b =1 2 1 log 4,c =0.413 log 0.5,则实数a ,b ,c 的大小关系为( ) A.c 0.60.4>0.50.4, ∴0.313 log 0.6<0.413 log 0.5, 0.413 log 0.5=130.4log 0.5<131 0.4log 3=0.4, 所以a

(完整版)六大基本初等函数图像及其性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数)y =C(其中C 为常数); α

1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称; 2)当α为负整数时。函数的定义域为除去x=0的所有实数; 3)当α为正有理数 n m 时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1); 4)如果m>n 图形于x 轴相切,如果ma ,1≠a ),定义域是R ; [无界函数] 1.指数函数的图象: 2. 1)当1>a 时函数为单调增,当10<

3.(选,补充)指数函数值的大小比较* N ∈a ; a.底数互为倒数的两个指数函数 x a x f =)(, x a x f ? ? ? ??=1)( 的函数图像关于y 轴对称。 b.1.当1>a 时,a 值越大,x a y = 的图像越靠近y 轴; b.2.当10<∈>=n Z n m a a a n m n m (2)) 1,,,0(1 1*>∈>= =- n Z n m a a a a n m n m n m y x f x x x x g ? ? ?=1)(

高一数学必修一集合与函数的概念

高一数学必修一集合与函数的概念 第一章集合与函数概念 一:集合的含义与表示 1、集合的含义:集合为一些确定的、不同的东西的全体,人们 能意识到这些东西,并且能判断一个给定的东西是否属于这个整体。 把研究对象统称为元素,把一些元素组成的总体叫集合,简称为集。 2、集合的中元素的三个特性: (1)元素的确定性:集合确定,则一元素是否属于这个集合是确 定的:属于或不属于。 (2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。 (3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合 3、集合的表示:{…} (1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。 a、列举法:将集合中的元素一一列举出来{a,b,c……} b、描述法: ①区间法:将集合中元素的公共属性描述出来,写在大括号内表示集合。 {xR|x-3>2},{x|x-3>2} ②语言描述法:例:{不是直角三角形的三角形}

③Venn图:画出一条封闭的曲线,曲线里面表示集合。 4、集合的分类: (1)有限集:含有有限个元素的集合 (2)无限集:含有无限个元素的集合 (3)空集:不含任何元素的集合 5、元素与集合的关系: (1)元素在集合里,则元素属于集合,即:aA (2)元素不在集合里,则元素不属于集合,即:a¢A 注意:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集N*或N+ 整数集Z 有理数集Q 实数集R 6、集合间的基本关系 (1).“包含”关系(1)—子集 定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集。记作:(或BA) 注意:有两种可能(1)A是B的一部分; (2)A与B是同一集合。 反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA (2).“包含”关系(2)—真子集

基本初等函数图像

基本初等函数及图形 基本初等函数为以下五类函数: (1) 幂函数 ,y x μμ=是常数; 1.当μ为正整数时,函数的定义域为区间(,)x ∈-∞+∞,他们的图形都经过原点,并当μ>1时在原点处与x 轴相切。且μ为奇数时,图形关于原点对称;μ为偶数时图形关于y 轴对称; 2.当μ为负整数时。函数的定义域为除去x =0的所有实数。 3.当μ为正有理数m n 时,n 为偶数时函数的定义域为(0,)+∞,n 为奇数时函数的定义域为(,)-∞+∞。函数的图形均经过原点和(1,1). 如果m n >图形于x 轴相切,如果m n <,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称 .4.当μ为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x =0以外的一切实数. (2) 指数函数 x a y =(a 是常数且01a a >≠,),),(+∞-∞∈x ;

