文档库 最新最全的文档下载
当前位置:文档库 › 断裂力学课程教学大纲

断裂力学课程教学大纲

断裂力学课程教学大纲
断裂力学课程教学大纲

《断裂力学》课程教学大纲

625

626

损伤与断裂力学论文

损伤力学研究的是材料内部缺陷的产生和发展引起的宏观力学效应以及缺陷最终导致材料破坏的过程和规律。1958年Kachanov在研究蠕变断裂时引入了损伤力学的概念,提出了“连续性因子”和有效应力。1963年Rabotonov在Kachanov基础上引入了“损伤变量”的概念,奠定了损伤力学的基础。在其后的二三十年中,各国学者对损伤力学的基本概念、研究方法、损伤变量的定义等做了大量的开创性工作,极大推动了损伤力学理论的进展。1976年Dougill将损伤力学从金属材料中引入到岩石材料,之后岩石损伤力学迅速发展,已成为当今岩石研究领域的热门课题之一。 岩石损伤力学的研究关键是定义材料的损伤变量及正确地给出演变规律的本构方程。能否得到合理的损伤演变方程和含损伤的本构方程关键是对损伤变量的定义是否合理,建立一个损伤模型的基本要求是能在实验中直接或间接确定与损伤演变规律有关的材料参数。 对损伤变量的定义,从损伤力学提出就开始进行广泛的研究,可从微观和宏观这两个方面选择。微观方面,可以选择裂纹数目、长度、面积和体积等;宏观方面,可以选择弹性模量、屈服应力、拉伸强度、密度等。 国内学者唐春安从岩体材料内部所含裂纹缺陷分布的随机性出发,利用岩石微元强度服从正态分布或Weibull分布的特征,用发生破坏的微元数在微元总数中所占的比例来定义损伤变量。 谢和平等将分形几何理论应用于岩石损伤研究中,将岩石损伤程度的增加看作是分形维数的增加,从损伤与断裂之间的联系方面定量的描述了损伤,从而创建了分形几何与岩石力学理论体系,提出了分形损伤力学理论。 从微观角度出发对损伤变量进行定义,不仅物理意义明确,而且能够比较真实地反映材料性能逐渐劣化,但是从微观角度定义的损伤变量难以量测。 Lamaitre基于弹性模量变化用无损杨氏模量和损伤杨氏模量定义损伤变量,谢和平和鞠杨等讨论了该损伤变量定义的适用条件,进行了修正。使基于宏观弹性模量定义的损伤变量在实际应用中比较方便,但这种定义方法需要事先知道材料的初始弹性模量,而且在实际的工程中很多材料都有具有初始损伤的。 谢和平、鞠杨等认为单元强度丧失实则为其粘聚力的丧失,即单元在经历一定的能量耗散后,其内部的损伤达到了最大值,与此同时微结构中的粘聚力完全丧失。国内外学者进行了大量通过能量分析的方法来描述岩体的破坏行为的研究。 另外还有学者使用CT技术在岩石损伤检测中的应用,并给出了一种基于

材料的韧性及断裂力学简介

第二节材料的韧性及断裂力学简介 一、低应力脆断及材料的韧性 人们在对船舶的脆断、无缝输气钢管的脆断裂缝、铁桥的脆断倒塌、飞机因脆断而失事、石油、电站设备因脆断而发生重大事故的分析中,发现了一些它们的共同特点: 1.通常发生脆断时的宏观应力很低,按强度设计是安全的; 2.脆断事故通常发生在比较低的工作温度环境下; 3.脆断从应力集中处开始,裂纹源通常在结构或材料的缺陷处,如缺口、裂纹、夹杂等; 4.厚截面、高应变速率促进脆断。 由此,人们发现了传统设计思想和材料的性能指标在强度设计上的不足,试图提出新的性能指标和安全判据,找到防止脆断的新的设计方法。 传统的强度设计所依据的性能指标主要为弹性模量E、屈服极限σs、抗拉强度σb,而塑性指标延伸率δ和面收缩率φ在设计中只是参考数据,通常还会考虑应力集中现象,即使如此,设计的安全判据仍不足以防止脆断的发生,这说明材料的强度、塑性、弹性这些性能指标还不能完全反映材料抵抗脆断的发生。经过对众多脆断事故的分析和研究,人们提出了一个便于反映材料抗脆断能力的新的性能指标——韧性,从使脆性材料和韧性材料断裂所消耗的能量不同,归纳出韧性的定义为:所谓韧性是材料从变形到断裂过程中吸收能量的太小,它是材料强度和塑性的综合反映。 例如图l-2为球墨铸铁和低碳钢的拉伸曲线,可以用拉伸曲线下的面积来表示材料的韧性,即 图中可见,虽然球墨铸铁的抗拉强度σb比低碳钢高,但其断裂时的塑性应变εp确远较低碳钢小,综合起来看,低碳钢的韧性高。 图1-2 球铁和低碳钢拉伸曲线表示的韧性 材料的韧性可用实验的方法测试和判定。应用较早和较广泛的是缺口冲击试验,这种方法已经规范化。具体方法是将图1-3所示的缺口试样用专用冲击试验机施加冲击载荷,使试 样断裂,用冲击过程中吸收的功除以断口面积,所得即为材料的冲击韧性,以αk表示,单位为J/cm^2。目前国际上多用夏氏V型缺口试样,我国多用U型缺口试样。由于缺口冲击

