文档库 最新最全的文档下载
当前位置:文档库 › ansys-FLUENT03边界条件

ansys-FLUENT03边界条件

各类边界条件fluent

Fluent技巧 边界条件 定义边界条件概述 边界条件包括流动变量和热变量在边界处的值。它是FLUENT分析得很关键的一部分,设定边界条件必须小心谨慎。 边界条件的分类:进出口边界条件:压力、速度、质量进口、进风口、进气扇、压力出口、压力远场边界条件、质量出口、通风口、排气扇;壁面、repeating, and pole boundaries:壁面,对称,周期,轴;内部单元区域:流体、固体(多孔是一种流动区域类型) ;内部表面边界:风扇、散热器、多孔跳跃、壁面、内部。(内部表面边界条件定义在单元表面,这意味着它们没有有限厚度,并提供了流场性质的每一步的变化。这些边界条件用来补充描述排气扇、细孔薄膜以及散热器的物理模型。内部表面区域的内部类型不需要你输入任何东西。) 下面一节将详细介绍上面所叙述边界条件,并详细介绍了它们的设定方法以及设定的具体合适条件。周期性边界条件在本章中介绍,模拟完全发展的周期性流动将在周期性流动和热传导一章中介绍。 使用边界条件面板 边界条件(Figure 1)对于特定边界允许你改变边界条件区域类型,并且打开其他的面板以设定每一区域的边界条件参数 菜单:Define/Boundary Conditions... Figure 1: 边界条件面板 改变边界区域类型 设定任何边界条件之前,必须检查所有边界区域的区域类型,如有必要就作适当的修改。比方说:如果你的网格是压力入口,但是你想要使用速度入口,你就要把压力入口改为速度入口之后再设定。 改变类型的步骤如下:: 1.在区域下拉列表中选定所要修改的区域 2.在类型列表中选择正确的区域类型 3.当问题提示菜单出现时,点击确认 确认改变之后,区域类型将会改变,名字也将自动改变 (如果初始名字时缺省的请参阅边界条件区域名字一节),设定区域边界条件的面板也将自动打开。 !注意:这个方法不能用于改变周期性类型,因为该边界类型已经存在了附加限制。创建边界条件一节解释了如何创建和分开周期性区域。需要注意的是,只能在图一中每一个类别中改变边界类型(注意:双边区域表面是分离的不同单元区域.) Figure 1: 区域类型的分类列表 设定边界条件 在FLUENT中,边界条件和区域有关而与个别表面或者单元无关。如果要结合具有相同边界条件的两个或更多区域请参阅合并区域一节。 设定每一特定区域的边界条件,请遵循下面的步骤: 1.在边界条件区域的下拉列表中选择区域。 2. 点击Set...按钮。或者,1.在区域下拉列表中选择区域。 2.在类型列表中点击所要选择的类型。或者在区域列表中双击所需区域.,选择边界条件区域将会打开,并且你可以指定适当的边界条件

Abaqus学习笔记.

Abaqus 使用日记 Abaqus标准版共有“部件(part)”、“材料特性(propoterty)”、“装配(assemble)”、“计算步骤(step)”、“交互(interaction)”、“加载(load)”、“单元划分(mesh)”、“计算(job)”、“后处理(visualization)”、“草图(sketch)”十大模块组成。 建模方法: 一个模型(model)通常由一个或几个部件(part)组成,“部件”又由一个或几个特征体(feature)组成,每一个部分至少有一个基本特征体(base feature),特征体可以是所创建的实体,如挤压体、切割挤压体、数据点、参考点、数据轴,数据平面,装配体的装配约束、装配体的实例等等。 1.首先建立“部件” (1)根据实际模型的尺寸决定部件的近似尺寸,进入绘图区。绘图区根据所输入的近似尺寸决定网格的间距,间距大小可以在edit菜单sketcher options选项里调整。 (2)在绘图区分别建立部件中的各个特征体,建立特征体的方法主要有挤压、旋转、平扫三种。同一个模型中两个不同的部件可以有同名的特征体组成,也就是说不同部件中可以有同名的特征体,同名特征体可以相同也可以不同。部件的特征体包括用各种方法建立的基本特征体、数据点(datum point)、数据轴(datum axis)、数据平面(datum plane)等等。(3)编辑部件可以用部件管理器进行部件复制,重命名,删除等,部件中的特征体可以是直接建立的特征体,还可以间接手段建立,如首先建立一个数据点特征体,通过数据点建立数据轴特征体,然后建立数据平面特征体,再由此基础上建立某一特征体,最先建立的数据点特征体就是父特征体,依次往下分别为子特征体,删除或隐藏父特征体其下级所有子特征体都将被删除或隐藏。××××特征体被删除后将不能够恢复,一个部件如果只包含一个特征体,删除特征体时部件也同时被删除××××× 2.建立材料特性 (1)输入材料特性参数弹性模量、泊松比等 (2)建立截面(section)特性,如均质的、各项同性、平面应力平面应变等等,截面特性管理器依赖于材料参数管理器 (3)分配截面特性给各特征体,把截面特性分配给部件的某一区域就表示该区域已经和该截面特性相关联 3.建立刚体 (1)部件包括可变形体、不连续介质刚体和分析刚体三种类型,在创建部件时需要指定部件的类型,一旦建立后就不能更改其类型。采用旋转方式建立部件,在绘制轴对称部件的外形轮廓时不能超过其对称轴。 (2)刚体是不能够施加质量、惯性轴等特性的,建立刚体后必须给刚体指定一个参考点(reference point)。在加载模块里对参考点施加约束和定义其运动,对参考点施加的荷载或运动就相当于施加给了整个刚体。 4.模型装配 (1)在装配(assemble)模块里首先建立部件实例(part instance),一个部件实例可以看作部件的代表,但并不是原部件的拷贝。实例一直和原部件保持关联,当原部件几何形状发生变化时,实例也发生相应变化。不能对部件实例直接编辑,一个装配模型可以包含一个部件的多个实例。所有装配模型中的实例都是该装配模型的特征体,在创建第一个实例时所生成的装配模型总体坐标系也是该装配模型的一个实例。 同一个部件中所有特征体在装配模块中对该部件建立实例时会形成一个整体,也即形成了装配模型中一个特征体。选择该实例时,该实例在装配之前原部件中所有特征体都被选择了,原部件中所有特征体在装配后形成了一个整体。

