文档库 最新最全的文档下载
当前位置:文档库 › 空间自相关统计量

空间自相关统计量

空间自相关统计量
空间自相关统计量

空间自相关的测度指标

1全局空间自相关

全局空间自相关是对属性值在整个区域的空间特征的描述[8]。表示全局空间自相关的指标和方法很多,主要有全局Moran ’s I 、全局Geary ’s C 和全局Getis-Ord G [3,5]都是通过比较邻近空间位置观察值的相似程度来测量全局空间自相关的。

全局Moran ’s I

全局Moran 指数I 的计算公式为:

()()

()∑∑∑∑∑=====---=n i n j n i i

ij n i n j j i ij x x w x x x x w n I 111211

∑∑∑∑=≠=≠--=n i n i j ij n i n i j j i ij w S x x x x w 121))((

其中,n 为样本量,即空间位置的个数。 x i 、x j 是空间位置i 和j 的观察值,w ij 表示空间位置i 和j 的邻近关系,当i 和j 为邻近的空间位置时,w ij =1;反之,w ij =0。全局Moran 指数I 的取值范围为[-1,1]。

对于Moran 指数,可以用标准化统计量Z 来检验n 个区域是否存在空间自相关关系,Z 的计算公式为:

)()(I VAR I E I Z -==i n w n w S x x d w i i i n

i j i j ij ≠----∑≠j )2/()1())(( E(I i )和VAR(I i )是其理论期望和理论方差。数学期望EI=-1/(n-1)。

当Z 值为正且显著时,表明存在正的空间自相关,也就是说相似的观测值(高值或低值)趋于空间集聚;当Z 值为负且显著时,表明存在负的空间自相关,相似的观测值趋于分散分布;当Z 值为零时,观测值呈独立随机分布。 全局Geary ’s C

全局Geary ’s C 测量空间自相关的方法与全局Moran ’s I 相似,其分子的交叉乘积项不同,即测量邻近空间位置观察值近似程度的方法不同,其计算公式为:

()()()

∑∑∑∑∑=====---=

n i n j n i i ij n i n j j i ij x x w x x w n C 1112112

21

全局Moran ’s I 的交叉乘积项比较的是邻近空间位置的观察值与均值偏差的乘积,而全局Geary ’s C 比较的是邻近空间位置的观察值之差,由于并不关心x i 是否大于x j ,只关心x i 和x j 之间差异的程度,因此对其取平方值。全局Geary ’s C 的取值范围为[0,2],数学期望恒为1。当全局Geary ’s C 的观察值<1,并且有统计学意义时,提示存在正空间自相关;当全局Geary ’s C 的观察值>1时,存在负空间自相关;全局Geary ’s C 的观察值=1时,无空间自相关。其假设检验的方法同全局Moran ’s I 。值得注意的是,全局Geary ’s C 的数学期望不受空间权重、观察值和样本量的影响,恒为1,导致了全局Geary ’s C 的统计性能比全局Moran ’s I 要差,这可能是全局Moran ’s I 比全局Geary ’s C 应用更加广泛的原因。

全局Geti-Ord G

全局Getis-Ord G 与全局Moran ’s I 和全局Geary ’s C 测量空间自相关的方法相似,其分子的交叉乘积项不同,即测量邻近空间位置观察值近似程度的方法不同,其计算公式为:

()()()i

j i i i j i j wij d x x G d i j x x =≠∑∑∑∑

全局Getis-Ord G 直接采用邻近空间位置的观察值之积来测量其近似程度,与全局Moran ’s I 和全局Geary ’s C 不同的是,全局Getis-Ord G 定义空间邻近的方法只能是距离权重矩阵w ij (d),是通过距离d 定义的,认为在距离d 内的空间位置是邻近的,如果空间位置j 在空间位置i 的距离d 内,那么权重w ij (d)=1,否则为0。从公式中可以看出,在计算全局Getis-Ord G 时,如果空间位置i 和j 在设定的距离d 内,那么它们包括在分子中;如果距离超过d ,则没有包括在分子中,而分母中则包含了所有空间位置i 和j 的观察值xi 、xj ,即分母是固定的。如果邻近空间位置的观察值都大,全局Getis-Ord G 的值也大;如果邻近空间位置的观察值都小,全局Getis-Ord G 的值也小。因此,可以区分“热点区”和“冷点区”两种不同的正空间自相关,这是全局Getis-Ord G 的典型特性,但是它在识别负空间自相关时效果不好。

全局Getis-Ord G 的数学期望E(G)=W/n(n-1),当全局Getis-Ord G 的观察值大于数学期望,并且有统计学意义时,提示存在“热点区”;当全局Getis-OrdG

的观察值小于数学期望,提示存在“冷点区”。假设检验方法同全局Moran ’s I 和全局Geary ’s C 。

2局部空间自相关

局部空间自相关统计量LISA 的构建需要满足两个条件[9]:①局部空间自相关统计量之和等于相应的全局空间自相关统计量;②能够指示每个空间位置的观察值是否与其邻近位置的观察值具有相关性。相对于全局空间自相关而言,局部空间自相关分析的意义在于:①当不存在全局空间自相关时,寻找可能被掩盖的局部空间自相关的位置;②存在全局空间自相关时,探讨分析是否存在空间异质性;③空间异常值或强影响点位置的确定;④寻找可能存在的与全局空间自相关的结论不一致的局部空间自相关的位置,如全局空间自相关分析结论为正全局空间自相关,分析是否存在有少量的负局部空间自相关的空间位置,这些位置是研究者所感兴趣的。由于每个空间位置都有自己的局部空间自相关统计量值,因此,可以通过显著性图和聚集点图等图形将局部空间自相关的分析结果清楚地显示出来,这也是局部空间自相关分析的优势所在[3,5]。