断裂力学读书报告

断裂力学读书报告 1、读论文有感 我所读的论文是《灰色模型在不确定性疲劳寿命预测中的研究》。之所以选择这样一篇论文来读,主要有两个方面在吸引着我,一个是灰色模型,另一个则是不确定性疲劳寿命。 对于不确定性系统的研究主要有三张方法,即概率统计、模糊数学和灰色模型。首先,需要来讲一下文章中主要提到的灰色模型。 灰色模型是由华中科技大学控制科学与工程系教授,博士生导师邓聚龙于1982年提出的。控制论中,信息多少常以颜色深浅来表示。信息充足、确定(已知)的为白色,信息缺乏、不确定(未知)的为黑色,部分确定与部分不确定的为灰色。那些既有已知参数又有未知参数的系统,如:人体就是既有白色参数(已知的外型参数)又有黑色参数(未知的人体穴位功能)的灰色系统。白色系统是全开放性的、黑色系统是全封闭性的。灰色系统则介于两者之间,是半开放半封闭性的。如果一个系统具有层次、结构关系的模糊性,动态变化的随机性,指标数据的不完备或不确定性,则称这些特性为灰色性。具有灰色性的系统称为灰色系统。 从灰色系统中抽象出来的模型。灰色系统是既含有已知信息,又含有未知信息或非确知信息的系统,这样的系统普遍存在。研究灰色系统的重要内容之一是如何从一个不甚明确的、整体信息不足的系统中抽象并建立起一个模型,该模型能使灰色系统的因素由不明确到明确,由知之甚少发展到知之较多提供研究基础。灰色系统理论是控制论的观点和方法延伸到社会、经济领域的产物,也是自动控制科学与运筹学数学方法相结合的结果。 其次就是不确定性。不确定性指的是测量物理量的不确定性,由于在一定条件下,一些力学量只能处在它的本征态上,所表现出来的值是分立的,因此在不同的时间测量,就有可能得到不同的值,就会出现不确定值,也就是说,当你测量它时,可能得到这个值,可能得到那个值,得到的值是不确定的。只有在这个力学量的本征态上测量它,才能得到确切的值。而疲劳寿命问题就是一个发展变化的受众多因素影响的复杂过程。

CASTEP计算理论总结+实例分析

CASTEP 计算理论总结 XBAPRS CASTEP 特点是适合于计算周期性结构,对于非周期性结构一般要将特定的部分作为周期性结构,建立单位晶胞后方可进行计算。CASTEP 计算步骤可以概括为三步:首先建立周期性的目标物质的晶体;其次对建立的结构进行优化,这包括体系电子能量的最小化和几何结构稳定化。最后是计算要求的性质,如电子密度分布(Electron density distribution),能带结构(Band structure)、状态密度分布(Density of states)、声子能谱(Phonon spectrum)、声子状态密度分布(DOS of phonon),轨道群分布(Orbital populations)以及光学性质(Optical properties)等。本文主要将就各个步骤中的计算原理进行阐述,并结合作者对计算实践经验,在文章最后给出了几个计算事例,以备参考。 CASTEP 计算总体上是基于DFT ,但实现运算具体理论有: 离子实与价电子之间相互作用采用赝势来表示; 超晶胞的周期性边界条件; 平面波基组描述体系电子波函数; 广泛采用快速fast Fourier transform (FFT) 对体系哈密顿量进行数值化计算; 体系电子自恰能量最小化采用迭带计算的方式; 采用最普遍使用的交换-相关泛函实现DFT 的计算,泛函含概了精确形式和屏蔽形式。 一, CASTEP 中周期性结构计算优点 与MS 中其他计算包不同,非周期性结构在CASTEP 中不能进行计算。将晶面或非周期性结构置于一个有限长度空间方盒中,按照周期性结构来处理,周期性空间方盒形状没有限制。之所以采用周期性结构原因在于:依据Bloch 定理,周期性结构中每个电子波函数可以表示为一个波函数与晶体周期部分乘积的形式。他们可以用以晶体倒易点阵矢量为波矢一系列分离平面波函数来展开。这样每个电子波函数就是平面波和,但最主要的是可以极大简化Kohn-Sham 方程。这样动能是对角化的,与各种势函数可以表示为相应Fourier 形式。 ```2[()()()]``,,k G V G G V G G V G G C C ion H xc i i k G GG i k G δε∑++-+-+-=++ 采用周期性结构的另一个优点是可以方便计算出原子位移引起的整体能量的变化,在CASTEP 中引入外力或压强进行计算是很方便的,可以有效实施几何结构优化和分子动力学的模拟。平面波基组可以直接达到有效的收敛。 计算采用超晶胞结构的一个缺点是对于某些有单点限缺陷结构建立模型时,体系中的单个缺陷将以无限缺陷阵列形式出现,因此在建立人为缺陷时,它们之间的相互距离应该足够的远,避免缺陷之间相互作用影响计算结果。在计算表面结构时,切片模型应当足够的薄,减小切片间的人为相互作用。 CASTEP 中采用的交换-相关泛函有局域密度近似(LDA )(LDA )、广义梯度近似(GGA )和非定域交换-相关泛函。CASTEP 中提供的唯一定域泛函是CA-PZ ,Perdew and Zunger 将Ceperley and Alder 数值化结果进行了参数拟和。交换-相关泛函的定域表示形式是目前较为准确的一种描述。 Name Description Reference PW91 Perdew-Wang generalized-gradient approximation, PW91 Perdew and Wang PBE Perdew-Burke-Ernzerhof functional, PBE Perdew et al. RPBE Revised Perdew-Burke-Ernzerhof functional, RPBE Hammer et al.

