文档库 最新最全的文档下载
当前位置:文档库 › 钢的热处理及其对组织和性能的影响

钢的热处理及其对组织和性能的影响

钢的热处理及其对组织和性能的影响
钢的热处理及其对组织和性能的影响

钢的热处理及其对组织和性能的影响

一、实验目的

1.熟悉钢的几种基本热处理操作(退火、正火、淬火及回火);

2.研究加热温度、冷却速度及回火温度等主要因素对碳钢热处理后性能的影响;

3.观察和研究碳素钢经不同形式热处理后显微组织的特点;

4.了解材料硬度的测定方法,学会正确使用硬度计。

二、实验概述

钢的热处理就是利用钢在固态范围内的加热、保温和冷却,以改变其内部组织,从而

获得所需要的物理、化学、机械和工艺性能的一种操作。普通热处理的基本操作有退火、正火、淬火、回火等。加热温度、保温时间和冷却方式是热处理最重要的三个基本工艺因素。

正确合理选择这三者的工艺规范,是热处理质量的基本保证。

1.加热温度选择

(1)退火加热温度

一般亚共析钢加热至A C3+(20~30)℃(完全退火);共析钢和过共析钢加热至A C1+(20~30)℃(球化退火),目的是得到球化体组织,降低硬度,改善高碳钢的切削性能,同时为最终热处理做好组织准备。

(2)正火加热温度

一般亚共析钢加热至A C3+(30~50)℃;过共析钢加热至A Cm+(30~50)℃,即加热到奥氏体单相区。退火和正火加热温度范围选择见图3-1。

图1 退火和正火的加热温度范围图2 淬火的加热温度范围

(3)淬火加热温度

一般亚共析钢加热至A C3+(30~50)℃;共析钢和过共析钢则加热至A C1+(30~50)℃,加热温度范围选择见图3-2。

淬火按加热温度可分为两种:加热温度高于A C3时的淬火为完全淬火;加热温度在A C1和A C3(亚共析钢)或A C1和A CCm(过共析钢)之间是不完全淬火。在完全淬火时,钢的淬火组织主要是由马氏体组成;在不完全淬火时亚共析钢得到马氏体和铁素体组成的组织,过共析钢得到马氏体和渗碳体的组织。亚共析钢用不完全淬火是不正常的,因为这样不能达到最高硬度。而过共析钢采用不完全淬火则是正常的,这样可使钢获得最高的硬度和耐磨性。

在适宜的加热温度下,淬火后得到的马氏体呈细小的针状;若加热温度过高,其形成粗

针状马氏体,使材料变脆甚至可能在钢中出现裂纹。

(4)回火加热温度

钢淬火后都需要进行回火处理,回火温度取决于最终所要求的组织和性能(工厂常根据硬度的要求),通常按加热温度的高低,回火可分为以下三类。

低温回火:加热温度为150℃~250℃。其目的主要是降低淬火钢中的内应力,减少钢的脆性,同时保持钢的高硬度和耐磨性。常用于高碳钢制的切削工具、量具和滚动轴承件及渗碳处理后的零件等。

中温回火:加热温度为350℃~500℃。其目的主要是获得高的弹性极限,同时有高的韧性。主要用于各种弹簧热处理。

高温回火:加热温度为500℃~650℃。其目的主要是获得既有一定的强度、硬度,又有良好的冲击韧性的综合机械性能。通常把淬火后加高温回火的热处理称做调质处理。主要用于处理中碳结构钢,即要求高强度和高韧性的机械零件,如轴、连杆、齿轮等。

2.保温时间的确定

为了使工件内外各部分温度均达到指定温度,并完成组织转变,使碳化物溶解奥氏体成分均匀化,必须在热处理加热温度下保温一定的时间。通常将工件升温和保温所需时间算在一起,统称为加热时间。

热处理加热时间必须考虑诸多因素,例如工件的尺寸和形状,使用的加热设备及装炉量,装炉时炉子的温度,钢的成分和原始组织,热处理的要求和目的等等。

实际工作中常根据经验大致估算加热时间。一般规定,在空气介质中,升到规定温度后的保温时间,对碳钢来说,按工件厚度(或直径)每毫米一分钟到一分半钟估算;合金钢按每毫米两分钟估算。在盐浴炉中,保温时间则可缩短1~2倍。

对钢件在电炉中保温时间的数据可参考表3-1。

表1 钢件在电炉中的保温时间选择参考数据

3.冷却方式和方法

热处理时冷却方式(冷却速度)影响着钢的组织和性能。选择适当的冷却方式,才能

获得所要求的组织和性能。

退火一般采用随炉冷却。

正火采用空气冷却,大件可采用风冷。

淬火的冷却方法非常重要。冷却速度是钢在淬火过程中最主要的因素,它直接影响淬火产物和性能。一方面冷却速度要大于临界冷却速度,以保证全部得到马氏体组织;另一方面冷却应尽量缓慢,以减少内应力,避免工件变形和开裂。为了解决上述矛盾,可以采用不同的冷却介质和冷却方法,使淬火工件在奥氏体最不稳定的温度范围内(650℃~550℃)快冷,超过临界冷却速度,以防珠光体类型转变发生;而在马氏体转变区域范围内(300℃~100℃),

则冷却减慢,以减少淬火工件产生的应力。理想的冷却速度如图3-3所示。

淬火介质不同,其冷却能力不同,因而工件的冷却速度也就不同。合理选择冷却介质

是保证淬火质量的关键。对于碳钢来说,用室温的水作淬火介质通常能保证得到较好的结果。

目前常用的淬火介质和它们冷却能力见表3-2。

表2 常用的淬火介质和其冷却能力数据

4.碳钢热处理后的组织

碳钢经热处理后的组织,可以是接近平衡状态(如退火、正火)的组织,也可以是不平衡组织(如淬火组织)。因此在研究热处理后的组织时,不但要用铁碳相图,还要用钢的C曲线来分析。

铁碳相图能够说明慢冷时不同碳质量分数的铁碳合金的结晶过程和室温下的组织,计算相的质量分数。而C曲线则能够说明一定成分的铁碳合金在不同冷却条件下的过冷奥氏体发生不同类型的转变过程及能够得到的组织。

钢从奥氏体状态经缓慢冷却后,其组织(按平衡状态看)分别由珠光体(共析钢)或铁素体+珠光体(亚共析钢)或珠光体+二次渗碳体(过共析钢)所组成。但随着冷却速度的加快,则冷却后将形成各种不平衡组织。

当冷却速度不太大时,则过冷奥氏体分解形成珠光体类型的索氏体或屈氏体组织(共析钢)。

当冷却速度较快时,因过冷奥氏体来不及分解,直接形成碳在α-Fe中的过饱和固溶体,即马氏体组织。它的强度、硬度很高,但同时使钢的塑性大大下降,并有很大的残余应力出现。

当采用等温冷却时,在中温相转变区的产物是贝氏体组织。依据转变温度的高低,贝氏

体又分为上贝氏体和下贝氏体两种类型。

(1)碳钢的退火和正火组织

亚共析碳钢(如40钢、45钢等)一般采用完全退火,经退火后可得接近平衡状态的组织,其组织形态特征已在实验一中做过观察和分析。过共析碳钢(如T10钢、T12钢)则采用球化退火,退火后组织中的二次渗碳体和珠光体中的渗碳体都呈球状(或粒状)。

(2)钢的淬火组织

钢淬火后通常得到马氏体组织。当奥氏体中含碳质量分数大于0.5%时,淬火组织为马氏体和残余奥氏体。马氏体可分为两类板条马氏体和片(针)状马氏体。

(3)淬火后的回火组织

回火是将淬火后的钢件加热到指定的回火温度,经过一定时间的保温后,空冷到室温的热处理操作。回火时引起马氏体和残余奥氏体的分解。

低温回火(150~250℃)组织为回火马氏体,马氏体内析出碳化物形成回火马氏体,残余奥氏体也转变为回火马氏体。回火马氏体易受侵蚀,组织呈暗色针状。回火马氏体具有高的强度和硬度,而韧性和塑性较淬火马氏体有明显改善。

中温回火(350~500℃)组织为回火屈氏体,它是由铁素体和粒状渗碳体组成的极细密混合物。回火屈氏体有较好的强度,最高的弹性,较好的韧性。

高温回火(500~650℃)组织的回火索氏体,它是由粒状渗碳体和等轴形铁素体组成混合物。回火索氏体具有强度、韧性和塑性较好的综合机械性能。

值得注意的是:回火所得到的回火索氏体和回火屈氏体与由过冷奥氏体直接分解出来的索氏体和屈氏体在显微组织上是不同的,前者中的渗碳体呈粒状而后者则为片状。

各种组织的硬度性能指标范围如下:

珠光体10~20HRC,索氏体22~25HRC,屈氏体36~42HRC,马氏体62~65HRC;回火马氏体约60HRC ,回火屈氏体40~48HRC,回火索氏体25~35HRC。

5.硬度试验与硬度计的使用

硬度是指金属材料抵抗比它硬的物体压入其表面的能力。硬度越高,表明金属抵抗塑性变形的能力越大。它是重要的力学性能指标之一,它与强度、塑性指标之间有着内在的联系。硬度试验简单易行,又不会损坏零件,因此在生产和科研中应用广泛。

常用的硬度试验方法有:

布氏硬度试验——主要用于黑色、有色金属原材料检验,也可用于退火、正火钢铁零件的硬度测定。所用设备为布氏硬度计。

洛氏硬度试验——主要用于金属材料热处理后的产品性能检测。所用设备为洛氏硬度计。

维氏硬度试验——主要用于薄板材或金属表层的硬度测定,以及较精确的硬度测定。

所用设备为维氏硬度计。

显微硬度试验——主要用于测定金属材料的组织组成物或相的硬度。所用设备为显微硬度计。

(1)布氏硬度试验

1)原理

用载荷为P的力,把直径为D的淬火钢球压入金属试件表面,并保持一定时间,而后卸除载荷,测量钢球在试件表面上所压出的压痕直径d,据此计算出压痕球面积F,然后再计算出单位面积所受的力(P/F值),用此数字表示试件的硬度值,即为布氏硬度,用符号 HB表示。布氏硬度试验原理如图3-11所示。

设压痕深度为h 则压痕球面积为

2(22d D D D Dh F --==ππ

试样硬度值为:

22(2d D D P F P HB -==π

式中 P ——施加的载荷,kg 或N ;

D ——压头(钢球)直径,mm ; d ——压痕直径,mm ;

F ——压痕面积,mm 2。

布氏硬度值的大小就是压痕单位面积上所承受的

压力。单位为kg/mm 2或N/mm 2

,但一般不标出。硬度值越高,表示材料越硬。实验室只要测出压痕直径d (毫米),通过计算或查表即可得出HB 值。

由于金属材料又软又硬,工件有薄有厚,有大有小,为适应不同的情况,布氏硬度的钢球有φ2.5mm 、φ5mm 、φ10mm 三种。载荷有15.6kg 、62.5kg 、187.5kg 、250kg 、750kg 、1000kg 、3000kg 七种。当采用不同大小的载荷和不同直径的钢球进行布氏硬度试验时,只要能满足P/D 2

为常数,则同一种材料测得的布氏硬度是相同的。而不同材料所测的布氏硬度值也可以

进行比较。国家标准规定P/D 2

的比值为30、10、2.5三种。在试样厚度和截面大小允许的情况下,尽可能选用直径大的钢球和大的载荷,这样更易于反映材料性能的真实性。另外,由于压痕大,测量的误差也小。所以,测定钢的硬度时,一般规定采用Φ10mm 钢球、3000kg 的载荷、保荷时间为10秒。试验后的压痕直径应在0.25D ﹤d ﹤0.6D 的范围之内,否则试验结果无效。因为若d 太小,则灵敏度和准确性将随之降低;若d 太大,则压痕的几何形状不能保持相似的关系,影响试验结果的准确性。

布氏硬度的表示方法是:压头为钢球时用HBS,压头用硬质合金时用HBW 。若用Φ10mm 钢球,在3000kg 载荷下保荷10s,测得布氏硬度值为400时,可以表示为400HBS ,若用硬质合金球为压头,则表示为400HBW 。

在其他试验条件下,符号HB 应以相应的指数注明钢球直径、载荷大小及载荷保持时间。例如,100HB5/250/30即表示:用5mm 直径钢球,在250kg 载荷下保持30s 时,所测得的布氏硬度为100。

布氏硬度试验方法和技术条件有相应的国家标准。表3-3为布氏硬度的试验规范。实际测定时,应根据金属材料种类、试样硬度范围和厚度的不同,按照标准试验规范,选择钢球直径、载荷及载荷保持时间。

表3 布氏硬度试验规程

图3-4 布氏硬度计试验原理示意图

2) 布氏硬度试验的优缺点:

优点:硬度值代表性全面,由于压痕面积较大,能反映较大范围内材料的平均性能。试验数据稳定,数据重复性强。布氏硬度值和抗拉强度间存在一定的换算关系(见表3-4)。其换算式为经验公式,知道硬度后可以粗略的估计其强度,但铸铁不能用此经验公式。

表4 HB 与σb 的关系

缺点:采用的压头是淬火钢球,由于钢球本身的变形和硬度问题,致使不能测试太硬的材料。一般在450HB 以上就不能使用。由于压痕较大,不适宜成品检验。

布氏硬度试验常用于测定铸铁、有色金属、低合金结构钢等的原材料以及结构钢调质后的硬度。

(2)洛氏硬度试验

洛氏硬度试验是目前应用最广的试验方法,和布氏硬度一样,也是一种压入硬度试验,但它不是测定压痕的面积,而是测量压痕的深度,以深度的大小表示材料的硬度值。 1) 原理

洛氏硬度试验的压头采用锥角为120o的金刚石圆锥头或直径为1.588毫米(1/16英寸)的钢球。载荷先后两次施加,先加预载荷P 0,然后加主载荷P 1,在总载荷的作用下,将压头压入金属材料表面来进行的硬度测定。其总载荷为P (P=P 0+P 1)。洛氏硬度试验试验原理如图3-12所示。

在图3-12中,0-0位置为金刚石压头没有和试样接触时的位置;1-1位置为压头与试样接触,并受到预载荷P 0(规定为10kg )后压入试样的深度为h 0的位置;2-2位置为压头受到主载荷P 1后压头压入试样的深度为h 1的位置;3-3位置为压头卸除主载荷P 1后仍保留预载荷P 0下时的位置,由于试样弹性变形的恢复,而使压头位置提高了h 2。此时压头受主载荷作用实际压入试

样的深度为h (h =h 2﹣h 1)。h 值的大小可用来衡

量材料的软硬程度。金属越硬,压痕深度越小;金

图5 洛氏硬度计试验原理示意图

属越软,压痕深度越大。为了适应人们习惯上数值越大硬度越高的概念,人为的规定,用一常数K减去压痕深度h的值作为洛氏硬度的指标,并规定每0.002毫米为一个洛氏硬度单位。用符号HR表示,则洛氏硬度值为:

HR =(K-h)/0.002

此值为一无名数。并可从硬度计的表盘指示器上直接读出。

使用金刚石压头时,常数K为0.2毫米,黑色表盘刻度所示;

使用钢球压头时,常数K为0.26毫米,红色表盘刻度所示。

为了可以用一种硬度计测定出从软到硬的金属材料硬度,采用了不同的压头和总载荷,组合成几种不同的洛氏硬度标度,每一种标度用一个字母在硬度符号HR后加以注明,常用的是HRA、HRB、HRC三种。洛氏硬度试验规范见表3-4。

各种洛氏硬度值之间不能直接进行比较,但可通过实验测定的换算表(略)进行相对比较。

各种洛氏硬度之间,洛氏硬度和布氏硬度值间都有一定的换算关系。对于钢铁材料,大致有下列关系式:

HRC = 2HRA-104

HB = 10HRC (HRC = 40~60范围)

HB = 2HRB

2)洛氏硬度试验方法的优缺点:

优点:操作迅速简便,压痕较小,可在工件表面进行试验,可以各种金属材料的硬度,也可以测量较薄工件或表面薄层的硬度。

缺点:压痕较小,代表性差,由于材料中有偏析及组织不均匀等情况,使所测

硬度值的重复性差,分散度较大。

表5 洛氏硬度的试验规范

3)洛氏硬度计的构造与操作

洛氏硬度计种类较多,外形构造也各不相同,但构造原理及主要部件均相同。图3-6为洛氏硬度计外形构造及机构示意图。

洛氏硬度计操作方法如下:

a) 按表3-4选择压头和载荷;

b) 根据试样大小和形状选用载物台;

c) 将试样上下两面磨平,然后置于载物台上;

d) 加预载荷,按顺时针方向转动升降机构的手轮,使试样与压头接触,并观察读数刻

度盘上小针移动至小红点为止; e) 调整刻度盘(图3-7),使表盘上的长针对

准硬度值的起点。如测定HRC 、HRA 硬度时,长针与表盘上黑字C 处对准;测定HRB 硬度时,长针与表盘上红字B 处对准; f) 加主载荷,平稳地扳动加载手轮,手柄自