局部Moran ’s I

为了能识别局部空间自相关,每个空间位置的局部空间自相关统计量的值都要计算出来,空间位置为i 的局部Moran ’s I 的计算公式为:

∑--=j

j ij i i x x w S x x I )()(2 局部Moran 指数检验的标准化统计量为:

)()

()(i i i i I VAR I E I I Z -=

E(I i )和VAR(I i )是其理论期望和理论方差。

局部Moran ’s I 的值大于数学期望,并且通过检验时,提示存在局部的正空间自相关;局部Moran ’s I 的值小于数学期望,提示存在局部的负空间自相关。缺点是不能区分“热点区”和“冷点区”两种不同的正空间自相关。 局部Geary ’s C

局部Geary ’s C 的计算公式为:

2

()()X i j j wij x x i j μ=-≠∑

()i U C =局部Geary ’s C 的值小于数学期望,并且通过假设检验时,提示存在局部的正空间自相关;局部Geary ’s C 的值大于数学期望,提示存在局部的负空间自相关。缺点也是不能区分“热点区”和“冷点区”两种不同的正空间自相关。 局部Getis-Ord G

局部Getis-Ord G 同全局Getis-Ord G 一样,只能采用距离定义的空间邻近方法生成权重矩阵,其计算公式为:

∑∑=i j

j j ij i x x w G /

对统计量的检验与局部Moran 指数相似,其检验值为

)()()(i i i

i G VAR G E G G Z -==i

n w n w S x x d w i i i n i j i j ij ≠----∑≠j )2/()1())((

当局部Getis-Ord G 的值大于数学期望,并且通过假设检验时,提示存在“热点区”;当局部Getis-Ord G 的值小于数学期望,并且通过假设检验时,提示存在“冷点区”。缺点是识别负空间自相关时效果较差。

全局自相关与局部自相关适用性对比分析

对于定量资料计算全局空间自相关时,可以使用全局Moran ’s I 、全局Geary ’s C 和全局Getis-Ord G 统计量。全局空间自相关是对整个研究空间的一个总体描述,仅仅对同质的空间过程有效,然而,由于环境和社会因素等外界条件的不同,空间自相关的大小在整个研究空间,特别是较大范围的研究空间上并不一定是均匀同质的,可能随着空间位置的不同有所变化,甚至可能在一些空间位置发现正空间自相关,而在另一些空间位置发现负空间自相关,这种情况在全局空间自相关分析中是无法发现的,这种现象称为空间异质性。为了能识别这种空间异质性,需要使用局部空间自相关统计量来分析空间自相关性,如局部Moran ’s I 、局部Geary ’s C 和局部Getis-Ord G [3,6-7]。

全局自相关统计量仅仅为整个研究空间的空间自相关情况提供了一个总体描述,其正确应用的前提是要求同质的空间过程,当空间过程为异质时结论不可靠。为了能正确识别空间异质性,需要应用局部空间自相关统计量。

浅析空间自相关的内容及意义.

浅析空间自相关的内容及意义摘要:本文主要介绍了空间自相关的含义、测度指标及研究空间自相关的意义。首先,明确空间自相关是检验某一要素的属性值是否显著地与其相邻空间点上的属性值相关联的重要指标,揭示空间参考单元与其邻近的空间单元属性特征值之间的相似性或相关性。其次,介绍用来测度空间自相关性的指标,可以分为全局指标和局部指标,常用的指标有:Moran’s I、Geary’s C和Getis-Ord G。最后,进一步阐述了空间自相关的研究意义。关键字:空间自相关;全局指标;局部指标The content and research significance of spatial autocorrelation analysisAbstract: In this paper, the content, the index and the research significance of spatial autocorrelation were analyzed. Firstly, the content of spatial autocorrelation is discussed. Spatial autocorrelation is related to the correlation of the same variables, and also can be used to measure the degree of concentration of the attribute value, in order to reveal the correlation between the space reference unit and its near unit, including global spatial autocorrelation and local spatial autocorrelation. Secondly, it analyzes the index of spatial autocorrelation, the main index included Moran’s I, Geary’s C and Getis-Ord G. Thirdly, this paper discussed the research signification of spatial autocorrelation analysis. Key words: spatial autocorrelation; global index; local index 引言空间

空间统计-空间自相关分析

空间自相关分析 1.1 自相关分析 空间自相关分析是指邻近空间区域单位上某变量的同一属性值之间的相关程度,主要用空间自相关系数进行度量并检验区域单位的这一属性值在空间区域上是否具有高高相邻、低低相邻或者高低间错分布,即有无聚集性。若相邻区域间同一属性值表现出相同或相似的相关程度,即属性值在空间区域上呈现高(低)的地方邻近区域也高(低),则称为空间正相关;若相邻区域间同一属性值表现出不同的相关程度,即属性值在空间区域上呈现高(低)的地方邻近区域低(高),则称为空间负相关;若相邻区域间同一属性值不表现任何依赖关系,即呈随机分布,则称为空间不相关。 空间自相关分析分为全局空间自相关分析和局部空间自相关分析,全局自相关分析是从整个研究区域内探测变量在空间分布上的聚集性;局域空间自相关分析是从特定局部区域内探测变量在空间分布上的聚集性,并能够得出具体的聚集类型及聚集区域位置,常用的方法有Moran's I 、Gear's C 、Getis 、Morans 散点图等。 1.1.1 全局空间自相关分析 全局空间自相关分析主要用Moran's I 系数来反映属性变量在整个研究区域范围内的空间聚集程度。首先,全局Moran's I 统计法假定研究对象之间不存在任何空间相关性,然后通过Z-score 得分检验来验证假设是否成立。 Moran's I 系数公式如下: 11 2 11 1 ()()I ()()n n ij i j i j n n n ij i i j i n w x x x x w x x =====--= -∑∑∑∑∑(式 错误!文档中没有指定样式的文字。-1) 其中,n 表示研究对象空间的区域数;i x 表示第i 个区域内的属性值,j x 表示第j 个区域内的属性值,x 表示所研究区域的属性值的平均值;ij w 表示空间权重矩阵,一般为对称矩阵。 Moran's I 的Z-score 得分检验为:

数据统计与分析(SPSS).

