文档库 最新最全的文档下载
当前位置:文档库 › BCR法测有效态重金属

BCR法测有效态重金属

BCR法测有效态重金属
BCR法测有效态重金属

BCR法测定土壤有效态重金属含量

(BCR 为欧洲共同体参考物机构( European Community Bureau of Reference) 的简称,是现在欧盟标准测量和测试机构(Standards Measurements and Testing Programme ,缩写为SM &T) 的前身。)

0. 水溶态

称1.00g过0.25mm筛的土壤样品于100ml离心管内,按1:40固液比加入煮沸过的蒸馏水,振荡2小时,3000g离心20分钟。

1. 交换态(Exchangable fraction)

称1.00g过0.25mm筛的土壤样品于100ml离心管内,按1:40固液比加入0.11 mol/L的醋酸(CH3OOH),把管口塞紧密封。然后放到往复振荡机上振荡16h。离心分离,并收集醋酸提取液于塑料瓶中,待测其中的重金属含量。往残渣中添加20mL的去离子水后振荡15min进行清洗,然后再用3000g的速度离心20分钟。倒掉上清液,但不能倒掉任何固体残渣。

2. 铁锰态(Oxides Fe/Mn fraction)

上述离心后的土壤样仍保留于离心管内,按1:40固液比加入0.5 mol/L的羟基盐酸(NH2OH?HCl)[用2 mol/L的HNO3调整pH值为1.5]进行第二步提取。再放到往复振荡机上振荡16h,离心分离,并收集第二次提取液于塑料瓶中,待测重金属含量。往残渣中添加20mL的去离子水后振荡15min进行清洗,然后再用3000g的速度离心20分钟。倒掉上清液,但不能倒掉任何固体残渣。

3. 有机结合态(Organic matter and sulfidic fraction)

分离后的土壤样保存于离心管内,先加入10ml 30%的过氧化氢(H2O2),于85℃的水浴锅中进行有机质消化;上述消化液将干时,就再加10ml 30%的过氧化氢继续消化,视样品不同直至加入的30%过氧化氢时没有冒气泡为止(全消化过程约2h)。消化完毕后,冷却离心管内的样品,再按1:50固液比加入1 mol/L的醋酸铵(NH4OAc)[用浓硝酸调整pH为2],并于振荡机上再振荡16h。完后,离心分离,收集第三步的提取液,待测。然后把离心管内的样品于75℃条件下烘干,用玛瑙研钵研磨过0.149mm(100目)尼龙筛,混匀后备用。4. 残余态(Residual)GB/T 17138-1997

准确称取上述备用样品0.2000-0.5000g于50ml聚四氟乙烯坩埚中,用水润湿后加入10ml浓盐酸(优级纯),于通风橱内的电热板上低温加热,使样品初步分解,待蒸发至约剩3ml时,取下稍冷,然后加入5ml浓硝酸(优级纯),10ml 浓氢氟酸(优级纯),3ml浓高氯酸(优级纯),加盖后于电热板上中温加热。1h 后,开盖继续加热除硅,为了达到良好的飞硅效果,应经常摇动坩埚。当加热至冒浓厚白烟时,加盖,使黑色有机碳化物分解。待坩埚壁上的黑色有机质消失后,开盖驱赶高氯酸白烟并蒸至内容物呈粘稠状。视消解情况科再加入3ml浓硝酸,3ml浓氢氟酸和1ml高氯酸,重复上述消解过程。当白烟再次基本冒尽且坩埚内容物呈粘稠状时,取下稍冷,用水冲洗坩埚盖和内壁,并加入1ml浓硝酸溶液温热溶解残渣。然后将溶液转移至50ml容量瓶中,加入硝酸镧溶液,冷却后定容至标线摇匀,备测。备测元素用原子吸收光谱(AAS)测定。空白实验:用取离子水代替试样,采用上述方法制备全程序空白溶液。每批样品至少制备2个以上的空白溶液。

通则0821重金属检查法

0821重金属检查法 本法所指的重金属系指在实验条件下能与硫代乙酰胺或硫化钠作用显色的金属杂质。 标准铅溶液的制备称取硝酸铅0.1599g,置1000ml量瓶中,加硝酸5ml 与水50ml溶解后,用水稀释至刻度,摇匀,作为贮备液。 精密量取贮备液10ml,置100ml量瓶中,加水稀释至刻度,摇匀,即得(每1ml相当于10μg的Pb)。本液仅供当日使用。 配制与贮存用的玻璃容器均不得含铅。 第一法 除另有规定外,取25ml纳氏比色管三支,甲管中加标准铅溶液一定量与醋酸盐缓冲液(pH3.5)2ml后,加水或各品种项下规定的溶剂稀释成25ml,乙管中加入按各品种项下规定的方法制成的供试品溶液25ml;丙管中加入与乙管相同重量的供试品,加配制供试品溶液的溶剂适量使溶解,再加与甲管相同量的标准铅溶液与醋酸盐缓冲液(pH3.5)2ml后,用溶剂稀释成25ml;若供试液带颜色,可在甲管中滴加少量的稀焦糖溶液或其他无干扰的有色溶液,使之与乙管、丙管一致;再在甲、乙、丙三管中分别加硫代乙酰胺试液各2ml,摇匀,放置2分钟,同置白纸上,自上向下透视,当丙管中显出的颜色不浅于甲管时,乙管中显示的颜色与甲管比较,不得更深。如丙管中显示出的颜色浅于甲管,应取样按第二法重新检查。 如在甲管中滴加稀焦糖溶液或其他无干扰的有色溶液,仍不能使颜色一致时,应取样按第二法检查。 供试品如含高铁盐影响重金属检查时,可在甲、乙、丙三管中分别加入相同量的维生素C0.5~1.0g,再照上述方法检查。 配制供试品溶液时,如使用的盐酸超过1 ml,氨试液超过2ml,或加入其他试剂进行处理者,除另有规定外,甲管溶液应取同样同量的试剂置瓷皿中蒸干后,加醋酸盐缓冲液(pH3.5)2ml与水15ml,微热溶解后,移置纳氏比色管中,加标准铅溶液一定量,再用水或各品种项下规定的溶剂稀释成25ml。 第二法 除另有规定外,当需改用第二法检查时,取各品种项下定量的供试品,按炽灼残渣检查法(通则0841)进行炽灼处理,然后取遗留的残渣;或直接取炽灼残渣项下遗留的残渣;如供试品为溶液,则取各品种项下规定量的溶液,蒸