动升高至停止位置(时间为5~7秒)并停留10秒(保荷时间);

g) 卸主载荷,扳回加载手柄至原来位置;

h) 读取硬度值,读数表盘上长针指示的数字

为硬度的读数,HRC 、HRA 读黑色数字,HRB 读红色数字;

i) 降下载物台,当试样完全离开压头后,方可取下试样;

j) 用同样的方法在试样的不同位置测定三个数据,取其算术平均值为所测试样的硬

度。

(3)维氏硬度试验 1) 原理

维氏硬度的测定原理基本上和布氏硬度相同,也是根据压痕单位面积上的载荷计量硬度值。维氏硬度试验原理图3-15所示。 所不同的是维氏硬度试验采用的压头为金刚石的

图6 洛氏硬度计外形及机构示意图

图7 洛氏硬度计刻度盘

锥面夹角为136°的正四棱锥体压头。试验时,在载荷P(公斤力)的作用下,试样表面上压出一个四方锥形的压痕,测量压痕对角线长度d(毫米),借以计算压痕的表面积F(毫米2),以P/F的数值表示试样的硬度值,用符号HV表示。

2)维氏硬度的优缺点

优点:它有一个连续一致的标度,试验载

荷可以任意选择,所测硬度值比布氏硬度精

确,可以比洛氏硬度能更好地测定极薄试样的

硬度。甚至金相组织中各相的硬度。

缺点:操作较为麻烦,其硬度值需要测量

对角线,然后计算或查表获得,生产率不如洛

氏硬度试验高,因此,不宜用于成批生产的常

规检验。适用于实验、科研等领域。

(4)显微硬度试验

显微硬度试验实质上就是小负荷的维氏

硬度试验,其原理和维氏硬度试验一样,所不

图8 维氏硬度计试验原理示意图

同的是负荷以克计量,压痕对角线长度以微米

计量。试样必须制成金相试样,在显微镜下操作测量。主要用来测定各种组成相的硬度。显微硬度符号用HM表示。

三、实验设备及材料

本实验主要设备有:箱式电阻炉,坩埚电炉,洛氏硬度计,金相显微镜,长柄铁钳等。

所用实验材料有:45钢和T12钢试样,钢的各种不平衡组织样品,金相图谱,冷却介质水和油,砂纸等。

四、实验内容

1.按表7所列工艺进行热处理操作实验。

2.使用洛氏硬度计测定热处理后试样的硬度;

3.观察表8中各种样品的显微组织。

表7 热处理实验任务表(45钢)

表8 观察样品的材料、热处理工艺和显微组织

图9 45钢860℃气冷组织图10 45钢860℃油冷组织

索氏体+铁素体马氏体+屈氏体

图11 45钢860℃淬火组织图12 45钢860℃调质处理后组织

马氏体回火索氏体

五、实验步骤

1.全班分成两组,每组一套45钢试样8块,炉冷试样由实验室事先处理好。

2.将45钢试样分别放入860℃和750℃的炉子内加热,保温时间15~20分钟后,分别进

行水冷、油冷、空冷操作。

3.淬火时,试样要用钳子夹住,动作要迅速,并不断在水或油中搅动,以免影响热处理质

量,注意: 严格遵守操作规程,注意安全,小心取放,避免灼伤。

4.每组从水冷试样(860℃加热后水冷的)中取出三块,分别放入200℃、400℃、600℃

的炉子内进行回火处理,回火保温时间为30分钟。

5.热处理后的试样用砂纸磨去两端面的氧化皮,然后测量硬度。

6.每个学生都将自己测定的硬度值填入表9中(每个试样打三点),并记录下实验的全部

数据资料,与供结果分析。

7.观察表8中样品的显微组织。

六、实验报告要求

在指定的报告纸上完成报告。注意:必须要写明实验名称、实验日期、学生姓名与学号、组别。

1.写出实验目的;

2.按照表7的样式整理、列出全部实验资料;

3.分析淬火温度、淬火介质及回火温度对45钢性能的影响,并根据铁碳合金相图、C曲

线(或CCT曲线)和回火时的转变说明硬度变化的原因;

七、思考题

1.45钢常用的热处理是什么?它们的组织是什么?有何工程应用?

2.退火状态的45钢试样分别加热到600℃~900℃之间不同的温度后,在水中冷却,其硬

度随加热温度如何变化?为什么?

3.45钢调质处理得到的组织和T12球化退火得到的组织在本质、形态、性能上有何差异?

碳钢热处理后的组织金相分析

4、各组织的显微特征 (1)索氏体(s):是铁素体与渗碳体的机械混合物。其片层比珠光体更细密,在高倍(700倍以上)显微放大时才能分辨。 (2)托氏体(T)也是铁素体与渗碳体的机械混合物,片层比索氏体还细密,在一般光学显微镜下也无法分辨,只能看到如墨菊状的黑色形态。当其少量析出时,沿晶界分布,呈黑色网状,包围着马氏体;当析出量较多时,呈大块黑色团状,只有在电子显微镜下才能分辨其中的片层(见图3); 图3 ??托氏体+马氏体 图4 ??上贝氏体+马氏体 (3)贝氏体(B)为奥氏体的中温转变产物,它也是铁素体与渗碳体的两相混合物。在显微形态上,主要有三种形态: A、上贝氏体是由成束平行排列的条状铁素体和条间断续分布的渗碳体所组成的非层状组织。当转变量不多时,在光学显微镜下为与束的铁素体条向奥氏体晶内伸展,具有羽毛状特征。在电镜下,铁素体以几度到十几度的小位向差相互平行,渗碳体则沿条的长轴方向排列成行,如图4。 B、下贝氏体是在片状铁素体内部沉淀有碳化物的两相混合物组织。它比淬火马氏体易受浸蚀,在显微镜下呈黑色针状(如图5)。在电镜下可以见到,在片状铁素体基体中分布有很细的碳化物片,它们大致与铁素体片的长轴成55~60°的角度。 C、粒状贝氏体是最近十几年才被确认的组织。在低、中碳合金钢中,特别是连续冷却时(如正火、热轧空冷或焊接热影响区)往往容易出现,在等温冷却时也可能形成。它的形成温度范围大致在上贝氏体转变温度区的上部,由铁素体和它所包围的小岛状组织所组成。 (4)马氏体(M):是碳在a-Fe中的过饱和固溶体。马氏体的形态按含碳量主要分两种,即板条状和针状(如图6、图7所示) 图5 ??下贝氏体 ????图6 ??回火板条马氏体 A、板条状马氏体一般为低碳钢或低碳合金钢的淬火组织。其组织形态是由尺寸大致相同的细马氏体条定向平行排列组成马氏体束或马氏体领域。在马氏体束之间位向差较大,一个奥氏体晶粒内可形成几个不同的马氏体领域。板条马氏体具有较低的硬度和较好的韧性。 B、针状马氏体是碳量较高的钢淬火后得到的组织。在光学显微镜下,它呈竹叶状或针状,针与针之间成一定的角度。最先形成的马氏体较粗大,往往横穿整个奥氏体晶粒,将奥氏体晶粒加以分割,使以后形成的马氏体的大小受到限制。因此,针状马氏体的大小不一。同时有些马氏体有一条中脊线,并在马氏体周围有残留奥氏体。针状马氏体的硬度高而韧性差。

20号钢热处理实用工艺对组织性能地影响

20号钢热处理工艺对组织性能的影响 1.前言 1.1名称及性质 20号钢,含碳量为0.2%,该钢属于优质低碳碳素钢,冷挤压、深碳淬硬钢。该钢强度低,韧性、塑性和焊接性均好。抗拉强度为253-500MPa,伸长率≥24%。密度是7.85,无冲击韧度。 1.2应用 冷变形塑性高,一般供弯曲、压延用,为了获得好的深冲压延性能,板材应正火或高温回火;用于不经受很大应力而要求很大韧性的机械零件,如轴套、螺钉、杠杆轴、变速箱变速叉、齿轮、重型机械拉杆、钩环等,还可用于表面硬度高而心部强度要求不大的渗碳于氰化零件。 1.3实验目的 测定含碳量,加热温度,加热时间,冷却速度等因素对20号钢的影响,本实验还研究一般材料成分、组织及性能的关系,探寻成分、组织与性能之间存在着的对应关系和规律,加深理论知识的熟悉程度和应用能力的提高。 1.4任务 完成测定试样硬度,制备金相样品,观察组织,照相,分析,出报告等任务。 2.材料及实验 2.1材料的化学成分及力学性能[1] 2.2实验设计内容 根据对含碳量,加热温度,加热时间,冷却速度对碳钢材料硬度的影响资料的检索得到如下的相关数据:

在本试验条件下,试样硬度随加热保温时间的变化而发生曲折的变化。当试样还未发生奥氏体化时,硬度随着温度时间的增加而提高;当试样刚开始奥氏体化至刚完全奥氏体化为止,硬度随着奥氏体化转变量的增加而下降;当试样完全奥氏体化后,随着保温时间的延长,硬度缓慢升高。 200 119 100 0 1 2 3 4 10 191 150 硬度HV 图1 保温时间(分)