断裂力学结课论文2

断裂力学结课论文 断裂力学是为解决机械结构断裂问题而发展起来的力学分支,它将力学、物理学、材料学以及数学、工程科学紧密结合,是一门涉及多学科专业的力学专业课程。本课程中主要介绍了断裂的工程问题、能量守恒与断裂判据、应力强度因子、线弹性和弹塑性断裂力学基本理论、裂纹扩展、J 积分以及断裂问题的有限元方法等内容。 一、 断裂的基本概念 1. 断裂力学的产生和发展 断裂是构件破坏的重要形式之一,影响材料断裂的因素很多,如构件的形状及尺寸,载荷的特征与分布,构件材料本身的状态及应用的环境如温度、腐蚀介质等,当然更重要的还有材料本身的强度水平。为了防止构件的断裂或变形失效,传统的安全设计思想主要立足于外加载荷与使用材料的强度级别的选用,根据常规的强度理论,只要构件服役应力与材料的强度满足 1max 2 b s n n σσ σ???=???? (6- 1) 则认为使用是安全的。其中σmax 为构建所承受的最大应力;σb ,σs 分别为材料的强度极限和屈服强度,1n 1与2n 分别为按强度极限与按屈服强度取用的安全系数。安全系数是一个大于1的数,其含义为扣除了材料中对强度有影响的诸因素对强度可能造成的损 害作用,应当说这种考虑问题的出发点是合理的,也应当是行之有效的,因而多年来这种设计思想在工程设计中发挥了重要作用,而且还会继续发挥其重要作用。 断裂力学的理论最早由Griffith 与20年代提出。Griffith 在断裂物理方面有相当大的贡献,其中最大的贡献要算提出了能量释放(energy release)的观点,以及根据这个观点而建立的断裂判据。根据Griffith 观点而发展起来的弹性能释放理论在现代断裂力学中仍占有相当重要的地位 。 根据Griffith 能量释放观点,在裂纹扩展的过程中,能量在裂端区释放出来,此释放出来的能量将用来形成新的裂纹面积。定义裂纹尖端的能量释放率(energy release rate)如下∶能量释放率是指裂纹由某一端点向前扩展一个单位长度时,平板每单位厚度所释放出来的能量。用字母G 来代表能量释放率。由定义可知,G 具有能量的概念。其国际制单位(SI 单位制)一般用“百万牛顿/米”(MN/m)。材料本身是具有抵抗裂纹扩展的能力的,因此只有当拉伸应力足够大时,裂纹才有可能扩展。此抵抗裂纹扩展的能力可以用表面自由能(surface free energy)来度量。一般用γs 表示。表面自由能定义为:材料每形成单位裂纹面积所需的能量,其量纲与能量释放率相同。 若只考虑脆性断裂,而裂端区的塑性变形可以忽略不计。则在准静态的情形下,裂纹扩展时,裂端区所释放出来的能量全部用来形成新的裂纹面积。换句话说,根据能量守恒定律,裂纹发生扩展的必要条件是裂端区要释放的能量等于形成裂纹面积所需的能量。设每个裂端裂纹扩展量为a ?,则由能量守恒定律有:()(2)s G B a B a γ?=?

断裂力学概述 2

第一章线弹性断裂力学 线弹性断裂力学研究对象是线弹性裂纹固体,认为裂纹体内各点的应力应变关系是线性的。金属材料中,严格的线弹性断裂问题几乎不存在,因为裂纹的扩展总伴随有裂纹尖端的苏醒变形。但理论和实践都证明,只要塑性区尺寸远小于裂纹的尺寸,经适当修正,用线性理论分析不会产生太大误差。对于低韧高强度钢,或处于低温条件下工作的构件,往往在断裂前裂纹尖端的塑性区尺寸较小,可用线弹性断裂理论进行分析。 一裂纹及其对强度的影响 1.1裂纹分类 1.按几何特征 a 穿透裂纹: 通常把裂纹延伸到构件厚度一半以上的都视为穿透裂纹。 b 表面裂纹 c 深埋裂纹 2.按裂纹力学特征 张开型裂纹裂纹受垂直于裂纹面的拉应力,是裂纹面产生张开位移 滑开型裂纹裂纹受平行于裂纹面且垂直于裂纹前缘的剪应力,裂纹在平面内滑开 撕开型裂纹裂纹受平行于裂纹面且平行于裂纹前缘的剪应力,裂纹相对错开 复合型裂纹裂纹同时受正应力和剪应力的作用,或裂纹与正应力成一角度,这是就同时存在和,或和,称为复合型裂纹,实际裂纹体中裂纹可能是两种或两种以上基本型的组合。 1.2 裂纹对材料强度的影响 带裂纹弹性体受力后,在裂纹尖端区域产生局部应力集中。但是这种集中是局部性的,离开裂纹尖端稍远处应力分布趋于正常。 裂纹尖端区域应力集中程度与裂纹尖端的曲率半径有关,裂纹越尖锐应力集中程度越高。这种应力

集中必然导致材料的实际断裂强度远低于材料理论断裂强度。 二、能量释放率理论 2.1 格瑞菲斯理论(Griffith) 二十世纪二十年代初,英国学者Griffith最先应用能量法对玻璃、陶瓷等脆性材料进行了断裂分析,成功解释了“为什么玻璃等材料的实际断裂强度比用分子结构理论所预期的强度低得多”的问题。 Griffith研究如图厚度为t的薄平板。两端施加均不载荷,处于平行状态并固定两端,构成能量封闭系统,板内总应变能为U0,板内开一长为2a的贯穿裂纹,裂纹处形成上下两个自由表面,作用在两表面的拉应力消失,同时两表面产生张开位移,拉应力做负功,使应变能减小到U0-U。在无限大薄平板内开一个扁平贯穿椭圆孔,他得出当椭圆孔短轴尺寸趋于零(理想尖裂纹)时,应变能的改变为 式中,A=2at,为裂纹的单侧自由表面的面积。 裂纹形成两个新自由表面,使表面能增加,设为表面能密度,则两个自由表面总表面能为 因此,一个带有贯穿裂纹的薄平板相对于无裂纹初始状态的总势能为 由势能极值原理可知,总势能为极大值的条件为 符合上式条件,裂纹处于不稳定平衡状态。