重金属密度

重金属密度 重金属是指密度大于5g/cm’的一类金属元素,大约有45种,主要包括锅、铬、汞、铅、铜、锌、银、锡等,但是从毒性角度考虑,一般把砷、硒和铝等也包括在内。重金属在空气、土壤和水体中的存在对生物有机体产生严重影响,并且其在食物链中的生物富集极具危险性。如20世纪50年代日本曾爆发的水俱病(汞污染)、骨痛病(钢污染)和哮喘(50z和重金属粉尘复合污染)等,ATMEL单片机都是重金属污染造成的危害。 在污水处理过程中,70%。90%的重金属元素会通过吸附或沉淀转移到污泥中。一些重金属元素主要来源于工业排放的废水(如锅、铬等),还有的重金属来源于家庭生活的管 道系统,如铜、锌等。 国内有人采集了来自全国30个大中型城市污水处理厂的污泥样品,分析了其重金属含量。其中,锌和饲在污泥中含量最高,是污泥中最主要的重金属污染物,其次是铬、锰、铁,然后是镍、铅、锡等,浓度最低的是铜。另外,根据GBl8918—2M2《城镇污水处理厂污染物排放标准》判断出10个污水处理厂污泥样品的重金属浓度超标。重金属在30个污水处理厂污泥中的形态分布规律是:锰、锌和镍的可交换态含量较其他金属高,因而可移动性强,生物有效性好;铜和钻主要分布在氧化态;铬、铅、砷和硒都主要分布在氧化态和残渣态;对于大部分样品,铁的残渣态含量比较高;锅的可提取形态之和占了总铜含量相当大的比例;而硒绝大部分存在于难以溶解释放的残渣态当中。 另外,重金属是否能给生态环境和入畜健康带来危害,关键是其生物有效性。重金属生物有效性与重金属形态有密切关系。一般而言,污泥中重金属存在的形态可分为水溶态、交换态、有机结合态、碳酸盐和硫化物结合态及残渣态等,其中前三种形态的生物有效性较高.而后两种形态的生物有效性较低。重金属在污泥中有效态含量除与其浓度有关外,还与污泥的理化性状及重金属形态组成有关。国内外许多研究表明,金属离子的溶解度随PH值 升高而降低,金属有机配合物的稳定性随环境PH值升高而增强。 1.2重金属的毒性特征 A 不可逆转性和危害长期性 重金属污染基本上是一个不可逆转的过程,主要表现在两个方面:一是重金届进入土壤环境后.很难通过自然循环从土壤环境中消失或稀释;二是对生物体的危害和对生态系统结构与功能的影响不易恢复。重金属的危害长期性,即其对动植物或人体的积累性危害往往需要较长的时间才能显现出来。 B 生物累积和放大性 重金属一旦随污泥农用进入土壤,其生物有效成分,就会被植物吸收累积,通过生物放大作用,重金属可以在较高级的生物体内成千上万倍地富集,然后通过食物链进入人体.在人体某些器官内积累造成慢性中毒。 c 毒性的可变性 重金属在不同的环境条件下,可以以不同的价态存在,并相互转化。不同价态的重金属毒性也不相同。某些重金属可在微生物或外界环境条件的作用下变成毒性更强的化合物,对人和生物造成极严重的威胁。如汞在甲基钻胺素存在下能转化为毒性更大的甲基汞,汗 基汞通过食物链进一步累积,进入人体后又很难代谢出去,聚集在肝、肾和脑中,损害人的相经系统。 D微量致害性 一般来讲,汞的毒性最大.锦次之,铅、镕、砷也有相当的毒性,这五种重金属被合称又“五毒”。这些重金属只要很微小的旦即可产生明显的毒性效应,即它们的毒性闻值(对生物产生污染的最小计量)都很小,比如汞是o.01—o。05mg/m3,铅是o.1。0.2mg/m3.

重金属传播特性分析

重金属污染来源、分布、治理方法 点击次数:2540 发布时间:2011-2-16 摘要:文章阐明了重金属污染物来源与分布,同时对国内外土壤重金属污染治理的研究工作做了系统的综述,提出了土壤中重金属污染物防治的环境矿物学新方法,利用环境矿物材料治理土壤重金属污染物的方法,具有成本低、效果好、无二次污染及有用金属可回收利用等优点,展现出广阔的环境矿物学研究与应用前景。并提醒人们要提高土壤质量意识,保护生态环境。 重金属系指密度4.0以上约60种元素或密度在5.0以上的45种元素。砷、硒是非金属,但是它的毒性及某些性质与重金属相似,所以将砷、硒列入重金属污染物范围内。环境污染方面所指的重金属主要是指生物毒性显著的汞、镉、铅、铬以及类金属砷,还包括具有毒性的重金属锌、铜、钴、镍、锡、钒等污染物。 随着全球经济化的迅速发展,含重金属的污染物通过各种途径进入土壤,造成土壤严重污染。土壤重金属污染可影响农作物产量和质量的下降,并可通过食物链危害人类的健康,也可以导致大气和水环境质量的进一步恶化。因此引起世界各国的广泛重视。目前,世界各国土壤存在不同程度的重金属污染,全世界平均每年排放Hg约1.5万 t、Cu为340万 t、Pb为500万 t、Mn为1500万 t、Ni为100万 t。中国北方大城市的蔬菜基地和部分商品粮基地也存在着不同程度的重金属污染,如北京、天津、西安、沈阳、济南、长春、郑州等地;。 南方相对较轻,如福州、宁波、上海、武汉、成都等地。土壤重金属污染将会造成生态系统的严重破坏。从中国土壤资源状况看,到2000年底中国人均耕地仅为0.1 hm2,而且随着今后中国经济社会的发展如生态退耕、农业结构调整及自然灾害损毁等,土壤资源将进一步减少。因而如何有效地控制及治理土壤重金属的污染,改良土壤质量,将成为生态环境保护工作中十分重要的一项内容。 重金属污染原理 重金属,特别是汞、镉、铅、铬等具有显著和生物毒性。它们在水体中不能被微生物降解,而只能发生各种形态相互转化和分散、富集过程(即迁移)。重金属污染的特点是:(1)除被悬浮物带走的外,会因吸附沉淀作用而富集于排污口附近的底泥中,成为长期的次生污染源;(2)水中各种无机配位体(氯离子、硫酸离子、氢氧离子等)和有机配位体(腐蚀质等)会与其生成络合物或螯合物,导致重金属有更大的水溶解度而使已进入底泥的重金属又可能重新释放出来;(3)重金属的价态不同,其活性与毒性不同。其形态又随pH和氧化还原条件而转化。(4)在其危害环境方面的特点是:微量浓度即可产生毒性(一般为1~10毫克/升,汞、镉为0.01~0.001毫克/升);在微生物作用会转化为毒性更强的有机金属化合物(如洋-甲基汞);可被生物富集,通过食物链进入人体,造成慢性路线。亲硫重金属元素(汞、镉、铅、锌、硒、铜、砷等)与人体组织某些酶的巯基(-SH)有特别大的亲合力,能抑制酶的活性,亲铁元素(铁、镍)可在人体的肾、脾、肝内累积,抑制精氨酶的活性。六价铬可能是蛋白质和核酸的沉淀剂,可抑制细胞内谷胱甘肽还原酶,导致高铁血红蛋白,可能致癌,过量的钒和锰(亲岩元素)则能损害神经系统的机能。 本文主要从土壤中重金属污染物来源与分布、土壤中重金属污染物的现行治理方法入手,提出土壤中重金属污染物防治的环境矿物学新方法。旨在保护环境,提高土壤的环境质量。 1 土壤中重金属污染物来源与分布 土壤中重金属的来源是多途径的,首先是成土母质本身含有重金属,不同的母质、成土过程所形成的土壤含有重金属量差异很大。此外,人类工农业生产活动,也造成重金属对大气、水体和土壤的污染。 1.1 大气中重金属沉降