数据统计与分析(SPSS) 一、课程属性说明 适用对象:教育技术学专业,电子信息科学与技术专业,广告学专业 课程代码:11200913 课程类别:专业任选课 所属学科:计算机科学与技术 授课学期:第8学期 学时:讲授54学时,实验34时 学分:3 教材: 《SPSS for Windows 统计与分析》,卢纹岱主编,电子工业版社,2000年版参考书: 考核方式:考查 评分方法:试验报告20%,上机考试 80% 前导课程:计算机基础,线性代数,概率统计

二、大纲制定依据 对数据进行统计分析是一种十分重要的信息获得的方法,很多领域均需要做这方面的工作。传统的统计分析是由人工计算求解;现在随着计算机应用的普及,越来越多的统计分析工作是由计算机来完成的,现在最为流行也最容易被广大用户接受的统计分析软件是SPSS,本课程就以介绍该软件为核心,并渗透介绍一些统计分析的数学方法,从而满足各专业学生对数据统计分析知识和技能的需求。 三、课程概要与目的任务 1.课程概要 本课程主要由三大部分构成:(1)基本概念和基本操作,其中包括SPSS概述、系统运行管理方式、数据统计处理、数据文件的建立与编辑、文件操作与文本文件编辑;(2)统计分析过程,其中包括统计分析概述、基本统计分析、相关分析均值比较与检验、方差分析、回归分析、据类分析与辨别分析、因子分析、非参数检验、生存分析;(3)统计图形生成与编辑,其中包括生成统计图形、编辑统计图形,创建交互式图形、修饰交互图形 2.课程目的和任务 本课程的目的和任务是使学生理解SPSS软件的功能和应用方法,并能开展简单的数据统计与分析工作。

空间自相关统计量备课讲稿

空间自相关统计量

空间自相关的测度指标 1全局空间自相关 全局空间自相关是对属性值在整个区域的空间特征的描述[8]。表示全局空间自相关的指标和方法很多,主要有全局Moran ’s I 、全局Geary ’s C 和全局Getis-Ord G [3,5]都是通过比较邻近空间位置观察值的相似程度来测量全局空间自相关的。 全局Moran ’s I 全局Moran 指数I 的计算公式为: ()() ()∑∑∑∑∑=====---=n i n j n i i ij n i n j j i ij x x w x x x x w n I 111211 ∑∑∑∑=≠=≠--=n i n i j ij n i n i j j i ij w S x x x x w 121))(( 其中,n 为样本量,即空间位置的个数。 x i 、x j 是空间位置i 和j 的观察值,w ij 表示空间位置i 和j 的邻近关系,当i 和j 为邻近的空间位置时,w ij =1;反之,w ij =0。全局Moran 指数I 的取值范围为[-1,1]。 对于Moran 指数,可以用标准化统计量Z 来检验n 个区域是否存在空间自相关关系,Z 的计算公式为: )()(I VAR I E I Z -==i n w n w S x x d w i i i n i j i j ij ≠----∑≠j )2/()1())(( E(I i )和VAR(I i )是其理论期望和理论方差。数学期望EI=-1/(n-1)。 当Z 值为正且显著时,表明存在正的空间自相关,也就是说相似的观测值(高值或低值)Z 关,相似的观测值趋于分散分布;当Z 值为零时,观测值呈独立随机分布。 全局Geary ’s C

空间自相关统计量 (2)

空间自相关的测度指标 1全局空间自相关 全局空间自相关是对属性值在整个区域的空间特征的描述。表示全局空间自相关的指标和方法很多,主要有全局Moran ’sI 、全局Geary ’sC 和全局Getis-OrdG [3,5]都是通过比较邻近空间位置观察值的相似程度来测量全局空间自相关的。 全局Moran ’sI 全局Moran 指数I 的计算公式为: 其中,n 为样本量,即空间位置的个数。x i 、x j 是空间位置i 和j 的观察值,w ij 表示空间位置i 和j 的邻近关系,当i 和j 为邻近的空间位置时,w ij =1;反之,w ij =0。全局Moran 指数I 的取值范围为[-1,1]。 对于Moran 指数,可以用标准化统计量Z 来检验n 个区域是否存在空间自相关关系,Z 的计算公式为: )()(I VAR I E I Z -==i n w n w S x x d w i i i n i j i j ij ≠----∑≠j )2/()1())(( E(I i )和VAR(I i )是其理论期望和理论方差。数学期望EI=-1/(n-1)。 当Z 值为正且显着时,表明存在正的空间自相关,也就是说相似的观测值(高值或低值)趋于空间集聚;当Z 值为负且显着时,表明存在负的空间自相关,相似的观测值趋于分散分布;当Z 值为零时,观测值呈独立随机分布。 全局Geary ’sC 全局Geary ’sC 测量空间自相关的方法与全局Moran ’sI 相似,其分子的交叉乘积项不同,即测量邻近空间位置观察值近似程度的方法不同,其计算公式为: 全局Moran ’sI 的交叉乘积项比较的是邻近空间位置的观察值与均值偏差的乘积,而全局Geary ’sC 比较的是邻近空间位置的观察值之差,由于并不关心x i 是否大于x j ,只关心x i 和x j 之间差异的程度,因此对其取平方值。全局Geary ’sC 的取值范围为[0,2],数学期望恒为1。当全局Geary ’sC 的观察值<1,并且有统计学意义时,提示存在正空间自相关;当全局Geary ’sC 的观察值>1时,存在负空间自相关;全局Geary ’sC 的观察值=1时,无空间自相关。其假设检验的方法同全局Moran ’sI 。值得注意的是,全局Geary ’sC 的数学期望不受空间权重、观察值和样本量的影响,恒为1,导致了全局Geary ’sC 的统计性能比全局Moran ’sI 要差,这可能是全局Moran ’sI 比全局Geary ’sC 应用更加广