边界条件的设置

第二章:边界条件 这一章主要介绍使用边界条件的基本知识。边界条件能够使你能够控制物体之间平面、表面或交界面处的特性。边界条件对理解麦克斯韦方程是非常重要的同时也是求解麦克斯韦方程的基础。 §2.1 为什么边界条件很重要 用Ansoft HFSS求解的波动方程是由微分形式的麦克斯韦方程推导出来的。在这些场矢量和它们的导数是都单值、有界而且沿空间连续分布的假设下,这些表达式才可以使用。在边界和场源处,场是不连续的,场的导数变得没有意义。因此,边界条件确定了跨越不连续边界处场的性质。 作为一个 Ansoft HSS 用户你必须时刻都意识到由边界条件确定场的假设。由于边界条件对场有制约作用的假设,我们可以确定对仿真哪些边界条件是合适的。对边界条件的不恰当使用将导致矛盾的结果。 当边界条件被正确使用时,边界条件能够成功地用于简化模型的复杂性。事实上,Ansoft HFSS 能够自动地使用边界条件来简化模型的复杂性。对于无源RF 器件来说,Ansoft HFSS 可以被认为是一个虚拟的原型世界。与边界为无限空间的真实世界不同,虚拟原型世界被做成有限的。为了获得这个有限空间,Ansoft HSS使用了背景或包围几何模型的外部边界条件。 模型的复杂性通常直接与求解问题所需的时间和计算机硬件资源直接联系。在任何可以提高计算机的硬件资源性能的时候,提高计算机资源的性能对计算都是有利的。 §2.2 一般边界条件 有三种类型的边界条件。第一种边界条件的头两个是多数使用者有责任确定的边界或确保它们被正确的定义。材料边界条件对用户是非常明确的。 1、激励源 波端口(外部) 集中端口(内部) 2、表面近似 对称面 理想电或磁表面 辐射表面 背景或外部表面 3、材料特性 两种介质之间的边界 具有有限电导的导体 §2.3 背景如何影响结构 背景边界:所谓背景是指几何模型周围没有被任何物体占据的空间。任何和背景有关联的物体表面将被自动地定义为理想的电边界(Perfect E)并且命名为外部(outer)边界条件。你可以把你的几何结构想象为外面有一层很薄而且是理想导体的材料。 有耗边界:如果有必要,你可以改变暴露于背景材料的表面性质,使其性质与

