文档库 最新最全的文档下载
当前位置:文档库 › ASTM室温压缩试样国际标准

ASTM室温压缩试样国际标准

ASTM室温压缩试样国际标准
ASTM室温压缩试样国际标准

Designation:E9–89a(Reapproved2000)

Standard Test Methods of

Compression Testing of Metallic Materials at Room Temperature1

This standard is issued under the?xed designation E9;the number immediately following the designation indicates the year of original adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.A superscript epsilon(e)indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the Department of Defense.

1.Scope

1.1These test methods cover the apparatus,specimens,and procedure for axial-load compression testing of metallic mate-rials at room temperature(Note1).For additional requirements pertaining to cemented carbides,see Annex A1.

N OTE1—For compression tests at elevated temperatures,see Practice E209.

1.2The values stated in inch-pound units are to be regarded as the standard.The metric equivalent values cited in the standard may be approximate.

1.3This standard does not purport to address all of the safety concerns,if any,associated with its use.It is the responsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.

2.Referenced Documents

2.1ASTM Standards:

B557Test Methods for Tension Testing Wrought and Cast Aluminum-and Magnesium-Alloy Products2

E4Practices for Force Veri?cation of Testing Machines3 E6Terminology Relating to Methods of Mechanical Test-ing3

E83Practice for Veri?cation and Classi?cation of Exten-someter3

E111Test Method for Young’s Modulus,Tangent Modulus, and Chord Modulus3

E171Speci?cation for Standard Atmospheres for Condi-tioning and Testing Flexible Barrier Materials4

E177Practice for Use of the Terms Precision and Bias in ASTM Test Methods5

E209Practice for Compression Tests of Metallic Materials at Elevated Temperatures with Conventional or Rapid Heating Rates and Strain Rates3

E251Test Methods for Performance Characteristics of Metallic Bonded Resistance Strain Gages3

3.Terminology

3.1De?nitions:The de?nitions of terms relating to com-pression testing and room temperature in Terminology E6and Speci?cation E171,respectively,shall apply to these test methods.

3.2De?nitions of Terms Speci?c to This Standard:

3.2.1buckling—In addition to compressive failure by crushing of the material,compressive failure may occur by(1) elastic instability over the length of a column specimen due to nonaxiality of loading,(2)inelastic instability over the length of a column specimen,(3)a local instability,either elastic or inelastic,over a small portion of the gage length,or(4)a twisting or torsional failure in which cross sections rotate over each other about the longitudinal specimen axis.These types of failures are all termed buckling.

3.2.2column—a compression member that is axially loaded and that may fail by buckling.

3.2.3radius of gyration—the square root of the ratio of the moment of inertia of the cross section about the centroidal axis to the cross-sectional area:

r5~I/A!1/2(1) where:

r=radius of gyration,

I=moment of inertia of the cross section about centroidal axis(for specimens without lateral support,the smaller

value of I is the critical value),and

A=cross-sectional area.

3.2.4critical stress—the axial uniform stress that causes a column to be on the verge of buckling.The critical load is calculated by multiplying the critical stress by the cross-section area.

3.2.5buckling equations—If the buckling stress is less than or equal to the proportional limit of the material its value may be calculated using the Euler equation:

1These test methods are under the jurisdiction of ASTM Committee E28on

Mechanical Testing and are the direct responsibility of Subcommittee E28.04on

Uniaxial Testing.

Current edition approved March31,1989.Published May1989.Originally

published as E9–https://www.wendangku.net/doc/4610582933.html,st previous edition E9–89.

2Annual Book of ASTM Standards,V ol02.02.

3Annual Book of ASTM Standards,V ol03.01.

4Annual Book of ASTM Standards,V ol15.09.

5Annual Book of ASTM Standards,V ol14.02.

1

Copyright?ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959,United States.

S cr 5C p 2E /~L /r !2

(2)

If the buckling stress is greater than the proportional limit of the material its value may be calculated from the modi?ed Euler equation:

S cr 5C p 2E t /~L /r !2

(3)

where:

S cr =critical buckling stress,E =Young’s modulus,E t =tangent modulus at the buckling stress,L =column length,and C =end-?xity coefficient.

Methods of calculating the critical stress using Eq 3are given in Ref (1).6

3.2.6end-?xity coeff?cient —There are certain ideal speci-men end-?xity conditions for which theory will de?ne the value of the constant C (see Fig.1).These values are:

Freely rotating ends (pinned or hinged)C =1(a )One end ?xed,the other free to rotate C =2(b )Both ends ?xed C =4(c )

N OTE 2—For ?at-end specimens tested between ?at rigid anvils,it was shown in Ref (1)that a value of C =3.75is appropriate.

3.2.7barreling —restricted deformation of the end regions of a test specimen under compressive load due to friction at the specimen end sections and the resulting nonuniform transverse deformation as shown schematically and in the photograph in Fig.2.Additional theoretical and experimental information on barreling as illustrated in Fig.2is given in Ref (2).

4.Summary of Test Methods

4.1The specimen is subjected to an increasing axial com-pressive load;both load and strain may be monitored either continuously or in ?nite increments,and the mechanical properties in compression determined.

5.Signi?cance and Use

5.1Signi?cance —The data obtained from a compression test may include the yield strength,the yield point,Young’s modulus,the stress-strain curve,and the compressive strength (see Terminology E 6).In the case of a material that does not fail in compression by a shattering fracture,compressive strength is a value that is dependent on total strain and specimen geometry.

5.2Use —Compressive properties are of interest in the analyses of structures subject to compressive or bending loads or both and in the analyses of metal working and fabrication processes that involve large compressive deformation such as forging and rolling.For brittle or nonductile metals that fracture in tension at stresses below the yield strength,com-pression tests offer the possibility of extending the strain range of the stress-strain data.While the compression test is not complicated by necking as is the tension test for certain metallic materials,buckling and barreling (see Section 3)can complicate results and should be minimized.

6.Apparatus

6.1Testing Machines —Machines used for compression test-ing shall conform to the requirements of Practices E 4.For universal machines with a common test space,calibration shall be performed in compression.

6.1.1The bearing surfaces of the heads of the testing machine shall be parallel at all times with 0.0002in./in.(m/m)unless an alignment device of the type described in 6.3is used.6.2Bearing Blocks :

6.2.1Both ends of the compression specimen shall bear on blocks with surfaces ?at and parallel within 0.0002in./in.(m/m).Lack of initial parallelism can be overcome by the use of adjustable bearing blocks (Note 3).The blocks shall be made of,or faced with,hard material.Current laboratory practice suggests the use of tungsten carbide when testing steel and hardened steel blocks (55HRC or greater)and when testing nonferrous materials such as aluminum,copper,etc.The specimen must be carefully centered with respect to the testing machine heads or the subpress if used (see 6.3,Alignment Device/Subpress).

N OTE 3—It should be remembered that the object of an adjustable bearing block is to give the specimen as even a distribution of initial load as possible.An adjustable bearing block cannot be relied on to compensate for any tilting of the heads that may occur during the test.

6.2.2The bearing faces of adjustable bearing blocks that contact the specimen shall be made parallel before the load is applied to the specimen.One type of adjustable bearing block that has proven satisfactory is illustrated in Fig.3.Another arrangement involving the use of a spherical-seated bearing block that has been found satisfactory for testing material other than in sheet form is shown in Fig.4.It is desirable that the spherical-seated bearing block be at the upper end of the test specimen (for specimens tested with the load axis vertical).The spherical surface of the block shall be de?ned by a radius having its point of origin in the ?at surface that bears on the specimen.

6.3Alignment Device/Subpress :

6

The boldface numbers in parentheses refer to the list of references at the end of this

standard.

FIG.1Diagrams Showing Fixity Conditions and Resulting

Buckling of

Deformation

6.3.1It is usually necessary to use an alignment device,unless the testing machine has been designed speci?cally for

axial alignment.The design of the device or subpress is largely dependent on the size and strength of the specimen.It must be designed so that the ram (or other moving parts)does not jam or tilt the device or the frame of the machine as a result of loading.The bearing blocks of the device shall have the same requirements for parallelism and ?atness as given in

6.2.1.

N OTE 1—A cylindrical specimen of AISI 4340steel (HRC =40)was compressed 57%(see upper diagram).The photo macrograph was made of a polished and etched cross section of the tested specimen.The highly distorted ?ow lines are the result of friction between the specimen ends and the loading ?xture.Note the triangular regions of restricted deformation at the ends and the cross-shaped zone of severe shear.

FIG.2Illustration of

Barreling

FIG.3Adjustable Bearing Block for Compression

Testing

FIG.4Spherical-Seated Bearing

Block

6.3.2The primary requirements of all alignment devices are that the load is applied axially,uniformly,and with negligible “slip-stick”friction.An alignment device that has been found suitable is shown in Fig.5and described in Ref.(3).Other devices of the subpress type have also been used successfully.

6.4Compression Testing Jigs—In testing thin specimens, such as sheet material,some means should be adopted to prevent the specimen from buckling during loading.This may be accomplished by using a jig containing sidesupport plates that bear against the wide sides of the specimen.The jig must afford a suitable combination of lateral-support pressure and spring constant to prevent buckling,but without interfering with axial deformation of the specimen.Although suitable combinations vary somewhat with variations in specimen material and thickness,testing temperatures,and accuracy of alignment,acceptable results can be obtained with rather wide ranges of lateral-support pressure and spring constant.Gener-ally,the higher the spring constant of the jig,the lower the lateral-support pressure that is required.Proper adjustments of these variables should be established during the quali?cation of the equipment(see6.6).