空间数据分析模型

第7 章空间数据分析模型 7.1 空间数据 按照空间数据的维数划分,空间数据有四种基本类型:点数据、线数据、面数据和体数据。 点是零维的。从理论上讲,点数据可以是以单独地物目标的抽象表达,也可以是地理单元的抽象表达。这类点数据种类很多,如水深点、高程点、道路交叉点、一座城市、一个区域。 线数据是一维的。某些地物可能具有一定宽度,例如道路或河流,但其路线和相对长度是主要特征,也可以把它抽象为线。其他的线数据,有不可见的行政区划界,水陆分界的岸线,或物质运输或思想传播的路线等。 面数据是二维的,指的是某种类型的地理实体或现象的区域范围。国家、气候类型和植被特征等,均属于面数据之列。 真实的地物通常是三维的,体数据更能表现出地理实体的特征。一般而言,体数据被想象为从某一基准展开的向上下延伸的数,如相对于海水面的陆地或水域。在理论上,体数据可以是相当抽象的,如地理上的密度系指单位面积上某种现象的许多单元分布。 在实际工作中常常根据研究的需要,将同一数据置于不同类别中。例如,北京市可以看作一个点(区别于天津),或者看作一个面(特殊行政区,区别于相邻地区),或者看作包括了人口的“体”。 7.2 空间数据分析 空间数据分析涉及到空间数据的各个方面,与此有关的内容至少包括四个领域。 1)空间数据处理。空间数据处理的概念常出现在地理信息系统中,通常指的是空间分析。就涉及的内容而言,空间数据处理更多的偏重于空间位置及其关系的分析和管理。 2)空间数据分析。空间数据分析是描述性和探索性的,通过对大量的复杂数据的处理来实现。在各种空间分析中,空间数据分析是重要的组成部分。空间数据分析更多的偏重于具有空间信息的属性数据的分析。 3)空间统计分析。使用统计方法解释空间数据,分析数据在统计上是否是“典型”的,或“期望”的。与统计学类似,空间统计分析与空间数据分析的内容往往是交叉的。 4)空间模型。空间模型涉及到模型构建和空间预测。在人文地理中,模型用来预测不同地方的人流和物流,以便进行区位的优化。在自然地理学中,模型可能是模拟自然过程的空间分异与随时间的变化过程。空间数据分析和空间统计分析是建立空间模型的基础。 7.3 空间数据分析的一些基本问题 空间数据不仅有其空间的定位特性,而且具有空间关系的连接属性。这些属性主要表现为空间自相关特点和与之相伴随的可变区域单位问题、尺度和边界效应。传统的统计学方法在对数据进行处理时有一些基本的假设,大多都要求“样本是随机的”,但空间数据可能不一定能满足有关假设,因此,空间数据的分析就有其特殊性(David,2003)。

空间自相关--Morans'I

重庆各区县乡村人口所占比例的空间自相关分析 选题: 在ArcGIS中分别计算全局Moran’I 指数和局部Moran’I指数,分析重庆各区县乡村人口所占比例的空间关联程度。 实验目的: 根据重庆市各区县之间的邻接关系,采用二进制邻近权重矩阵,选取各区县2008年的重庆各区县的总人口及乡村人口,计算出重庆各区县乡村人口所占的比例,在ArcGIS里面分别计算全局Moran’I 指数和局部Moran’I指数,分析空间关联程度。 实验数据: 1.重庆统计年鉴中2008年重庆市各区县的总人口及乡村人口数量(excel表格) 2.重庆市各区县的矢量图(shp.文件) 软件: ArcGIS10.2 操作过程与结果分析: 第一步:导入Excel数据文件和重庆市各区县的矢量图,并建立关联 1. Catalog——Folder Connections,在对应的文件夹下打开重庆市各区县城镇化率的EXCEL表格及重庆市各区县shp文件

为关联字段,将两个文件关联起来

3.右键单击关联后的重庆区县界shp.文件,导出为Export_Output文件,新文件的属性表如下: 第二步:计算全局Morans I 1.打开ArcToolbox,选择Spatial Statistics Tools——Analying Patterns——Spatial Autocorrelation(Morans I)选择二进制邻接矩阵方法来确定空间权重矩阵(即当区域i和具有公共边或公共点时,两区域的距离矩阵设为1,若不相邻接,其距离矩阵设为0),选择欧式距离作为计算距离的方法,对数据进行标准化处理后计算全局Moran’I指数度量空间自相关

空间数据分析

空间数据分析报告 —使用Moran's I统计法实现空间自相关的测度1、实验目的 (1)理解空间自相关的概念和测度方法。 (2)熟悉ArcGIS的基本操作,用Moran's I统计法实现空间自相关的测度。2、实验原理 2.1空间自相关 空间自相关的概念来自于时间序列的自相关,所描述的是在空间域中位置S 上的变量与其邻近位置Sj上同一变量的相关性。对于任何空间变量(属性)Z,空间自相关测度的是Z的近邻值对于Z相似或不相似的程度。如果紧邻位置上相互间的数值接近,我们说空间模式表现出的是正空间自相关;如果相互间的数值不接近,我们说空间模式表现出的是负空间自相关。 2.2空间随机性 如果任意位置上观测的属性值不依赖于近邻位置上的属性值,我们说空间过程是随机的。 Hanning则从完全独立性的角度提出更为严格的定义,对于连续空间变量Y,若下式成立,则是空间独立的: 式中,n为研究区域中面积单元的数量。若变量时类型数据,则空间独立性的定义改写成 式中,a,b是变量的两个可能的类型,i≠j。 2.3Moran's I统计 Moran's I统计量是基于邻近面积单元上变量值的比较。如果研究区域中邻近面积单元具有相似的值,统计指示正的空间自相关;若邻近面积单元具有不相似的值,则表示可能存在强的负空间相关。