(完整版)断裂力学试题

2007断裂力学考试试题 B 卷答案 一、简答题(本大题共5小题,每小题6分,总计30分) 1、(1)数学分析法:复变函数法、积分变换;(2)近似计算法:边界配置法、有限元法;(3)实验标定法:柔度标定法;(4)实验应力分析法:光弹性法. 2、假定:(1)裂纹初始扩展沿着周向正应力θσ为最大的方向;(2)当这个方向上的周向正应力的最大值max ()θσ达到临界时,裂纹开始扩展. 3、应变能密度:r S W = ,其中S 为应变能密度因子,表示裂纹尖端附近应力场密度切的强弱程度。 4、当应力强度因子幅值小于某值时,裂纹不扩展,该值称为门槛值。 5、表观启裂韧度,条件启裂韧度,启裂韧度。 二、推导题(本大题10分) D-B 模型为弹性化模型,带状塑性区为广大弹性区所包围,满足积分守恒的诸条件。 积分路径:塑性区边界。 AB 上:平行于1x ,有s T dx ds dx σ===212,,0 BD 上:平行于1x ,有s T dx ds dx σ-===212,,0 5分 δ σσσσΓ s D A s D B s B A s BD A B i i v v v v dx x u T dx x u T ds x u T Wdx J =+=+-=??-??-=??-=???)()(1 122112212 5分 三、计算题(本大题共3小题,每小题20分,总计60分) 1、利用叠加原理:微段→集中力qdx →dK = Ⅰ ?0 a K =?Ⅰ 10分 A

令cos cos x a a θθ==,cos dx a d θθ= ?111sin () 10 cos 22(cos a a a a a K d a θθθ--==Ⅰ 当整个表面受均布载荷时,1a a →. ?12()a a K -==Ⅰ 10分 2、边界条件是周期的: a. ,y x z σσσ→∞==. b.在所有裂纹内部应力为零.0,,22y a x a a b x a b =-<<-±<<±在区间内 0,0y xy στ== c.所有裂纹前端y σσ> 单个裂纹时 Z = 又Z 应为2b 的周期函数 ?sin z Z πσ= 10分 采用新坐标:z a ξ=- ?sin ()a Z π σξ+= 当0ξ→时,sin ,cos 1222b b b π π π ξξξ== ?sin ()sin cos cos sin 22222a a a b b b b b π π π π π ξξξ+=+ cos sin 222a a b b b π π π ξ= + 222 2[sin ()]( )cos 2 cos sin (sin )2222222a a a a a b b b b b b b π π π π π π π ξξξ+=++

断裂力学论文

中国矿业大学 断裂力学课程报告课程总结及创新应用 XXX 2014/5/7 班级:工程力学XX班 学号:0211XXXX

断裂力学结课论文 一、学科简介 1、学科综述 结构的破坏控制一直是工程设计的关键所在。工程构件中难免有裂纹,从而会产生应力集中、结构失效等问题。裂纹既可能是结构零件使用前就存在的,也可能是结构在使用过程中产生的。但裂纹的存在并不意味着构件的报废,而是要求我们能准确地预测含裂纹构件的使用寿命或剩余强度。针对脆性材料的研究已有完善的弹性理论方法,并获得了广发的应用。但对于工程中许多由韧性较好的中、低强度金属材料制成的构件,往往在裂纹处先经历大量的塑性变形,然后才发生断裂破坏或失稳等。这说明,韧性好的金属材料有能力在一定程度上减弱裂纹的危险,并可以增大结构零件的承载能力或延长器使用寿命,这也是韧性材料的优点所在。但与此同时,这给预测强度的力学工作者带来了更复杂的问题,即不可逆的非塑性变形,这也是开展工程构架弹塑性变形的原因之一。 因而,裂纹的弹塑性变形研究具有广泛的工程背景和重要的理论意义。作为研究裂纹规律的一门学科,即断裂力学,它是50年代开始蓬勃发展起来的固体力学新分支,是为解决机械结构断裂问题而发展起来的力学分支,被广泛地应用于航海、航空、兵器、机械、化工和地质等诸多领域,它将力学、物理学、材料学以及数学、工程科学紧密结合,是一门涉及多学科专业的力学专业课程。 断裂力学有微观断裂力学与宏观断裂力学之分。一方面,需要深入到微观领域弄清微观的断裂机理,才能深入了解宏观断裂的现象。另一方面,宏观断裂力学仍然没有发展完善,尤其是在工程实际中的应用还远未成熟,即使平面弹塑性断裂力学也依然有许多亟待解决的问题。 2、断裂力学研究的主要问题 1、多少裂纹和缺陷是允许存在的? 2、用什么判据来判断断裂发生的时机? 3、研究对象的寿命图和估算?如何进行裂纹扩展率的测试及研究影响裂纹扩展率的因素。 4、如何在既安全又能避免不必要的停产损失的情况下安排探伤检测周期。 5、若检测出裂纹又应如何处理? 3、生活中常见的断裂破坏及破坏的主要特征 断裂在生活及工程中引发的问题和事故:1、海洋平台发生崩溃;2、压力容器发生破裂;3、吊桥的钢索断;4、天然气管道破裂;5、房屋开裂倒塌;6、气轮机叶片断裂。 断裂破坏的主要特征:1、尽管材料可能是由延性材料制成,但是灾难性破坏大多有脆性特征。2、大多数是低应力破坏,破坏时应力远小于屈服极限或设计的极限应力。3、大多数破坏始于缺陷、孔口、缺口根部等不连续部位。4、断裂破坏传播速度很高,难以防范和补救。5、高速撞击、高强度材料、低温情况下更容易发生。 4、断裂力学的发展历史 断裂力学的发展迄今为止大致经历了一下几个阶段,首先1920—1949年间主要以能量的方法求解,其中最有影响的是英国科学家Griffith提出的能量断裂理论以及据此建立的断裂判据。而后从1957年开始时线弹性断裂理论阶段,提出了应力强度因子概念及相应的判断依据。到1961—1968年间是弹塑性理论阶段,其中以1961年的裂纹尖端位移判据和