重金属检查法(USP和EP)

231 重金属检查法 本试验系在规定的试验条件下,金属离子与硫化物离子反应显色,通过与制备的标准铅溶液目视比较测定, 以确证供试品中重金属杂质含量不超过各论项下规定的限度(以供试品中铅的百分比表示,以重量计) 。【见分光 光度法和光散射项下测定法目视比较法 <851> 】【注意:对本试验有反应的典型物质有铅、汞、铋、砷、锑、锡、 镉、银、铜和钼等】 除各论另有规定外,按第一法测定重金属。第一法适用于在规定试验条件下,能产生澄清、无色溶液的物质。 第二法适用于在第一法规定试验条件下不能产生澄清、无色溶液的物质,或者适用于由于性质复杂, 化物离子与金属离子形成沉淀的物质,或者是不易挥发的和易挥发的油类物质。第三法为湿消化法,仅用于第一 法、第二法都不适合的情况。 特殊试剂 硝酸铅贮备液制备:取硝酸铅 159.8mg , 溶于 100ml 水中,加 1ml 硝酸,用水稀释至 1000ml 。制备和贮存 本溶液的玻璃容器应不含可溶性铅。 标准铅溶液制备:使用当天,取硝酸铅贮备液 10.0ml , 用水稀释至 100.0ml 。每 1mL 的标准铅溶液含相当 于 10μg 的铅。按每克供试品取 100μL 标准铅溶液制备的对照溶液, 相当于供试品含百万分之一的铅。 方法Ⅰ pH3.5 醋酸盐缓冲液的制备: 取醋酸铵 25.0g 溶于 25mL 水中, 加 6N 盐酸液 38.0mL , 必要时, 用 6N 氢氧化铵液或 6N 盐 酸液调节 pH 至 3.5 , 用水稀释至 100mL , 混匀。 取标准铅溶液 2.0mL (相当于 20 μg 铅)于50mL 比色管中, 加水稀释至 25mL , 以 pH 计或精密 pH 试纸作为外 指示剂,用 1N 醋酸液或 6N 氢氧化铵液调节 pH 至 3.0~4.0 , 用水稀释至 40mL , 混匀。 取各论项下规定的供试品溶液 25mL 于 50mL 比色管中, 或用各论项下规定用 量的酸溶液样品, 用水稀释至 25mL ,供试品以 g 计,按下式计算: 2.0/ (1000L ) 式中 L 是重金属限度( % )。以 pH 计或是精密 pH 试纸作为外指示剂,用 1N 醋酸液或 6N 氢氧化铵液调 节 pH 至 3.0~4.0 , 用水稀释至 40mL , 混匀。 取供试品溶液制备项下的溶液 25mL 于 50mL 比色管中, 加标准铅溶液 2.0mL ,以 pH 计或是精密 pH 试纸 作为外指示剂,用 1N 醋酸液或 6N 氢氧化 铵液调节 pH 至 3.0~4.0 , 用水稀释至 40mL , 混匀。 在上述三试管中,分别加入 pH3.5 的醋酸盐缓冲液 2mL , 然后再加硫代乙酰 胺-甘油试液 1.2mL ,用水稀 释至 50mL , 混匀,放置 2 分钟, 在白色平面 自上向下观察:供试品溶液产生的颜色与标准 品溶液产生的颜色相比,不得更 深。对照溶液产生的颜色比标准溶液深或相当。 [注意: 如果 对照溶液的颜色比 标准溶液浅,用方法 II 代替方法 I 测定供试品 ]。 易干扰硫 标准溶液制备: 供试品溶液制备: 对照溶液制备 检查法:

重金属检查法

重金属检查法 1.目的:建立重金属检查(药典中第一、二法)的标准规程。 2.范围:QC化验室。 3.责任:QC化验员。 4.内容: 4.1简述: pH值是3.0-3.5,选用醋酸盐缓冲液(pH3.5)2ml调节pH 较好,显色剂硫代乙酰胺试液用量经实验也以2ml为佳,显色时间一般为2分钟。以10-20μgPb与显色剂所产生的颜色为最佳目视比色范围。在规定实验条件下,与硫代乙酰胺试液在弱酸条件下产生的硫化氢呈色的金属离子有银、铅、汞、铜、镉、铋、锑、锡、砷、锌、钴与镍等。 4.2仪器与用具:纳氏比色管,应注意选择各管之间的平行 性,玻璃色泽一致,内径、刻度、标线高度一致。比色管洗涤时避免划伤内壁。 4.3试药和试液: ℃干燥至恒重的硝酸铅0.160g,置1000m1量瓶中,加硝酸5ml与水50ml溶解后,用水稀释至刻度,摇匀,作为贮备液。临用前,精密量取贮液10m1置100ml量瓶中,加

水稀释至刻度,摇匀,即得(每1ml相当于10μg的pb)。 4.4操作方法: pH3.5)2ml,加水或该药品项下规定的溶剂稀释成25ml。 μm)滤过,然后甲管中加入标准铅溶液一定量,水或该药品项下规定的溶剂使成25ml,再在乙管中加硫代乙酰胺试液2ml,甲管中加水2ml,照上述方法比较,即得。pH3.5)2ml与水15ml溶解以后,移置甲管中,加标准铅溶液一定量,再加水稀释成25ml。 ℃灼烧的炽灼残渣项下遗留的残渣,加硝酸0.5ml蒸干,至氧化氮蒸汽除尽后,放冷,加盐酸2ml,置水浴上蒸干后加水15m1,滴加氨试液至酚酞指示液显中性,再加醋酸盐缓冲液(pH3.5)2m1,微热溶解后,移至乙管中,加水稀释成25m1。 -1.0ml,使恰湿润,用低温加热至硫酸除尽后,加硝酸0.5ml,蒸干,至氧化氮蒸气除尽后,放冷,在500-600℃“…放冷,加盐酸2m1...”起,至加水稀释成25ml。 4.5注意事项: pH3.5)时,要用PH计调节,硫代乙酰胺试液加入量以2ml 时呈色最深;硫代乙酰胺试液显色剂的最佳显色时间为2分钟,第一、第二法均为放置2分钟。 μg的Pb)为宜。小于1ml或大于3m1,呈色太浅或太深均