设研究区域中存在n 个面积单元,第i 个单位上的观测值记为y i ,观测变量在n 个单位中的均值记为y ,则Moran's I 定义为 ∑∑∑∑∑======n i n j ij n i n j ij n i W W n I 11 11j i 1 2i ) y -)(y y -(y )y -(y 式中,等号右边第二项∑∑==n 1i n 1j j i ij )y -)(y y -(y W 类似于方差,是最重要的项,事 实上这是一个协方差,邻接矩阵W 和) y -)(y y -(y j i 的乘积相当于规定)y -)(y y -(y j i 对邻接的单元进行计算,于是I 值的大小决定于i 和j 单元中的变量值对于均值的偏离符号,若在相邻的位置上,y i 和y j 是同号的,则I 为正;y i 和y j 是异号的, 则I 为负。在形式上Moran's I 与协变异图 {}{}u ?-)Z(s u ?-)Z(s N(h)1(h)C ?j i ∑=相联系。 Moran's I 指数的变化范围为(-1,1)。如果空间过程是不相关的,则I 的期望接近于0,当I 取负值时,一般表示负自相关,I 取正值,则表示正的自相关。用I 指数推断空间模式还必须与随机模式中的I 指数作比较。 通过使用Moran's I 工具,会返回Moran's I Index 值以及Z Score 值。如果Z score 值小于-1.96获大于1.96,那么返回的统计结果就是可采信值。如果Z score 为正且大于1.96,则分布为聚集的;如果Z score 为负且小于-1.96,则分布为离散的;其他情况可以看作随机分布。 3、实验准备 3.1实验环境 本实验在Windows 7的操作系统环境中进行,使用ArcGis 9.3软件。 3.2实验数据 此次实习提供的数据为以湖北省为目标区域的bount.dbf 文件。.dbf 数据中包括第一产业增加值,第二产业增加值万元,小学在校学生数,医院、卫生院床位数,乡村人口万人,油料产量,城乡居民储蓄存款余额,棉花产量,地方财政一般预算收入,年末总人口(万人),粮食产量,普通中学在校生数,肉类总产量,规模以上工业总产值现价(万元)等属性,作为分析的对象。

空间自相关统计量

空间自相关得测度指标 1全局空间自相关 全局空间自相关就是对属性值在整个区域得空间特征得描述[8]。表示全局空间自相关得指标与方法很多,主要有全局Moran ’s I 、全局Geary ’s C 与全局Getis-Ord G [3,5]都就是通过比较邻近空间位置观察值得相似程度来测量全局空间自相关得。 全局Moran ’s I 全局Moran 指数I 得计算公式为: ()() ()∑∑∑∑∑=====---=n i n j n i i ij n i n j j i ij x x w x x x x w n I 111211 ∑∑∑∑=≠=≠--=n i n i j ij n i n i j j i ij w S x x x x w 121))(( 其中,n 为样本量,即空间位置得个数。 x i 、x j 就是空间位置i 与j 得观察值,w ij 表示空间位置i 与j 得邻近关系,当i 与j 为邻近得空间位置时,w ij =1;反之,w ij =0。全局Moran 指数I 得取值范围为[-1,1]。 对于Moran 指数,可以用标准化统计量Z 来检验n 个区域就是否存在空间自相关关系,Z 得计算公式为: )()(I VAR I E I Z -==i n w n w S x x d w i i i n i j i j ij ≠----∑≠j )2/()1())(( E(I i )与VAR(I i )就是其理论期望与理论方差。数学期望EI=-1/(n-1)。 当Z 值为正且显著时,表明存在正得空间自相关,也就就是说相似得观测值(高值或低值)趋于空间集聚;当Z 值为负且显著时,表明存在负得空间自相关,相似得观测值趋于分散分布;当Z 值为零时,观测值呈独立随机分布。 全局Geary ’s C 全局Geary ’s C 测量空间自相关得方法与全局Moran ’s I 相似,其分子得

数据的基本统计分析

数据的基本统计分析 数据的基本统计分析 1.数据的描述性统计分析 通常在得到数据并对数据进行除错的预处理后,需要对数据进行描述性的统计分析。比如:对数据中变量的最小值、最大值、中位数、平均值、标准差、偏度、峰度以及正态性检验等进行分析。对于这些经常性遇到的重复过程,我们可以自己编写函数,将函数保存在MATLAB自动搜索文件夹下,然后就可以直接调用自己定义的函数了。对于上述描述性统计分析,我们可以在MATLAB命令窗口中输入:edit description,然后在弹出的窗口中选择yes,就创建了一个文件名为description的M文件。然后在弹出的空白文件中编写以下M函数: function D=description(x) %descriptive statistic analysis %input: %x is a matrix, and each colummn stands for a variable %output: %D:structure variable,denotes Minimium,Maximium,Mean,Median, %Standard_deviation,Skewness,Kurtosis,and normal distribution test,respectively. %notes:when the number of oberservations of the colummn variables less than 30, %Lilliefors test is used for normal distribution test,and output D.LSTA denotes %test statistic and D.LCV denote critical value under 5% significant level; %otherwise, Jarque-Bera test is used, and output D.JBSTA denotes test statistic %and D.JBCV denote critical value under 5% significant level.If test statistic is %less than critical value,the null hypothesis (normal distribution) can not %be rejected under 5% significant level. D.Minimium=min(x); D.Maximium=max(x); D.Mean=mean(x); D.Median=median(x); D.Standard_deviation=std(x); D.Skewness=skewness(x); D.Kurtosis=kurtosis(x); if size(x,1)<30 disp('small observations,turn to Lilliefors test for normal distribution') for i=1:size(x,2) [h(i),p(i),Lilliefors(i),LCV(i)]=lillietest(x(:,i),0.05); end