1.当μ为正整数时,函数的定义域为区间 ,他们的图形都经过原点,并当μ>1时在原点处与x 轴相切。且μ为奇数时,图形关于原点对称;μ为偶数时图形关于y 轴对称; 2.当μ为负整数时。函数的定义域为除去x =0的所有实数。 3.当μ为正有理数m n 时,n 为偶数时函数的定义域为(0,)+∞,n 为奇数时函数的定义域为(,)-∞+∞。函数的图形均经过原点和(1,1). 如果m n >图形于x 轴相切,如果m n <,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称. 4.当μ为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x =0以外的一切实数. (3) 对数函数 x y a log =(a 是常数且01a a >≠,),(0,)x ∈+∞; 1. 他的图形为于y 轴的右方.并通过点(1,0) 2. 当a >1时在区间(0,1),y 的值为负.图形位于x 的下方,在区间(1,)+∞,y 值为正,图形位于x 轴上方.在定义域是单调增函数.a <1在实用中很少用到. (4) 三角函数 正弦函数 x y sin =,),(+∞-∞∈x ,]1,1[-∈y ,

高一基本初等函数测试题

第二章:基本初等函数 第I 卷(选择题) 一、选择题5分一个 1.已知f(x)=a x5 +bx 3+cx +1(a≠0),若f=m,则f(﹣2014)=( ) A .﹣m ? B .m ? C.0 D .2﹣m 2.已知函数f (x )=lo ga(6﹣ax)在[0,2]上为减函数,则a 的取值范围是( ) A .(0,1) B .(1,3)?C .(1,3]?D.[3,+∞) 3.已知有三个数a=( )﹣ 2,b =4 0.3 ,c =80.2 5,则它们之间的大小关系是( ) A .a0,a≠1,f(x )=x 2 ﹣a x .当x ∈(﹣1,1)时,均有f(x)<,则实数a 的取值范围是( ) A.(0,]∪[2,+∞)?B.[,1)∪(1,2]?C.(0,]∪[4,+∞) D.[,1)∪(1,4] 5.若函数y=x 2﹣3x ﹣4的定义域为[0,m],值域为[﹣,﹣4],则m的取值范围是( ) A.(0,4]?B. C. D. 6.下列函数中,在其定义域内既是奇函数又是减函数的是( ) A.y = (x ∈R 且x≠0)?B.y=()x (x ∈R) C.y=x(x∈R ) D .y=x 3(x∈R) 7.函数f (x)=2x ﹣1+log 2x 的零点所在的一个区间是( ) A.( 81,41) B.(41,21)?C.(2 1 ,1) D .(1,2) 8.若函数y =x 2﹣3x ﹣4的定义域为[0,m],值域为,则m 的取值范围是( ) A.(0,4]?B. C. ?D. 9.集合M ={x |﹣2≤x≤2},N={y|0≤y≤2},给出下列四个图形,其中能表示以M为定义域,N 为值域的函数关系的是( ) A . B. C.?D. 10.已知函数f (x)对任意的x1,x 2∈(﹣1,0)都有0 ) ()(2 121<--x x x f x f ,且函数y=f(x ﹣1)是偶 函数.则下列结论正确的是( )

(完整版)集合与函数的基本性质练习题(较简单含答案)

集合与函数的基本性质练习题 一、选择题 1.下列四个集合中,是空集的是( ) A .}33|{=+x x B .},,|),{(2 2 R y x x y y x ∈-= C .}0|{2 ≤x x D .},01|{2 R x x x x ∈=+- 2.下面有四个命题: (1)集合N 中最小的数是1;(2)若a -不属于N ,则a 属于N ; (3)若,,N b N a ∈∈则b a +的最小值为2;(4)x x 212 =+的解可表示为{ }1,1; 其中正确命题的个数为( ) A .0个 B .1个 C .2个 D .3个 3.若集合{},,M a b c =中的元素是△ABC 的三边长,则△ABC 一定不是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形 4.若全集{}{}0,1,2,32U U C A ==且,则集合A 的真子集共有( ) A .3个 B .5个 C .7个 D .8个 5.若偶函数)(x f 在(]1,-∞-上是增函数,则下列关系式中成立的是( ) A .)2()1()2 3(f f f <-<- B .)2()2 3 ()1(f f f <-<- C .)23()1()2(-<-