FLUENT中各种边界条件的适用范围

FLUENT中各种边界条件的适用范围 速度入口边界条件:用于定义流动入口边界的速度和标量。 压力入口边界条件:用来定义流动入口边界的总压和其它标量。 质量流动入口边界条件:用于已知入口质量流速的可压缩流动。在不可压缩流动中不必指定入口的质量流,因为当密度是常数时,速度入口边界条件就确定了质量流条件。压力出口边界条件:用于定义流动出口的静压(在回流中还包括其它的标量)。当出现回流时,使用压力出口边界条件来代替质量出口条件常常有更好的收敛速度。 压力远场边界条件:用于模拟无穷远处的自由可压缩流动,该流动的自由流马赫数以及静态条件已知。这一边界类型只用于可压缩流。 质量出口边界条件:用于在解决流动问题之前,所模拟的流动出口的流速和压力的详细情况还未知的情况。在流动出口是完全发展的时候这一条件是适合的,这是因为质量出口边界条件假定出了压力之外的所有流动变量正法向梯度为零。不适合于可压缩流动。 进风口边界条件:用于模拟具有指定的损失系数、流动方向以及周围(入口)环境总压和总温的进风口。 进气扇边界条件:用于模拟外部进气扇,它具有指定的压力跳跃、流动方向以及周围(进口)总压和总温。 通风口边界条件:用于模拟通风口,它具有指定的损失系数以及周围环境(排放处)的静压和静温。 排气扇边界条件:用于模拟外部排气扇,它具有指定的压力跳跃以及周围环境(排放处)的静压。 速度入口边界条件:速度入口边界条件用于定义流动速度以及流动入口的流动属性相关标量。这一边界条件适用于不可压缩流,如果用于可压缩流它会导致非物理结果,这是因为它允许驻点条件浮动。应该注意不要让速度入口靠近固体妨碍物,因为这会导致流动入口驻点属性具有太高的非一致性。 压力入口边界条件:压力入口边界条件用于定义流动入口的压力以及其它标量属性。它即可以适用于可压缩流,也可以用于不可压缩流。压力入口边界条件可用于压力已知但是流动速度和/或速率未知的情况。这一情况可用于很多实际问题,比如浮力驱动的流动。压力入口边界条件也可用来定义外部或无约束流的自由边界。 质量流动入口边界条件:用于已知入口质量流速的可压缩流动。在不可压缩流动中不必指定入口的质量流,因为当密度是常数时,速度入口边界条件就确定了质量流条件。当要求达到的是质量和能量流速而不是流入的总压时,通常就会使用质量入口边界条件。调节入口总压可能会导致解的收敛速度较慢,所以如果压力入口边界条件和质量入口条件都可以接受,应该选择压力入口边界条件。 压力出口边界条件:压力出口边界条件需要在出口边界处指定静(gauge)压。静压值的指定只用于亚声速流动。如果当地流动变为超声速,就不再使用指定压力了,此时压力要从内部流动中推断。所有其它的流

Ansys12.0 Mechanical教程-5热分析

Workbench -Mechanical Introduction 第六章 热分析

概念 Training Manual ?本章练习稳态热分析的模拟,包括: A.几何模型 B B.组件-实体接触 C.热载荷 D.求解选项 E E.结果和后处理 F.作业6.1 本节描述的应用般都能在ANSYS DesignSpace Entra或更高版本中使用,除了?本节描述的应用一般都能在ANSYS DesignSpace Entra ANSYS Structural 提示:在S S热分析的培训中包含了包括热瞬态分析的高级分析 ?ANSYS

Training Manual 稳态热传导基础 ?对于一个稳态热分析的模拟,温度矩阵{T}通过下面的矩阵方程解得: ()[]{}(){} T Q T T K =?假设: –在稳态分析中不考虑瞬态影响[K]可以是个常量或是温度的函数–[K] 可以是一个常量或是温度的函数–{Q}可以是一个常量或是温度的函数

稳态热传导基础 Training Manual ?上述方程基于傅里叶定律: ?固体内部的热流(Fourier’s Law)是[K]的基础; ?热通量、热流率、以及对流在{Q}为边界条件; ?对流被处理成边界条件,虽然对流换热系数可能与温度相关 ?在模拟时,记住这些假设对热分析是很重要的。

A. 几何模型 Training Manual ?热分析里所有实体类都被约束: –体、面、线 ?线实体的截面和轴向在DesignModeler中定义 ?热分析里不可以使用点质量(Point Mass)的特性 ?壳体和线体假设: –壳体:没有厚度方向上的温度梯度 –线体:没有厚度变化,假设在截面上是一个常量温度 ?但在线实体的轴向仍有温度变化

ABAQUS-二次开发-边界条件

这个例子模拟三峡库区的水位涨落时,涉水土质滑坡的渗流场分布情况的,是以前做的,蛮好玩的。如果大家关心些新闻的话,三峡库区有涨水、蓄水、排水、枯水这个一年一次循环的周期,关键问题就在于怎么在数值模拟中考虑这个 时间单位这里用的是“天”,任何问题,只要把单位统一化,就可以实现自己所定义的单位系统下的问题,这个大家应该是很熟悉的了。 t=2天 t=4天 t=8天 t=16天 t=20天t=26天 图2 浸润线位置随涨水时间t变化图

数值模拟中实现这个问题,需要对边界条件上加载孔隙水压力的方式动手脚了,首先把时间定下来,然后把每个时间对应的水位高度定下来,然后就是写对应的程序了,关键就在于,需要在各个位置的节点处定义不同的pp_t幅值曲线。这个问题使用子程序会很方便,也可以不用,只需要定义一堆关键字吧,但是GUI方式是完全没法实现的。其实软件关键字的背后也就是他的脚本语言,就好像是FLAC里写一句struct cable,这个命令本身只有给你看懂那么一个傻瓜意义意义。看看关键字怎么定义的: *AMPLITUDE,name=down1,VALUE=ABSOLUTE 0,0,30,-300,180,-300 *AMPLITUDE,name=down2,VALUE=ABSOLUTE 0,10,1,0,30,-290,180,-290 *AMPLITUDE,name=down3,VALUE=ABSOLUTE 0,20,2,0,30,-280,180,-280 *AMPLITUDE,name=down4,VALUE=ABSOLUTE 0,30,3,0,30,-270,180,-270 *AMPLITUDE,name=down5,VALUE=ABSOLUTE 0,40,4,0,30,-260,180,-260 *AMPLITUDE,name=down6,VALUE=ABSOLUTE 0,50,5,0,30,-250,180,-250 *AMPLITUDE,name=down7,VALUE=ABSOLUTE 0,60,6,0,30,-240,180,-240 *AMPLITUDE,name=down8,VALUE=ABSOLUTE 0,70,7,0,30,-230,180,-230 *AMPLITUDE,name=down9,VALUE=ABSOLUTE 0,80,8,0,30,-220,180,-220 *AMPLITUDE,name=down10,VALUE=ABSOLUTE 0,90,9,0,30,-210,180,-210 *AMPLITUDE,name=down11,VALUE=ABSOLUTE 0,100,10,0,30,-200,180,-200 *AMPLITUDE,name=down12,VALUE=ABSOLUTE 0,110,11,0,30,-190,180,-190 *AMPLITUDE,name=down13,VALUE=ABSOLUTE 0,120,12,0,30,-180,180,-180 *AMPLITUDE,name=down14,VALUE=ABSOLUTE 0,130,13,0,30,-170,180,-170 *AMPLITUDE,name=down15,VALUE=ABSOLUTE 0,140,14,0,30,-160,180,-160 *AMPLITUDE,name=down16,VALUE=ABSOLUTE