空间统计分析实验报告

空间统计分析实验报告 一、空间点格局的识别 1、平均最邻近分析 平均最邻近距离指点间最邻近距离均值。该分析方法通过比较计算最邻近点对的平均距离与随机分布模式中最邻近点对的平均距离,来判断其空间格局,分析结果如图1所示。 图1 平均最邻近分析结果图最邻近比率小于1,聚集分布,Z值为-7.007176,P值为0,即这种情况是随机分布的概率为0

计算结果共有5个参数,平均观测距离,预期平均距离,最邻近比率,Z 得分,P值。 P值就是概率值,它表示观测到的空间模式是由某随机过程创建而成的概率,P 值越小,也就是观测到的空间模式是随机空间模式的可能性越小,也就是我们越可以拒绝开始的零假设。最邻近比率值表示要素是否有聚集分布的趋势,对于趋势如何,要根据Z值和P值来判断。 本实验中的最邻近比率小于1 ,聚集分布,Z值为-7.007176,P值为0,即这种情况是随机分布的概率为0,该结果说明省详细居民点的分布是聚集分布的,不存在随机分布。 2、多距离空间聚类分析 基于Ripley's K 函数的多距离空间聚类分析工具是另外一种分析事件点数据的空间模式的方法。该方法不同于此工具集中其他方法(空间自相关和热点分析)的特征是可汇总一定距离围的空间相关性(要素聚类或要素扩散)。 本实验中第一次将距离段数设为10,距离增量设为1,第二次将距离段数设为5,距离增量同样为1,得到如图2和图3所示的结果。 从图中可以看出,小于3千米的距离,观测值大于预测值,居民点聚集,大于3千米,观测值小于预测值,居民点离散。且聚集具有统计意义上的聚集,离散并未具有统计意义上的显著性。 图2 K函数聚类分析结果1

matlab数据的基本统计分析

第四讲 数据的基本统计分析 数据的基本统计分析 1.数据的描述性统计分析 通常在得到数据并对数据进行除错的预处理后,需要对数据进行描述性的统计分析。比如:对数据中变量的最小值、最大值、中位数、平均值、标准差、偏度、峰度以及正态性检验等进行分析。对于这些经常性遇到的重复过程,我们可以自己编写函数,将函数保存在MATLAB自动搜索文件夹下,然后就可以直接调用自己定义的函数了。对于上述描述性统计分析,我们可以在MATLAB命令窗口中输入:edit discription,然后在弹出的窗口中选择yes,就创建了一个文件名为discription的M文件。然后在弹出的空白文件中编写以下M函数: function D=discription(x) %descriptive statistic analysis %input: %x is a matrix, and each colummn stands for a variable %output: %D:structure variable,denotes Minimium,Maximium,Mean,Median, %Standard_deviation,Skewness,Kurtosis,and normal distribution test,respectively. %notes:when the number of oberservations of the colummn variables less than 30, %Lilliefors test is used for normal distribution test,and output D.LSTA denotes %test statistic and D.LCV denote critical value under 5% significant level; %otherwise, Jarque-Bera test is used, and output D.JBSTA denotes test statistic %and D.JBCV denote critical value under 5% significant level.If test statistic is %less than critical value,the null hypothesis (normal distribution) can not %be rejected under 5% significant level. D.Minimium=min(x); D.Maximium=max(x); D.Mean=mean(x); D.Median=median(x); D.Standard_deviation=std(x); D.Skewness=skewness(x); D.Kurtosis=kurtosis(x); if size(x,1)<30 disp('small observations,turn to Lilliefors test for normal distribution') for i=1:size(x,2) [h(i),p(i),Lilliefors(i),LCV(i)]=lillietest(x(:,i),0.05); end