碳量、加热温度、加热时间、冷却速度对试样硬度性能的影响。 淬火:是将钢或合金加热到临界温度Ac1(过共析钢)或Ac3(亚共析钢)以上30~50℃,保温一定时间,使钢的组织全部或大部分奥氏体化,然后在水或油等介质中快速冷却,以得到高硬度的淬火马氏体组织的一种工艺方法。 ①提高硬度和耐磨性;②提高弹性;③提高强韧性;④提高耐蚀性和耐热性。 总之,钢的强度、硬度、耐磨性、弹性、韧性、疲劳强度等等,都可以利用淬火与回火使之大大提高,所以,淬火是强化钢铁的主要手段之一。 2.3 所需实验器材 2.3.1样品预处理:粗细不同的打磨砂纸 2.3.2热处理:洛氏硬度计,箱式电炉,淬火用水槽 2.3.3样品后处理:抛光机,金相显微镜,硝酸腐蚀液,酒精 2.3.4材料图像分析:Neophot 21(包括图像分析仪) 2.3.5硬度实验:表面洛氏硬度计 2.4 消耗材料:20号钢试样 、4%硝酸酒精溶液 、清洗酒精 、 砂纸 2.5实验步骤 2.5.1 选取试样 2.5.2 用洛氏硬度计测试样硬度 2.5.3 将试样放入箱式电炉中按加热方案加热,保温,冷却 2.5.4 制取金相试样,再试样的硬度 2.5.5 用腐蚀剂腐蚀 2.5.6 再测表面硬度 2.5.7 观察组织形态 2.5.8 分析实验结果 2.6 加热方案 先将试样放入炉中,接通箱式电炉加热,查资料得20号钢的相变点温度(近似值)Ac1=735℃,Ac3=855℃,Ar3=835℃,Ar1=680℃,故将试样加热到890℃,然后保温,通过查阅相关资料,得到箱式电炉保温时间: 碳钢:t=1′/mm +(10′~ 30′) 合金钢:t=1.2 ′/mm +(30′~ 60′) 本试样为20号碳钢,则加热时间为:)30~10(''+*=D k t k 为mm /1' D 为工件有效厚度(单位/mm ) 保温结束后,根据冷却方式空气冷,油冷,水冷分别进行冷却。

【材料课件】实验九碳钢热处理基本组织观察

实验九碳钢热处理基本组织观察 目的 1.认识碳钢经不同方式热处理后的典型显微组织特征; 2.了解热处理工艺对组织的影响。 一、相关知识 1.TTT曲线 2.碳钢的退火和正火 碳钢的退火组织也就是铁碳合金的平衡组织,以前的实验已经观察过。 亚共析钢的正火组织形式上很象退火组织,这是的珠光体层片较细,整体为灰黑色,理论上讲,铁素体的含量应比平衡状态略少,相差并不明显。 过共析钢一般进行球化退火,得到球化珠光体,正火仅用于消除二次渗碳体网,得到颗粒状的碳化物和细片状珠光体,紧接着进行球化退火。 3.碳钢的等温淬火组织 上贝氏体:在500-350℃的等温转变组织,铁素体片在原奥氏体晶界向内发展,成羽毛状,片间间断分布碳化物。为了清楚看到这种组织,在生成部分上贝氏体后立即快速冷却,其它部分是马氏体。 上贝氏体:在320-250℃的等温转变组织,铁素体片在原奥氏体晶内成透镜状,或象竹叶状。片内部有非常细小分布碳化物,整体浸蚀后为暗灰色。为了清楚看到这种组织,在生成部分贝氏体后立即快速冷却,其它部分是马氏体。 4.碳钢的淬火组织 小试样奥氏体化后水冷,可以全部淬透,得到马氏体和少量残余奥氏体。 低碳马氏体(板条马氏体):在光学显微镜下,板条马氏体为一束束相互平行的细长条状,在一个奥氏体晶粒内可有几束不同取向的马氏体群。

高碳马氏体(针状马氏体):在光学显微镜下,片状马氏体呈针状或竹业状,片间互不平行呈一定角度,其立体形态为双凸透镜状。针的粗细决定于奥氏体晶粒的大小,通常其针细小,在光学显微镜下不能看清,称为隐针马氏体。T10正常加热温度为760℃,若过热(温度820℃,为能了解其形态),就可看到其针状的形貌。 5.碳钢的回火组织 回火马氏体:形状同淬火态,但内部有碳化物,浸蚀后的颜色变暗。 回火曲氏体:原马氏体形态不可见,弥散的Fe3C析出,组织一般为灰暗色。 回火索氏体:在铁素体的基体上分布小颗粒状的渗碳体。 6.低碳钢渗碳后炉冷组织 920℃渗碳后,表层的含碳量接近Acm线,逐渐降低,到心部为原始的低碳(或纯铁),炉冷后得到平衡组织,从表到里,经过过共析(珠光体+网状渗碳体)、共析(珠光体)、亚共析(铁素体+珠光体)的逐渐过渡。实用材料往往可直接淬火,或渗碳后空冷正火,表层部分的渗碳体为颗粒状。 二、实验内容 ①.观察45钢的正火组织,铁素体+索氏体。 ②.观察等温淬火组织,认识上、下贝氏体形貌特征。 ③.观察淬火组织认识马氏体形态:20钢得到的板条马氏体,由45钢得到的混合马氏 体,T10钢过热淬火得到的粗大马氏体针。 ④.正常淬火回火组织:T10钢正常淬火回火的组织为未溶颗粒状碳化物+回火隐针马 氏体。 ⑤.调质:中碳钢淬火后高温回火得到的回火索氏体。 ⑥.渗碳后炉冷组织:从组织了解渗碳后碳含量的大致分布。 三、实验报告要求 画出5个以上观察到的组织示意图,注明材料、热处理过程、所得到的组织。

钢材的热处理及特性

铸造 1.熔融的液态金属填满型腔冷却。制件中间易产生气孔。 2.把金属加热熔化后倒入砂型或模子里,冷却后凝固成为器物。 3.铸造对被加工才料有要求,一般铸铁、铝等的铸造性能较好。铸造不具备锻造的诸多优点,但它能制造形状复杂的零,因此常用于力学性能要求不高的支称件的毛丕制造。例如机床外壳等。 锻造 1.主要是在高温下用挤压的方法成型。可以细化制件中的晶粒。 2.用锤击等方法,使在可塑状态下的金属材料成为具有一定形状和尺寸的工件,并改变它的物理性质。 3.锻造时,金属经过塑性变形,有细化晶粒的做用,切纤维连续,因此常用于重要零件的毛丕制造,例如轴、齿论等。 热处理 热处理是将工件在介质中加热到一定温度并保温一定时间,然后用一定速度冷却,以改变金属的组织结构,从而改变其性能(包括物理、化学和力学性能)的工艺。改善钢的力学性能或加工性能。1.退火 操作方法:将钢件加热到Ac3+30~50度或Ac1+30~50度或Ac1以下的温度(可以查阅有关资料)后,一般随炉温缓慢冷却。 目的: 1.降低硬度,提高塑性,改善切削加工与压力加工性能; 2.细化晶粒,改善力学性能,为下一步工序做准备;

3.消除冷、热加工所产生的内应力。 应用要点: 1.适用于合金结构钢、碳素工具钢、合金工具钢、高速钢的锻件、 焊接件以及供应状态不合格的原材料;2.一般在毛坯状态进行退火。 2.正火 操作方法:将钢件加热到Ac3或Accm 以上30~50度,保温后以稍大于退火的冷却速度冷却。 目的: 1.降低硬度,提高塑性,改善切削加工与压力加工性能; 2.细化晶粒,改善力学性能,为下一步工序做准备; 3.消除冷、热加工所产生的内应力。 应用要点: 正火通常作为锻件、焊接件以及渗碳零件的预先热处理工序。对于性能要求不高的低碳的和中碳的碳素结构钢及低合金钢件,也可作为最后热处理。对于一般中、高合金钢,空冷可导致完全或局部淬火,因此不能作为最后热处理工序。 3.淬火 操作方法:将钢件加热到相变温度Ac3或Ac1以上,保温一段时间,然后在水、硝盐、油、或空气中快速冷却。 目的:淬火一般是为了得到高硬度的马氏体组织,有时对某些高合金钢(如不锈钢、耐磨钢)淬火时,则是为了得到单一均匀的奥氏