ansys中的热分析复习过程

a n s y s中的热分析

【转】热-结构耦合分析 知识掌握篇 2009-05-31 14:09:19 阅读131 评论0 字号:大中小订阅 热-结构耦合问题是结构分析中通常遇到的一类耦合分析问题.由于结构温度场的分 布不均会引起结构的热应力,或者结构部件在高温环境中工作,材料受到温度的影响会发 生性能的改变,这些都是进行结构分析时需要考虑的因素.为此需要先进行相应的热分析, 然后在进行结构分析.热分析用于计算一个系统或部件的温度分布及其它热物理参数,如 热量的获取或损失,热梯度,热流密度(热通量)等.本章主要介绍在ANSYS中进行稳 态,瞬态热分析的基本过程,并讲解如何完整的进行热-结构耦合分析. 21.1 热-结构耦合分析简介 热-结构耦合分析是指求解温度场对结构中应力,应变和位移等物理量影响的 分析类型.对于热-结构耦合分析,在ANSYS中通常采用顺序耦合分析方法,即 先进行热分析求得结构的温度场,然后再进行结构分析.且将前面得到的温度场作为体载荷加到结构中,求解结构的应力分布.为此,首先需要了解热分析的基本知识,然后再学习耦合分析方法. 21.1.1 热分析基本知识

ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温度,并导出其它热物理参数.ANSYS热分析包括热传导,热对流及热辐射三种热传递方式.此外,还可以分析相变,有内热源,接触热阻等问题. 热传导可以定义为完全接触的两个物体之间或一个物体的不同部分之间由于温度梯度 而引起的内能的交换.热对流是指固体的表面和与它周围接触的流体之间,由于温差的存 在引起的热量的交换.热辐射指物体发射电磁能,并被其它物体吸收转变为热的热量交换 过程. 如果系统的净热流率为0,即流入系统的热量加上系统自身产生的热量等于流出系统 的热量:q流入+q生成-q流出=0,则系统处于热稳态.在稳态热分析中任一节点的温度不随时间变 化. 瞬态传热过程是指一个系统的加热或冷却过程.在这个过程中系统的温度,热流率, 热边界条件以及系统内能随时间都有明显变化. ANSYS热分析的边界条件或初始条件可分为七种:温度,热流率,热流密度, 对流,辐射,绝热,生热. 热分析涉及到的单元有大约40种,其中纯粹用于热分析的有14种,它们如表21.1所示. 表21.1 热分析单元列表

FLUENT进行流体动力学分析时,分析边界条件的种类及应用要点

FLUENT进行流体动力学分析时,分析边界条件的种类及应用要点。答:FLUENT 软件提供了十余种类型的进、出口边界条件,分别如下: (1) 速度入口(velocity-inlet):给出入口边界上的速度。 给定入口边界上的速度及其他相关标量值。该边界条件适用于不可压速流动问题,对可压缩问题不适合,否则该入口边界条件会使入口处的总温或总压有一定的波动。 (2) 压力入口(pressure-inlet):给出入口边界上的总压。 压力入口边界条件通常用于流体在入口处的压力为已知的情形,对计算可压和不可压问题都适合。压力进口边界条件通常用于进口流量或流动速度为未知的流动。压力入口条件还可以用于处理自由边界问题。 (3) 质量入口(mess-flow-inlet):给出入口边界上的质量流量。 质量入口边界条件主要用于可压缩流动;对于不可压缩流动,由于密度是常数,可以用速度入口条件。质量入口条件包括两种:质量流量和质量通量。质量流量是单位时间内通过进口总面积的质量。质量通量是单位时间单位面积内通过的质量。如果是二维轴对称问题,质量流量是单位时间内通过2π弧度的质量,而质量通量是通过单位时间内通过1 弧度的质量。 (4) 压力出口(pressure-outlet):给定流动出口边界上的静压。 对于有回流的出口,该边界条件比outflow 边界条件更容易收敛。给定出口边界 上的静压强(表压强)。该边界条件只能用于模拟亚音速流动。如果当地速度已经超过音速,该压力在计算过程中就不采用了。压力根据内部流动计算结果给定。其他量都是根据内部流动外推出边界条件。该边界条件可以处理出口有回流问题,合理的给定出口回流条件,有利于解决有回流出口问题的收敛困难问题。(5) 无穷远压力边界 (pressure-far-field):该边界条件用于可压缩流动。 如果知道来流的静压和马赫数,FLUENT 提供了无穷远压力边界条件来模拟该类问题。该边界条件适用于用理想气体定律计算密度的问题。为了满足无穷远压力边界条件,需要把边界放到我们关心区域足够远的地方。