空间相关性的统计分析

空间相关性的统计分析 摘要院空间自相关统计量是用于度量地理数据的一个基本性质,空间分析学者 结合日益成熟的电脑科技GIS、空间计量方法、以及大型资料库,目的在精确地 界定空间因素的重要性及影响力,空间权重矩阵用fij 符号来表示空间的对象i,j 的互相关联,fij=0 就是表示空间权重矩阵的对角元素为零。空间权重矩阵有可以 根据文中的几个函数方法来确定。 Abstract: Spatial autocorrelation statistics is a basic property used to measure geographic data. Spatial analysis scholars aim toaccurately define the importance and influence of space factors combined with the increasingly mature computer science and technologyGIS, spatial econometric methods andlarge database. In spatial weight matrix, fij denotes the correlationbetween i,j. fij=0 means thediagonalelements of spatial weight matrix is zero. Spatial weight matrix can be determined according to the following function methods.关键词院空间信息特殊关系;空间依赖性;空间自相 关性;统计方法;空间权重矩阵Key words: spatial information special relationship;spatial dependence;spatial autocorrelation;statistical methods;spatial weight matrix中图分类号院P208 文献标识码院A 文章编号院1006-4311(2014)27- 0243-02 1 空间的引入地理学第一定律,Tobler's First Law 或者Tobler's FirstLaw of Geography,地理事物或属性在空间分布上互为相关,存在集聚(clustering)、随机(random)、规则(Regularity)分布。 空间信息之间存在特殊关系。一个空间单元内的信息与其周围单元信息有相 似性,空间单元之间具有的连通性,属性各阶矩的空间非均匀性或非静态性。空 间分布模式主要有点模式、线模式、面模式和体模式,其中最早被提出和研究的 是点模式(point pattern)。点模式分析的理论最早由Ripley(1977)提出,并不 断得到完善。目前应用领域最广的面模式——空间自相关。基本上,人的行为表 现受到所处环境或周遭环境的影响非常明显,空间分析学者结合日益成熟的电脑 科技GIS、空间计量方法、以及大型资料库,目的在精确地界定空间因素的重要 性及影响力:到底是哪一种空间因素产生影响?影响有多大?如何建立模型?解 释自变数与因变数间的关系。 空间自相关分析的目标应该是在空间某一变量应该与某一空间相关,其相关 的程度应该怎样。空间自相关的系数应该经常来度量某事物在空间中的依靠性。 如果一个因变量的取值跟随所要测量的长度的变小而变得更加相近,所以这一变 量值就显示空间正相关;如果测量值由于程度的变小而更远,这个称为空间负相关;如果测量值与空间不存在依靠性,那么。这一个测量值所表现的是与空间不 相关性或者说是空间随机性。空间自相关的应用一般与取样,测量空间自相关的 测量与之距离的空间函数还有自相关性的测量检查。 2 与空间有关性的基本理论空间自相关定义:空间自相关是指一些变量在同 一个分布区内的观测数据之间潜在的相互依赖性,要是这些因素本身存在自相关,必然削弱它们的作用,为此需剔除自相关影响大的因素。空间统计分析就是为空 间资料的统计分析方法,地理要素空间相互影响,自相关是一种不容忽视的影响 因素。对已知观测数据建立自回归模型,即可对自相关变量进行预测,主要思想 在于空间中邻近的数据通常比相离较远的资料具有较高的相似性。如所研究的地 理对象受许多因素影响,其建立在相邻地理单元存在某种联系的基本假设之上。 空间依赖性定义:就是指当地理空间中某一点的值依赖于和它相邻的另一点

空间自相关

空间自相关 一、发展历程 1.1950年前后,Moran基于生物现象的空间分析将一维空间概念的相关系数推广到二维 空间,从而定义了Moran指数; 2.此后不久,Geary类比于回归分析的Durbin-Watson统计量提出了Geary系数的概念。 于是,空间自相关分析方法雏形形成。在地理学的计量运动期间,空间自相关分析方法被引入地理学领域。 3.此后数十年,经过广大地理学家的努力,特别是Cliff和Ord的有关工作,空间自相关 逐渐发展成为地理空间分析的重要主题之一,另一个突出的主题是Wilson的空间相互作用理论和模型。 4.在Moran指数和Geary系数的基础上,Anselin发展了空间自相关的局部分析方法,Getis 等提出了基于距离统计的空间联系指数。特别是Moran散点图分析方法的创生,代表着空间自相关分析的一个显著进步。 二、基本理论 空间自相关是空间依赖的重要形式,是指研究对象的空间位置之间存在的相关性,也是检验某一要素属性值与其相邻空间要素上的属性值是否相关的重要指标,通常分为全局空间自相关与局部空间自相关两大类。运用空间自相关技术时,首先生成空间权重矩阵,确定各空间单元的权重,再根据各单元的属性信息进行空间自相关分析。 在地理统计学科中应用较多,现已有多种指数可以使用,但最主要的有两种指数,即Moran的I指数和Geary的C指数。在统计上,透过相关分析(correlation analysis)可以检测两种现象(统计量)的变化是否存在相关性,例如:稻米的产量,往往与其所处的土壤肥沃程度相关。如果这个分析统计量是不同观察对象的同一属性变量,就称之为「自相关」(autocorrelation)。因此,所谓的空间自相关(spatial autocorrelation)就是研究「空间中,某空间单元与其周围单元间,就某种特征值,透过统计方法,进行空间自相关性程度的计算,以分析这些空间单元在空间上分布现象的特性」。 基于自相关分析法的基本原理,若某一变量在空间上不属于随机分布,呈现一定的规律性,那么该变量就存在空间自相关。局部自相关可以用来测算区域内地理单元产业集聚与扩散状态、分析区域经济集聚区具体地理分布,符合产业集群在空间聚集方面的条件及功能区域划定的思路。 三、理论模型重构 (一)空间权重矩阵:确定采用邻接规则和距离规则2种; (二)全局空间自相关分析: 全局空间自相关主要探索属性数据值在整个区域的空间分布特征,通过对Global Moran’s I值的全局空间自相关统计量的计算,分析区域总体的空间关联度和空间差异程度,计算公式如下:

空间数据分析-什么是空间统计

空间统计简介 1.空间统计经典案例 最早应用空间统计分析思想可以追溯150多年前一次重大的公共卫生事件,1854年英国伦敦霍乱大流行。在这次事件中,John Snow博士利用基于地图的空间分析原理,将死亡病例标注在伦敦地图上,同时还将水井的信息也标注在地图上,通过相关分析,最后将污染源锁定在城中心的一个水井的抽水机上。在他的建议下市政府将该抽水机停用,此后霍乱大幅度下降,并得到有效的控制。John Snow利用空间分析思想控制疫情这件事具有重要的里程碑意义,它被看成了空间统计分析和流行病学两个学科的共同起源;但是此后相当长的一段时间内由于缺乏刻画数据的空间相关性和异质性的方法,人们在分析空间属性的数据时,往往把所涉及的数据自身空间效应作为噪声或者误差来处理,这种缺乏对空间自相关和异质性的刻画,限制了以地图为基础的空间属性数据在公共卫生领域中应用的深入研究。直到1950年Moran首次提出空间自相关测度来研究二维或更高维空间随机分布的现象,1951年南非学者Krige提出了空间统计学萌芽思想,后经法国数学家Matheron完善,于1963年和1967年提出了地统计学和克里金技术。1973年, Cliff和Ord发表了空间自相关(Spatial Autocorrelation)的分析方法,1981年出版了Spatial Process:Model and Application专著,形成了空间统计理论体系,以及Getis’G和Lisa提出的空间异质性的局部统计使空间统计理论日趋成熟[1][2]。近年来随着空间分析技术以及空间分析软件(如GIS、Geoda、SaTScan、Winbugs等)的迅速发展,与疾病分布有关的空间统计分析也得以较快发展。 2.什么是空间统计 空间统计具有明显的多学科交叉特征,其显著特点是思想多源、方法多样、技术复杂,并随着相关学科如计算机软硬件技术的发展而发展。空间统计分析是以地理实体为研究对象,以空间统计模型为工具,以地理实体空间相关性和空间变异性为出发点,来分析地理对象空间格局、空间关系、时空变化规律,进而揭示其成因的一门新科学。经典统计学与空间统计学的区别与联系归纳如表错误!文档中没有指定样式的文字。-1。 表错误!文档中没有指定样式的文字。-1经典统计学与空间统计学的区别与联 系

浅析空间自相关的内容及意义

浅析空间自相关的内容及意义 摘要:本文主要介绍了空间自相关的含义、测度指标及研究空间自相关的意义。首先,明确空间自相关是检验某一要素的属性值是否显著地与其相邻空间点上的属性值相关联的重要指标,揭示空间参考单元与其邻近的空间单元属性特征值之间的相似性或相关性。其次,介绍用来测度空间自相关性的指标,可以分为全局指标和局部指标,常用的指标有:Moran’s I、Geary’s C和Getis-Ord G。最后,进一步阐述了空间自相关的研究意义。 关键字:空间自相关;全局指标;局部指标 The content and research significance of spatial autocorrelation analysis Abstract:In this paper, the content,the index and the research significance of spatial autocorrelation were analyzed. Firstly, the content of spatial autocorrelation is discussed. Spatial autocorrelation is related to the correlation of the same variables, and also can be used to measure the degree of concentration of the attribute value, in order to reveal the correlation between the space reference unit and its near unit, including global spatial autocorrelation and local spatial autocorrelation.Secondly, it analyzesthe index of spatial autocorrelation, the main index included Moran’s I, Geary’s C and Getis-Ord G. Thirdly, this paper discussedthe research signification of spatial autocorrelation analysis. Key words: spatial autocorrelation; global index; local index 0引言 空间自相关是研究空间中某位置的观察值与其相邻位置的观察值是否相关以及相关程度的一种空间数据分析方法[1]。即空间自相关是检验某一要素的属性值是否显著地与其相邻空间点上的属性值相关联的重要指标,可以分为正相关和负相关,正相关表明某单元的属性值变化与其邻近空间单元具有相同变化趋势,负相关则相反[2]。在地学邻域,地统计学数据主要来源于研究对象在空间区域上的抽样,进而分析各种自然现象的空间变异规律和空间格局,并且已被证明是研究空间分异和空间格局的有效方法。 在国外,20 世纪60年代就有学者开始运用空间自相关方法研究生态学、遗传学等问题, 目前已应用于数字图像处理、流行病学、生物学、区域经济与社会

(完整word版)GIS空间分析与建模期末复习总结

空间分析与建模复习 名词解释: 空间分析:采用逻辑运算、数理统计和代数运算等数学方法,对空间目标的位置、形态、分布及空间关系进行描述、分析和建模,以提取和挖掘地理空间目标的隐含信息为 目标,并进一步辅助地理问题求解的空间决策支持技术。 空间数据结构:是对空间数据的合理组织,是适合于计算机系统存储、管理和处理地图图形的逻辑结构,是地理实体的空间排列方式和相互关系的抽象描述与表达。 空间量测:对GIS数据库中各种空间目标的基本参数进行量算与分析, 元数据:描述数据及其环境的数据。 空间元数据:关于地理空间数据和相关信息的描述性信息。 空间尺度:数据表达的空间范围的相对大小以及地理系统中各部分规模的大小 尺度转换:信息在不同层次水平尺度范围之间的变化,将某一尺度上所获得的信息和知识扩展或收缩到其他尺度上,从而实现不同尺度之间辨别、推断、预测或演绎的跨越。 地图投影:将地球椭球面上的点映射到平面上的方法,称为地图投影。 地图代数:作用于不同数据层面上的基于数学运算的叠加运算 重分类:将属性数据的类别合并或转换成新类,即对原来数据中的多种属性类型按照一定的原则进行重新分类 滤波运算:通过一移动的窗口,对整个栅格数据进行过滤处理,将窗口最中央的像元的新值定义为窗口中像元值的加权平均值 邻近度:是定性描述空间目标距离关系的重要物理量之一,表示地理空间中两个目标地物距离相近的程度。缓冲区分析、泰森多边形分析。 缓冲区:是指为了识别某一地理实体或空间物体对其周围地物的影响度而在其周围建立的具有一定宽度的带状区域。 缓冲区分析:对一组或一类地物按缓冲的距离条件,建立缓冲区多边形,然后将这一图层与需要进行缓冲区分析的图层进行叠加分析,得到所需结果的一种空间分析方法 泰森多边形:所有点连成三角形,作三角形各边的垂直平分线,每个点周围的若干垂直平分线便围成的一个多边形 网络分析:是通过研究网络的状态以及模拟和分析资源在网络上的流动和分配情况,对网络结构及其资源等的优化问题进行研究的一种空间分析方法。(理论基础:计算机图论和运筹学) 自相关:空间统计分析所研究的区域中的所有的值都是非独立的,相互之间存在相关性。在空间和时间范畴内,这种相关性被称为自相关。

相关文档