钢在热处理冷却时的组织转变

钢在热处理冷却时的组织转变 https://www.wendangku.net/doc/4010445006.html,发布:2008-6-5 16:55:08来自:模具网浏览:44 次相图只适用于缓慢冷却,而实际热处理则是以一定的冷却速度来进行的,所以出现C曲线。 一、A冷却C曲线转变温度与转变时间之间关系的曲线。 1. 等温冷却C曲线将钢急冷到临界温度以下某一温度,在此温度等温转变,在冷却过程中测绘出过冷A 等温转变图。 2.连续冷却C曲线将钢在连续冷却的条件下转变,此时测绘出的冷却 二、等温冷却C曲线 过冷A等温转变图可综合反映过冷A在不同过冷度下的等温转变过程,转变开始和终了时间,转变产物类型以及转变量与温度和时间的关系等,由于等温转变图通常呈“C”形状,所以也称C曲线,另外还称TTT 图,现以共析钢为例来说明TTT图的建立. 1.相图的建立

①把钢材制成Φ10×1.5mm的圆片试样,分成若干组 ②取一组试样,在盐炉内加热使之A化. ③将A化后的试样快速投入A1 以下某一温度的浴炉中进行等温转变 ④每隔一定时间取出一个试样急速淬入水中,而后将各试样取出制样,进行组织观察.当在显微镜下观察发现某一试样刚出现灰黑色产物时,所对应的等温时间就是A开始转变时间,到某一试样未有M出现时,所对 应的时间为转变终了时间。 共析碳钢等温转变图(C曲线) 将其余各组试样,用上述方法,分别测出不同等温条件下A转变开始和终了时间,最后将所有转变开始时间点和终了时间点标在温度、时间(对数)坐标上,并分别连接起来,即得C曲线. 2. 图形分析 3. 等T转变特点 ①过冷到A1以下的A处于不稳定状态,但不立即转变,而要经过一段时间才开始转变,称为孕育期。孕育期 越长,过冷A越稳定,反之,则越不稳定。 ②鼻点:550℃最不稳定,转变速度最快 ③C形状原因过冷度和原子扩散为两个制约因素

实验一工具钢热处理工艺组织性能的系统分析

工具钢热处理工艺-组织-性能的系统分析 (综合性实验) 一、实验目的 1.掌握工具钢热处理中成分—工艺—组织—性能内在关系; 2.通过实验,掌握材料的系统分析方法。 3.了解工具钢不同工艺条件下的常见组织。 二、实验原理 工具钢主要用于制造各种切削刀具,模具和量具。所以要有高的硬度和耐磨性、高的强度和冲击韧性等。常用的工具钢有T10、9CrSi、Cr12MoV、W18Cr4V 等。T10是普通碳素工具钢,淬火-回火态组织为:回火马氏体+颗粒状碳化物渗碳体+少量残余奥氏体。9CrSi是低合金工具钢,淬火-回火态组织为:回火马氏体+颗粒状碳化物渗碳体。Cr12MoV是模具钢,淬火-回火态组织为:回火马氏体+块状碳化物渗碳体。下面以高速钢为例,介绍其热处理工艺特点,显微组织与性能的关系。 铸态的高速钢的显微组织黑色组织为δ共析相;白色组织是马氏体和残余奥氏体;鱼骨状组织是共晶莱氏体。铸态高速钢的显微组织中,碳化物粗大,且很不均匀,不能直接使用,必须进行反复锻造。锻造后还须进行退火。退火的目的:①消除锻造应力,降低硬度便于切削加工;②为淬火组织做好组织上的准备。因为原组织为马氏体、屈氏体、或索氏体的高速钢,未经退火,淬火时可能引起萘状断口。退火温度宜为860~880℃,加热时间为3~4小时左右,为了缩短退火时间,一般采用等温退火,即:860~880℃加热3~4小时,炉冷到700~750℃等温4~6小时。锻造退火组织:在索氏体基体上分布着粗大的初生碳化物和较细的次生碳化物(碳化物呈白亮点)。 高速钢的淬火工艺的特点:主要是加热淬火温度高。目的是尽可能多的使碳和合金溶入奥氏体。高速钢的淬火方法有油淬、分级、等温、空冷等。以W18Cr4V 为例,淬火温度在1270℃~1290℃,淬火组织是由(60~70%)马氏体和(25~30%)残余奥氏体及接近10%的加热时未溶的碳化物组成,晶粒度9~10级。硬度63~64HRC。当淬火温度不足,在1240℃~1260℃时,碳化物大部分未溶入奥

钢的热处理组织

1.奥氏体-碳与合金元素溶解在γ-fe中的固溶体,仍保持γ-fe的面心立方晶格。晶界比较直,呈规则多边形;淬火钢中残余奥氏体分布在马氏体间的空隙处 2.铁素体-碳与合金元素溶解在a-fe中的固溶体。亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出。 3.渗碳体-碳与铁形成的一种化合物。在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状。过共析钢冷却时沿acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状。铁碳合金冷却到ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状。 4.珠光体-铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物。 珠光体的片间距离取决于奥氏体分解时的过冷度。过冷度越大,所形成的珠光体片间距离越小。在a1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体。在650~600℃形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体。在600~550℃形成的珠光体用金相显微镜放大500倍,不能分辨珠光体片层,仅看到黑色的球团状组织,只有用电子显微镜放大10000倍才能分辨的片层称为屈氏体。 5.上贝氏体-过饱和针状铁素体和渗碳体的混合物,渗碳体在铁素体针间。过冷奥氏体在中温(约350~550℃)的相变产物,其典型形态是一束大致平行位向差为6~8od铁素体板条,并在各板条间分布着沿板条长轴方向排列的碳化物短棒或小片;典型上贝氏体呈羽毛状,晶界为对称轴,由于方位不同,羽毛可对称或不对称,铁素体羽毛可呈针状、点状、块状。若是高碳高合金钢,看不清针状羽毛;中碳中合金钢,针状羽毛较清楚;低碳低合金钢,羽毛很清楚,针粗。转变时先在晶界处形成上贝氏体,往晶内长大,不穿晶。 6.下贝氏体-同上,但渗碳体在铁素体针内。过冷奥氏体在350℃~ms的转变产物。其典型形态是双凸透镜状含过饱和碳的铁素体,并在其内分布着单方向排列的碳化物小薄片;在晶内呈针状,针叶不交叉,但可交接。与回火马氏体不同,马氏体有层次之分,下贝氏体则颜色一致,下贝氏体的碳化物质点比回火马氏体粗,易受侵蚀变黑,回火马氏体颜色较浅,不易受侵蚀。高碳高合金钢的碳化物分散度比低碳低合金钢高,针叶比低碳低合金钢细。 7.粒状贝氏体-大块状或条状的铁素体内分布着众多小岛的复相组织。过冷奥氏体在贝氏体转变温度区的最上部的转变产物。刚形成时是由条状铁素体合并而成的块状铁素体和小岛状富碳奥氏体组成,富碳奥氏体在随后的冷却过程中,可能全部保留成为残余奥氏体;也可能部分或全部分解为铁素体和渗碳体的混合物(珠光体或贝氏体);最可能部分转变为马氏体,部分保留下来而形成两相混合物,称为m-a 组织。 8.无碳化物贝氏体-板条状铁素体单相组成的组织,也称为铁素体贝氏体。形成温度在贝氏体转变温度区的最上部。板条铁素体之间为富碳奥氏体,富碳奥氏体在随后的冷却过程中也有类似上面的转变。无

碳钢热处理后的显微组织观察与分析

碳钢热处理后的显微组织观察与分析 实验目的实验说明实验内容实验方法指导实验报告要求思考题一:实验目的 (1)观察和研究碳钢经不同形式热处理后显微组织的特点。 (2)了解热处理工艺对碳钢硬度的影响。 二:实验说明 碳钢经热处理后的组织可以是接近平衡状态(如退火、正火)的组织,也可以是不平衡组织(如淬火组织)。因此在研究热处理后的组织时,不但要用铁碳相图,还要用钢的C曲线来分析。图1为共析碳钢的C曲线,图2为45钢连续冷却的CCT曲线。 图1 共析碳钢的c曲线 图2 45钢的CCT曲线 C曲线能说明在不同冷却条件下过冷奥氏体在不同温度范围内发生不同类型的转变过程及能得到哪些组织。 1.碳钢的退火和正火组织 亚共析碳钢(如40、45钢等)一般采用完全退火,经退火后可得接近于平衡状态的组织,其组织形态特征已在实验l中加以分析和观察(图3)过共析碳素工具钢(如T10、T12钢等)则