6.4.1It is not the intent of these methods to designate speci?c jigs for testing sheet materials,but merely to provide a few illustrations and references to jigs that have been used successfully,some of which are cited in Table1.Other jigs are acceptable provided they prevent buckling and pass the quali-?cation test set forth https://www.wendangku.net/doc/4610582933.html,pression jigs generally require that the specimen be lubricated on the supported sides to prevent extraneous friction forces from occurring at the support points.

6.5Strain Measurements:

6.5.1Mechanical or electromechanical devices used for measuring strain shall comply with the requirements for the applicable class described in Practice E83.The device shall be veri?ed in compression.

6.5.2Electrical-resistance strain gages(or other single-use devices)may be used provided the measuring system has been veri?ed and found to be accurate to the degree speci?ed in Practice E83.The characteristics of electrical resistance strain gages have been determined from Test Methods E251.

6.6Quali?cation of Test Apparatus—The complete compression-test apparatus,which consists of the testing ma-chine and when applicable,one or more of the following;the alignment device,the jig and the strain-measurement system, shall be quali?ed as follows:

6.6.1Conduct tests to establish the elastic modulus or?ve replicate specimens of2024-T3aluminum alloy sheet or 2024-T4aluminum alloy bar in accordance with Test Method E111.These quali?cation specimens shall be machined from sheet or bar in the location speci?ed in Test Methods B55

7. The thickness of the sheet or diameter of the bar may be machined to the desired thickness or diameter.It is essential that the extensometer be properly seated on the specimens when this test is performed.When the quali?cation specimens each provide a modulus value of10.73106psi(73.8GPa) 65%,the apparatus quali?es.

6.6.2The quali?cation procedure shall be performed using the thinnest rectangular specimen or smallest diameter round specimen to be tested in the apparatus.

7.Test Specimens

7.1Specimens in Solid Cylindrical Form—It is recom-mended that,where feasible,compression test specimens be in the form of solid circular cylinders.Three forms of solid cylindrical test specimens for metallic materials are recog-nized,and designated as short,medium-length,and long(Note 4).Suggested dimensions for solid compression test specimens for general use are given in Table2.

N OTE4—Short specimens typically are used for compression tests of such materials as bearing metals,which in service are used in the form of thin plates to carry load perpendicular to the surface.Medium-length specimens typically are used for determining the general compressive strength properties of metallic materials.Long specimens are best adapted for determining the modulus of elasticity in compression of metallic materials.

The specimen dimensions given in Table2have been used

successfully.Specimens with a L/D(length/diameter ratio)of1.5or2.0

are best adapted for determining the compressive strength of high-strength

materials.

7.2Rectangular or Sheet-Type Specimens—Test specimens

shall be?at and preferably of the full thickness of the material.

Where lateral support is necessary,the width and length are

dependent upon the dimensions of the jig used to support the

specimen.The length shall be sufficient to allow the specimen

to shorten the amount required to de?ne the yield strength,or

yield point,but not long enough to permit buckling in the FIG.5Example of Compression Testing Apparatus

unsupported portion.Specimen dimensions and the various types of jigs are given in Table 1.

7.3Preparation of Specimens —Lateral surfaces in the gage length shall not vary in diameter,width,or thickness by more than 1%or 0.002in.(0.05mm),whichever is less.(If a reduced section is used,this requirement applies only to the surface of the reduced section.)Also,the centerline of all lateral surfaces of the specimens shall be coaxial within 0.01in.(0.25mm).

7.3.1Surface Finish —Machined surfaces of specimens shall have a surface ?nish of 63μin.(1.6μm)or better.Machined lateral surfaces to which lateral support is to be applied shall be ?nished to at least 40microinches (1.0μm)arithmetic average.

7.3.2Flatness and Parallelism —The ends of a specimen shall be ?at and parallel within 0.0005in./in.(mm/mm)and perpendicular to the lateral surfaces to within 38of arc.In most cases this requirement necessitates the machining or grinding of the ends of the specimen.

7.3.3Edges of Rectangular Specimens —A width of mate-rial equal to at least the thickness of the specimen shall be machined from all sheared or stamped edges in order to remove material whose properties may have been altered.(If a reduced

section is used,this requirement applies only to the edges of the reduced section.)Specimens shall be ?nished so that the surfaces are free of nicks,grooves,and burrs.

7.4Gage Length Location —The ends of the gage length shall not be closer to the ends of the specimen or ends of the reduced section than one half of the width or diameter of the specimen.

8.Procedure

8.1Specimen Measurement —Measure the width and thick-ness,or the

diameter of the specimen with a micrometer along the gage section.Specimen dimensions greater than 0.10in.(2.5mm)should be measured to the nearest 0.001in.(0.02mm),and those less than 0.10in.(2.5mm)should be determined to the nearest 1%of the dimension being mea-sured.Calculate the average cross-sectional area of the speci-men gage section.

8.2Cleaning —Clean the ends of the specimen and ?xture bearing blocks with acetone or another suitable solvent to remove all traces of grease and oil.

8.3Lubrication —Bearing surface friction can affect test results (see section 5.2and Fig.2).Friction has been success-fully reduced by lubricating the bearing surfaces with TFE-?uorocarbon sheet,molybdenum disul?de,and other materials summarized in Ref.(3).

8.4Specimen Installation —Place the specimen in the test ?xture and carefully align the specimen to the ?xture to ensure concentric loading.Also,check that the specimen loading/reaction surfaces mate with the respective surfaces of the ?xture.If the ?xture has side supports,the specimen sides should contact the support mechanism with the clamping pressure recommended by the ?xture manufacturer,or as determined during the ?xture veri?cation tests.If screws are used to adjust side support pressure,it is recommended that a torque wrench be utilized to ensure consistent pressure.

8.4.1Transducer Attachment —If required,attach the exten-someter or other transducers,or both,to the specimen gage section.The gage length must be at least one half or preferably one diameter away from the ends of the specimen (see 7.4).8.5Load-Strain Range Selection —Set the load range of the testing machine so the maximum expected load is at least one

TABLE 1Representative Compression Jigs and Specimen Dimensions for Testing of Thin Sheet A

Type of Jig

Ref Thickness

Width

Length

Gage Length in.

mm

in.

mm

in.

mm

in.

mm

Montgomery-Templin:(4and 5)

General use

0.016and over 0.40and over 0.62516.0 2.6467.0125Magnesium alloys 0.016and over 0.40and over 0.750B 20.0 2.6467.0125NACA (Kotanchik et al)(6)0.020and over 0.50and over 0.5313.6 2.5364.5125Moore-McDonald (7)0.032and over 0.80and over 0.75C 20.0 2.6467.0125LaTour-Wolford (8)0.010to 0.0200.25to 0.500.5012.5 1.9549.51250.020and over 0.50and over 0.5012.5 2.0051.0125Miller

(9-11)

0.006to 0.0100.15to 0.250.4812.2 2.2256.51250.010to 0.0200.25to 0.500.5012.5 2.2356.51250.020and over 0.50and over 0.5012.5 2.2557.0125Sandorff-Dillon:(12)

General use

0.010and over 0.25and over 0.5012.5 4.12104.5250High-strength steel

0.010and over

0.25and over

0.50

12.5

3.10

78.5

2

50

A See Ref.(13)for additional jigs and specimen dimensions.

B

Reduced to 0.625in.(16.0mm)for 1.25in.(30mm)at the mid-length.C

Reduced to 0.650in.(16.5mm)for 1.25in.(30mm)at the mid-length.

TABLE 2Suggested Solid Cylindrical Specimens A

N OTE 1—Metric units represent converted specimen dimensions close to,but not the exact conversion from inch-pound units.

Speci-mens Diameter

Length

Approx L/D Ra-tio in.mm in.mm Short

1.1260.010.5060.0130.060.213.060.2 1.0060.051.0060.0525.61.25.61.0.8

2.0Medium

0.5060.0113.060.2 1.5060.0538.61. 3.00.8060.0120.060.2 2.3860.1260.63. 3.01.0060.0125.060.2 3.0060.1275.63. 3.01.12

60.01

30.0

60.2

3.38

60.1285.

63.

3.0Long

0.8060.011.2560.0120.060.232.060.2 6.3860.1212.50min 160.63.320min

8.010.0

A

Other length-to-diameter ratios may be used when the test is for compressive yield strength.

third of the range selected.Select the strain or de?ection scale so that the elastic portion of the load-versus-strain or load-versus-de?ection plot on the autographic record,is between 30°and60°to the load axis.

8.6Strain Measurements—Devices used for measuring strain shall comply with the requirements for the applicable class of extensometer described in Practice E83.Electrical strain gages,if used,shall have performance characteristics established by the manufacturer in accordance with Test

Methods E251.

8.7Testing Speed—For testing machines equipped with strain-rate pacers,set the machine to strain the specimen at a rate of0.005in./in.·min(m/m·min).For machine with load control or with crosshead speed control,set the rate so the specimen is tested at a rate equivalent to0.005in./in.·min (m/m·min)strain-rate in the elastic portion.A rate of0.003 in./in.·min(m/m·min)can be used if the material is strain-rate sensitive.

8.7.1For machines without strain-pacing equipment or automatic feedback control systems,maintain a constant cross-head speed to obtain the desired average strain-rate from the start of loading to the end point of the test.The average strain-rate can be determined from a time-interval-marked load-strain record,a time-strain graph,or from the time of the start of loading to the end point of test as determined from a time-measuring device(for example,stopwatch).It should be recognized that the use of machines with constant rate of crosshead movement does not ensure constant strain rate throughout a test.