6类基本初等函数的图形及性质(考研数学基础)_完美版

基本初等函数及图形 (1) 常值函数(也称常数函数) y =c (其中c 为常数) (2) 幂函数 μ x y =,μ是常数; (3) 指数函数 x a y = (a 是常数且01a a >≠,),),(+∞-∞∈x ; (4) 对数函数 x y a log =(a 是常数且01a a >≠,),(0,)x ∈+∞; 1. 当u 为正整数时,函数的定义域为区间) ,(+∞-∞∈x ,他们的图形都经过原点,并当 u>1时在原点处与X 轴相切。且u 为奇数时,图形关于原点对称;u 为偶数时图形关于Y 轴对称; 2. 当u 为负整数时。函数的定义域为除去x=0的所有实数。 3. 当u 为正有理数m/n 时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞+∞)。函数的图形均经过原点和(1 ,1). 如果m>n 图形于x 轴相切,如果m1时函数为单调增,当a<1时函数为单调减. 2. 不论x 为何值,y 总是正的,图形在x 轴上方. 3. 当x=0时,y=1,所以他的图形通过(0,1)点. 1. 他的图形为于y 轴的右方.并通过点(1,0) 2. 当a>1时在区间(0,1),y 的值为负.图形位于x 的下方, 在区间(1, +∞),y 值为正,图形位于x 轴上方.在定义域是单调增函数. a<1在实用中很少用到/

正弦函数 x y sin =,),(+∞-∞∈x ,]1,1[-∈y , 余弦函数 x y cos =,),(+∞-∞∈x ,]1,1[-∈y , 正切函数 x y tan =, 2π π+ ≠k x ,k Z ∈,),(+∞-∞∈y , 余切函数 x y cot =,πk x ≠,k Z ∈,),(+∞-∞∈y ;

专题5 基本初等函数与函数应用

专题5 基本初等函数与函数应用 编写:邵永芝 一、知识梳理 1、如果一个实数x 满足 ,那么称x 为a 的n 次实数方根。 2、(1)n N +∈ 时,n = ,(2)n = ;当n 为正偶 = 。 3、分数指数幂的定义:(1)规定正数的正分数指数幂的意义是:m n a = (0,1a m n N n +>∈>、,且);(2)规定正数的负分数指数幂的意义是:m n a -= (0,1a m n N n +>∈>、,且) 4、有理数指数幂的运算性质:(1)r s a a = (2)()r s a = (3)()r ab = 5、指数函数的概念:一般地, 叫做指数函数,其中x 是自变量,函数的定义域为 ,值域为 。 6、对数的概念:如果a (0,1)a a >≠的b 次幂等于N ,即 ,那么就称b 是以a 为底N 的对数,记作 ,其中a 叫做 ,N 叫做 。 7、对数与指数的关系:若0,1a a >≠,则x a =N ?log a N = 。 对数恒等式:log a N a = ;log N a a = 。 (0,1)a a >≠ 8、对数的运算性质:如果a >0,a ≠1,M >0,N >0,那么; (1)log a (M ·N )= (2)log a M N = (3)log a M n = 9、换底公式:log a N =log log b b N a (a >0,a ≠1,b >0,b ≠1,N >0). 10、.对数函数的定义:一般地,我们把 叫做对数函数,自变量是x ;函数的定义域是(0,+∞).值域:R . 11、幂函数的定义:一般地,我们把形如 的函数称为幂函数,其中底数x 是变量,指数α是常数. 12、幂函数的性质(仅限于在第一象限内的图象): (1)定点:α>0时,图象过(0,0)和(1,1)两个定点;α≤0时,图象过只过定点(1,1). (2)单调性:α>0时,在区间[0,+∞)上是单调递增;α<0时,在区间(0,+∞)上是单调递减.