采用球化退火,T12钢经球化退火后,组织中的二次渗碳体和珠光体中的渗碳体都呈球状(或粒状),图中均匀分散的细小粒状组织就是粒状渗碳体。 2.钢的淬火组织 含碳质量分数相当于亚共析成分的奥氏体淬火后得到马氏体。马氏体组织为板条状或针状,20钢经淬火后将得到板条状马氏体。在光学显微镜下,其形态呈现为一束束相互平行的细条状马氏体群。在一个奥氏体晶粒内可有几束不同取向的马氏体群,每束条与条之间以小角度晶界分开,束与束之间具有较大的位向差,如图4所示。 图3 T12 钢球化退火组织图4 低碳马氏体组织 45钢经正常淬火后将得到细针状马氏体和板条状马氏体的混合组织,如图5所示。由于马氏体针非常细小,故在显微镜下不易分清。 45钢加热至860℃后油淬,得到的组织将是马氏体和部分托氏体(或混有少量的上贝氏体),如图6所示。碳质量分数相当于共析成分的奥氏体等温淬火后得到贝氏体,如T8钢在550~350℃及350℃~ Ms温度范围内等温淬火,过冷奥氏体将分别转变为上贝氏体和下贝氏体。上贝氏体是由成束平行排列的条状铁素体和条间断续分布的渗碳体所组成的片层状组织,当转变量不多时,在光学显微镜下可看到成束的铁素体在奥氏体晶界内伸展,具有羽毛状特性,如图7所示。

工具钢性能

第四章工具钢 对各种材料进行加工,需要采用各种工具,主要是各种刃具与模具。 工具钢按用途分为刃具钢、模具钢及量具钢。按成分可分为碳素工具钢,低合金工具钢,高合金工具钢(高速钢)。 刃具钢要求高硬度,高耐磨性,一定韧性和塑性,有时需热硬性。如车刀,刨刀,铣刀,钻头,丝锥,锉刀,锯条。常用钢种为T7~T12,Cr,Cr2,9Mn2V,CrWMn,W18Cr4V。 模具钢为两类:一类为热作模具钢,要求高温下的硬度的强度,抗热疲劳和良好的韧性。如锤锻模,挤压模,压铸模。常用钢种为T8~T12,MnSi,5CrW2Si,Cr12V,Cr12MoV。另一类为冷作模具钢,要求具有高硬度,耐磨性和一定的韧性。如冲切模,冷镦模,搓丝模,拉丝,剪刀片。常用钢种有5CrNiMo,3Cr2W8V。 量具钢要求高硬度,高耐磨和尺寸稳定性如量规,样板,卡尺。 工具钢要求的基本性能有:(1)使用性能,如强度,塑性,韧性,耐磨性,热硬性,热疲劳性能;(2)工艺性能,如淬透性,变形与开裂倾向,脱C敏感性,磨削性,切削加工性。 §4.1 碳素及低合金工具钢 一、碳素工具钢 1.成分:高C钢,0.65-1.35% 2.组织:高C回火马氏体+细粒状K,HRC58-64 3.牌号:T7~T13 高牌号者,硬度高,耐磨性好,但韧性较低;低牌号者,硬度较低,但韧性较好。可选择不同场合具体运用。 4.热处理:球化退火(粒状P组织,便于切削加工)+淬火与低温回火 球化退火采用等温球化退火工艺。 5.性能:成本低,冷热性能较好,热处理简单,应用范围较宽。 不足处:(1)淬透性低,盐水中淬火,变形开裂倾向大。 (2)组织稳定性差,热硬性低,工作温度小于200℃。 6.应用:制作工件尺寸较小、受热温度不高、形状简单、不受较大冲击的工具如低速切削的刃具和简单的冷冲模。 二、低合金工具钢 加入M,如Si,Mn,Cr,W,Mo,V。与碳素钢相比,具有淬透性高,耐磨性好,淬火变形少,回火稳定性好,切削速度也较高。 合金元素作用:提高耐磨性,V,W,Mo, Cr;提高淬透性;减少淬火变形; 细化晶粒提高韧性;增大热硬性。 常用钢种:Cr06,Cr,Cr2,9Cr2,9SiCr,8MnSi,CrMn,CrWMn,CrW5,W,V 但由于热硬性仍较差,难以满足高速切削的需要。 §4.2 高速工具钢 高速工具钢适用于高速切削刀具。由于合金度高,可保证刃部在650℃时实际硬度仍高于HRC50,从而具有优良的切削性和耐磨性。

碳钢热处理后的组织(金相分析)

碳钢热处理后的组织(金相分析) 发布时间:2009-5-30 13:46:34 关闭该页 一、概述 碳钢经退火、正火可得到平衡或接近平衡组织,经淬火得到的是非平衡组织。因此,研究热处理后的组织时,不仅要参考铁碳相图,而且更主要的是参考钢的等温转变曲线(C曲线)。 铁碳相图能说明慢冷时合金的结晶过程和室温下的组织以及相的相对量,C曲线则能说明一定成分的钢在不同冷却条件下所得到的组织。C曲线适用于等温冷却条件;而CCT曲线(奥氏体连续冷却曲线)适用于连续冷却条件。在一定的程度上可用C曲线,也能够估计连续冷却时的组织变化。 1、共析钢等温冷却时的显微组织 共析钢过冷奥氏体在不同温度等温转变的组织及性能列于表1中。

2、共析钢连续冷却时的显微组织 为了简便起见,不用CCT曲线,而用C曲线(图1)来分析。例如共析钢奥氏体,在慢冷时(相当于炉冷,见图1中的υ1)应得到100%的珠光体;当冷却速度增大到υ2时(相当于空冷),得到的是较细的珠光体,即索氏体或屈氏体;当冷却速度增大到υ3时(相当于油冷),得到的为屈氏体和马氏体;当冷却速度增大至υ4、υ5(相当于水冷),很大的过冷度使奥氏体骤冷到马氏体转变开始点(Ms)后,瞬时转变成马氏体,其中与C曲线鼻尖相切的冷却速度(υ4)称为淬火的临界冷却速度。 图1 图2 3、亚共析钢和过共析钢连续冷却时的显微组织 亚共析钢的C曲线与共析钢相比,只是在其上部多了一条铁素体先

析出线,如图2所示。 当奥氏体缓慢冷却时(相当于炉冷,如图2中υ1),转变产物接近平衡组织,即珠光体和铁素体。随着冷却速度的增大,即υ3>υ2>υ1时,奥氏体的过冷度逐渐增大,析出的铁素体越来越少,而珠光体的量逐渐增加,组织变得更细,此时析出的少量铁素体多分布在晶粒的边界上。 因此,v1的组织为铁素体+珠光体;v2的组织为铁素体+索氏体;v3的组织为铁素体+屈氏体。 当冷却速度为v4时,析出很少量的网状铁素体和屈氏体(有时可见到少量贝氏体),奥氏体则主要转变为马氏体和屈氏体(如图3);当冷却速度v5超过临界冷却速度时,钢全部转变为马氏体组织(如图6,图7)。 过共析钢的转变与亚共析钢相似,不同之处是后者先析出的是铁素体,而前者先析出的是渗碳体。 4、各组织的显微特征 (1)索氏体(s):是铁素体与渗碳体的机械混合物。其片层比珠光体更细密,在高倍(700倍以上)显微放大时才能分辨。 (2)托氏体(T)也是铁素体与渗碳体的机械混合物,片层比索氏体还细密,在一般光学显微镜下也无法分辨,只能看到如墨菊状的黑色形态。当其少量析出时,沿晶界分布,呈黑色网状,包围着马氏体;当析出量较多时,呈大块黑色团状,只有在电子显微镜下才能分辨其中的片层(见图3); 图3 托氏体+马氏体

T12钢热处理工艺

金属材料与热处理技术课程设计 题目:T12钢热处理工艺课程设计 院(系):冶金材料系 专业年级:材料1201 负责人:陈博 唐磊,杨亚西, 合作者:谭平,潘佳伟,多杰仁青 指导老师:罗珍 2013年12月

热处理工艺课程设计任务书 系部冶金材料系专业金属材料与热处理技术 学生姓名陈博,杨亚西,唐磊,谭平,多杰仁青,潘佳伟 课程设计题目T12 设计任务: 1,课程设计的目的:为了使我们更好地了解碳素工具钢的性能及其热处理工艺流程。培养学生综合运用所学的热处理课程的知识去解决工程问题的能力,并使其所学知识得到巩固和发展。学习热处理工艺设计的一般方法,热处理设备选用和装夹具设计等进行热处理设计的基础技能训练。 2.课程设计的任务分组(碳素工具钢T12) ①:锉刀的热处理工艺(唐磊) ②:热处理后的组织金相分析(陈博) ③:淬火(潘佳伟) ④:回火(多杰仁青) ⑤:局部淬火(谭平) ⑥:缺陷分析(杨亚西) 3.课程设计的内容: T12钢热处理工艺设计流程 4参考文献: 【1】詹艳然,吴乐尧,王仲仁.金属体积成形过程中温度场的分析.塑性工程学报,2001,8(4) 【2】叶卫平,张覃轶.热处理实用数据速查手册.机械工业出版社.2005,59---60 【3】许天己钢铁热处理实用技术.化学工业出版社2005,134"~136 设计进度安排: 第一周周一~周二钢的普通热处理工艺设计理论学习 周三~周五分组进行典型金属材料的热处理工艺设计第二周周一~周三撰写设计说明书 周四~周五答辩 指导教师(签字): 年 月日