8.7.2It should also be noted that the free-running crosshead speed may differ from the speed under load for the same machine setting,and that specimens of different stiffnesses may also result in different rates,depending upon the test machine and?xturing.Whatever the method,the specimen should be tested at a uniform rate without reversals or sudden changes.The test rate must also be such that the rate of load change on the specimen being tested,will be within the dynamic response of the measuring systems.This is of particu-lar importance when testing short specimens of high-modulus materials.

8.8Test Conduct—After the specimen has been installed and aligned,and the strain-or de?ection-measuring transducer installed,activate the recording device(s)and initiate the test at the prescribed rate.Continue the test at a uniform rate until the test has been completed as stated below.

8.8.1Ductile Materials—For ductile materials,the yield strength or yield point,and sometimes the strength at a strain greater than the yield strain,can be determined.The conduct of the test to determine either the onset of yielding or the compressive strength or both is the same.Materials without sharp-kneed stress-strain diagrams will require that the strain or de?ection at yield be initially estimated,and the specimen tested sufficiently beyond the initial estimation to be sure the yield stress can be determined after the test(see9.3).For materials,exhibiting a sharp-kneed stress-strain curve or a distinctive yield point,the test can be terminated either after a sharp knee or after the drop in load is observed.

8.8.2Brittle Materials—Brittle materials that fail by crush-ing or shattering may be tested to failure.

8.9Number of Specimens—Specimen blanks shall be taken from bulk materials according to applicable speci?cations.The number of specimens to be tested should be sufficient to meet the requirements as determined by the test purpose,or as agreed upon between the parties involved.The larger the sample,the greater the con?dence that the sample represents the total population.In most cases,between?ve and ten specimens should be sufficient to determine the compressive properties of a sample with reasonable con?dence.

8.10Precautions:

8.10.1Buckling—In compression tests of relatively long, slender specimens that are not laterally supported,the speci-mens may buckle elastically and?y from the test setup.A protective device should be in place to prevent injury.

8.10.2Shattering Fracture—Some materials may fail in a shattering manner which will cause pieces to be expelled as shrapnel.A protective device should be in place to prevent injury.

9.Calculations

9.1Determine the properties of the material from the dimensions of the specimen and the stress-strain diagram as described in the following paragraphs.For testing machines that record load units instead of stress,convert the load-versus-strain diagram to units of stress by dividing the load by the original cross-sectional area of the specimen gage section. 9.2Modulus of Elasticity—Calculate the modulus of elas-ticity as speci?ed in Test Method E111.If the elastic modulus is the prime quantity to be determined,the procedure given in Test Method E111must be followed.Again,the calculation of the modulus shall be according to Section7of Test Method E111.

9.3Yield Strength—To determine the yield strength by the offset method it is necessary to secure data(autographic or numerical)from which a stress-strain diagram may be drawn. Then on the stress-strain diagram(Fig.6)lay off Om equal to the speci?ed value of offset(conventional offset is0.002in./in. (m/m)),draw mn parallel to OA,and thus locate r,the intersection of mn with the stress-strain diagram.The stress corresponding to the point r is the yield strength for the speci?ed offset.

9.3.1In reporting values of yield strength obtained by these methods,the speci?ed value of offset used should be stated in parentheses after the term yield strength.Thus:

Yield strength~offset50.2%!552.0ksi~359MP a!(4) 9.3.2In using these methods,a Class B-2extensometer,as described in Practice E83,is sufficiently sensitive for most materials.

N OTE5—Automatic devices are available that determine offset yield strength without plotting a stress-strain curve.Such devices may be used if their accuracy has been demonstrated to be satisfactory.

N OTE6—If the load drops before the speci?ed offset is reached, technically the material does not have a yield strength(for that offset).In this case,the stress at the maximum load before the speci?ed offset is reached may be reported instead of the yield strength and shall be designated as the yield point.

9.4Yield Point —Materials that exhibit a sharp-kneed stress-strain diagram may exhibit a distinct drop in stress with increasing strain.The yield point is the maximum stress attained just prior to the sudden drop in stress.For testing machines without strain-or de?ection-recording capabilities,the yield point can be determined by noting the load at which the load dial indicator needle suddenly drops with the testing machine running at a steady rate.

9.5Compressive Strength —For a material that fails in compression by crushing or fracturing,the compressive strength is the maximum stress at or before fracture,as determined by dividing the maximum load by the cross-sectional area.For ductile materials,compressive strength may be determined from the stress-strain diagram at a speci?ed total strain.The strain at which this stress was determined must be speci?ed.

10.Report

10.1Include the following information in the test report:10.1.1Specimen Material —Describe the specimen mate-rial,alloy,heat treatment,mill batch number,grain direction,etc.,as applicable.

10.1.2Specimen Con?guration —Include a sketch of the specimen con?guration or reference to the specimen drawing.10.1.3Specimen Dimensions —State the actual measured dimensions for each specimen.

10.1.4Test Fixture and Lubricant —Describe the test ?xture or refer to ?xture drawings,specifying lubricant used if any.10.1.5Testing Machine —Include the make,model,and load range of testing machine.

10.1.6Speed of Testing —Record the test rate and mode of control.

10.1.7Stress-Strain Diagram —Include,if possible,the stress-strain diagram with scales,specimen number,test data,rate,and other pertinent information.

10.1.8Modulus of Elasticity —Report the modulus of elas-ticity when required,as determined according to 9.2.

10.1.9Yield Strength —Report the yield stress or yield point when required and the method of determination,as calculated in 9.3and 9.4.

10.1.10Compressive Strength —Report the compressive strength for material exhibiting brittle failure.A compressive strength at a speci?ed total strain may be reported for ductile materials.If so,report the strain at which the compressive stress was determined.

10.1.11Type of Failure —When applicable,describe the type of specimen failure.

10.1.12Precision and Bias —State the precision and accu-racy of the data reported as applicable in a manner consistent with Practice E 177.

10.1.13Anomalies —State any anomalies that occurred dur-ing the test that may have had an effect on the test results.10.2For commercial acceptance testing the following sec-tions of 10.1are considered sufficient:10.1.1and 10.1.2,and 10.1.9and 10.1.11.

11.Precision and Bias

11.1Precision —The following parameters are reported to impact upon the precision of the test methods:specimen buckling,loading surface friction,specimen barreling,and specimen size.The subcommittee is in the process of quanti-fying these effects.

11.2Bias —There are no available reference standards for destructive type tests such as compression.Therefore,the bias of this test method is an unknown.

12.Keywords

12.1axial compression;barreling;bearing blocks;buckling;compressometer;sheet compression jig;stress-strain diagram;sub-press;testing

machine

FIG.6Stress-Strain Diagram for Determination of Yield Strength

by the Offset

Method

ANNEX

(Mandatory Information)

A1.SPECIAL REQUIREMENTS IN THE DETERMINATION OF THE COMPRESSIVE STRENGTH OF CEMENTED

CARBIDES

A1.1Characteristics of Cemented Carbides

A1.1.1Cemented carbides are manufactured in a range of compositions having hardness from81.0to93.0HRA and compressive strengths from300to over800ksi(2100to5500 MPa).They fail by shattering fracture(see8.7.2and section 8.10.2).

A1.2Apparatus and Fixtures

A1.2.1Bearing Blocks—Cemented carbide bearing blocks shall be used.They shall be of a hardness such that the block faces will not suffer signi?cant permanent deformation during test(suggested hardness of92HRA).

A1.2.2Bearing Block Preparation—The block diameter shall be at least three times the diameter of the specimen.Its thickness shall be at least two thirds the block diameter.Faces of the bearing blocks shall be?at within60.0002in./in.(m/m), parallel within0.0005in./in.(m/m),and have a surface?nish of8μin.(0.2μm)arithmetic average(aa).The blocks shall be used in conjunction with devices such as those shown in Figs. 3-5.

A1.2.3The total accumulated lack of parallelism in the test assembly shall not exceed0.0005in./in.(m/m).

A1.2.4In order to minimize detrimental end effects,a shim of0.001in.(0.025mm)in thickness,of standard cold-rolled steel shim stock,shall be interposed between each specimen end and the bearing block.Each shim shall be used only once (see Ref14).

A1.3Test Specimens

A1.3.1Size and Shape—The specimens shall be in the form

of circular cylinders0.37560.01in.(10.060.2mm)in

diameter and1.0060.05in.(25.061.0mm)long.

A1.3.2Preparation of Specimens—The ends of a specimen

shall be plane and normal to its longitudinal axis.They shall be

parallel within a maximum of60.0005in./in.(m/m),?at

within60.0002in./in.(m/m),and have a surface?nish of8

μin.(0.2μm)aa.

A1.4Speed of Testing

A1.4.1Speed of testing shall be speci?ed in terms of rate of

stressing the specimen,and shall not exceed50.0ksi(345

MPa)/min.

REFERENCES

(1)Papirno,R.,“Inelastic Buckling of ASTM Standard E9Compression

Specimens,”Journal of Testing and Evaluation,JTEV A,V ol15,No.3, May1987,pp.133–135.

(2)Mescall,J.,Papirno,R.,and McLaughlin,J.,“Stress and Deformation

States Associated with Upset Tests in Metals,”Compression Testing of Homogeneous Materials and Composites,ASTM STP808,Richard Chait and Ralph Papirno,Eds.,ASTM,1983,pp.7–23.

(3)Chait,R.,and Curll, C.H.,“Evaluating Engineering Alloys in

Compression,”Recent Developments in Mechanical Testing.ASTM STP608,Am.Soc.Testing Mats.,1976,pp.3–19;see also Hsü,T.C.,

A Study of the Compression Test for Ductile Materials,Material

Research&Standards,V ol9,No.12,December1969,p.20.