Abaqus学习笔记

Abaqus学习笔记 Abaqus 使用日记Abaqus 标准版共有“部件(part)”、“材料特性(propoterty)”、“装配(assemble)”、“计算步骤(step)”、“交互(interaction)”、“加载(load)”、“单元划分(mesh)”、“计算(job)”、“后处理(visualization)”、“草图(sketch)”十大模块组成。建模方法:一个模型(model)通常由一个或几个部件(part)组成,部件又由一个或几个特征体(feature)组成,每一个部分至少有一个基本特征体(base feature),特征体可以是所创建的实体,如挤压体、切割挤压体、数据点、参考点、数据轴、数据平面、装配体的装配约束、装配体的实例等等。1.首先建立部件 (1)根据实际模型的尺寸决定部件的近似尺寸,进入绘图区。绘图区根据所输入的近似尺寸决定网格的间距,间距大小可以在edit菜单sketcher options 选项里调整。 (2)在绘图区分别建立部件中的各个特征体,建立特征体的方法主要有挤压、旋转、平扫三种。同一个模型中两个不同的部件可以有同名的特征体组成,也就是说不同部件中可以有同名的特征体,同名特征体可以相同也可以不同。部件的特征体包括用各种方法建立的基本特征体、数据点(datum point)、数据轴(datum axis)、数据平面(datum plane)等等。 (3)编辑部件可以用部件管理器进行部件复制,重命名,删除等,部件中的特征体可以是直接建立的特征体,还可以间接手段建立,如首先建立一个数据点特征体,通过数据点建立数据轴特征体,然后建立数据平面特征体,再由此基础上建立某一特征体,最先建立的数据点特征体就是父特征体,依次往下分别为子特征体,删除或隐藏父特征体其下级所有子特征体都将被删除或隐藏。特征体被删除后将不能够恢复,一个部件如果只包含一个特征体,删除特征体时部件也同时被删除。 2.建立材料特性 (1)输入材料特性参数弹性模量、泊松比等 (2)建立截面(section)特性,如均质的、各项同性、平面应力平面应变等等,截面特性管理器依赖于材料参数管理器 (3)分配截面特性给各特征体,把截面特性分配给部件的某一区域就表示该区域已经和该截面特性相关联 3.建立刚体 (1)部件包括可变形体、离散刚体和解析刚体三种类型,在创建部件时需要指定部件的类型,一旦建立后就不能更改其类型。采用旋转方式建立部件,在绘制轴对称部件的外形轮廓时不能超过其对称轴。

fluent边界条件(一)

边界条件 定义边界条件概述 边界条件包括流动变量和热变量在边界处的值。它是FLUENT分析得很关键的一部分,设定边界条件必须小心谨慎。 边界条件的分类:进出口边界条件:压力、速度、质量进口、进风口、进气扇、压力出口、压力远场边界条件、质量出口、通风口、排气扇;壁面、repeating, and pole boundaries:壁面,对称,周期,轴;内部单元区域:流体、固体(多孔是一种流动区域类型) ;内部表面边界:风扇、散热器、多孔跳跃、壁面、内部。(内部表面边界条件定义在单元表面,这意味着它们没有有限厚度,并提供了流场性质的每一步的变化。这些边界条件用来补充描述排气扇、细孔薄膜以及散热器的物理模型。内部表面区域的内部类型不需要你输入任何东西。) 下面一节将详细介绍上面所叙述边界条件,并详细介绍了它们的设定方法以及设定的具体合适条件。周期性边界条件在本章中介绍,模拟完全发展的周期性流动将在周期性流动和热传导一章中介绍。 使用边界条件面板 边界条件(Figure 1)对于特定边界允许你改变边界条件区域类型,并且打开其他的面板以设定每一区域的边界条件参数 菜单:Define/Boundary Conditions... Figure 1: 边界条件面板 改变边界区域类型 设定任何边界条件之前,必须检查所有边界区域的区域类型,如有必要就作适当的修改。比方说:如果你的网格是压力入口,但是你想要使用速度入口,你就要把压力入口改为速度入口之后再设定。 改变类型的步骤如下:: 1.在区域下拉列表中选定所要修改的区域

