文档库

最新最全的文档下载
当前位置:文档库 > 2020年六年级上册数学易错题难题试题

2020年六年级上册数学易错题难题试题

2020年六年级上册数学易错题难题试题

一、培优题易错题

1.观察下列一组图形:它们是按照一定规律排列的,依照此规律,第个图形中共有________个“★”.

2020年六年级上册数学易错题难题试题

【答案】(3n+1)

【解析】【解答】解:①为4个★,②为7个★,③ 为10个★,④为13个★,

通过观察,可得第n个图形为(3n+1)个★.

故答案为:(3n+1)

【分析】观察图形,先写出①②③④的★的个数,通过找规律,写出第n个图形中的★个数。

2.一个自然数若能表示为两个自然数的平方差,则这个自然数称为“智慧数”.比如:22-12=3,则3就是智慧数;22-02=4,则4就是智慧数.

从0开始第7个智慧数是________ ;不大于200的智慧数共有________ .

【答案】8;151

【解析】【解答】解:(1)首先应该先找到智慧数的分布规律.

①∵02-02=0,∴0是智慧,

②因为2n+1=(n+1)2-n2,所以所有的奇数都是智慧数,③因为(n+2)2-n2=4(n+1),所以所有4的倍数也都是智慧数,而被4除余2的偶数,都不是智慧数.

由此可知,最小的智慧数是0,第2个智慧数是1,其次为3,4,

从5起,依次是5,7,8; 9,11,12; 13,15,16; 17,19,20…

即按2个奇数,一个4的倍数,三个一组地依次排列下去.

∴从0开始第7个智慧数是:8;

故答案为:8;

( 2 )∵200÷4=50,

∴不大于200的智慧数共有:50×3+1=151.

故答案为:151.

【分析】根据题意先找到智慧数的分布规律,由平方差公式(a+b)(a-b)=a2-b2,因为2n+1=(n+1)2-n2,所以所有的奇数都是智慧数,所有4的倍数也都是智慧数,而被4除余2的偶数,都不是智慧数;由此可知,最小的智慧数是0,第2个智慧数是1,其次为3,4,得到从0开始第7个智慧数是8.

3.用“⊕”定义一种新运算:对于有理数a和b,规定a⊕b=2a+b,如1⊕3=2×1+3=5 (1)求2⊕(﹣2)的值;

(2)若[()⊕(﹣3)]⊕ =a+4,求a的值.

【答案】(1)解:原式=2×2+(﹣2)=2

(2)解:根据题意可知:

2[(a+1)+(﹣3)]+ =a+4,

2(a﹣2)+ =a+4,

4(a﹣2)+1=2(a+4),

4a﹣8+1=2a+8,

2a=15,

a= .

【解析】【分析】(1)根据定义的新运算,进行计算。(2)根据题目中定义的新运算,写出算式,计算出a的值

4.某工厂一周计划每天生产电动车80辆,由于工人实行轮休,每天上班人数不同,实际每天生产量与计划量相比情况如表(增加的为正数,减少的为负数):

日期一二三四五六日

增减数/辆+4-1+2-2+6-3-5

(2)本周总生产量是多少辆?比原计划增加了还是减少了?增加或减少多少辆?

【答案】(1)解:生产量最多的一天比生产量最少的一天多生产6-(-5)=6+5=11辆;(2)解:总产量4+(-1)+2+(-2)+6+(-3)+(-5)+80×7=561辆,

比原计划增加了,增加了561-560=1辆.

【解析】【分析】(1)根据列表得到生产量最多的一天是星期五,是(80+6)辆,产量最少的一天是星期日是(80-5)辆,生产量最多的一天比生产量最少的一天多生产6-(-5)辆;(2)根据题意总产量是80×7+4+(-1)+2+(-2)+6+(-3)+(-5),找出相反数,再由减去一个数等于加上这个数的相反数,求出本周总生产量,得到比原计划增加或减少了的值.

5.在平面直角坐标系中,若点P(x,y)的坐标x、y均为整数,则称点P为格点.若一个多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L.例如图中△ABC 是格点三角形,对应的S=1,N=0,L=4.

2020年六年级上册数学易错题难题试题

(1)写出图中格点四边形DEFG对应的S,N,L.

(2)已知任意格点多边形的面积公式为S=N+aL+b,其中a,b为常数.当某格点多边形对应的N=82,L=38,求S的值.

【答案】(1)解:根据图形可得:S=3,N=1,L=6

(2)解:根据格点三角形ABC及格点四边形DEFG中的S、N、L的值可得,

解得a ,

∴S=N+ L﹣1,

将N=82,L=38代入可得S=82+ ×38﹣1=100

【解析】【分析】(1)按照所给定义在图中输出S,N,L的值即可;(2)先根据(1)中三角形与四边形中的S,N,L的值列出关于a,b的二元一次方程组,解方程组求得a,b的值,从而求得任意格点多边形的面积公式,代入所给N,L的值即可求得相应的S的值.