(4)Paul,D.A.,Howell,F.M.,and Grieshaber,H.E.,“Comparison of

Stress-Strain Curves Obtained by Single-Thickness and Pack Meth-ods,”National Advisory Committee for Aeronautics,Washington,DC, Technical Note No.NACA-TN-819,August1941.

(5)Templin,R.L.,“Discussion on Single-Strip Compression Test for

Sheet Materials,”Proceedings,ASTM,V ol45,1945,pp.690–93. (6)Kotanchik,J.,Woods,W.,and Weinberger,R.,“Investigation of

Methods of Supporting Single-Thickness Specimens in a Fixture for Determination of Compressive Stress-Strain Curves,”National Advi-sory Committee for Aeronautics,Washington,DC,Wartime Report No.WR L-189,May1945.

(7)Moore, A. A.,and McDonald,J. C.,“Compression Testing of

Magnesium Alloy Sheet,”Proceedings,ASTM,V ol45,1945,pp.

671–704.

(8)LaTour,H.,and Wolford,D.S.,“Single-Strip Compression Test for

Sheet Materials,”Proceedings,ASTM,V ol45,1945,pp.671–88. (9)Miller,J.A.,“A Fixture for Compressive Tests of Thin Sheet Steel

Between Lubricated Steel Guides,”National Advisory Committee for Aeronautics,Washington,DC,Technical Note No.NACA-TN-1022, April1946.

(10)Ramberg,W.,and Miller,J.A.,“Determination and Presentation of

Compressive Stress-Strain Data for Thin Sheet Metal,”Journal of the Aeronautical Sciences,V ol13,No.11,1946,pp.569–80.

(11)Miller,J.A.,“Discussion on Micro-Deformation under Tension and

Compression Loads of Thin Aluminum Alloy Sheets for Aircraft Construction,”Proceedings,ASTM,V ol44,1944,pp.683–85(See Ref.7for fuller description of the?xture.)

(12)Sandorff,P. E.,and Dillon,R.K.,“Compressive Stress-Strain

Properties of Some Aircraft Materials,”Proceedings,ASTM,V ol46, 1946,pp.1039–52.

(13)Symposium on Elevated Temperatures Compression Testing of Sheet

Materials,ASTM STP303,Am.Soc.Testing Mats,1962.

(14)Lueth,R.C.,and Hale,T.E.,“Compressive Strength of Cement

Carbides—Failure Mechanics and Testing Methods,”Material Re-search&Standards,V ol10,No.2,1970,pp.23–28.

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this https://www.wendangku.net/doc/4610582933.html,ers of this standard are expressly advised that determination of the validity of any such patent rights,and the risk of infringement of such rights,are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every?ve years and if not revised,either reapproved or withdrawn.Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters.Your comments will receive careful consideration at a meeting of the responsible technical committee,which you may attend.If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards,at the address shown below.

This standard is copyrighted by ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959, United States.Individual reprints(single or multiple copies)of this standard may be obtained by contacting ASTM at the above address or at610-832-9585(phone),610-832-9555(fax),or service@https://www.wendangku.net/doc/4610582933.html,(e-mail);or through the ASTM website (https://www.wendangku.net/doc/4610582933.html,).

筛网目数对照表

过滤器滤网精度换算 微米0000 毫米目数105 目数微米目数微米目数微米目数微米 2. 4459925 33 89 5005 9132502 粉体颗粒大小称颗粒粒度。由于颗粒形状很复杂,通常有筛分粒度、沉降粒度、等效体积粒度、等效表面积粒度等几种表示方法。筛分粒度就是颗粒可以通过筛网的筛孔尺寸,以1英寸()宽度的筛网内的筛孔数表示,因而称之为“目数”。目前在国内外尚未有统一的粉体粒度技术标准,各个企业都有自己的粒度指标定义和表示方法。在不同国家、不同行业的筛网规格有不同的标准,因此“目”的含义也难以统一。 目前国际上比较浒用等效体积颗粒的计算直径来表示粒径。以μm或mm表示。 下表为我国通常使用的筛网目数与粒径(μm)对照表。 微米概念:微米是长度单位,符号[micron],读作[miu]。1微米相当于1米的一百万分之一(此即为「微」的字义)。换算关系:1000000皮米(pm)=1微米(μm)1000纳米(nm)=1微米(μm)毫米(mm)=1微米(μm)... 旋风分离器的作用 旋风分离器设备的主要功能是尽可能除去输送介质气体中携带的固体颗粒杂质和液滴,达到气固液分离,以保证管道及设备的正常运行。 工作原理 净化天然气通过设备入口进入设备内旋风分离区,当含杂质气体沿轴向进入旋风分离管后,气流受导向叶片的导流作用而产生强烈旋转,气流沿筒体呈螺旋形向下进入旋风筒体,密度大的液滴和尘粒在离心力作用下被甩向器壁,并在重力作用下,沿筒壁下落流出旋风管排尘口至设备底部储液区,从设备底部的出液口流出。旋转的气流在筒体内收缩向中心流动,向上形成二次涡流经导气管流至净化天然气室,再经设备顶部出口流出。 性能指标 分离精度

标准筛粒度(目数)对照表

标准筛粒度(目数)对照表 1. 目是指每平方英吋筛网上的空眼数目,50目就是指每平方英吋上的孔眼是50个,500目就是500个,目数越高,孔眼越多。除了表示筛网的孔眼外,它同时用于表示能够通过筛网的粒子的粒径,目数越高,粒径越小。 2. 粉体颗粒大小称颗粒粒度。由于颗粒形状很复杂,通常有筛分粒度、沉降粒度、等效体积粒度、等效表面积粒度等几种表示方法。目前在国内外尚未有统一的粉体粒度技术标准,各个企业都有自己的粒度指标定义和表示方法。在不同国家、不同行业的筛网规格有不同的标准,因此“目”的含义也难以统一。 3、筛分粒度就是颗粒可以通过筛网的筛孔尺寸,以1英寸(25.4mm)宽度的筛网内的筛孔数表示,因而称之为“目数”。 4、我国采用的是美国标准。

目是指颗粒的粒径,目数越大颗粒越细 目是有量度含义的,具体如下: 筛分粒度就是颗粒可以通过筛网的筛孔尺寸,以1英寸(25.4mm)宽度的筛网内的筛孔数表示,因而称之为“目数” 。 目数粒度对照表 目数粒度um 目数粒度um 目数粒度um 5 3900 140 104 1600 10 10 2000 170 89 1800 8 16 1190 200 74 2000 6.5

20 840 230 61 2500 5.5 25 710 270 53 3000 5 30 590 325 44 3500 4.5 35 500 400 38 4000 3.4 40 420 460 30 5000 2.7 45 350 540 26 6000 2.5 50 297 650 21 7000 1.25 60 250 800 19 12500 1 80 178 900 15 100 150 1100 13 120 124 1300 11

标准筛目数与粒度对照表

标准筛目数与粒度对照表 (一)标准筛目数 目是指每平方英吋筛网上的空眼数目,50目就是指每平方英吋上的孔眼是50个,500目就是500个,目数越高,孔眼越多。除了表示筛网的孔眼外,它同时彰于表示能够通过筛网的粒子的粒径,目数越高,粒径越小标准筛需要配合标准振筛机才能准确测定。粉体颗粒大小称颗粒粒度。由于颗粒形状很复杂,通常有筛分粒度、沉降粒度、等效体积粒度、等效表面积粒度等几种表示方法。筛分粒度就是颗粒可以通过筛网的筛孔尺寸,以1英寸(25.4mm)宽度的筛网内的筛孔数表示,因而称之为“目数”。 一般来说,目数×孔径(微米数)=15000。比如,400目的筛网的孔径为38微米左右;500目的筛网的孔径是30微米左右。由于存在开孔率的问题,也就是因为编织网时用的丝的粗细的不同,不同的国家的标准也不一样,目前存在美国标准、英国标准和日本标准三种,其中英国和美国的相近,日本的差别较大。我国使用的是美国标准,也就是可用上面给出的公式计算。由此定义可以看出,目数的大小决定了筛网孔径的大小。而筛网孔径的大小决定了所过筛粉体的最大颗粒Dmax。所以,我们可以看出,400目的抛光粉完全有可能非常细,比如只有1-2微米,也完全有可能是10微米、20微米。因为,筛网的孔径是38微米左右。我们生产400目的抛光粉的D50就有20微米。 目前在国内外尚未有统一的粉体粒度技术标准,各个企业都有自己的粒度指标定义和表示方法。在不同国家、不同行业的筛网规格有不同的标准,因此“目”的含义也难以统一目前国际上比较浒用等效体积颗粒的计算直径来表示粒径。以μm或mm表示。 Particle Size Conversion Chart(各国标准目数及毫米、微米对照表)

目数、粒度对照表

目数、粒度对照表

目数对照表筛孔尺寸:4.75mm 标准目数:4目 筛孔尺寸:4.00mm 标准目数:5目 筛孔尺寸:3.35mm 标准目数:6目 筛孔尺寸:2.80mm 标准目数:7目 筛孔尺寸:2.36mm 标准目数:8目 筛孔尺寸:2.00mm 标准目数:10目 筛孔尺寸:1.70mm 标准目数:12目 筛孔尺寸:1.40mm 标准目数:14目 筛孔尺寸:1.18mm 标准目数:16目 筛孔尺寸:1.00mm 标准目数:18目 筛孔尺寸:0.850mm 标准目数:20目 筛孔尺寸:0.710mm 标准目数:25目 筛孔尺寸:0.600mm 标准目数:30目 筛孔尺寸:0.500mm 标准目数:35目 筛孔尺寸:0.425mm 标准目数:40目 筛孔尺寸:0.355mm 标准目数:45目 筛孔尺寸:0.300mm 标准目数:50目 筛孔尺寸:0.250mm 标准目数:60目 筛孔尺寸:0.212mm 标准目数:70目 筛孔尺寸:0.180mm 标准目数:80目 筛孔尺寸:0.150mm 标准目数:100目 筛孔尺寸:0.125mm 标准目数:120目 筛孔尺寸:0.106mm 标准目数:140目 筛孔尺寸:0.090mm 标准目数:170目 筛孔尺寸:0.0750mm 标准目数:200目 筛孔尺寸:0.0630mm 标准目数:230目 筛孔尺寸:0.0530mm 标准目数:270目 筛孔尺寸:0.0450mm 标准目数:325目 筛孔尺寸:0.0374mm 标准目数:400目