2.在类型列表中选择正确的区域类型 3.当问题提示菜单出现时,点击确认 确认改变之后,区域类型将会改变,名字也将自动改变(如果初始名字时缺省的请参阅边界条件区域名字一节),设定区域边界条件的面板也将自动打开。 !注意:这个方法不能用于改变周期性类型,因为该边界类型已经存在了附加限制。创建边界条件一节解释了如何创建和分开周期性区域。需要注意的是,只能在图一中每一个类别中改变边界类型(注意:双边区域表面是分离的不同单元区域.) Figure 1: 区域类型的分类列表 设定边界条件 在FLUENT中,边界条件和区域有关而与个别表面或者单元无关。如果要结合具有相同边界条件的两个或更多区域请参阅合并区域一节。 设定每一特定区域的边界条件,请遵循下面的步骤: 1.在边界条件区域的下拉列表中选择区域。 2. 点击Set...按钮。或者,1.在区域下拉列表中选择区域。 2.在类型列表中点击所要选择的类型。或者在区域列表中双击所需区域.,选择边界条件区域将会打开,并且你可以指定适当的边界条件 在图像显示方面选择边界区域 在边界条件中不论你合适需要选择区域,你都能用鼠标在图形窗口选择适当的区域。如果你是第一次设定问题这一功能尤其有用,如果你有两个或者更多的具有相同类型的区域而且你想要确定区域的标号(也就是画出哪一区域是哪个)这一功能也很有用。要使用该功能请按下述步骤做: 1.用网格显示面板显示网格。 2.用鼠标指针(默认是鼠标右键——参阅控制鼠标键函数以改变鼠标键的功能)在图形窗口中点击边界区域。在图形显示中选择的区域将会自动被选入在边界条件面板中的区域列表中,它的名字和编号也会自动在控制窗口中显示改变边界条件名字 每一边界的名字是它的类型加标号数(比如pressure-inlet-7)。在某些情况下你可能想要对边界区域分配更多的描述名。如果你有两个压力入口区域,比方说,你可能想重名名它们

fluent边界条件(二)

周期性边界条件 周期性边界条件用来解决,物理模型和所期待的流动的流动/热解具有周期性重复的特点。FLUENT提供了两种类型的周期性边界条件。第一种类型不允许通过周期性平面具有压降(对于FLUENT4用户来说:这一类型的周期性边界是指FLUENT4中的圆柱形边界)。第二种类型允许通过平移周期性边界具有压降,它是你能够模拟完全发展的周期性流动(在FLUENT4中是周期性边界)。 本节讨论了无压降的周期性边界条件。在周期性流动和热传导一节中,完全发展的周期性模拟能力得到了详尽的描述。 周期性边界的例子 周期性边界条件用于模拟通过计算模型内的两个相反平面的流动是相同的情况。下图是周期性边界条件的典型应用。在这些例子中,通过周期性平面进入计算模型的流动和通过相反的周期性平面流出流场的流动是相同的。正如这些例子所示,周期性平面通常是成对使用的。 Figure 1: 在圆柱容器中使用周期性边界定义涡流 周期性边界的输入 对于没有任何压降的周期性边界,你只需要输入一个东西,那就是你的所模拟的几何外形是旋转性周期还是平移性周期。(对于有周期性压降的周期流还要输入其它的东西,请参阅周期性流动和热传导一节。) 旋转性周期边界是指关于旋转对称几何外形中线形成了一个包括的角度。本节中的图一就是旋转性周期。平移性周期边界是指在直线几何外形内形成周期性边界。下面两图是平移性周期边界:

Figure 1: 物理区域 Figure 2: 所模拟的区域 对于周期性边界,你需要在周期性面板(下图)中指定平移性边界还是旋转性边界,该面板是从设定边界条件菜单中打开的。 Figure 3: 周期性面板 (对于耦合解算器,周期性面板中将会有附加的选项,这一选项允许你指定压力跳跃,详细内容请参阅周期性流动和热传导一节。) 如果区域是旋转性区域,请选择旋转性区域类型。如果是平移性就选择平移性区域类型。对

热分析边界条件的施加

热分析边界条件的施加 稳态热分析可以直接在实体模型或单元模型上施加5种载荷(边界条件)。 1)恒定温度(TEMP) 恒定温度作为自由度约束施加在温度已知的边界上。 命令:D。 GUI路径:Main menu→Solution→Define Loads→Apply→Thermal→Temperature。 2)热流率(HEAT) 热流率作为节点集中载荷,主要用于线单元模型中,(通常,在线单元模型上不能施加对流或热流密度载荷);如果输入的值为正,代表热流流入节点,即单元获取热量。如果温度与热流率同时施加在一节点上则ANSYS将仅考虑温度。 命令:F。 GUI路径:Main menu→Solution→Define Loads→Apply→Thermal→Heat Flow。 3)对流(CONV) 对流边界条件作为面载荷施加于实体的外表面,它仅可施加于实体单元和壳单元模型上,对于线模型,可以通过对流线单元LINK34施加对流载荷。 命令:SF。 GUI路径:Main menu→Solution→Define Loads→Apply→Thermal→Convection。 4)热流密度(HFLUX) 热流密度也是一种面载荷。如果通过单位面积的热流率已知,或能通过计算得到时,可以在模型相应的外表面施加热流密度载荷。输入的值为正时,代表热流流入单元。热流密度也仅适用于实体单元和壳单元。热流密度与对流可以施加在同一外表面,但ANSYS仅读取最后施加的面载荷进行计算。 命令:SF。 GUI路径:Main menu→Solution→Define Loads→Apply→Thermal→Heat Flux。

abaqus实例

一.创建部件 1.打开abaqus; 开始/程序/Abaqus6.10-1/Abaque CAE 2.Model/Rename/Model-1,并输入名字link4