6.如果,那么我们规定 .例如:因为,所以 .

(1)根据上述规定,填空:

________, ________, ________.

(2)若记,, .求证: .

【答案】(1)3;0;-2

(2)解:依题意则

【解析】【解答】解:(1)(3,27)=3,(4,1)=0,(2,0.25)=-2,

故答案为:3;0;-2【分析】根据新定义的算法计算出根指数即可;由新定义的算法,得到同底数幂的乘法,底数不变,指数相加;证明出结论.

7.已知x、y为有理数,现规定一种新运算“※”,满足x※y=xy+1.

(1)求3※4的值;

(2)求(2※4)※(﹣3)的值;

(3)探索a※(b﹣c)与(a※c)的关系,并用等式表示它们.

【答案】(1)解:3※4=3×4+1=13

(2)解:(2※4)※(﹣3)=(2×4+1)※(﹣3)=9※(﹣3)=9×(﹣3)+1=﹣26

(3)解:∵a※(b﹣c)=a?(b﹣c)+1=ab﹣ac+1=ab+1﹣ac﹣1+1,

a※c=ac+1.

∴a※(b﹣c)=a※b﹣a※c+1

【解析】【分析】根据新运算的规律,求出计算式的值,求出探索的式子之间的关系.

8.在浓度为40%的酒精溶液中加入5千克水,浓度变为30%,再加入多少千克酒精,浓度变为50%?

【答案】解:设原来有酒精溶液x千克。

2020年六年级上册数学易错题难题试题

30%x+1.5=40%x

0.1x=1.5

x=15

设再加入y千克酒精,溶液浓度变为50%。

2020年六年级上册数学易错题难题试题

10+0.5y=6+y

y=8

答:再加入8千克酒精,溶液浓度变为50%。

【解析】【分析】本题可以用两次方程作答,首先求出原来有酒精溶液的质量,即

,由此可以解得原来有酒精溶液的质量,然后设再加入y千克酒精,溶液浓度变为50%,即,即可解得再加入酒精的质量。

9.甲、乙、丙三人做一件工作,原计划按甲、乙、丙的顺序每人一天轮流去做,恰好整数天做完,若按乙、丙、甲的顺序轮流去做,则比计划多用半天;若按丙、甲、乙的顺序轮流去做,则也比原计划多用半天.已知甲单独做完这件工作要天,且三个人的工作效率各不相同,那么这项工作由甲、乙、丙三人一起做,要用多少天才能完成?

【答案】解:

=

=

=(天)

答:要用天才能完成。

【解析】【分析】首先应确定按每一种顺序去做的时候最后一天由谁来完成。如果按甲、乙、丙的顺序去做,最后一天由丙完成,那么按乙、丙、甲的顺序和丙、甲、乙的顺序去做时用的天数将都与按甲、乙、丙的顺序做用的天数相同,这与题意不符;如果按甲、乙、丙的顺序去做,最后一天由乙完成,那么按乙、丙、甲的顺序去做,最后由甲做了半天来完成,这样有,可得;而按丙、甲、乙的顺序去

做,最后由乙做了半天来完成,这样有,可得.那么,即甲、乙的工作效率相同,也与题意不合。所以按甲、乙、丙的顺序去做,最后一天是由甲完成的。那么有,可得,。这样就可以根据工作效率之间的关系分别求出乙和丙的工作效率,用总工作量除以三队的工作效率和即可求出一起做完成的时间。

10.甲、乙、丙三队要完成,两项工程,工程的工作量是工程工作量再增加,如果让甲、乙、丙三队单独做,完成工程所需要的时间分别是天,天,天.现在让甲队做工程,乙队做工程,为了同时完成这两项工程,丙队先与乙队合做工程若干天,然后再与甲队合做工程若干天.问丙队与乙队合做了多少天?

【答案】解:三队合作完成两项工程所用的天数为:

(天),

18天里,乙队一直在完成工作,因此乙的工作量为:,

剩下的工作量应该是由丙完成,因此丙在工程上用了:(天)。

答:丙队与乙队合做了15天。

【解析】【分析】这个问题当中有两个不同的工程,三个不同的人,因此显得很难解决,数学中化归的思想很重要,即以一个为基准,把其他的量转化为这个量,然后进行计算,

我们不妨设工程的工作总量为单位“1”,那么工程的工作量就是“”。用两项工程总工作量除以三队的工作效率和即可求出共同完成的时间。用乙的工作效率乘共同完成的时间即可求出乙完成的工作量,那么B工程剩下的工作量就由丙来做,这样用丙帮助乙完成的工作量除以丙的工作效率即可求出丙队帮助乙的时间,也就是丙与乙合做的天数。