热处理工艺卡 热处理工艺卡材料牌 号 T12 零件重 量 锉刀400g 工艺路 线 热轧钢板冲压下料——退火——校直——铣或刨侧 面——粗磨——半精磨——剁齿——淬火加回火。 技术条件检验方法 硬度HRC60-62,HB≤207 洛氏硬度计,布氏硬度计 金相组 织 珠光体,马氏体和 渗碳体 金相观察 力学性 能 硬度:退火,≤ 207HB,压痕直径≥ 4.20mm;淬火:≥ 62HRC 布氏法,洛氏法 工 序号工序名称设备 装炉方式 及数量 加热温 度℃ 保温 时min 冷却 介 质 温 度 ℃ 冷却时间 min 1 预热加热炉- 550-65 加热 时间 的5-6 倍 - - - 2 球化退火退火炉- 760-77 0 2-4h 空 气 550 -60 4h 3 淬火保护气 氛炉- 770-78 - 水150 -20 10 4 低温回火回火炉- 160-18 0 0.75- 1h 空 气 150 60 编制人陈博编制日期2013.12.11 审核日期

钢的热处理(原理和工艺)第3版 胡光立 谢希文

第二章钢的加热转变 2、奥氏体晶核优先在什么地方形成? 为什么? 答:奥氏体的形核 球状珠光体中: 优先在F/Fe3C 界面形核 片状珠光体中: 优先在珠光体团的界面形核 也在F/Fe3C 片层界面形核 奥氏体在F/Fe3C 界面形核原因: (1) 易获得形成A所需浓度起伏,结构起伏和能量起伏. (2) 在相界面形核使界面能和应变能的增加减少。 △G = -△Gv + △Gs + △Ge △Gv—体积自由能差,△Gs —表面能,△Ge —弹性应变能 6、钢的等温及连续加热TT A图是怎样测定的,图中的各条曲线代表什么? 答:等温TTA图 将小试样迅速加热到Ac1以上的不同温度,并在各温度下保持不同时间后迅速淬冷,然后通过金相法测定奥氏体的转变量与时间的关系,将不同温度下奥氏体等温形成的进程综合表示在一个图中,即为钢的等温TTA图。 四条曲线由左向右依次表示:奥氏体转化开始线,奥氏体转变完成线,碳化物充全溶解线,奥氏体中碳浓度梯度消失线。 连续加热TTA图 将小试样采用不同加热速度加热到不同温度后迅速淬冷,然后观察其显微组织.,配合膨胀试验结果确定奥氏体形成的进程并综合表示在一个图中,即为钢的连续加热TTA图。 Acc加热时Fe3CII →A终了温度 Ac3加热时α→A终了温度 Ac1加热时P→A开始温度 13、怎样表示温度、时间、加热速度对奥氏体晶粒大小的影响? 答:奥氏体晶粒度级别随加热温度和保温时间变化的情况可以表示在等温TTA图中加热速度对奥氏体晶粒度的影响可以表示在连续加热时的TTA图中 随加热温度和保温时间的增加晶粒度越大 加热速度越快I↑由于时间短,A晶粒来不及长大可获得细小的起始晶粒度 补充 1、阐述加热转变A的形成机理,并能画出A等温形成动力学图(共析钢)? 答:形成条件ΔG=Ga-Gp<0 形成过程 形核:对于球化体,A优先在与晶界相连的α/Fe3C界面形核 对于片状P, A优先在P团的界面上形核 长大:1 )Fe原子自扩散完成晶格改组 2 )C原子扩散促使A晶格向α、Fe3C相两侧推移并长大 Fe3C残留与溶解:A/F界面的迁移速度> A/Fe3C界面的迁移速度,当P中F完全消 失,Fe3C残留Fe3C→A A均匀化:刚形成A中,C浓度不均匀。C扩散,使A均匀化。 A等温形成动力学图(共析钢)见课本P22 图2-16 2、用Fe-Fe3C相图说明受C在A中扩散所控制的A晶核的长大。

钢的热处理及热处理后的显微组织观察实验报告

钢的热处理及热处理后的显微组织观察 实验报告 罗毅晗2014011673 一、实验目的 (1)熟悉钢的几种基本热处理操作:退火、正火、淬火、回火。 (2)了解加热温度、冷却速度、回火温度等主要因素对45钢热处理后性能(硬度)的影响。 (3)观察碳钢热处理后的显微组织。 二、概述 钢的热处理就是利用钢在固态范围内的加热、保温和冷却,以改变其内部组织,从而获得所需要的物理、化学、机械和工艺性能的一种操作。热处理的基本操作有退火、正火、淬火、回火等。进行热处理时,加热温度、保温时间和冷却方式是最重要的三个基本工艺因素。 三、实验内容 加热温度冷却方法回火温度洛氏硬度洛氏硬度洛氏硬度平均值860℃水冷﹨52.052.152.652.2 860℃油冷﹨20.223.419.120.9 860℃空冷﹨94.194.694.294.3 860℃炉冷﹨86.085.285.785.6 860℃水冷200℃51.952.052.152.0 860℃水冷400℃34.835.335.735.3 860℃水冷600℃20.321.519.620.5 显微组织观察 45钢 860℃气冷索氏体+铁素体

45钢860℃油冷马氏体+屈氏体 45钢860℃水冷马氏体

45钢 860℃水冷+600℃回火回火索氏体 T12钢 760℃球化退火球化体

T12钢 780℃水冷+200℃回火回火马氏体+二次渗碳体+残余奥氏体 T12钢 1100℃水冷粗大马氏体+残余奥氏体

四、实验分析 1.火温度而言,淬火温度越高,硬度越高。但是一旦达到过高温度会导致形成的马氏体,使得力学性能恶化。 2.火介质而言,硬度大小:空冷>炉冷>水冷>油冷。 3.火温度而言,回火温度越高,硬度越低。 图像: 分析原因: ①据铁碳相图,淬火温度升高,45钢(亚共析钢)中铁素体含量减少,珠光体含量提高,而珠光体硬度很高,铁素体硬度低,导致硬度提高。 ②根据C曲线,对亚共析钢的连续冷却,空冷生成F+S,炉冷生成F+P,水冷产生M,油冷产生T+M。因此,硬度大小为:空冷>炉冷>水冷>油冷。

碳钢热处理后的组织

碳钢热处理后的组织 一、概述 碳钢经退火、正火可得到平衡或接近平衡组织,经淬火得到的是非平衡组织。因此,研究热处理后的组织时,不仅要参考铁碳相图,而且更主要的是参考钢的等温转变曲线(C 曲线)。 铁碳相图能说明慢冷时合金的结晶过程和室温下的组织以及相的相对量,C曲线则能说明一定成分的钢在不同冷却条件下所得到的组织。C曲线适用于等温冷却条件;而CCT 曲线(奥氏体连续冷却曲线)适用于连续冷却条件。在一定的程度上可用C曲线,也能够估计连续冷却时的组织变化。 1、共析钢等温冷却时的显微组织 共析钢过冷奥氏体在不同温度等温转变的组织及性能列于表1中。 2、共析钢连续冷却时的显微组织

为了简便起见,不用CCT曲线,而用C曲线(图1)来分析。例如共析钢奥氏体,在慢冷时(相当于炉冷,见图1中的υ1)应得到100%的珠光体;当冷却速度增大到υ2时(相当于空冷),得到的是较细的珠光体,即索氏体或屈氏体;当冷却速度增大到υ3时(相当于油冷),得到的为屈氏体和马氏体;当冷却速度增大至υ4、υ5(相当于水冷),很大的过冷度使奥氏体骤冷到马氏体转变开始点(Ms)后,瞬时转变成马氏体,其中与C曲线鼻尖相切的冷却速度(υ4)称为淬火的临界冷却速度。 图1 图2 3、亚共析钢和过共析钢连续冷却时的显微组织 亚共析钢的C曲线与共析钢相比,只是在其上部多了一条铁素体先析出线,如图2所示。 当奥氏体缓慢冷却时(相当于炉冷,如图2中υ1),转变产物接近平衡组织,即珠光体和铁素体。随着冷却速度的增大,即υ3>υ2>υ1时,奥氏体的过冷度逐渐增大,析出的铁素体越来越少,而珠光体的量逐渐增加,组织变得更细,此时析出的少量铁素体多分布在晶粒的边界上。 因此,v1的组织为铁素体+珠光体;v2的组织为铁素体+索氏体;v3的组织为铁素体+屈氏体。 当冷却速度为v4时,析出很少量的网状铁素体和屈氏体(有时可见到少量贝氏体),奥氏体则主要转变为马氏体和屈氏体(如图3);当冷却速度v5超过临界冷却速度时,钢全部转变为马氏体组织(如图6,图7)。 过共析钢的转变与亚共析钢相似,不同之处是后者先析出的是铁素体,而前者先析出的是渗碳体。 4、各组织的显微特征