三玻璃断裂力学及玻璃结构

第三章玻璃、断裂力学及玻璃结构 第一节玻璃 玻璃是一种均质的材料,一种固化的液体,分子完全任意排列。由于它是各种化学键的组合,因此没有化学公式。玻璃没有熔点,当它被加热时,会逐渐从固体状态转变为具有塑性的黏质状态,最后成为一种液体状态。与其他那些因测量方向不同而表现出不同特性的晶体相比,玻璃表现了各向同性,即它的性能不是由方向决定的。当前用于建筑的玻璃是钠钙硅酸盐玻璃。生产过程中,原材料要被加热到很高的温度,使其在冷却前变成黏性状态,再冷却成形。 3.1.1玻璃的力学性能 常温下玻璃有许多优异的力学性能:高的抗压强度、好的弹性、高的硬度,莫氏硬度在5~6之间,用一般的金属刻化玻璃很难留下痕迹,切割玻璃要用硬度极高的金刚石。抗压强度比抗拉强度高数倍。常用玻璃与常用建筑材料的强度比较如下: 3.1.2玻璃没有屈服强度。 玻璃的应力应变拉伸曲线与钢和塑料是不同的,钢和塑料的拉伸应力在没有超过比例极限以前,应力与应变呈线性直线关系,超过弹性极限并小于强度极限,应变增加很快,而应力几乎没有增加,超过屈服极限以后,应力随应变非线性增加,直至钢材断裂。玻璃是典型

的脆性材料,其应力应变关系呈线性关系直至破坏,没有屈服极限,与其它建筑材料不同的是:玻璃在它的应力峰值区,不能产生屈服而重新分布,一旦强度超过则立即发生破坏。应力与变形曲线见下图。 图3-1 应力与变形拉伸曲线 3.1.3玻璃的理论断裂强度远大于实际强度。 玻璃的理论断裂强度就是玻璃材料断裂强度在理论上可能达到的最高值,计算玻璃理论断裂强度应该从原子间结合力入手,因为只有克服了原子间的结合力,玻璃才有可能发生断裂。Kelly在1973年的研究表明理想的玻璃理论断裂强度一般处于材料弹性模量的1/10~1/20之间,大约为0.7×104 MPa,远大于实际强度,在实际材料中,只有少量的经过精心制作极细的玻璃纤维的断裂强度,能够达到或者接近这一理论的计算结果。断裂强度的理论值和建筑玻璃的实际值之间存在的悬殊的差异,是因为玻璃在制造过程中不可避免的在表面产生很多肉眼看不见的裂纹,深度约5μm,宽度只有0.01到0.02μm,每mm2面积有几百条,又称格里菲思裂纹,见图3-2、图3-3。至使断裂强度的理论值远大于实际值。1913年Inglis提出应力集中

流体计算理论基础讲解

流体计算理论基础 1 三大基本方程 连续性方程 连续性方程也称质量守恒方程,任何流动问题都必须满足质量守恒定律,该定律可表示为:单位时间内流体微元中质量的增加等于同一时间间隔内流入该微元体的净质量,其形式如下: ()()()0u v w t x y z ρρρρ????+++=???? 可以写成: ()0div u t ρ ρ?+=? 其中ρ密度,t 为时间,u 为速度矢量,u ,v 和w 为速度矢量在x ,y 和z 方向上的分量。 若流体不可压缩,密度为常数,于是: 0u v w x y z ???++=??? 若流体处于稳态,则密度不随时间变化,可得出: ()()() 0u v w x y z ρρρ???++=??? 动量守恒定律 该定律可以表述为:微元体中流体的动量对时间的变化率等于外界作用在该微元体上的各种力之和,该定律实际是牛顿第二定律,按照这一定律,可导出x ,y 和z 三个方向上的动量守恒方程: ()()() ()()()yx xx zx x xy yy zy y yz xz zz z u p div uu F t x x y z u p div uv F t y x y z u p div uw F t z x y z τττρρτττρρτττρρ??????+=-++++? ?????????????+=-++++??????? ??????+=-++++???????? 式中,p 为微元体上的压力,xx τ,xy τ和xz τ等是因分子粘性作用而产生的作用在微元体表

面上的粘性应力τ的分量。x F ,y F 和z F 是微元体上的体力,若体力只有重力,且z 轴竖直向上,则:0,0x y F F ==,z F g ρ=-。 对于牛顿流体,粘性应力τ与流体的变形率成比率,有: x yy x 2();==()2();==()2();==()xx xy y xz z zz yz zy u u v div u x y x v u w div u x z x w v w div u x z y τμλττμτμλττμτμλττμ???? =++????? ???? =++????? ???? =++????? 其中,μ为动力粘度,λ为第二粘度,一般可取2 3 λ=- ,将上式代入前式中为: ()()()() ()()()()()u v w u p div uu div gradu S t x v p div uv div gradv S t y w p div uw div gradw S t z ρρμρρμρρμ???+=-+???? ???+=-+? ??????+=-+? ??? 其中: ()()/()/()/grad x y z =??+??+?? μ为动力粘度(dynamic viscosity),λ为第二粘度(second viscosity),一般可取: 2 3 λ=-(参考文献:,Boundary Layer Theory,8th ed,McGraw Hill, New York,1979)。u S ,v S 和w S 为动量守恒方程中的广义源项,u x x S F S =+,v y y S F S =+,w z z S F S =+,而其中 x S ,y S 和z S 表达式为: ()()()(())()()()(())()()()(()) x y z u v w S div u x x y x x x x u v w S div u x x y y x y y u v w S div u x z y z x z z μμμλμμμλμμμλ????????=+++????????????????? =+++????????????????? =+++????????? 一般来讲,x F ,y F 和z F 是体积力在x ,y ,z 方向上的分量。x S ,y S 和z S 是小量,对于粘性为常数的不可压缩流体,0x y z S S S ===,动量守恒,简称动量方程,也称N-S 方程。 关于牛顿体与非牛顿体的定义如下:

断裂力学习题

断裂力学习题 一、问答题 1、什么是裂纹? 2、试述线弹性断裂力学的平面问题的解题思路。 3、断裂力学的任务是什么? 4、试述可用于处理线弹性条件下裂纹体的断裂力学问题两种方法: 5、试述I 型裂纹双向拉伸问题中的边界条件,如何根据该边界条件确定一复变函数,并由此构成应力函数,最后写出问题的解。 6、什么是应力场强度因子K1?什么是材料的断裂韧度K1C?对比单向拉伸条件下的应力及断裂强度极限b,,说明K1与K1C 的区别与联系? 7、在什么条件下应力强度因子K 的计算可以用叠加原理 8、试说明为什么裂纹顶端的塑性区尺寸平面应变状态比平面应力状态小? 9、试说明应力松驰对裂纹顶端塑性区尺寸有何影响。 10、K 准则可以解决哪些问题? 11、何谓应力强度因子断裂准则?线弹性断裂力学的断裂准则与材料力学的强度条件有何不同? 12、确定K 的常用方法有哪些? 13、什么叫裂纹扩展能量释放率?什么叫裂纹扩展阻力? 14、从裂纹扩展过程中的能量变化关系说明裂纹处于不稳定平衡的条件是什么? 15、什么是格里菲斯裂纹?试述格氏理论。 16、奥罗万是如何对格里菲斯理论进行修正的? 17、裂纹对材料强度有何影响? 18、裂纹按其力学特征可分为哪几类?试分别述其受力特征 19、什么叫塑性功率? 20什么是G 准则? 21、线弹性断裂力学的适用范围。 22、“小范围屈服”指的是什么情况?线弹性断裂力学的理论公式能否应用?如何应用? 23、什么是Airry 应力函数?什么是韦斯特加德( Westergaard)应力函数?写出

Westergaard应力函数的形式,并证明其满足双调和方程。

ABAQUS中的断裂力学及裂纹分析总结

ABAQUS中的断裂力学及裂纹分析总结(转自simwe) (1) 做裂纹ABAQUS有几种常见方法。最简单的是用debond命令, 定义 *FRACTURE CRITERION, TYPE=XXX, 参数。。。 ** *DEBOND, SLAVE=XXX, MASTER=XXX, time increment=XX 0,1, …… ...... time,0 要想看到开裂特别注意需要在指定的开裂路径上定义一个*Nset,然后在 *INITIAL CONDITIONS, TYPE=CONTACT中定义 master, slave, 及指定的Nset 这种方法用途其实较为有限。 (2) 另一种方法,在interaction模块,special, 定义crack seam, 网格最好细化,用collapse element模拟singularity. 这种方法可以计算J积分,应力强度因子等常用的断裂力学参数. 裂尖及奇异性定义: 在interaction-special,先定义crack, 定义好裂尖及方向, 然后在singularity选择:midside node parameter: 输入0.25, 然后选Collapsed element side, duplicate nodes,8节点单元对应(1/r)+(1/r^1/2)奇异性。 这里midside node parameter选0.25对应裂尖collapse成1/4节点单元。如果midside nodes 不移动到1/4处, 则对应(1/r)奇异性, 适合perfect plasticity的情况. 网格划分: 裂尖网格划分有一些技巧需要注意,partition后先处理最外面的正方形,先在对角线和边上

断裂力学答案

( ( = K I + K I(2) 1.简述断裂力学的发展历程(含 3-5 个关键人物和主要贡献)。 答: 1)断裂力学的思想是由 Griffith 在 1920 年提出的。他首先提出将强度与裂纹长度定量 地联系在一起。他对玻璃平板进行了大量的实验研究工作,提出了能量理论思想。(2)断裂 力学作为一门科学,是从 1948 年开始的。这一年 Irwin 发表了他的第一篇经典文章“Fracture Dynamic (断裂动力学)”,研究了金属的断裂问题。这篇文章标志着断裂力学的诞生。(3) 关于脆性断裂理论的重大突破仍归功于 Irwin 。他于 1957 年提出了应力强度因子的概念,在 此基础上形成了断裂韧性的概念,并建立起测量材料断裂韧性的实验技术。这样,作为断裂 力学的最初分支——线弹性断裂力学就开始建立起来了。(4)1963 年,Wells 提出了裂纹张 开位移(COD )的概念,并用于大范围屈服的情况。研究表明,在小范围屈服情况下 COD 法与 LEFM 是等效的。(5)1968 年,Rice 等人根据与路径无关的回路积分,提出了 J 积分 的概念。J 积分是一个定义明确、理论严密的应力应变参量,它的实验测定也比较简单可靠。 J 积分的提出,标志着弹塑性断裂力学基本框架形成。 2.断裂力学的定义,研究对象和主要任务。 答: 1)断裂力学的定义:断裂力学是一门工程学科,它定量地研究承载结构由于所含有的 一条主裂纹发生扩展而产生失效的条件。 (2)研究对象:断裂力学的研究对象是带有裂纹的承载结构。 (3)主要任务:研究裂纹尖端附近应力应变分布,掌握裂纹在载荷作用下的扩展规律;了 解带裂纹构件的承载能力,进而提出抗断设计的方法,保证构件安全工作。 3.什么是平面应力和平面应变状态,二者有什么特点?请举例说明之。 答:(1)平面应力:薄板问题,只有 xoy 平面内的三个应力分量σ x 、σ y 、τ xy ; ε z ≠ 0 , 属三向应变状态。 (2)平面应变:长坝问题,与 oz 轴垂直的各横截面相同,载荷垂直于 z 轴且沿 z 轴方向无 变化; ε z = 0 , σ z ≠ 0 ,属三向应力状态;材料不易发生塑性变形,更具危险。 4.什么是应力强度因子的叠加原理,并证明之。掌握工程应用的方法。 答:(1)应力强度因子的叠加原理:复杂载荷下的应力强度因子等于各单个载荷的应力强 度因子之和。 (1) 在外载荷 T 2 作用下,裂纹前端应力场为 σ2,则相应的应力强度因子为 K I(2) = σ 2 π a 如果外载荷 T 1 和 T 2 联合作用,则裂纹前端应力场为 σ1+ σ2 ,则相应的应力强度因子为 K I = (σ 1 + σ 2 ) π a = σ 1 π a + σ 2 π a (1) 6.为什么裂纹尖端会发生应力松弛?如何对应力强度因子进行修正? 答:裂纹尖端附近存在着小范围的塑性区(设塑性区是以裂纹尖端为圆心,半径为 r0 的圆 π a 形区域),材料屈服后,多出来的应力将要松驰(即传递给 r>r0 的区域),使 r0 前方局部地 区的应力升高,又导致这些地方发生屈服。即屈服导致应力松弛。 Irwin 提出了有效裂纹尺寸的概念 a eff = a + r y 对应力强度因子进行修正,在小范围条件下,