目数前加正负号则表示能否漏过该目数的网孔。负数表示能漏过该目数的网孔,即颗粒尺寸小于网孔尺寸;而正数表示不能漏过该目数的网孔,即颗粒尺寸大于网孔尺寸。例如,颗粒为-100目~+200目,即表示这些颗粒能从100目的网孔漏过而不能从200目的网孔漏过,在筛选这种目数的颗粒时,应将目数大(200)的放在目数小(100)的筛网下面,在目数大(200)的筛网中留下的即为-100~+200目的颗粒。 目数粒度对照表

目数及粒径对照表

? 筛网目数与粒径对照表以及相关知识 ? ?目数,就是孔数,就是每平方英寸上的孔数目。目数越大,孔径越小。一般来说,目数×孔径(微米数)=15000。比如,400目的筛网的孔径为38微米左右;500目的筛网的孔径是30微米左右。由于存在开孔率的问题,也就是因为编织网时用的丝的粗细的不同,不同的国家的标准也不一样,目前存在美国标准、英国标准和日本标准三种,其中英国和美国的相近,日本的差别较大。我国使用的是美国标准,也就是可用上面给出的公式计算。 由此定义可以看出,目数的大小决定了筛网孔径的大小。而筛网孔径的大小决定了所过筛粉体的最大颗粒Dmax。所以,我们可以看出,400目的抛光粉完全有可能非常细,比如只有1-2微米,也完全有可能是10微米、20微米。因为,筛网的孔径是38微米左右。我们生产400目的抛光粉的D50就有20微米。 ?

────────────────────

──────────────────── 目数|目数定义|粒度|孔径对照表 标准筛目数: 1.目是指每平方英吋筛网上的空眼数目,50目就是指每平方英吋上的孔眼是50 个,500目就是500个,目数越高,孔眼越多。除了表示筛网的孔眼外,它同时用于表示能够通过筛网的粒子的粒径,目数越高,粒径越小,标准筛需要配合标准振筛机才能准确测定 2. 粉体颗粒大小称颗粒粒度。由于颗粒形状很复杂,通常有筛分粒度、沉降粒度、等效体积粒度、等效表面积粒度等几种表示方法。 筛分粒度就是颗粒可以通过筛网的筛孔尺寸,以1英寸(25.4mm)宽度的筛网内的筛孔数表示,因而称之为“目数”。目前在国内外尚未有统一的粉体粒度技术标准,各个企业都有自己的粒度指标定义和表示方法。在不同国家、不同行业的筛网规格有不同的标准,因此“目”的含义也难以统一。目前国际上比较浒用等效体积颗粒的计算直径来表示粒径。以μm或mm表示 标准筛目数|粒度对照表:

目数,粒度对照表

目数对照表 筛孔尺寸:标准目数:4目 筛孔尺寸:标准目数:5目 筛孔尺寸:标准目数:6目 筛孔尺寸:标准目数:7目 筛孔尺寸:标准目数:8目 筛孔尺寸:标准目数:10目 筛孔尺寸:标准目数:12目 筛孔尺寸:标准目数:14目 筛孔尺寸:标准目数:16目 筛孔尺寸:标准目数:18目 筛孔尺寸:标准目数:20目 筛孔尺寸:标准目数:25目 筛孔尺寸:标准目数:30目 筛孔尺寸:标准目数:35目 筛孔尺寸:标准目数:40目 筛孔尺寸:标准目数:45目 筛孔尺寸:标准目数:50目 筛孔尺寸:标准目数:60目 筛孔尺寸:标准目数:70目 筛孔尺寸:标准目数:80目 筛孔尺寸:标准目数:100目 筛孔尺寸:标准目数:120目 筛孔尺寸:标准目数:140目 筛孔尺寸:标准目数:170目 筛孔尺寸:标准目数:200目 筛孔尺寸:标准目数:230目 筛孔尺寸:标准目数:270目

筛孔尺寸:标准目数:325目 筛孔尺寸:标准目数:400目 目数前加正负号则表示能否漏过该目数的网孔。负数表示能漏过该目数的网孔,即颗粒尺寸小于网孔尺寸;而正数表示不能漏过该目数的网孔,即颗粒尺寸大于网孔尺寸。例如,颗粒为-100目~+200目,即表示这些颗粒能从100目的网孔漏过而不能从200目的网孔漏过,在筛选这种目数的颗粒时,应将目数大(200)的放在目数小(100)的筛网下面,在目数大(200)的筛网中留下的即为-100~+200目的颗粒。

颗粒大小表示目数粒度对照表 点击次数:10749 发布时间:2011-11-24 提供商:杭州利辉环境检测设备有限公司资料大小:JPG 图片类型:JPG下载次数:37 次 资料类型:JPG浏览次数:10749 次 相关产品: 详细介绍:文件下载图片下载 目数粒度对照表 在进行环境检测设备,特别市砂尘试验箱工作中经常遇到表示颗粒大小的方法,主要有目数和粒度,先将其对照如下: 筛分粒度就是颗粒可以通过标准筛网的筛孔尺寸,以1英寸宽度的筛网内

标准筛粒度目数对照表

标准筛粒度(目数)对照表 1.目是指每平方英寸筛网上的空眼数目,50目就是指每平方英寸上的 孔眼是50个,500目就是500个,目数越高,孔眼越多。除了表示筛网的孔眼外,它同时用于表示能够通过筛网的粒子的粒径,目数越高, 粒径越小。 2.粉体颗粒大小称颗粒粒度。由于颗粒形状很复杂,通常有筛分粒度、沉降粒度、等效体积粒度、等效表面积粒度等几种表示方法。目前在国内外尚未有统一的粉体粒度技术标准,各个企业都有自己的粒度指标定义和表示方法。在不同国家、不同行业的筛网规格有不同的标准,因此目”的含义也难以统一。 3、筛分粒度就是颗粒可以通过筛网的筛孔尺寸,以1英寸(25.4mm)宽度的筛网内的筛孔数表示,因而称之为目数” 4、我国采用的是美国标准。

目是指颗粒的粒径,目数越大颗粒越细 目是有量度含义的,具体如下: 筛分粒度就是颗粒可以通过的筛孔尺寸,以1英寸(25.4mm)宽度的筛网内的筛 孔数表示,因而称之为目数”。 目数粒度对照表 目数粒度um???目数粒度um? 目数粒度um 53900140104 160010 1020001708918008

161190200742000 2084023061? 2500 257102705330005 30590325443500 35500400384000 40420460305000 45350540266000 50297650217000 6025080019125001 8017890015 100150110013 120124130011 “目 ”为非标准单位,为了使用方便,经验的换算公式为:粒度d(mm)=16/目数。 筛分粒度测试方法: 一、显微图象法: 显微图象法包括显微镜、CCD 摄像头(或数码像机)、图形采集卡、计算机等部分组成。它的基本工作原理是将显微镜放大后的颗粒图像通过CCD 摄像头和图形采集卡传输到计算机中,由计算机对这些图像进行边缘识别等处理,计算出每个颗粒的投影面积,根据等效投影面积原理得出每个颗粒的粒径,再统计出所设定的粒径区间的颗粒的数量,就可以得到粒度分布了 由于这种方法单次所测到的颗粒个数较少,对同一个样品可以通过更换视场的方法进行多次测量来提高测试结果的真实性。除了进行粒度测试之外,显微图象法还常用来观察和测试颗粒的形貌。

筛目粒径对照参考表

筛目\粒径对照参考表 各国标准筛的规格不尽相同,常用的泰勒制是以每英寸长的孔数为筛号,称为目。例如100目的筛子表示每英寸筛网上有100个筛孔。 筛孔尺寸与标准目数对应: 筛孔尺寸:4.75mm 标准目数: 4目 筛孔尺寸:4.00mm 标准目数: 5目 筛孔尺寸:3.35mm 标准目数: 6目 筛孔尺寸:2.80mm 标准目数: 7目 筛孔尺寸:2.36mm 标准目数: 8目 筛孔尺寸:2.00mm 标准目数:10目 筛孔尺寸:1.70mm 标准目数:12目 筛孔尺寸:1.40mm 标准目数:14目 筛孔尺寸:1.18mm 标准目数:16目 筛孔尺寸:1.00mm 标准目数:18目 筛孔尺寸:0.850mm标准目数:20目 筛孔尺寸:0.710mm标准目数:25目 筛孔尺寸:0.600mm标准目数:30目 筛孔尺寸:0.500mm标准目数:35目 筛孔尺寸:0.425mm标准目数:40目 筛孔尺寸:0.355mm标准目数:45目 筛孔尺寸:0.300mm标准目数:50目 筛孔尺寸:0.250mm标准目数:60目 筛孔尺寸:0.212mm标准目数:70目 筛孔尺寸:0.180mm标准目数:80目 筛孔尺寸:0.150mm标准目数:100目 筛孔尺寸:0.125mm标准目数:120目 筛孔尺寸:0.106mm标准目数:140目 筛孔尺寸:0.090mm标准目数:170目 筛孔尺寸:0.0750mm标准目数:200目 筛孔尺寸:0.0630mm标准目数:230目 筛孔尺寸:0.0530mm标准目数:270目 筛孔尺寸:0.0450mm标准目数:325目 筛孔尺寸:0.0380mm标准目数:400目 我国通常使用的筛网目数(mesh)与粒径(μm)对照表 目数粒度um 目数粒度um 目数粒度um 5 3900 140 104 1600 10