人教版高中数学必修一《集合与函数概念》之《函数的基本性质》练习题与解答

人教新课标数学必修Ⅰ 1.3函数的基本性质练习题 一、选择题: 1.下面说法正确的选项 ( ) A .函数的单调区间可以是函数的定义域 B .函数的多个单调增区间的并集也是其单调增区间 C .具有奇偶性的函数的定义域定关于原点对称 D .关于原点对称的图象一定是奇函数的图象 2.在区间)0,(-∞上为增函数的是 ( ) A . 1=y B . 21+-= x x y C .122 ---=x x y D .2 1x y += 3.函数c bx x y ++=2 ))1,((-∞∈x 是单调函数时,b 的取值范围 ( ) A .2-≥b B .2-≤b C .2->b D . 2- C . )()(21x f x f = D .无法确定 7.函数 )(x f 在区间]3,2[-是增函数,则)5(+=x f y 的递增区间是( )

A .]8,3[ B . ]2,7[-- C .]5,0[ D .]3,2[- 8.函数b x k y ++=)12(在实数集上是增函数,则 ( ) A .21->k B .2 1-b D .0>b 9.定义在R 上的偶函数 )(x f ,满足)()1(x f x f -=+,且在区间]0,1[-上为递增,则 ( ) A .)2()2()3(f f f << B .)2()3()2(f f f << C .)2()2()3(f f f << D .)3()2()2(f f f << 10.已知)(x f 在实数集上是减函数,若0≤+b a ,则下列正确的是 ( ) A .)]()([)()(b f a f b f a f +-≤+ B . )()()()(b f a f b f a f -+-≤+ C . )]()([)()(b f a f b f a f +-≥+ D . )()()()(b f a f b f a f -+-≥+ 二、填空题:请把答案填在题中横线上(每小题6分,共24分). 11.函数 )(x f 在R 上为奇函数,且0,1)(>+=x x x f ,则当0

五大基本初等函数性质及其图像

五、基本初等函数及其性质和图形 1.幂函数 函数称为幂函数。如,, ,都是幂函数。没有统一的定义域,定义域由值确定。如 ,。但在内 总是有定义的,且都经过(1,1)点。当 时,函数在上是单调增加的,当时,函数在内是单调减少的。下面给出几个常用的幂函数: 的图形,如图1-1-2、图1-1-3。 图1-1-2

图1-1-3 2.指数函数 函数称为指数函数,定义域 ,值域;当时函数为单调增加 的;当时为单调减少的,曲线过点。高等 数学中常用的指数函数是时,即。以与 为例绘出图形,如图1-1-4。 图1-1-4 3.对数函数

函数称为对数函数,其定义域 ,值域。当时单调增加,当 时单调减少,曲线过(1,0)点,都在右半平面 内。与互为反函数。当时的对数 函数称为自然对数,当时,称为常用对数。以为例绘出图形,如图1-1-5。 图1-1-5 4.三角函数有 ,它们都是周期函 数。对三角函数作简要的叙述: (1)正弦函数与余弦函数:与定义域都是,值域都是。它们都是有界函数,周期都是,为奇函数,为偶函数。图形为图1-1-6、图1-1-7。

图1-1-6正弦函数图形 图1-1-7余弦函数图形 (2)正切函数,定义域,值 域为。周期,在其定义域内单调增加的奇函数,图形为图1-1-8 图1-1-8 (3)余切函数,定义域,值域为 ,周期。在定义域内是单调减少的奇函数,图形如图1-1-9。

图1-1-9 (4)正割函数,定义域,值域为,为无界函数,周期的偶函数,图形如图1-1-10。 图1-1-10 (5)余割函数,定义域,值域为 ,为无界函数,周期在定义域为奇函 数,图形如图1-1-11。

高中数学复习:基本初等函数、函数的应用

高中数学复习:基本初等函数、函数的应用 1.已知55<84,134<85.设a=log53,b=log85,c=log138,则( ) A.a2b B.a<2b C.a>b2 D.a

集合与函数的知识点

集合与函数 教学重点:掌握知识之间的联系,洞悉问题的考察点,能选择合适的知识与方法解决问题. 教学难点:含参问题的讨论,函数性质之间的关系. 学生应掌握以下几点: 1.了解集合的含义与表示,理解集合间的基本关系,集合的基本运算. A:能从集合间的运算分析出集合的基本关系.B:对于分类讨论问题,能区分取交还是取并. 2.理解函数的定义,掌握函数的基本性质,会运用函数的图象理解和研究函数的性质. A:会用定义证明函数的单调性、奇偶性.B:会分析函数的单调性、奇偶性、对称性的关系. 3.通过自主知识梳理,了解自己学习的不足,明确知识的来龙去脉,把学习的内容网络化、系统化. 4.在解决问题的过程中,通过自主探究、合作交流,领悟知识的横、纵向联系,体会集合与函数的本质 5.用集合语言可以简洁准确表达数学内容. 6.运用集合与对应进一步描述了函数的概念,与初中的函数的定义比较,突出了函数的本质函数是描述变量之间依赖关系的重要数学模型.