Ansys 断裂力学理论

第四章断裂力学 文献来源:https://www.wendangku.net/doc/484474278.html,/document/200707/article796_2.htm 4.1 断裂力学的定义 在许多结构和零部件中存在的裂纹和缺陷,有时会导致灾难性的后果。断裂力学在工程领域的应用就是要解决裂纹和缺陷的扩展问题。 断裂力学是研究载荷作用下结构中的裂纹是怎样扩展的,并对有关的裂纹扩展和断裂失效用实验的结果进行预测。它是通过计算裂纹区域和破坏结构的断裂参数来预测的,如应力强度因子,它能估算裂纹扩展速率。一般情况下,裂纹的扩展是随着作用在构件上的循环载荷次数而增加的。如飞机机舱中的裂纹扩展,它与机舱加压及减压有关。此外,环境条件,如温度、或大范围的辐射都能影响材料的断裂特性。 典型的断裂参数有: 与三种基本断裂模型相关的应力强度因子(K I,K II,K III)(见图4-1); J积分,它定义为与积分路径无关的线积分,用于度量裂纹尖端附近奇异应力与应变的强度; 能量释放率(G),它反映裂纹张开或闭合时功的大小; 注意--在本节大部分的图形中裂纹的宽度被放大了许多倍。 图4-1 裂缝的三种基本模型 4.2 断裂力学的求解 求解断裂力学问题的步骤为:先进行线弹性分析或弹塑性静力分析,然后用特殊的后处理命令、或宏命令计算所需的断裂参数。本章我们集中讨论下列两个主要的处理过程。 裂纹区域的模拟; 计算断裂参数。 4.2.1 裂纹区域的模拟 在断裂模型中最重要的区域,是围绕裂纹边缘的部位。裂纹的边缘,在2D模型中称为裂纹尖端,在3D模型中称为裂纹前缘。如图4-2所示。

图4-2 裂纹尖端和裂纹前缘 在线弹性问题中,在裂纹尖端附近(或裂纹前缘)某点的位移随而变化,γ是裂纹尖端到该点的距离,裂纹尖端处的应力与应变是奇异的,随1/变化。为选取应变奇异点, 相应的裂纹面需与它一致,围绕裂纹顶点的有限元单元应该是二次奇异单元,其中节点放到1/4边处。图4-3表示2-D和3-D模型的奇异单元。 图4-3 2-D和3-D模型的奇异单元 4.2.1.1 2-D断裂模型 对2D断裂模型推荐采用PLANE2单元,其为六节点三角形单元。围绕裂纹尖端的第一行单元,必须具有奇异性,如图4-3a所示。PREP7 中KSCON命令(Main Menu>Preprocessor>-Meshing-Shape & Size>-Concentrat KPs-Create)用于指定关键点周围的单元大小,它特别适用于断裂模型。本命令自动围绕指定的关键点产生奇异单元。命令的其他选项可以控制第一行单元的半径,以及控制周围的单元数目等,图4-4显示用KSCON命令产生的断裂模型。

ABAQUS中的断裂力学及裂纹分析总结

也许要暂别simwe一段时间了,在论坛获益良多,作为回报把自己这段时间在ABAQUS断裂方面的一些断断续续的心得整理如下,希望对打算研究断裂的新手有一点帮助,大牛请直接跳过。本贴所有内容均为原创,转贴请注明,谢谢。 引言:我们知道从1914年Ingless和1921年Griffith提出断裂力学开始,一直到60年代都停留在线弹性断裂力学(LEFM)的层次。后来由於发现在裂纹尖端进入塑性区后用LEF仍然无法解决stress singularity的问题。1960年由Barenblatt 和Dugdale率先提出了nonlinear/plastic fracture mechnics的概念,在裂纹前端引入了plastic zone,这也就是我们现在用的cohesive fracture mechnics的前身。当时这个概念还没引起学术界的轰动。直到1966年Rice发现J-integral及随后发现在LEFM中J-integral是等于energy release rate的关系。随后在工程中发现了越来越多的LEFM无法解释的问题。cohesive fracture mechnics开始引起更多的关注。在研究以混凝土为代表的quassi-brittle material时,cohesive fracture mechnics提供了非常好的结果,所以在70年代到90年代,cohesive fracture mechnics被大量应用于混凝土研究中。目前比较常用的方法主要是fictitious crack approach和effective-elastic crack approach或是称为equivalent-elastic crack approach. 其中fictitious crack approach只考虑了Dugdale-Barenblatt energy mechanism而effective-elastic crack approach只考虑了基於LEFM的Griffith-Irwin energy dissipation mechanism,但作了一些修正。 做裂纹ABAQUS有几种常见方法。最简单的是用debond命令, 定义 *FRACTURE CRITERION, TYPE=XXX, 参数。。。 ** *DEBOND, SLAVE=XXX, MASTER=XXX, time increment=XX 0,1, …… ...... time,0 要想看到开裂特别注意需要在指定的开裂路径上定义一个*Nset,然后在 *INITIAL CONDITIONS, TYPE=CONTACT中定义 master, slave, 及指定的Nset 这种方法用途其实较为有限。 例子如图 [本帖最后由 yaooay 于 2008-10-31 00:48 编辑] debond example.png(157.24 KB, 下载次数: 488)