3.单击Create part弹出Create part对话框, Name输入link-4; Modeling Space 选择2D Planar Type 选择Deformable Base Feature 选择Wire Approximate size 输入800;然后单击continue 4.单击(Create Lines:connected)通过点(0,0)、(400,0)、(400,300)、(0,300)单击(Create Lines:connected)连接(400,300)和(0,0)两点,单击提示区中的Done按钮(或者单击鼠标滚轮,也叫中键),形成四杆桁架结构

5.单击工具栏中的(Save Model Database),保存模型为link4.cae 二.定义材料属性 6.双击模型树中的Materials(或者将Module切换到Property,单击Create Material -ε) 弹出Edit Material对话框后。 执行对话框中Mechanical/Elasticity/Elastic命令, 在对话框底部出现的Data栏中输入Young’s Module为29.5e4, 单击OK.完成材料设定。

7.单击“Create Section ”,弹出Create Section对话框, Category中选择Beam; Type中选择Truss; 单击continue按钮 弹出Edit Section对话框, 材料选择默认的Material-1,输入截面积(Cross-sectional area)为100,单击ok按钮。

fluent边界条件2

壁面边界条件 壁面边界条件用于限制流体和固体区域。在粘性流动中,壁面处默认为非滑移边界条件,但是你也可以根据壁面边界区域的平动或者转动来指定切向速度分量,或者通过指定剪切来模拟滑移壁面(你也可以在FLUENT中用对称边界类型来模拟滑移壁面,但是使用对称边界就需要在所有的方程中应用对称条件。详情请参阅对称边界条件一节)。 在当地流场的详细资料基础上可以计算出流体和壁面之间的剪应力和热传导。 壁面边界的输入 概述 壁面边界条件需要输入下列信息: ●热边界条件(对于热传导计算) ●速度边界条件(对于移动或旋转壁面) ●剪切(对于滑移壁面,此项可选可不选) ●壁面粗糙程度(对于湍流,此项可选可不选) ●组分边界条件(对于组分计算) ●化学反应边界条件(对于壁面反应) ●辐射边界条件(对于P-1模型、DTRM或者DO模型的计算) ●离散相边界条件(对于离散相计算) 在壁面处定义热边界条件 如果你在解能量方程,你就需要在壁面边界处定义热边界条件。在FLUENT中有五种类型的热边界条件: ●固定热流量 ●固定温度 ●对流热传导 ●外部辐射热传导 ●外部辐射热传导和对流热传导的结合 如果壁面区域是双边壁面(在两个区域之间形成界面的壁面,如共轭热传导问题中的流/固界面)就可以得到这些热条件的子集,但是你也可以选择壁面的两边是否耦合。详情请参阅在壁面处定义热边界条件。 下面各节介绍了每一类型的热条件的输入。如果壁面具有非零厚度,你还应该设定壁面处薄壁面热阻和热生成的相关参数,详情请参阅在壁面处定义热边界条件。 热边界条件由壁面面板输入(Figure 1),它是从边界条件打开的(见设定边界条件一节)。