7.掌握函数的三种表示方法,这三种表示方法有各自的适用范围,要根据具体情况选用. 8.研究函数的性质时,一般先从几何直观观察图象入手,然后运用自然语言描述函数的图象特征,最后抽象到用数学符号刻画相应的数量特征,也是数学学习和研究中经常使用的方法. 9.交集与并集的区分,即何时取交,何时取并,特别是含参的分类讨论问题. 10.函数的单调性与奇偶性的证明. 知识框架 “集合与函数概念”知识点 一、集合有关概念 1.集合的含义 2.集合的中元素的三个特性: (1)元 素的确定性如:世界上最高的山 (2)元素的互异性如:由HAPPY的字母 组成的集合{H,A,P,Y} (3)元素的无序性: 如:{a,b,c}和 {a,c,b}是表示同一个集合

基本初等函数图像及性质大全

一、一次函数与二次函数 (一)一次函数 (1)二次函数解析式的三种形式 ①一般式:2 ()(0)f x ax bx c a =++≠ ②顶点式:2 ()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠ (2)求二次函数解析式的方法 ①已知三个点坐标时,宜用一般式. ②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便. (3)二次函数图象的性质

①.二次函数2 ()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2x a =- 顶点坐标是2 4(,)24b ac b a a -- ②当0a >时,抛物线开口向上,函数在(,]2b a -∞- 上递减,在[,)2b a -+∞上递增,当2b x a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递 增,在[,)2b a -+∞上递减,当2b x a =- 时,2max 4()4ac b f x a -=. 二、幂函数 (1)幂函数的定义 一般地,函数y x α =叫做幂函数,其中x 为自变量,α是常数. (2)幂函数的图象

过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). 三、指数函数 (1)根式的概念:如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根. (2)分数指数幂的概念 ①正数的正分数指数幂的意义是:0,,,m n a a m n N +=>∈且1)n >.0的正分数 指数幂等于0. ②正数的负分数指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. (3)运算性质

六大基本初等函数图像及其性质

六大基本初等函数图像及其性质 一、常值函数(也称常数函数) y =C (其中C 为常数); α 1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称; 2)当α为负整数时。函数的定义域为除去x=0的所有实数; 3)当α为正有理数 n m 时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1); 4)如果m>n 图形于x 轴相切,如果m

除x=0以外的一切实数。 三、指数函数x a y =(x 是自变量,a 是常数且0>a ,1≠a ),定义域是R ; [无界函数] 1.指数函数的图象: 2. 1)当1>a 时函数为单调增,当10<

集合与函数的概念单元测试卷含详细答案

高一第一次月考复习卷 姓名:___________班级:___________考号:___________ 一、单选题 1.已知集合{} |A x y ==, {}| B x x a =≥,若A B A ?=,则实数a 的取值范围是( ) A . (],3-∞- B . (),3-∞- C . (],0-∞ D . [ )3,+∞ 2.函数 的定义域是 ( ) A . B . C . D . 3.函数 的值域是( ) A . [0,+∞) B . (-∞,0] C . D . [1,+∞) 4.已知偶函数 在 单调递增,若 ,则满足 的 的取值范围是( ) A . B . C . D . - 5.定义运算 ,则函数 的图象是( ) A . B . C . D . 6.函数 的值域为 A . B . C . D . 7.已知不等式x 2-2x-3<0的解集为A ,不等式x 2+x-6<0的解集为B ,不等式x 2+ax+b<0的解集为A ∩B ,则a+b=( ) A . -3 B . 1 C . -1 D . 3 8.若()f x 是定义在(-∞,+∞)上的偶函数, ? 12,x x ∈[0,+∞)且(12x x ≠)