热处理控制碳钢的组织性能及其表征

实验讲义 热处理控制碳钢的组织、性能及其表征 一、实验目的 1)熟练掌握并灵活运用碳钢的热处理原理,通过不同的热处理方式来得到不同的组织 和性能; 2)掌握热处理炉的使用,熟悉各类热处理工艺的操作; 3)掌握金相样品的制备方法与详细步骤; 4)掌握碳钢金相样品的腐蚀方法; 5)掌握利用金相显微镜观察和识别碳钢的典型组织,利用硬度计表征各类组织之间硬 度的差异。 二、实验要求 1)每个学生能独立查阅资料,小组讨论,确定实验计划,并将实验计划提前一天给任 课老师审阅; 2)实验计划中对每一个热处理工艺必须给出具体的工艺参数,如升温时间、保温时间、 降温方式等等(样品尺寸由学生自己切割)。 3)认真撰写实验报告,分析实验结果。 三、实验所需仪器设备 1)箱式(管式)热处理炉;磨光机;抛光机;金相显微镜;硬度计; 2)20#、45#、T8、T10、T13钢 四、实验内容 1)热处理工艺设计部分:a)通过热处理工艺,分别得到亚共析钢、共析钢和过共析 钢的平衡组织;b)通过不同的热处理工艺获得上述某一种碳钢的(三种或三种以 上)非平衡组织; 2)金相样品制备部分:对热处理过的样品进行磨光、抛光,得到符合标准的金相样品, 为后续观察做准备; 3)组织性能表征部分:通过适当的腐蚀处理,显示碳钢的组织形貌;分辨三种平衡组 织的形貌特征;分析某一种碳钢的不同组织结构的特征,通过硬度计表征其硬度, 并与相关文献值比较,分析其差异和原因。 五、实验安全及注意事项 1)实验的三个部分相辅相成,所有样品贯穿实验的始终,所以样品不能遗失、不能混 淆,必须妥善保管; 2)热处理过程(特别是淬火的时候)设计高温,操作的时候必须带防护手套,严格按 照步骤进行操作,以免发生危险; 3)所有设备都涉及到电源,注意用电安全,使用完毕后必须切断电源; 4)金相样品制备的时候,硬度差别很大的样品不能镶嵌在一起,也不能在同张砂纸上 打磨; 5)金相磨光机需要使用水,注意用水的安全,使用完毕后必须切断水源; 6)金相腐蚀液具有强的腐蚀作用,注意不能泼撒到身体上,特别是眼睛上,使用腐蚀 液时,必须带上防护手套;

钨钼SKH-59高速工具钢性能及应用领域 skh59热处理硬度推荐

SKH-59 SKH-59是一种高速钢用于切削工具钢 外文名SKH-59 适用 麻花锚,拉刀、攻牙、铣洗 化学成份 C :0.90 Si:0.55Mn :0.48 特性 高耐磨性高抗压强度 目录 1.SKH-59简介 2.主要用处 3.机械功能 4.相关资料

SKH-59简介 SKH-59高速钢是一极高速度钢于切削东西例如、堵截、绞刀及其它。以绩效而言,SKH-59是全方位钢种, 在热硬性要求不最重要的情况下可被用于切削方面。SKH-59也适用于冷间的使用;举例来说在东西用来作冲孔、成形、冲压、及其它。 Cr :4.2 V :2.00 Mo :4.90 P :0.03 S :0.03 W:7

主要用处 SKH-59是一极高速度钢适用于切削东西例如麻花锚,拉刀、攻牙、铣洗、堵截、绞刀及其它。 以绩效而言,SKH-59是全方位钢种,在热硬性要求不最重要的情况下可被用于切削方面。 SKH-59也适用于冷间的使用; 举例来说在东西用来作冲孔、成形、冲压、及其它。 本钢是兼具耐磨耗性和高耐性优胜组合的高合金的冷间作业的钢种。 淬硬后高的外表硬度 优秀的整体淬透性 杰出的外表处理加工性 优秀的抗回火软化性

物理功能 温度20℃ 200℃ 400℃ 密度 Kg/m3 8260 8120 8060 弹性模量 N/mm2 225000 200000 180000 热膨胀系数1/℃ - 12.1x10-6 12.6x10-6 热传导系数W/m℃ 24.0 28.0 27.0 比热 J/kg℃ 420 510 600 相关资料 标准比较:AISI-M0JIS-SK0 出厂状况:HB250,球化退火<225

钢的热处理及其对组织和性能的影响

钢的热处理及其对组织和性能的影响 一、实验目的 1.熟悉钢的几种基本热处理操作(退火、正火、淬火及回火); 2.研究加热温度、冷却速度及回火温度等主要因素对碳钢热处理后性能的影响; 3.观察和研究碳素钢经不同形式热处理后显微组织的特点; 4.了解材料硬度的测定方法,学会正确使用硬度计。 二、实验概述 钢的热处理就是利用钢在固态范围内的加热、保温和冷却,以改变其内部组织,从而 获得所需要的物理、化学、机械和工艺性能的一种操作。普通热处理的基本操作有退火、正火、淬火、回火等。加热温度、保温时间和冷却方式是热处理最重要的三个基本工艺因素。 正确合理选择这三者的工艺规范,是热处理质量的基本保证。 1.加热温度选择 (1)退火加热温度 一般亚共析钢加热至A C3+(20~30)℃(完全退火);共析钢和过共析钢加热至A C1+(20~30)℃(球化退火),目的是得到球化体组织,降低硬度,改善高碳钢的切削性能,同时为最终热处理做好组织准备。 (2)正火加热温度 一般亚共析钢加热至A C3+(30~50)℃;过共析钢加热至A Cm+(30~50)℃,即加热到奥氏体单相区。退火和正火加热温度范围选择见图3-1。 图1 退火和正火的加热温度范围图2 淬火的加热温度范围 (3)淬火加热温度 一般亚共析钢加热至A C3+(30~50)℃;共析钢和过共析钢则加热至A C1+(30~50)℃,加热温度范围选择见图3-2。 淬火按加热温度可分为两种:加热温度高于A C3时的淬火为完全淬火;加热温度在A C1和A C3(亚共析钢)或A C1和A CCm(过共析钢)之间是不完全淬火。在完全淬火时,钢的淬火组织主要是由马氏体组成;在不完全淬火时亚共析钢得到马氏体和铁素体组成的组织,过共析钢得到马氏体和渗碳体的组织。亚共析钢用不完全淬火是不正常的,因为这样不能达到最高硬度。而过共析钢采用不完全淬火则是正常的,这样可使钢获得最高的硬度和耐磨性。 在适宜的加热温度下,淬火后得到的马氏体呈细小的针状;若加热温度过高,其形成粗

45与T10钢热处理组织和性能比较研究资料

2015 45与T10钢热处理组织和性能比较研究 学生姓名: 所在院系: 所学专业:机械设计制造及其自动化 导师姓名: 完成时间:2015年4月10日 45钢与T10钢热处理组织和性能比较研究

摘要 为探讨热处理工艺对45钢及T10的影响,本文对45钢与T10做了退火,正火,淬火以及低温回火,中温回火,高温回火的热处理工艺处理,观察金相组织,测量布氏硬度,再对得到的数据进行系统详细的分析比较,结果表明再相同热处理下含碳量是影响45与T10在金相组织形成,硬度差异的主要因素。发现了随着含碳量的增加,钢的硬度、强度增加,塑性、韧性降低的结果。 关键词:热处理,金相组织,硬度,45,T10

45 steel T10 steel heat treatment and research organizations and Performance Comparison Abstract To explore the Heat Treatment on 45 Steel and T10, the paper made of 45 steel and T10 annealing, normalizing, quenching and tempering, tempering temperature, tempering the heat treatment process, observe the microstructure, measuring cloth hardness, and then the data is systematically detailed analysis and comparison results show that the carbon content and then heat-treated at the same affect with T10 45 formed in the microstructure, hardness difference of the main factors. Found that with increasing carbon content steel hardness, strength increases, lower ductility, toughness results. Keywords: heat treatment, microstructure, hardness, 45, T10

相关文档
相关文档 最新文档