航空发动机主轴承热分析边界条件处理方法

航空发动机主轴承热分析边界条件处理方法 苏 壮,李国权 (中航工业沈阳发动机设计研究所航空发动机动力传输航空科技重点实验室,沈阳110015) 航空发动机 Aeroengine 摘要:为了提高航空发动机主推力球轴承热分析的计算精度,对轴承的摩擦发热和对流换热边界条件进行了分类及研究。应用ANSYS 有限元分析软件,采用将摩擦热按体积生热率处理和将摩擦热按热流密度处理的2种不同方式,对边界条件进行了加载,分别对试验器状态的发动机主轴承进行了热分析计算,并与试验测量结果进行了对比。计算结果表明:采用表面效应单元加载热流密度的方式得到的轴承温度分布更理想,内部热点温度更集中,热点温度比按体积生热率加载的高。2种边界条件处理方法均已应用到航空发动机润滑系统热分析中,提高了航空发动机润滑系统热分析的准确性。 关键词:主轴承;热分析;边界条件;摩擦发热;对流换热;航空发动机中图分类号:V233.4 文献标识码:A doi :10.13477/https://www.wendangku.net/doc/4a10645780.html,ki.aeroengine.2015.03.014 Boundary Condition Processing Method of Aeroengine Main Bearing Thermoanalysis SU Zhuang ,LI Guo-quan (Key Laboratory of Power Transmission Technology for Aeroengine ,AVIC Shenyang Engine Design and Research Institute ,Shenyang 110015,China ) Abstract:In order to improve the thermoanalysis calculation accuracy of the aeroengine main thrust ball bearing,the friction heat and convection heat transfer boundary condition of the aeroengine main bearing were classified and researched.By using ANSYS,two different methods were applied in managing the frictional heat with volumetric heat generation rate and with the heat flux ,those two boundary conditions were loaded onto the main bearing.The results of calculation indicate that the bearing tem-perature distribution which obtained by loading heat flux on the surface effect element is better,the internal hot spots of temperature is more concentrate,and the temperature of internal hot spots is higher than that with loading heat generation on volume.Two methods were applied in the thermoanalysis of the aeroengine lubrication system,and the thermoanalysis accuracy of the aeroengine lubrication system was increased. Key words:main bearing ;thermoanalysis ;boundary condition ;frictional heat ;convection heat transfer ;aeroengine 收稿日期:2014-04-06基金项目:航空动力基础研究项目资助 作者简介:苏壮(1975),男,高级工程师,主要从事航空发动机润滑系统设计工作;E-mail :happysm427@https://www.wendangku.net/doc/4a10645780.html, 。引用格式: 第41卷第3期Vol.41No.3Jun.2015 0引言 滑油系统是航空发动机的重要组成部分[1],而热分析是航空发动机滑油系统设计的基础[2]。通过滑油系统热分析计算,可以初步确定发动机滑油系统在整个飞行包线内滑油的温度水平、主轴承的工作温度及轴承腔温度场,并最终确定系统循环量、系统冷却方案及轴承腔的冷却隔热措施[3]。 对航空发动机主轴承的热分析是滑油系统热分析中的重要环节,轴承腔内由轴承旋转产生的摩擦热以及密封装置的摩擦热是主要的生热热源[4], 航空发动机主轴承是滑油系统进行冷却和润滑的关键部件,由于主轴承自身的发热量较高,其 换热边界条件的准确确定和加载决定了主轴承热分析的精度。准确计算主轴承的工作温度对提高滑油系统热分析精度具有重要的理论意义和工程价值。 本文对航空发动机主轴承的边界条件进行了分类及研究。 1航空发动机主轴承热分析概述 航空发动机主轴承热分析主要包括以下几个方面: (1)轴承内部生热的计算。轴承内部的生热主要由摩擦热引起,需要计算由摩擦力矩引起的摩擦热的大小。

(完整版)fluent边界条件设置

边界条件设置问题 1、速度入口边界条件(velocity-inlet):给出进口速度及需要计算的所有标量值。该边界条件适用于不可压缩流动问题。 Momentum 动量?thermal 温度radiation 辐射species 种类 DPM DPM模型(可用于模拟颗粒轨迹)multipahse 多项流 UDS(User define scalar 是使用fluent求解额外变量的方法) Velocity specification method 速度规范方法:magnitude,normal to boundary 速度大小,速度垂直于边界;magnitude and direction 大小和方向;components 速度组成?Reference frame 参考系:absolute绝对的;Relative to adjacent cell zone 相对于邻近的单元区 Velocity magnitude 速度的大小 Turbulence 湍流 Specification method 规范方法 k and epsilon K-E方程:1 Turbulent kinetic energy湍流动能;2 turbulent dissipation rate 湍流耗散率 Intensity and length scale 强度和尺寸:1湍流强度 2 湍流尺度=0.07L(L为水力半径)intensity and viscosity rate强度和粘度率:1湍流强度2湍流年度率 intensity and hydraulic diameter强度与水力直径:1湍流强度;2水力直径

ANSYS热分析-表面效应单元

ANSYS热分析指南(第五章) 第五章表面效应单元 5.1简介 表面效应单元类似一层皮肤,覆盖在实体单元的表面。它利用实体表面的节点形成单元。因此,表面效应单元不增加节点数量(孤立节点除外),只增加单元数量。 ANSYS 5.7中热分析专用表面效应单元为SURF151(2-D)以及SRUF152(3-D)。有关单元的详细描述请参阅《ANSYS Element Reference》。 5.2表面效应单元在热分析中的应用 利用表面效应单元可更加灵活地定义表面热载荷: 当热流密度和热对流边界条件同时施加于同一表面时,必须将其中一个施加于实体单元表面,另一个施加在表面效应单元。建议将热对流边界施加于表面效应单元。 可将热对流边界条件中的流体温度施加于孤立节点上,将对流系数施加于表面单元,这样,可更灵活地控制对流载荷。 当对流系数随温度变化时,表面效应单元可提供设置计算对流系数的选项。 表面效应单元还可以用于模拟点与面的辐射传热。 5.3表面效应单元的有关热分析设置选项 SURF151是单元可用于多种载荷和表面效应的应用。可以覆盖在任何二维热实体单元的表面(除轴对称谐波单元PLANE75和PLANE78外)。该单元可用于二维热分析,多种载荷和表面效应可以同时存在。SURF151单元有2到4个节点,如考虑对流传热和辐射的影响需要定义一个外部节点。传热量和热对流量以表面载荷的形式施加在单元上。详细单元说明请参见《ANSYS Theory Reference》。 SURF152是三维热表面效应单元,可用于多种载荷和表面效应的应用。它可以覆盖在任何三维热单元的表面,该单元可用于三维热分析。该单元中多种载荷和表面效应可以同时存在。详细单元说明请参见《ANSYS Theory Reference》。 选定单元: 命令:ET

相关文档