目数、粒度对照表

目数对照表 筛孔尺寸:4.75mm 标准目数:4目 筛孔尺寸:4.00mm 标准目数:5目 筛孔尺寸:3.35mm 标准目数:6目 筛孔尺寸:2.80mm 标准目数:7目 筛孔尺寸:2.36mm 标准目数:8目 筛孔尺寸:2.00mm 标准目数:10目 筛孔尺寸:1.70mm 标准目数:12目 筛孔尺寸:1.40mm 标准目数:14目 筛孔尺寸:1.18mm 标准目数:16目 筛孔尺寸:1.00mm 标准目数:18目 筛孔尺寸:0.850mm 标准目数:20目 筛孔尺寸:0.710mm 标准目数:25目 筛孔尺寸:0.600mm 标准目数:30目 筛孔尺寸:0.500mm 标准目数:35目 筛孔尺寸:0.425mm 标准目数:40目 筛孔尺寸:0.355mm 标准目数:45目 筛孔尺寸:0.300mm 标准目数:50目 筛孔尺寸:0.250mm 标准目数:60目 筛孔尺寸:0.212mm 标准目数:70目 筛孔尺寸:0.180mm 标准目数:80目 筛孔尺寸:0.150mm 标准目数:100目 筛孔尺寸:0.125mm 标准目数:120目 筛孔尺寸:0.106mm 标准目数:140目 筛孔尺寸:0.090mm 标准目数:170目 筛孔尺寸:0.0750mm 标准目数:200目 筛孔尺寸:0.0630mm 标准目数:230目 筛孔尺寸:0.0530mm 标准目数:270目 筛孔尺寸:0.0450mm 标准目数:325目 筛孔尺寸:0.0374mm 标准目数:400目 目数前加正负号则表示能否漏过该目数的网孔。负数表示能漏过该目数的网孔,即颗粒尺

寸小于网孔尺寸;而正数表示不能漏过该目数的网孔,即颗粒尺寸大于网孔尺寸。例如,颗粒为-100目~+200目,即表示这些颗粒能从100目的网孔漏过而不能从200目的网孔漏过,在筛选这种目数的颗粒时,应将目数大(200)的放在目数小(100)的筛网下面,在目数大(200)的筛网中留下的即为-100~+200目的颗粒。 目数粒度对照表

目数及粒径对照表

筛网目数与粒径对照表以及相关知识 ? 目数,就是孔数,就是每平方英寸上的孔数目。目数越大,孔径越小。一般来说,目数×孔径(微米数)=15000。比如,400目的筛网的孔径为38微米左右;500目的筛网的孔径是30微米左右。由于存在开孔率的问题,也就是因为编织网时用的丝的粗细的不同,不同的国家的标准也不一样,目前存在美国标准、英国标准和日本标准三种,其中英国和美国的相近,日本的差别较大。我国使用的是美国标准,也就是可用上面给出的公式计算。 由此定义可以看出,目数的大小决定了筛网孔径的大小。而筛网孔径的大小决定了所过筛粉体的最大颗粒Dmax。所以,我们可以看出,400目的抛光粉完全有可能非常细,比如只有1-2微米,也完全有可能是10微米、20微米。因为,筛网的孔径是38微米左右。我们生产400目的抛光粉的D50就有20微米。

────────────────────

──────────────────── 目数|目数定义|粒度|孔径对照表 标准筛目数: 1.目是指每平方英吋筛网上的空眼数目,50目就是指每平方英吋上的孔眼是50个,500目就是500个,目数越高,孔眼越多。除了表示筛网的孔眼外,它同时用于表示能够通过筛网的粒子的粒径,目数越高,粒径越小,标准筛需要配合标准振筛机才能准确测定 2. 粉体颗粒大小称颗粒粒度。由于颗粒形状很复杂,通常有筛分粒度、沉降粒度、等效体积粒度、等效表面积粒度等几种表示方法。筛分粒度就是颗粒可以通过筛网的筛孔尺寸,以1英寸()宽度的筛网内的筛孔数表示,因而称之为“目数”。目前在国内外尚未有统一的粉体粒度技术标准,各个企业都有自己的粒度指标定义和表示方法。在不同国家、不同行业的筛网规格有不同的标准,因此“目”的含义也难以统一。目前国际上比较浒用等效体积颗粒的计算直径来表示粒径。以μm或mm表示

粉体细度粒径单位换算对照表

目粒度 粉体颗粒大小称颗粒粒度。由于颗粒形状很复杂,通常有筛分粒度、沉降粒度、等效体积粒度、等效表面积粒度等几种表示方法。 筛分粒度就是颗粒可以通过筛网的筛孔尺寸,以1英寸(25.4mm)宽度的筛网内的筛孔数表示,因而称之为“目数”。 粉体细度粒径单位换算对照表 粒径(m)微米um纳米nm日式单位(目) 10-4m100um100000nm180目 10-5m10um10000nm1800目 10-6m1um1000nm1.8万目 10-7m0.1um100nm18万目 10-8m0.01um10nm180万目 10-9m0.001um1nm1800万目 10-9m以下0.001um以下进入i1nm以下接近原子大1800万目以上 1米(m)=100厘米(cm);1厘米(cm)=10m=10毫米(mm); 1毫米(mm)=10m=1000微米(um);1微米(um)=10m=1000纳米(nm);1纳米=10m。【病毒大小约100纳米】 纳米(nm)=[10的-7至10的-9次方米]之间=细度大小折合日式单位换算约18万目~1800万目。 微米(um)=[10的-6次方米以下]=细度大小折合日式单位换算约1.8万目以下。微米之极限细度是18000目。 趋纳米=微纳米=[10的-6次方米]至[10的-7次方米]之间=18000目~180000目之间。 320目320mesh目的英文单位是mesh

目数,就是孔数,就是每平方英寸上的孔数目。目数越大,孔径越小。一般来说,目数×孔径(微米数)=15000。比如,400目的筛网的孔径为38微米左右;500目的筛网的孔径是30微米左右。由于存在开孔率的问题,也就是因为编织网时用的丝的粗细的不同,不同的国家的标准也不一样,目前存在美国标准、英国标准和日本标准三种,其中英国和美国的相近,日本的差别较大。我国使用的是美国标准,也就是可用上面给出的公式计算。美国泰勒标准筛的筛目尺寸对照表.可在下面网页看到详细资料. 由此定义可以看出,目数的大小决定了筛网孔径的大小。而筛网孔径的大小决定了所过筛粉体的最大颗粒Dmax。所以,我们可以看出,400目的抛光粉完全有可能非常细,比如只有1-2微米,也完全有可能是10微米、20微米。因为,筛网的孔径是38微米左右。我们生产400目的抛光粉的D50就有20微米。附图给出的就是这种抛光粉的照片,注意标尺是50 微米。

颗粒的目数粒度对照表(新)

颗粒的目数粒度对照表 泰勒标准筛,所谓的多少目是指在每英寸(一个规定的单位长度2.54厘米)的长度上有多少筛孔,如果有100个孔,就是100目筛,孔数越多,孔眼也就越小。但由于制作材料不同,比如有不锈钢筛、尼龙筛、铜筛等,它们的粗细不同,所以同是100目筛地话,大小实际上也有区别。目前在国内外尚未有统一的粉体粒度技术标准,各个企业都有自己的粒度指标定义和表示方法。在不同国家、不同行业的筛网规格有不同的标准,因此“目”的含义也难以统一。 目前国际上比较流行用等效体积颗粒的计算直径来表示粒径,以μm或mm为单位。 目为非标准单位,经验的换算方法为:粒度(um)x 目数=16000 筛分粒度测试方法: 一、显微图象法: 显微图象法包括显微镜、CCD摄像头(或数码像机)、图形采集卡、计算机等部分组成。它基本工作原理将显微镜放大后颗粒图像通过CCD摄像头和图形采集卡传输到计算机中,由计算机对这些图像进行边缘识别等处理,计算出每个颗粒投影面积,根据等效投影面积原理得出每个颗粒粒径,再统计出所设定粒径区间颗粒数量,就可以得到粒度分布了。由于这种方法单次所测到颗粒个数较少,对同一个样品可以通过更换视场方法进行多次测量来提高测试结果真实性。除了进行粒度测试之外,显微图象法还常用来观察和测试颗粒形貌。 二、其它颗粒度测试方法:除了上述几种粒度测试方法以外,目前在生产和研究领域还常用刮板法、沉降瓶法、透气法、超声波法和动态光散射法等。 (1) 刮板法:把样品刮到一个平板表面上,观察粗糙度,以此来评价样品粒度否合格。此法涂料行业采用一种方法。一个定性粒度测试方法。 (2) 沉降瓶法:它原理与前后讲沉降法原理大致相同。测试过程首先将一定量样品与液体在 500ml或1000l量筒里配制成悬浮液,充分搅拌均匀后取出一定量(如20ml)作为样品总重量,然后根据Stokes定律计算好每种颗粒沉降时间,在固定时刻分别放出相同量悬浮液,来代表该时刻对应粒径。将每个时刻得到悬浮液烘干、称重后就可以计算出粒度分布了。此法目前在磨料和河流泥沙等行业还有应用。