BCR法测有效态重金属

BCR法测定土壤有效态重金属含量 (BCR 为欧洲共同体参考物机构( European Community Bureau of Reference) 的简称,是现在欧盟标准测量和测试机构(Standards Measurements and Testing Programme ,缩写为SM &T) 的前身。) 0. 水溶态 称1.00g过0.25mm筛的土壤样品于100ml离心管内,按1:40固液比加入煮沸过的蒸馏水,振荡2小时,3000g离心20分钟。 1. 交换态(Exchangable fraction) 称1.00g过0.25mm筛的土壤样品于100ml离心管内,按1:40固液比加入0.11 mol/L的醋酸(CH3OOH),把管口塞紧密封。然后放到往复振荡机上振荡16h。离心分离,并收集醋酸提取液于塑料瓶中,待测其中的重金属含量。往残渣中添加20mL的去离子水后振荡15min进行清洗,然后再用3000g的速度离心20分钟。倒掉上清液,但不能倒掉任何固体残渣。 2. 铁锰态(Oxides Fe/Mn fraction) 上述离心后的土壤样仍保留于离心管内,按1:40固液比加入0.5 mol/L的羟基盐酸(NH2OH?HCl)[用2 mol/L的HNO3调整pH值为1.5]进行第二步提取。再放到往复振荡机上振荡16h,离心分离,并收集第二次提取液于塑料瓶中,待测重金属含量。往残渣中添加20mL的去离子水后振荡15min进行清洗,然后再用3000g的速度离心20分钟。倒掉上清液,但不能倒掉任何固体残渣。 3. 有机结合态(Organic matter and sulfidic fraction) 分离后的土壤样保存于离心管内,先加入10ml 30%的过氧化氢(H2O2),于85℃的水浴锅中进行有机质消化;上述消化液将干时,就再加10ml 30%的过氧化氢继续消化,视样品不同直至加入的30%过氧化氢时没有冒气泡为止(全消化过程约2h)。消化完毕后,冷却离心管内的样品,再按1:50固液比加入1 mol/L的醋酸铵(NH4OAc)[用浓硝酸调整pH为2],并于振荡机上再振荡16h。完后,离心分离,收集第三步的提取液,待测。然后把离心管内的样品于75℃条件下烘干,用玛瑙研钵研磨过0.149mm(100目)尼龙筛,混匀后备用。4. 残余态(Residual)GB/T 17138-1997

土壤中重金属砷、镉、铅、铬、汞有效态浸提剂的研究

土壤中重金属砷、镉、铅、铬、汞有效态浸提剂的研究 随着对土壤重金属元素研究的深入,以全量土壤重金属评价土壤污染在实际应用中已显露出不足之处,而以“有效态”作为评价污染的强度指标能更好地反映土壤实际污染状况及其对植物的危害,所以重金属有效态的研究愈加重要。本文在对砷、镉、铅、铬、汞五种元素的地球化学性质和有效态分析技术的收集整理的基础上,采用三种较为常用的浸提剂盐酸、DTPA、氯化钙对安徽铜陵矿山地区,安徽长江流域重金属污染区,安徽皖南丘陵山区土壤中重金属有效态及其土壤上生长的禾本科草类植物与茶叶两类植物中重金属的含量进行相关性分析。 研究了三种浸提剂对黄棕壤、黄壤两种土壤中重金属有效态的提取效果;两种植物中重金属的含量与盐酸浸提剂提取的黄棕壤中重金属含量的相关性;三种浸提剂对酸碱度不同的黄棕壤中重金属有效态的提取效果;盐酸浸提剂在不同提取条件下对黄棕壤中重金属有效态Hg的提取效果;三种浸提剂对土壤中重金属镉、铅、铬、砷、汞五种元素的提取效果比较。主要研究结果如下:1盐酸浸提剂适合酸性土壤中大多数重金属有效态元素的提取。 0.1mol/L盐酸浸提剂对酸性黄棕壤、黄壤中重金属有效态As、Hg、Cd、Pb 提取的量与其土壤上生长的禾本科草类植物中重金属含量均呈现显著相关性,特别是黄棕壤和黄壤中的重金属有效态Cd与黄棕壤中重金属有效态Pb与土壤上生长的禾本科草类植物中重金属含量的相关性达到极显著关系。2氯化钙浸提剂对酸性黄棕壤、黄壤中的重金属有效态Cr的提取的量与其土壤上生长的禾本科草类植物均呈现显著相关性,特别是对黄棕壤的重金属有效态Cr的提取效果达到极显著关系。 说明氯化钙浸提剂适合对土壤中重金属有效态Cr的提取。3浸提剂对土壤

(完整word版)重金属检测方法汇总

重金属检测方法汇总 重金属检测方法及应用 一、重金属的危害特性 从环境污染方面所说的重金属,实际上主要是指汞、镉、铅、铬、砷等金属或类金属,也指具有一定毒性的一般重金属,如铜、锌、镍、钴、锡等。我们从自然性、毒性、活性和持久性、生物可分解性、生物累积性,对生物体作用的加和性等几个方面对重金属的危害稍作论述。 (一)自然性: 长期生活在自然环境中的人类,对于自然物质有较强的适应能力。有人分析了人体中60多种常见元素的分布规律,发现其中绝大多数元素在人体血液中的百分含量与它们在地壳中的百分含量极为相似。但是,人类对人工合成的化学物质,其耐受力则要小得多。所以区别污染物的自然或人工属性,有助于估计它们对人类的危害程度。铅、镉、汞、砷等重金属,是由于工业活动的发展,引起在人类周围环境中的富集,通过大气、水、食品等进入人体,在人体某些器官内积累,造成慢性中毒,危害人体健康。 (二)毒性: 决定污染物毒性强弱的主要因素是其物质性质、含量和存在形态。例如铬有二价、三价和六价三种形式,其中六价铬的毒性很强,而三价铬是人体新陈代谢的重要元素之一。在天然水体中一般重金属产生毒性的范围大约在1~10mg/L之间,而汞,镉等产生毒性的范围在0.01~0.001mg/L之间。 (三)时空分布性: 污染物进入环境后,随着水和空气的流动,被稀释扩散,可能造成点源到面源更大范围的污染,而且在不同空间的位置上,污染物的浓度和强度分布随着时间的变化而不同。(四)活性和持久性: 活性和持久性表明污染物在环境中的稳定程度。活性高的污染物质,在环境中或在处理过程中易发生化学反应,毒性降低,但也可能生成比原来毒性更强的污染物,构成二次污染。如汞可转化成甲基汞,毒性很强。与活性相反,持久性则表示有些污染物质能长期地保持其危害性,如重金属铅、镉等都具有毒性且在自然界难以降解,并可产生生物蓄积,长期威胁人类的健康和生存。 (五)生物可分解性: 有些污染物能被生物所吸收、利用并分解,最后生成无害的稳定物质。大多数有机物都有被生物分解的可能性,而大多数重金属都不易被生物分解,因此重金属污染一但发生,治理更难,危害更大。 (六)生物累积性: 生物累积性包括两个方面:一是污染物在环境中通过食物链和化学物理作用而累积。二是污染物在人体某些器官组织中由于长期摄入的累积。如镉可在人体的肝、肾等器官组织中蓄积,造成各器官组织的损伤。又如1953年至1961年,发生在日本的水俣病事件,无机汞在海水中转化成甲基汞,被鱼类、贝类摄入累积,经过食物链的生物放大作用,当地居民食用后中毒。 (七)对生物体作用的加和性: 多种污染物质同时存在,对生物体相互作用。污染物对生物体的作用加和性有两类:一类是协同作用,混合污染物使其对环境的危害比污染物质的简单相加更为严重;另一类是拮抗作用,污染物共存时使危害互相削弱。 二、重金属的定量检测技术