经典断裂力学的发展历史及未来的发展方向

经典断裂力学的发展历史及未来的发展方向 姓名:张杰学号:S2******* 摘要:断裂力学是50年代开始发展起来的固体力学的新分支。本文主要按断裂力学发展的历史,着重介绍线弹性断裂力学、弹塑性断裂力学、断裂动力学这三种经典断裂力学的基本理论与断裂准则,简要谈及建立在奇异性基础上经典断裂力学断裂理论所存在的主要问题与矛盾,以及对未来断裂力学的展望。 关键词:断裂力学;发展方向;断裂准则 1 经典断裂力学的发展历史 金属断裂力学是20世纪50年代开始蓬勃发展起来的固体力学分支。常规的疲劳设计方法,假设材料开始时是无裂纹的连续介质,经过一定的应力循环后,由于疲劳积累损伤而形成裂纹,再经裂纹扩展阶段直至断裂。按常规的疲劳试验方法,试验结果常表示为应力σ与寿命t的关系,常用σ-t曲线表示。常规疲劳设计所用的公式,都是从σ-t曲线为基础而推出的[1]。大多数结构材料的疲劳极限与强度极限成线性关系,所以一般认为强度极限高的材料,疲劳寿命也长。 断裂力学认为裂纹的存在是不可避免的。断裂力学着眼于从裂纹尖端局部区域的应力场、位移场来研究带裂纹的构件所能承受的载荷和断裂韧度及裂纹尺寸间定量关系,研究裂纹的扩展规律,考察裂纹对结构强度和使用寿命的影响,建立断裂准则,提出容许裂纹的设计方法,探讨如何控制和防止混凝土结构断裂破坏的措施。断裂力学学科的先导者英国科学家Griffifth于1920年研究了玻璃、陶瓷等脆性材料的实际强度与理论强度的重大差异,为描述脆性断裂过程提出了脆性材料裂纹扩展的能量准则。这一准则有力地说明了实际强度与最大裂纹尺寸间的关系。Griffifth认为裂纹扩展时为了形成新裂纹表面必定消耗一定的能量,该能量是由弹性应变能释放所提供。长期以来被认为只适于玻璃等脆性材料的Griffifth理论直到20世纪50年代才由Irwin和Orowan重视,加以修正并用于金属材料的脆性断裂,这就成为断裂韧度概念的基础。他们认为Griffifth的能量平衡中必须同时考虑裂纹尖端附近塑性变形耗用的能量。裂纹扩展时能量释放不但用于形成新裂纹表面,对于金属材料来说,还要用于裂纹尖端附近产生塑性变形的能量[2]。 线弹性断裂力学、弹塑性断裂力学和断裂动力学3个方面几乎是同时开始研究的。由于线弹性比较简单,进展较快。1955年,Irwin提出应力场强度的观点,当表示裂纹尖应力场强度的应力强度因子达到临界值(即材料的断裂韧度)时,就发生断裂,这就是应力强度因子断裂准则,该准则与Griffifth能量准则构成了线弹性断裂力学的核心内容。之后,各种确定应力强度因子的方法(包括解析法、

断裂力学综述

断裂力学概述 关键词:断裂力学;现状;阶段性问题;发展趋势 中文摘要:本文主要介绍了断裂力学的4个方面,包括对断裂力学的简单介绍,相关的理论和方法,现阶段存在的问题及技术关键,发展趋势。 英文摘要:Four aspects of fracture mechanics are referred in this paper, including brief introduction about fracture mechanics, related theories and methods, problems and key technologies existing at the present stage, and the development. 1.引言 断裂力学是近几十年才发展起来了的一门新兴学科,主要研究承载体由于含有一条主裂纹发生扩展(包括静载及疲劳载荷下的扩展)而产生失效的条件。断裂力学应用于各种复杂结构的分析,并从裂纹起裂、扩展到失稳过程都在其分析范围内。由于它与材料或结构的安全问题直接相关,因此它虽然起步晚,但实验与理论均发展迅速,并在工程上得到了广泛应用。断裂力学研究的方法是:从弹性力学方程或弹塑性力学方程出发,把裂纹作为一种边界条件,考察裂纹顶端的应力场、应变场和位移场,设法建立这些场与控制断裂的物理参量的关系和裂纹尖端附近的局部断裂条件。 2.国内外相关研究现状 目前,断裂力学总的研究趋势是:从线弹性到弹塑性;从静态断裂到动态断裂;从宏观微观分离到宏观与微观结合;从确定性方法到概率统计性方法。所以就断裂力学本身而言,根据研究的具体内容和范围,它又被分为宏观断裂力学(工程断裂力学)和微观断裂力学(属金属物理范畴)。宏观断裂力学又可分为弹性断裂力学(它包括线性弹性断裂力学和非线性弹性断裂力学)和弹塑性断裂力学(包括小范围屈服断裂力学和大范围屈服断裂力学及全面屈服断裂力学)。工程断裂力学还包括疲劳断裂、蠕变断裂、腐蚀断裂、腐蚀疲劳断裂及蠕变疲劳断裂等工程中重要方面。如今在断裂力学研究方法中,又引入可靠性理论,称为概率断裂力学,使断裂力学的研究内容更加丰富,也使断裂力学的理论得到进一步的发展和完善,并在工程实际中发挥出越来越大的指导作用。 (1)格里菲斯理论 为研究材料内部含有裂纹对材料强度有多大影响,上世纪20年代的格里菲

相关文档
相关文档 最新文档