目数粒径对照表

颗粒目数的定义: 所谓目数,是指物料的粒度或粗细度,一般定义是指在1英寸*1英寸的面积内有多少个网孔数,即筛网的网孔数,物料能通过该网孔即定义为多少目数:如200目,就是该物料能通过1英寸*1英寸内有200个网孔的筛网。以此类推,目数越大,说明物料粒度越细,目数越小,说明物料粒度越大。 筛孔尺寸与标准目数对应: 筛孔尺寸:4.75mm 标准目数:4目 筛孔尺寸:4.00mm 标准目数:5目 筛孔尺寸:3.35mm 标准目数:6目 筛孔尺寸:2.80mm 标准目数:7目 筛孔尺寸:2.36mm 标准目数:8目 筛孔尺寸:2.00mm 标准目数:10目 筛孔尺寸:1.70mm 标准目数:12目 筛孔尺寸:1.40mm 标准目数:14目 筛孔尺寸:1.18mm 标准目数:16目 筛孔尺寸:1.00mm 标准目数:18目 筛孔尺寸:0.850mm标准目数:20目 筛孔尺寸:0.710mm标准目数:25目 筛孔尺寸:0.600mm标准目数:30目 筛孔尺寸:0.500mm标准目数:35目 筛孔尺寸:0.425mm标准目数:40目 筛孔尺寸:0.355mm标准目数:45目 筛孔尺寸:0.300mm标准目数:50目 筛孔尺寸:0.250mm标准目数:60目 筛孔尺寸:0.212mm标准目数:70目 筛孔尺寸:0.180mm标准目数:80目 筛孔尺寸:0.150mm标准目数:100目 筛孔尺寸:0.125mm标准目数:120目 筛孔尺寸:0.106mm标准目数:140目 筛孔尺寸:0.090mm标准目数:170目 筛孔尺寸:0.0750mm标准目数:200目 筛孔尺寸:0.0630mm标准目数:230目 筛孔尺寸:0.0530mm标准目数:270目 筛孔尺寸:0.0450mm标准目数:325目

金刚砂牌号目数粒度对照表

主要规格/ 特殊功能: 飞轮牌静电植砂砂布(也叫氧化铝干磨砂布)是选用棉布为基体,动物胶为粘接剂,刚玉为磨料而制成的一种涂附磨具。用途:它主要用于金属,陶瓷,橡胶,木材,半导体,皮革和玻璃的打磨和抛光。适合手工和机械使用,通用 性强,应用面广。静电植砂:磨料颗粒定向排列,砂面均匀,磨削锋利。基体: 6/0#-5/0#为府绸布其它为棉布。尺寸:页状230mmX280mm 。 ;卷状690mmX50m 粒度:0/6#,0/5#,0/4#,0/3#,0/2#,0#,1#1.5#,2#,2.5#,3#,3.5#,4# 目数粒度对照表 目数粒度um 目数粒度um 目数粒度um 5 3900 140 104 1600 10 10 2000 170 89 1800 8 16 1190 200 74 2000 6.5 20 840 230 61 2500 5.5 25 710 270 53 3000 5 30 590 325 44 3500 4.5 35 500 400 38 4000 3.4 40 420 460 30 5000 2.7 45 350 540 26 6000 2.5 50 297 650 21 7000 1.25 60 250 800 19 80 178 900 15 100 150 1100 13 120 124 1300 11 金刚砂牌号粒度对照表 2005年11月29日08:15 中国磨料磨具在线 现用原用颗粒尺寸现用原用颗粒尺寸 规格规格(微米)规格规格(微米) 8# 8# 3150~2500 180# 180# 80~75 10# 10# 2500~2000 220# 220# 75~63 12# 12# 2000~1600 240# 240# 63~50 14# 14# 1600~1250 W50 260# 50~40 16# 16# 1250~1000 W40 280# 40~28 20# 20# 1000~800 W28 320# 28~20 24# 24# 800~630 W20 M28 20~14 30# 30# 630~500 W14 M20 14~10 36# 36# 500~400 W10 M14 10~7 46# 46# 400~315 W7 M10 7~5 60# 60# 315~250 W5 M7 5~3.5 70# 70# 250~200 W3.5 M5 3.5~2.5 80# 80# 200~160 100# 100# 160~125

目数与孔径对照表

目数定义/粒度/孔径对照表 目数的定义: 目数是指每平方英吋筛网上的空眼数目,50目就是指每平方英吋上的孔眼是50个,500目就是500个,目数越高,孔眼越多。除了表示筛网的孔眼外,它同时用于表示能够通过筛网的粒子的粒径,目数越高,粒径越小,标准筛需要配合标准振筛机才能准确测定。 粒度: 粉体颗粒大小称颗粒粒度。由于颗粒形状很复杂,通常有筛分粒度、沉降粒度、等效体积粒度、等效表面积粒度等几种表示方法。筛分粒度就是颗粒可以通过筛网的筛孔尺寸,以1英寸(25.4mm)宽度的筛网内的筛孔数表示,因而称之为“目数”。目前在国内外尚未有统一的粉体粒度技术标准,各个企业都有自己的粒度指标定义和表示方法。在不同国家、不同行业的筛网规格有不同的标准,因此“目”的含义也难以统一。目前国际上比较流行用等效体积颗粒的计算直径来表示粒径,以μm或mm表示。 目数/粒度对照表: 英国标准筛 (目) 美国标准筛 (目) 泰勒标准筛 (目)国际标准筛 (目)微米对照 毫米对照 4 5 5 — 4000 4.00 6 7 7 280 2812 2.81 8 10 9 200 2057 2.05 10 12 10 170 1680 1.68 12 14 12 150 1405 1.40 14 16 14 120 1240 1.20 16 18 16 100 1003 1.00 18 20 20 85 850 0.85 22 25 24 70 710 0.71 30 35 32 50 500 0.50 36 40 35 40 420 0.42 44 45 42 35 355 0.35 52 50 48 30 300 0.30 60 60 60 25 250 0.25 72 70 65 20 210 0.21 85 80 80 18 180 0.18 100 100 100 15 150 0.15 120 120 115 12 125 0.12 150 140 150 10 105 0.10 170 170 170 9 90 0.09 200 200 200 8 75 0.075 240 230 250 6 63 0.063 300 270 270 5 53 0.053 350 325 325 4 45 0.045 400 400 400 — 37 0.037 500 500 500 — 25 0.025 625 625 625 — 20 0.020

目数、粒度对照表

目数对照表 筛孔尺寸: 4.75mm 标准目数:4目 筛孔尺寸: 4.00mm 标准目数:5目 筛孔尺寸: 3.35mm 标准目数:6目 筛孔尺寸: 2.80mm 标准目数:7目 筛孔尺寸: 2.36mm 标准目数:8目 筛孔尺寸: 2.00mm 标准目数:10目 筛孔尺寸: 1.70mm 标准目数:12目 筛孔尺寸: 1.40mm 标准目数:14目 筛孔尺寸: 1.18mm 标准目数:16目 筛孔尺寸: 1.00mm 标准目数:18目 筛孔尺寸:0.850mm 标准目数:20目 筛孔尺寸:0.710mm 标准目数:25目 筛孔尺寸:0.600mm 标准目数:30目 筛孔尺寸:0.500mm 标准目数:35目 筛孔尺寸:0.425mm 标准目数:40目 筛孔尺寸:0.355mm 标准目数:45目 筛孔尺寸:0.300mm 标准目数:50目 筛孔尺寸:0.250mm 标准目数:60目 筛孔尺寸:0.212mm 标准目数:70目 筛孔尺寸:0.180mm 标准目数:80目 筛孔尺寸:0.150mm 标准目数:100目 筛孔尺寸:0.125mm 标准目数:120目 筛孔尺寸:0.106mm 标准目数:140目 筛孔尺寸:0.090mm 标准目数:170目 筛孔尺寸:0.0750mm 标准目数:200目 筛孔尺寸:0.0630mm 标准目数:230目 筛孔尺寸:0.0530mm 标准目数:270目 筛孔尺寸:0.0450mm 标准目数:325目 筛孔尺寸:0.0374mm 标准目数:400目 目数前加正负号则表示能否漏过该目数的网孔。负数表示能漏过该目数的网孔,即颗粒尺

寸小于网孔尺寸;而正数表示不能漏过该目数的网孔,即颗粒尺寸大于网孔尺寸。例如,颗粒 为-100目~+200目,即表示这些颗粒能从100目的网孔漏过而不能从200目的网孔漏过,在筛 选这种目数的颗粒时,应将目数大(200)的放在目数小(100)的筛网下面,在目数大(200)的筛网中留下的即为-100~+200目的颗粒。 目数粒度对照表 各国孔径、目数对照表 孔径 mm 目数中国美国英国德国 法国日本 NO(筛号) 孔径mm 目数孔径mm 3.5 5.600 5.000 38 5.000 3.5 5.600 4 4.750 4.750 4.000 37 4.000 4 4.750 5 4.000 4.000 3.350 3.150 4.7 4.000 6 3.200 3.350 2.800 36 3.150 5.5 3.350 7 2.800 2.360 2.500 35 2.500 8 2.500 2.360 2.000 7.5 2.360 10 2.000 2.000 1.700 2.000 34 2.000 10 1.700 12 1.600 1.700 1.400 1.600 33 1.600 12 1.400 14 1.430 1.400 1.180 14 1.180 16 1.250 1.180 1.000 1.250 32 1.250 16 1.000 18 1.000 1.000 0.850 1.000 31 1.000 18 0.850 200.9000.85022目0.71 22 0.710 24 0.800 25目0.71 25目0.6 0.800 30 0.800 0.000 26 0.710 26 0.600 28 0.630 0.630 29 0.630 300.6000.6000.500 32 0.560 35 0.500 0.500 36目0.425 0.500 28 0.500 36 0.425