重金属污染物的传播特征

重金属污染来源、分布、治理方法 摘要:文章阐明了重金属污染物来源与分布,同时对国内外土壤重金属污染治理的研究工作做了系统的综述,提出了土壤中重金属污染物防治的环境矿物学新方法,利用环境矿物材料治理土壤重金属污染物的方法,具有成本低、效果好、无二次污染及有用金属可回收利用等优点,展现出广阔的环境矿物学研究与应用前景。并提醒人们要提高土壤质量意识,保护生态环境。 重金属系指密度4.0以上约60种元素或密度在5.0以上的45种元素。砷、硒是非金属,但是它的毒性及某些性质与重金属相似,所以将砷、硒列入重金属污染物范围内。环境污染方面所指的重金属主要是指生物毒性显著的汞、镉、铅、铬以及类金属砷,还包括具有毒性的重金属锌、铜、钴、镍、锡、钒等污染物。 随着全球经济化的迅速发展,含重金属的污染物通过各种途径进入土壤,造成土壤严重污染。土壤重金属污染可影响农作物产量和质量的下降,并可通过食物链危害人类的健康,也可以导致大气和水环境质量的进一步恶化。因此引起世界各国的广泛重视。目前,世界各国土壤存在不同程度的重金属污染,全世界平均每年排放Hg约1.5万t、Cu为340万t、Pb为500万t、Mn为1500万t、Ni为100万t。中国北方大城市的蔬菜基地和部分商品粮基地也存在着不同程度的重金属污染,如北京、天津、西安、沈阳、济南、长春、郑州等地;。 南方相对较轻,如福州、宁波、上海、武汉、成都等地。土壤重金属污染将会造成生态系统的严重破坏。从中国土壤资源状况看,到2000年底中国人均耕地仅为0.1 hm2,而且随着今后中国经济社会的发展如生态退耕、农业结构调整及自然灾害损毁等,土壤资源将进一步减少。因而如何有效地控制及治理土壤重金属的污染,改良土壤质量,将成为生态环境保护工作中十分重要的一项内容。 重金属污染原理 重金属,特别是汞、镉、铅、铬等具有显著和生物毒性。它们在水体中不能被微生物降解,而只能发生各种形态相互转化和分散、富集过程(即迁移)。重金属污染的特点是:(1)除被悬浮物带走的外,会因吸附沉淀作用而富集于排污口附近的底泥中,成为长期的次生污染源;(2)水中各种无机配位体(氯离子、硫酸离子、氢氧离子等)和有机配位体(腐蚀质等)会与其生成络合物或螯合物,导致重金属有更大的水溶解度而使已进入底泥的重金属又可能重新释放出来;(3)重金属的价态不同,其活性与毒性不同。其形态又随pH和氧化还原条件而转化。(4)在其危害环境方面的特点是:微量浓度即可产生毒性(一般为1~10毫克/升,汞、镉为0.01~0.001毫克/升);在微生物作用会转化为毒性更强的有机金属化合物(如洋-甲基汞);可被生物富集,通过食物链进入人体,造成慢性路线。亲硫重金属元素(汞、镉、铅、锌、硒、铜、砷等)与人体组织某些酶的巯基(-SH)有特别大的亲合力,能抑制酶的活性,亲铁元素(铁、镍)可在人体的肾、脾、肝内累积,抑制精氨酶的活性。六价铬可能是蛋白质和核酸的沉淀剂,可抑制细胞内谷胱甘肽还原酶,导致高铁血红蛋白,可能致癌,过量的钒和锰(亲岩元素)则能损害神经系统的机能。 本文主要从土壤中重金属污染物来源与分布、土壤中重金属污染物的现行治理方法入手,提出土壤中重金属污染物防治的环境矿物学新方法。旨在保护环境,提高土壤的环境质量。 1 土壤中重金属污染物来源与分布

USP重金属检查法

标准操作规程 Standard Operating Procedure 1.简述 1.1重金属是指在规定实验条件下能与硫代乙酰胺或硫化钠作用显色的金属盐类杂质。1.2硫化钠或硫代乙酰胺在弱酸性条件下水解产生硫化氢,与供试品中重金属在规定实验条件下所显颜色,与一定量的标准铅溶液在同样操作条件下所显的颜色比较。1.3由于实验条件不同。分为三种检查方法:第一法适用于在规定条件下能生成澄清无色溶液的供试品。第二法适用于在规定条件下不能生成澄清无色溶液的供试品;第三法适用于那些不能用一法和二法的样品。 2 仪器 2.1仪器设备 50ml纳氏比色管 2.2试剂和溶液 a)硫代乙酰胺试液: 称取硫代乙酰胺4g加水溶解,用水稀释至100ml,摇匀。 b)甘油基准试液: 称取200g甘油加水至总重量为235g,然后加142.5ml1N氢氧 化钠溶液和47.5ml的水。 临用前用0.2ml硫代乙酰胺试液和1ml甘油基准试液混合,在沸水浴中加热20秒钟,立即使用. c) 硝酸铅贮备液:称取硝酸铅0.1598g,置1000ml量瓶中,加硝酸1ml与水100ml