A . ()()()312f f f <<- B . ()()()321f f f <-< C . ()()()213f f f -<< D . ()()()123f f f <-< 9.设f(x)为定义在R 上的奇函数,当0x ≥时, ()372x f x x b =-+(b 为常数),则 f(-2)=( ) A . 6 B . -6 C . 4 D . -4 10.设奇函数 在 上为减函数,且 ,则不等式 的解集为( ) A . B . C . D . 11.已知函数 的定义域为 ,则实数 的取值范围为( ) A . B . C . D . 12.已知函数()f x =()35,1 { 2,1a x x a x x -+≤>是(),∞∞-+上的减涵数,那么a 的取值范围 是 A . (0,3) B . (]0,3 C . (0,2) D . (] 0,2 二、填空题 13.已知函数f (x+3)的定义域为[-2,4),则函数f (2x-3)的定义域为_____. 14.若函数 在区间(-2,+∞)上单调递减,则实数a 的取值范围是_____. 15.已知函数y=f (x )+x 3为偶函数,且f (10)=10,若函数g (x )=f (x )+6,则g (-10)=_____. 16.函数 的函数值表示不超过 的最大整数,例如, , ,已知定义在 上的函数 ,若 ,则 中所有元素的和为__________. 三、解答题 17.已知集合 , , . (1)求 ; (2)若 ,求实数 的取值范围.

高中基本初等函数及函数的应用

高中基本初等函数及函数的应用 指数函数 指数与指数幂的运算 (1)根式的概念 ①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n n 是偶数时,正数a 的正的n 表示,负的n 次方根用符号0的n 次方根是0;负数a 没有n 次方根. n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥. ③根式的性质 :n a =;当n 为奇数时 , a =;当n 为偶数时, (0) || (0) a a a a a ≥?==? -∈且1)n >.0的正分数指数幂等于0. ②正数的负分数指数幂的意义是 : 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质 ①(0,,)r s r s a a a a r s R +?=>∈ ②()(0,,)r s rs a a a r s R =>∈ ③()(0,0,)r r r ab a b a b r R =>>∈ 指数函数及其性质

对数函数 对数与对数运算 (1)对数的定义 ①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数. ②负数和零没有对数. ③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =?=>≠>. (2)几个重要的对数恒等式 log 10a =,log 1a a =,log b a a b =. (3)常用对数与自然对数 常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么 ①加法:log log log ()a a a M N MN += ②减法:log log log a a a M M N N -= ③数乘:log log ()n a a n M M n R =∈ ④log a N a N =

集合与函数知识点总结

集合与函数概念知识点总结 【1.1.1】集合的含义与表示 (1)集合的概念 集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法 N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集. (3)集合与元素间的关系 对象a 与集合M 的关系是a M ∈,或者a M ?,两者必居其一. (4)集合的表示法 ①自然语言法:用文字叙述的形式来描述集合. ②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类 ①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(?). 【1.1.2】集合间的基本关系 (7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n -非空真子集. 【1.1.3】集合的基本运算

A B B ?I 并集 A B U {|,x x A ∈或 }x B ∈ (1)A A A =U (2)A A ?=U (3)A B A ?U A B B ?U B A 补集 U A e {|,}x x U x A ∈?且 1 ()U A A =? I e 2()U A A U =U e (1不等式 解集 ||(0)x a a <> {|}x a x a -<< ||(0)x a a >> |x x a <-或}x a > ||,||(0)ax b c ax b c c +<+>> 把ax b +看成一个整体,化成||x a <, ||(0)x a a >>型不等式来求解 (2判别式 24b ac ?=- 0?> 0?= 0?< 二次函 数 2(0) y ax bx c a =++>的图象 O 一元二次方程 20(0) ax bx c a ++=>的根 21,242b b ac x a -±-= (其中 12) x x < 122b x x a ==- 无实根 20(0) ax bx c a ++>>的解集 1 {|x x x <或 2} x x > {| x }2b x a ≠- R 20(0) ax bx c a ++<>的解集 12{|} x x x x << ? ? 〖1.2【1.2.1】函数的概念 (1)函数的概念 ①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B ()()()U U U A B A B =I U 痧?()()() U U U A B A B =U I 痧?