目数毫米对照表

所谓目数,是指物料的粒度或粗细度,一般定义是指在1英寸*1英寸的面积内有多少个网孔数,即筛网的网孔数,物料能通过该网孔即定义为多少目数:如200目,就是该物料能通过1英寸*1英寸内有200个网孔的筛网。以此类推,目数越大,说明物料粒度越细,目数 越小,说明物料粒度越大。 筛孔尺寸与标准目数对应: 筛孔尺寸:4.75mm 标准目数: 4目 筛孔尺寸:4.00mm 标准目数: 5目 筛孔尺寸:3.35mm 标准目数: 6目 筛孔尺寸:2.80mm 标准目数: 7目 筛孔尺寸:2.36mm 标准目数: 8目 筛孔尺寸:2.00mm 标准目数:10目 筛孔尺寸:1.70mm 标准目数:12目 筛孔尺寸:1.40mm 标准目数:14目 筛孔尺寸:1.18mm 标准目数:16目 筛孔尺寸:1.00mm 标准目数:18目 筛孔尺寸:0.850mm标准目数:20目 筛孔尺寸:0.710mm标准目数:25目 筛孔尺寸:0.600mm标准目数:30目 筛孔尺寸:0.500mm标准目数:35目 筛孔尺寸:0.425mm标准目数:40目 筛孔尺寸:0.355mm标准目数:45目 筛孔尺寸:0.300mm标准目数:50目 筛孔尺寸:0.250mm标准目数:60目 筛孔尺寸:0.212mm标准目数:70目 筛孔尺寸:0.180mm标准目数:80目 筛孔尺寸:0.150mm标准目数:100目 筛孔尺寸:0.125mm标准目数:120目 筛孔尺寸:0.106mm标准目数:140目 筛孔尺寸:0.090mm标准目数:170目 筛孔尺寸:0.075mm标准目数:200目 筛孔尺寸:0.063mm标准目数:230目 筛孔尺寸:0.053mm标准目数:270目 筛孔尺寸:0.045mm标准目数:325目 筛孔尺寸:0.040mm标准目数:400目 筛孔尺寸:0.013mm标准目数:500目

目数与粒径对照表.

? ? ? ? 筛网目数与粒径对照表以及相关知识 ? ?目数,就是孔数,就是每平方英寸上的孔数目。目数越大,孔径越小。一般来说,目数×孔径(微米数)=15000。比如,400目的筛网的孔径为38微米左右;500目的筛网的孔径是30微米左右。由于存在开孔率的问题,也就是因为编织网时用的丝的粗细的不同,不同的国家的标准也不一样,目前存在美国标准、英国标准和日本标准三种,其中英国和美国的相近,日本的差别较大。我国使用的是美国标准,也就是可用上面给出的公式计算。 由此定义可以看出,目数的大小决定了筛网孔径的大小。而筛网孔径的大小决定了所过筛粉体的最大颗粒Dmax。所以,我们可以看出,400目的抛光粉完全有可能非常细,比如只有1-2微米,也完全有可能是10微米、20微米。因为,筛网的孔径是38微米左右。我们生产400目的抛光粉的D50就有20微米。

────────────────────

──────────────────── 目数|目数定义|粒度|孔径对照表 标准筛目数: 1.目是指每平方英吋筛网上的空眼数目,50目就是指每平方英吋上的孔眼是50 个,500目就是500个,目数越高,孔眼越多。除了表示筛网的孔眼外,它同时用于表示能够通过筛网的粒子的粒径,目数越高,粒径越小,标准筛需要配合标准振筛机才能准确测定 2. 粉体颗粒大小称颗粒粒度。由于颗粒形状很复杂,通常有筛分粒度、沉降粒度、等效体积粒度、等效表面积粒度等几种表示方法。 筛分粒度就是颗粒可以通过筛网的筛孔尺寸,以1英寸(25.4mm)宽度的筛网内的筛孔数表示,因而称之为“目数”。目前在国内外尚未有统一的粉体粒度技术标准,各个企业都有自己的粒度指标定义和表示方法。在不同国家、不同行业的筛网规格有不同的标准,因此“目”的含义也难以统一。目前国际上比较浒用等效体积颗粒的计算直径来表示粒径。以μm或mm表示 标准筛目数|粒度对照表:

目数、粒度对照表

目数对照表筛孔尺寸:4.75mm 标准目数:4目 筛孔尺寸:4.00mm 标准目数:5目 筛孔尺寸:3.35mm 标准目数:6目 筛孔尺寸:2.80mm 标准目数:7目 筛孔尺寸:2.36mm 标准目数:8目 筛孔尺寸:2.00mm 标准目数:10目 筛孔尺寸:1.70mm 标准目数:12目 筛孔尺寸:1.40mm 标准目数:14目 筛孔尺寸:1.18mm 标准目数:16目 筛孔尺寸:1.00mm 标准目数:18目 筛孔尺寸:0.850mm 标准目数:20目 筛孔尺寸:0.710mm 标准目数:25目 筛孔尺寸:0.600mm 标准目数:30目 筛孔尺寸:0.500mm 标准目数:35目 筛孔尺寸:0.425mm 标准目数:40目 筛孔尺寸:0.355mm 标准目数:45目 筛孔尺寸:0.300mm 标准目数:50目 筛孔尺寸:0.250mm 标准目数:60目 筛孔尺寸:0.212mm 标准目数:70目 筛孔尺寸:0.180mm 标准目数:80目 筛孔尺寸:0.150mm 标准目数:100目 筛孔尺寸:0.125mm 标准目数:120目

筛孔尺寸:0.106mm 标准目数:140目 筛孔尺寸:0.090mm 标准目数:170目 筛孔尺寸:0.0750mm 标准目数:200目 筛孔尺寸:0.0630mm 标准目数:230目 筛孔尺寸:0.0530mm 标准目数:270目 筛孔尺寸:0.0450mm 标准目数:325目 筛孔尺寸:0.0374mm 标准目数:400目 目数前加正负号则表示能否漏过该目数的网孔。负数表示能漏过该目数的网孔,即颗粒尺寸小于网孔尺寸;而正数表示不能漏过该目数的网孔,即颗粒尺寸大于网孔尺寸。例如,颗粒为-100目~+200目,即表示这些颗粒能从100目的网孔漏过而不能从200目的网孔漏过,在筛选这种目数的颗粒时,应将目数大(200)的放在目数小(100)的筛网下面,在目数大(200)的筛网中留下的即为-100~+200目的颗粒。 目数粒度对照表

目数与粒度单位换算

目是指单位面积的孔洞数量 如果是筛孔的话,多少目就表示一平方英寸有多少个筛孔。例如120目筛,也就是说在一平方英寸面积内有120个孔。其他类推。常见的:10、20、40、60、80、100、120、150、180、200、250、300、320、350、400 米与目数对照表 1微米--------12500目 1.3微米--------8000目 2微米--------6250目 2.6微米--------5000目 5微米--------2500目 6.5微米--------2000目 10微米--------1250目 15微米--------800目 20微米--------625目 33微米--------425目 37微米--------400目 44微米--------325目 74微米--------200目 149微米--------100目 350微米--------45目 粉体细度粒径单位换算对照表 粒径(m)微米um 纳米nm 目数单位(目) 10-4m 100um 100000nm 180目 10-5m 10um 10000nm 1800目 10-6m 1um 1000nm 1.8万目 10-7m 0.1um 100nm 18万目 10-8m 0.01um 10nm 180万目 10-9m 0.001um 1nm 1800万目

10-9m以下0.001um以下进入i 1nm以下接近原子大1800万目以上。 1米(m)=100厘米(cm); 1厘米(cm)=10-2m =10毫米(mm); 1毫米(mm)=10-3m =1000微米(um); 1微米(um)=10-6m=1000纳米(nm); 1纳米=10-9m。【病毒大小约100纳米】 纳米(nm)=[10的-7至10的-9次方米]之间=细度大小折合目数单位换算约18万目~1800万目。 微米(um)=[10的-6次方米以下]=细度大小折合目数单位换算约1.8万目以下。微米之极限细度是18000目。 趋纳米=微纳米=[10的-6次方米]至[10的-7次方米]之间=18000目~180000目之间。 趋纳米保健食品其粉体之体积比例,粒径分布(differential volume)从100纳米~1000纳米之间,粒径分布平均值通度D50以上。 趋纳米保健食品其粉体粒径量测之颗粒数比例分布(differential number ):粒径分布平均值100纳米通过D50以上。 因为趋纳米的细度,体积比例在100纳米-1000纳米之间,颗粒数比例在100纳米以内,应用超低温冷却之研磨制程,不会产生材料特性改变,对人体营养吸收有益。 目,不是长度单位,和米、分米、厘米、毫米、丝不一样。 1米=10分米 1分米=10厘米 1厘米=10毫米 1毫米=100丝(请注意这里的进阶) 目、线都是包装印刷及广告设计行业用的比较多的,对图像精确度描述单位。也叫分辨率。图像精确度越高图像就显得越细腻。 目数或线数越高就越精确。为什么会分目和线呢? 目是针对英寸的,一英寸里有多少个点就叫多少目。 线是针对厘米而言的,一厘米里面有多少个点就叫多少线。 目数和线数之间是可以转换的。1英寸=2.54厘米。如:254线=100目

相关文档