溶解后,用水稀释至1000ml 摇匀,作为贮备液。 标准铅溶液临用前,精密量取贮备液10ml,置100ml量瓶中,加水稀释至刻 SOP-QM 402-14 页号Page:2/4 度,摇匀,即得(每1ml相当于10μg的Pb)。 d)PH3.5醋酸盐缓冲液: 取醋酸铵25.0g,加水25ml溶解后,加38.0ml6N盐 酸,如有必要用6N氨水或6N盐酸调PH至3.5 ,用水稀释至 100ml,摇匀。 第一法: 标准溶液的制备取50ml比色管,用移液管移取2.0ml标准铅溶液(20 μgPb),用水稀释到25ml,用1N醋酸或6N氨水溶液调PH至3.0~4.0之间,用 窄围的精密pH试纸作指示,然后加水稀释至40ml,摇匀。 供试品溶液的制备另取一支50ml比色管,加入按该品种项下规定的方法制成的供试液25ml;或加入供试品的量以g计, 按公式2.0/1000L计算,其中L 为重金属的限度(%),用该品种项下规定的酸的体积溶解,加水溶解并稀释 至25ml,供试品溶液用1N醋酸或6N氨水溶液调PH至3.0~4.0之间,用窄 围的精密pH试纸作指示,然后加水稀释至40ml,摇匀。 对照溶液的制备取第三只比色管,加入与上述供试品溶液方法同样制备的任意25ml,加入2.0ml标准铅溶液,用1N醋酸或6N氨水溶液调PH至3.0~4.0 之间,用窄围的精密pH试纸作指示,然后加水稀释至40ml,摇匀。 操作方法在上述三只比色管中分别加入2ml醋酸缓冲溶液(PH3.5), 然后 加1.2ml硫代乙酰胺_甘油基准试剂,加水稀释到50ml,摇匀,放置2分钟,同置白色 背景下,至上向下透视.供试品溶液的颜色不得深于标准溶液的颜色;对照溶液的颜色 相同于或较深于标准溶液的颜色( 注:如对照液的颜色浅于标准品溶液,则以第二法代 替第一法)。 第二法: pH3.5醋酸盐缓冲液照第一法配制 标准溶液的制备用移液管取4ml标准铅溶液到适宜的试管中,并加入10ml 6N盐酸。 照方法一配制 供试品溶液的制备称取一定量的样品(以g计算) ,按公式4.0/1000L 2.0/1000L计

重金属污染物的传播特征,以及产生污染的原因

重金属污染物在土壤中的传播特征 重金属系指密度4.0以上约60种元素或密度在5.0以上的45种元素。砷、硒是非金属,但是它的毒性及某些性质与重金属相似,所以将砷、硒列入重金属污染物范围内。环境污染方面所指的重金属主要是指生物毒性显著的汞、镉、铅、铬以及类金属砷,还包括具有毒性的重金属锌、铜、钴、镍、锡、钒等污染物。随着全球经济化的迅速发展,含重金属的污染物通过各种途径进入土壤,造成土壤严重污染。土壤重金属污染可影响农作物产量和质量的下降,并可通过食物链危害人类的健康,也可以导致大气和水环境质量的进一步恶化。因此引起世界各国的广泛重视。目前,世界各国土壤存在不同程度的重金属污染,全世界平均每年排放Hg约1.5万t、Cu为340万t、Pb为500万t、Mn为1500万t、Ni 为100万t[1]。中国北方大城市的蔬菜基地和部分商品粮基地也存在着不同程度的重金属污染,如北京、天津、西安、沈阳、济南、长春、郑州等地;。 南方相对较轻,如福州、宁波、上海、武汉、成都等地。土壤重金属污染将会造成生态系统的严重破坏。从中国土壤资源状况看,到2000年底中国人均耕地仅为0.1 hm2,而且随着今后中国经济社会的发展如生态退耕、农业结构调整及自然灾害损毁等,土壤资源将进一步减少。因而如何有效地控制及治理土壤重金属的污染,改良土壤质量,将成为生态环境保护工作中十分重要的一项内容。 本文主要从土壤中重金属污染物来源与分布、土壤中重金属污染物的现行治理方法入手,提出土壤中重金属污染物防治的环境矿物学新方法。旨在保护环境,提高土壤的环境质量。 1 土壤中重金属污染物来源与分布 土壤中重金属的来源是多途径的,首先是成土母质本身含有重金属,不同的母质、成土过程所形成的土壤含有重金属量差异很大。此外,人类工农业生产活动,也造成重金属对大气、水体和土壤的污染。 1.1 大气中重金属沉降 大气中的重金属主要来源于工业生产、汽车尾气排放及汽车轮胎磨损产生的大量含重金属的有害气体和粉尘等。它们主要分布在工矿的周围和公路、铁路的两侧。大气中的大多数重金属是经自然沉降[2]和雨淋沉降进入土壤的。如瑞典中部Falun市区的铅污染[3],它主要来自于市区铜矿工业厂、硫酸厂、油漆厂、采矿和化学工业产生大量废物,由于风的输送,这些细微颗粒的铅,从工业废物堆扩散至周围地区。南京某生产铬的重工业厂[4]铬污染叠加已超过当地背景值4.4倍,污染以车间烟囱为中心,范围达1.5 km2,污染范围最大延伸下限1.38 km。俄罗斯的一个硫酸生产厂[5]也是由工厂烟囱排放造成S、V、As的污染。 公路、铁路两侧土壤中的重金属污染,主要是Pb、Zn、Cd、Cr、Co、Cu的污染为主。它们来自于含铅汽油的燃烧,汽车轮胎磨损产生的含锌粉尘等。它们成条带状分布,以公路、铁路为轴向两侧重金属污染强度逐渐减弱;随着时间的推移,公路、铁路土壤重金属污染具有很强的叠加性。在宁—杭公路南京段[6]两侧的土壤形成Pb、Cr、Co污染晕带,且沿公路延长方向分布,自公路向两侧污染强度减弱。在宁—连一级公路淮阴段[7]两侧的土壤铅含量增高,向两侧含量逐渐降低,且在地表0~30 cm铅的含量较高。在法国索洛涅地区A71号高速公路[8]沿途严重污染重金属Pb、Zn、Cd,其沉降粒子浓度超过当地土壤背景值

土壤中有效态Cu的测定(精)