第2讲 基本初等函数、函数的应用

第2讲 基本初等函数、函数的应用 高考定位 1.掌握二次函数、分段函数、幂函数、指数函数、对数函数的图象与性质;2.以基本初等函数为依托,考查函数与方程的关系、函数零点存在性定理;3.能利用函数解决简单的实际问题 . 真 题 感 悟 1.(2020·全国Ⅲ卷)已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( ) A.a 2b B.a <2b C.a >b 2 D.a

令f (x )=2x +log 2x ,则f (x )在(0,+∞)上单调递增. 又∵22b +log 2b <22b +log 2b +1=22b +log 2(2b ), ∴2a +log 2a <22b +log 2(2b ),即f (a )

人教版高中数学必修一《集合与函数概念》之《函数的基本性质》教案设计

函数的基本性质 教学目标 1)掌握函数的基本性质(单调性、最大值或最小值、奇偶性),能应用函数的基本性质解决一些问题。 (2)从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法. (3)了解奇偶性的概念,回 会利用定义判断简单函数的奇偶性。 重点与难点 (1)判断或证明函数的单调性; (2)奇偶性概念的形成与函数奇偶性的判断。 教学过程 一、 函数的单调性 1.单调函数的定义 (1)增函数:一般地,设函数()f x 的定义域为I :如果对于属于I 内某个区间上的任意两个自变量的值1x 、2x ,当1x <2x 时都有12()()f x f x <,那么就说()f x 在这个区间上是增函数。 (2)减函数:如果对于属于I 内某个区间上的任意两个自变量的值1x 、2x ,当 1x <2x 时都有12()()f x f x >,那么就说()f x 在这个区间上是减函数。 (3)单调性:如果函数()y f x =在某个区间是增函数或减函数。那么就说函数 ()y f x =在这一区间具有(严格的)单调性,这一区间叫做()y f x =的单调区间。 2、单调性的判定方法 (1)定义法: 判断下列函数的单调区间:2 1x y = (2)图像法:从左往右,图像上升即为增函数,从左往右,图像下降即为减函数。 (3)复合函数的单调性的判断:

设)(x f y =,)(x g u =,],[b a x ∈,],[n m u ∈都是单调函数,则[()]y f g x =在 ],[b a 上也是单调函数。 ①若)(x f y =是[,]m n 上的增函数,则[()]y f g x =与定义在],[b a 上的函数)(x g u =的单调性相同。 ②若)(x f y =是[,]m n 上的减函数,则[()]y f g x =与定义在],[b a 上的函数)(x g u =的单调性相同。 即复合函数的单调性:当内外层函数的单调性相同时则复合函数为增函数;当内外层函数的 单调性相反时则复合函数为增减函数。也就是说:同增异减(类似于“负负得正”) 练习:(1)函数24x y -=的单调递减区间是 ,单调递增区间 为 . (2)5 412 +-= x x y 的单调递增区间为 . 3、函数单调性应注意的问题: ①单调性是对定义域内某个区间而言的,离开了定义域和相应区间就谈不上单调性. ②对于某个具体函数的单调区间,可以是整个定义域(如一次函数),可以是定义域内某个区间(如二次函数),也可以根本不单调(如常函数). ③函数在定义域内的两个区间A ,B 上都是增(或减)函数,一般不能认为函数在上是增(或减)函数 4.例题分析 证明:函数1 ()f x x = 在(0,)+∞上是减函数。 证明:设任意1x ,2x ∈(0,+∞)且12x x <, 则21 121212 11()()x x f x f x x x x x --= -=, 由1x ,2x ∈(0,+∞),得120x x >,又12x x <,得210x x ->, ∴12()()0f x f x ->,即12()()f x f x >

相关文档 最新文档