土壤中有效态Cu的测定 一、【工作任务与要求】 任务:土壤中有效态Cu的测定。 要求:掌握原子吸收分光光度法测土壤中重金属。 二、【工作程序与操作方法】 (一)原理 1、原子吸收法(AAS)原理 根据基态原子对特征波长光的吸收,测定试样中待测元素含量的分析方法。试液喷射成细雾与燃气混合后进入燃烧的火焰中,被测元素在火焰中转化为原子蒸气.气态的基态原子吸收从光源发射出的与被测元素吸收波长相同的特征谱线.使该谱线的强度减弱,再经分光系统分光后,由检测器接受.产生的电信号,经放大器放大,由显示系统显示吸光度。 2、浸提原理 石灰性土壤中金属离子铜与DTPA达成络合平衡,又在pH=7.3的0.01mol/LCaCl2溶液中,使浸出物与CaCL2达到平衡,并可以将含碳酸盐土壤中CaCO3的溶解度减至最小程度。提取剂中的TEA缓冲液的作用是防止过量铁及锰的溶解。 (二)仪器 1.容量瓶、烧杯、振荡器、 2.移液管、锥形瓶 3. 原子吸收分光光度计 4.Cu空心阴极灯 5. 氢气钢瓶 6.10μL手动进样器 (三)试剂 1、提取剂:中性和石灰性土壤用DTPA提取,酸性土壤用HCL提取。 DTPA浸提剂:1.96g DTPA (二乙烯三胺五醋酸)置于1L容量瓶中。加 14.92gTEA(三乙醇胺)用纯水溶解并稀释到950ml。再加1.47 克CaCl2.2H2O用6molHCL调节至pH=7.3,最后用纯水稀释 到刻度。 2.、铜的标液:溶解1.0000g纯铜于少量的浓HNO3,并加5ml浓HCL,蒸发至干,用浸提剂稀释至1L,此为1000ppm含铜标准母液。临用前稀释成100ppm 使用液。稀释至0.1-10ppm为宜。 (四)步骤 1、标准曲线绘制 准确吸取铜标准溶液0、4、10、15、20 、40 ml.于50mL容量瓶中,并用浸提剂定容至50ml.,则此标准系列相当于0、8、20、30、40、80ppm的含铜量。

重金属检验标准操作规程

目的:建立重金属检验标准操作规程,确保检测结果准确 范围:重金属检验 1.简述 1.1重金属是指在规定实验条件下能与显色剂作用的金属盐类杂质。中国 药典采用硫代乙酰胺试液或硫化钠试液作显色剂,以铅的限量表示。 1.2 按实验条件不同,分为二种检查方法,第一法适用于供试品不经有机破 坏,在酸性溶液中显色的重金属限量检查;第二法适用于供试品需灼烧破坏,取 炽灼残渣项下遗留的残渣,经处理后在酸性溶液中显色的重金属限量检查。 1.3 重金属硫化物生成的最佳PH值是3.0 — 3.5,选用醋酸盐缓冲液(PH3.5) 2mL 调节PH较好,显色剂硫代乙酰胺试液用量经实验也以 2mL为准,显色时间一般为2分钟。以10— 20ugPb与显色剂所产生的颜色为最佳目视比较色范围。 1.4 由于在药品生产过程中遇到铅的机会较多,且铅易积蓄中毒,故以铅作 为重金属的代表,硝酸铅配制标准铅溶液。 2 .仪器与用具 纳氏比色管:应注意选择各管之间的平行性,玻璃色泽一致,内径、刻度标线高度一致。比色管洗涤时避免划伤内壁。 3.试药和试液 3.1标准铅溶液:精密称定在105C干燥至恒重的硝酸铅0.160g置1000mL量瓶中,加硝

酸5mL与水50mL溶解后,用水稀释至刻度,摇匀,作为贮备液。临用时,精密量取贮备液10mL置100mL量瓶中,加水稀释至刻度,摇匀,即得(每 1mL相当于10 ug的Pb) 3.2硫代乙酰胺试液,醋酸盐缓冲液(PH3.5)等均按药典规定。 3.3稀焦糖溶液,取蔗糖或葡萄糖约 5g,置瓷坩埚中,用玻璃棒不断搅拌下,加热至呈棕色糊状,放冷,用水溶解成约25mL滤过,贮于滴瓶中备用,根据试液色泽深浅,取适当量调节使用。 4 .操作方法 4.1 第一法 4.1.1 取25mL纳氏比色管两支,编号为甲、乙。 4.1.2 甲管中加标准铅溶液一定量与醋酸盐缓冲液(PH3.5)2mL,加水或该药品项下规定的溶剂稀释成25mL作为对照品。 4.1.3 乙管中加入该药品规定的方法制成的供试液25mL作为供试品。 4.1.4 如供试液带颜色,可在甲管中滴加少量稀焦糖溶液或其它无干扰的有色溶液,使其色泽与乙管一致。 4.1.5 在甲、乙两管中分别加硫代乙酰胺试液各 2mL ,摇匀,放置 2 分钟,同置白色衬板上,自上向下透视,乙管中显出的颜色与甲管比较,不得更深。 4.1.6 如在甲管中滴加稀焦糖溶液仍不能使颜色一致时,可取该药品项下规 定的2倍量的供试品和试液,加水或该药品项下规定的溶剂使成 30mL将溶液分成甲乙2等份,乙管中加水或该药品项下规定的溶剂稀释成 25mL甲管中加入硫代乙酰胺试液2mL 摇匀,放置2分钟,经滤膜(孔径3um)滤过,然后甲管中加入标准铅溶液一定量,加水或该药品项下规定的溶剂使成25mL再在乙 管中加硫代乙酰胺试液2mL甲管中加水2mL照上述方法比较,即得。 4.1.7 供试品如含高铁盐影响重金属检查时,可取该药品项下规定方法制成的供试液,加抗坏血酸 0.5-1.0g ,并在对照液中加入相同量的抗坏血酸,再照上述方法检查。 4.1.8配制供试品溶液时,如使用的盐酸超过 1.0mL(或与盐酸1.0mL相当的稀盐酸)氨试液超过2ml,或加入其他试剂进行处理者,除另有规定外,对照液中应取同样同量的

地表灰尘重金属含量及分布特征 彭东旭

地表灰尘重金属含量及分布特征彭东旭 发表时间:2019-04-26T15:46:12.093Z 来源:《基层建设》2019年第3期作者:彭东旭 [导读] 摘要:为了对地理学科进行更加深入的探讨和研究,为了能更具有针对性地治理大气污染以及粉尘污染,为了更高效地明确各城市地表灰尘的来源以及更好地总结各大城市地表灰尘重金属的分布规律,此篇论文在查阅了多篇相关文献的基础上,论证了我国城市地表灰尘重金属含量及分布特征,并且通过实地调查和考研,分析了地表灰尘重金属的表现形式以及来源,也进一步阐述了地表灰尘重金属分布特点的形成原因和影响因素。 广西理工职业技术学院广西崇左 532200 摘要:为了对地理学科进行更加深入的探讨和研究,为了能更具有针对性地治理大气污染以及粉尘污染,为了更高效地明确各城市地表灰尘的来源以及更好地总结各大城市地表灰尘重金属的分布规律,此篇论文在查阅了多篇相关文献的基础上,论证了我国城市地表灰尘重金属含量及分布特征,并且通过实地调查和考研,分析了地表灰尘重金属的表现形式以及来源,也进一步阐述了地表灰尘重金属分布特点的形成原因和影响因素。 关键词:重金属; 累积; 灰尘; 城市功能区 前言 随着工业化进程的进一步加快,城市空气污染日益严重,若遇见大风天气,地表灰尘则会随风肆虐,常常会影响居民出行和交通安全,特别是在地表灰尘重金属超标的情况下,若人类大肆吸入此类灰尘,常常会造成呼吸道感染,严重者还会危及生命。所以,对城市地表灰尘重金属含量及分布特征进行研究与分析是十分有必要的。不少地理学家对我国的大中型城市特别是一二线城市进行了地表灰尘重金属含量的研究和探索,虽然城市不同,但其地表灰尘重金属基本上都是包括 Cd、Cu、Pb和Zn等化学元素,并且这些元素在城市工厂集中分布地区表现地最为明显。而且,不同城市因布局不同或城市规划以及道路建设的不同,其地表灰尘重金属含量及分布特征有明显差异。本文根据已有文献和在先人研究的成果的基础上,从空间、时间、地域等多重角度入手,通过互联网技术收集大数据,以全国各地区地表灰尘中重金属含量数据为样本,以省会城市的不同功能区为样例,随机选取几个城市,地表灰尘重金属数据的分析和比对,阐述我国地表灰尘重金属含量以及其分布特征。 1城市不同功能区地表灰尘重金属分布的表现形式 本次研究过程中我们将从全国随机抽取调查,并对随机抽取的数据进行相关的统计,我们可以看得出其实地表灰尘重金属分布在不同的城市中,地表灰尘的差异性较大,比如说有的城市中Cd的含量要远远超过其它城市,甚至于高出了将近9倍的含量,可见地表灰尘的严重性,而有在这些随机抽选的城市中,有的城市地表灰尘Cu含量却在39.3-850mg?kg。可见这些城市中地表灰尘的严重程度。 1.1商业区地表灰尘重金属分布 不同城市之间商业区地表灰尘重金属含量的分布比较均匀,众所皆知,城市地表灰尘重金属 4个元素即是 Cd、Cu、Pb 和 Zn,这4个元素的含量变异度均低于 100%。其中,Cd、Cu、Pb和Zn 含量最高的城市分别为沈杭州和洛阳,Cd 含量最低的城市是贵阳,Cu、Pb 和Zn含量最低的城市是济南。所以,综上所述,这些省会城市中,商业区地表灰尘重金属含量较高的城市是洛阳,地表灰尘重金属含量较低的城市是济南。 1.2交通区地表灰尘重金属分布 因某市特殊的地理位置和地貌结构,地表灰尘重金属中Cd含量远远高于其它城市,所以其参与比较的各功能区不同城市之间 Cd 的变化程度都较高。除Cd外,不同城市交通区地表灰尘Pb的变异度相对较高,最高值437 mg?kg 。而北京是最低值60.7 mg?kg的7.2倍。其它两个化学元素的含量变异度都较低,特别是 Zn,最高值788 mg?kg相差仅3.72倍。所以,总体看来,在这些省会城市中,交通区地表灰尘重金属含量较高的城市是重庆,地表灰尘重金属含量较低的城市是西安。 2城市不同功能区地表灰尘重金属来源 一般城市的功能分区划分为工业区、交通区、商业区和居民文教区,下面将重点分析这四大功能区的地表灰尘重金属来源及影响因素。工业区地表灰尘重金属含量远高于城市土壤,说明该区域灰尘重金属并不主要来源于土壤,而是很大程度上来源于工业生产。与之相关的不同类型的工业活动释放的重金属元素不同,其城市不同功能区地表灰尘重金属的表现形式也随之不同。若城市的工业类型以重工业为主,那么其工业区的地表灰尘重金属元素的表现形式则是 Zn,例如钢铁制造业的是Zn,汽车制造业的是 Pb ,冶炼和机械加工因原材料的不同释放的元素也不同,如洛阳的铜业生产则可能释放大量的含 Cu的微量元素,这种微量元素进入周边环境之后会导致灰尘 Cu 含量增高,影响让人们的生活质量。另外, Cd 的释放可能与机械、电镀等工业类型有关,热电工业与 Pb 等多种重金属的释放有关,若地表灰尘重金属中这两种元素的含量过多,也容易引起呼吸道疾病的传播与感染。 在研究的过程中发现,能够影响地表灰尘的是交通活动,城市之间的交通区地表灰尘重金属来源主要是机动车辆在刹车的过程中刹车块、轮胎及其它零件的磨损以及汽车尾气的排放和道路旁反复扬起或沉积的灰尘。其中,化学元素Zn主要来源于轮胎的磨损,ZnO元素作为硬化过程的催化剂被添加到轮胎中,在轮胎中占0.4% ~4%; 而所谓的Cu元素,其主要来自于刹车块的磨损时所产生的。 Pb元素可能来源于平衡轮胎的铅块的磨损和尾气的排放; 而反复扬起和沉积的道路扬尘的物质组成较为复杂,它包含了多种来源的有害重金属,以印度交通路口的重悬浮颗粒物为例,不少科学家对其作了定量分析,研究显示41%来自道路灰尘,15%来自机车释放,15%来自海洋气溶胶,6%来自金属工业,6%来自煤的燃烧。因此扬尘的再次沉降是交通区地表灰尘多种元素的共同来源。 商业区地表灰尘来源相对多样和复杂,与工业区和交通区不同,商业区没有工业生产和交通运输等释放重金属的主体活动,商业区的特点是位于城市干道旁、商品种类繁多和人群聚集且流动量大,因此商业区地表灰尘重金属既来源于土壤、空气沉降,又部分受交通活动的影响,还与建筑物外墙的风化、城市设施表面油漆碎片的脱落、商品的磨蚀以及人群的聚集所产生的灰尘有关,人群聚集较多的地区其地表灰尘的重金属含量也会较高。居民文教区相对于工业区而言,其污染源较少;相对于交通区而言,其车辆密集度不高,道路扬尘现象也并不严重;相对于商业区而言,人群聚集现象较为可观,所以这一区域的地表灰尘金属含量较少。但是,这并不代表居民文教区的地表灰尘不含有金属。由于这一区域小区众多,而小区内的环境参差不齐,有些小区绿化面积较好,这种小区内的地表灰尘重金属含量就较低,反之,则地表灰尘重金属的含量就较高。另外,家庭所用的家具和日用品所释放的重金属的微粒经过日积月累的沉积然后通过垃圾倾倒等方式进入室外,与室外的空气相流通,最后的结果就是沉降到地表,造成地表灰尘重金属含量过高,特别是灰尘中的Pb和Cd两种化学

相关文档
相关文档 最新文档