文档库 最新最全的文档下载
当前位置:文档库 › 总复习教案:函数的单调性与最值(教师版)

总复习教案:函数的单调性与最值(教师版)

总复习教案:函数的单调性与最值(教师版)
总复习教案:函数的单调性与最值(教师版)

第三节

函数的单调性与最值

[知识能否忆起]

一、函数的单调性 1.单调函数的定义

增函数

减函数

定义

设函数f (x )的定义域为I .如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,

x 2

当x 1

数f (x )在区间D 上是增函数

当x 1f (x 2) ,那么就说函

数f (x )在区间D 上是减函数

图象描述

自左向右看图象逐渐上升

自左向右看图象逐渐下降

2.单调区间的定义

若函数y =f (x )在区间D 上是增函数或减函数,则称函数y =f (x )在这一区间上具有(严格的)单调性,区间D 叫做y =f (x )的单调区间.

二、函数的最值 前提 设函数y =f (x )的定义域为I ,如果存在实数M 满足

条件 ①对于任意x ∈I ,都有f (x )≤M ; ②存在x 0∈I ,使得f (x 0)=M

①对于任意x ∈I ,都有f (x )≥M ; ②存在x 0∈I ,使得f (x 0)=M

结论 M 为最大值

M 为最小值

[小题能否全取]

1.(2012·陕西高考)下列函数中,既是奇函数又是增函数的为( ) A .y =x +1 B .y =-x 3 C .y =1x

D .y =x |x |

解析:选D 由函数的奇偶性排除A ,由函数的单调性排除B 、C ,由y =x |x |的图象可知此函数为增函数,又该函数为奇函数,故选D.

2.函数y =(2k +1)x +b 在(-∞,+∞)上是减函数,则( ) A .k >12

B .k <12

C .k >-1

2

D .k <-1

2

解析:选D 函数y =(2k +1)x +b 是减函数,

则2k +1<0,即k <-1

2

.

3.(教材习题改编)函数f (x )=1

1-x (1-x )

的最大值是( )

A.45

B.54

C.34

D.43

解析:选D ∵1-x (1-x )=x 2-x +1=????x -122+34≥34,∴0<11-x (1-x )≤43

. 4.(教材习题改编)f (x )=x 2-2x (x ∈[-2,4])的单调增区间为________;f (x )max =________. 解析:函数f (x )的对称轴x =1,单调增区间为[1,4],f (x )max =f (-2)=f (4)=8. 答案:[1,4] 8

5.已知函数f (x )为R 上的减函数,若m

?????1x

解析:由题意知f (m )>f (n );

???

?1x >1,即|x |<1,且x ≠0.

故-1 (-1,0)∪(0,1)

1.函数的单调性是局部性质

从定义上看,函数的单调性是指函数在定义域的某个子区间上的性质,是局部的特征.在某个区间上单调,在整个定义域上不一定单调.

2.函数的单调区间的求法

函数的单调区间是函数定义域的子区间,所以求解函数的单调区间,必须先求出函数的定义域.对于基本初等函数的单调区间可以直接利用已知结论求解,如二次函数、对数函数、指数函数等;如果是复合函数,应根据复合函数的单调性的判断方法,首先判断两个简单函数的单调性,再根据“同则增,异则减”的法则求解函数的单调区间.

[注意] 单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结.

函数单调性的判断

典题导入

[例1] 证明函数f (x )=2x -1

x

在(-∞,0)上是增函数.

[自主解答] 设x 1,x 2是区间(-∞,0)上的任意两个自变量的值,且x 1

x 2,

f (x 1)-f (x 2)=?

???2x 1-1x 1

-????2x 2-1x 2

=2(x 1-x 2)+????

1x 2

-1x 1

=(x 1-x 2)????

2+1x 1x 2

由于x 1

x 1x 2>0,

因此f (x 1)-f (x 2)<0, 即f (x 1)

故f (x )在(-∞,0)上是增函数.

由题悟法

对于给出具体解析式的函数,证明其在某区间上的单调性有两种方法: (1)结合定义(基本步骤为取值、作差或作商、变形、判断)证明;

(2)可导函数则可以利用导数证明.对于抽象函数单调性的证明,一般采用定义法进行.

以题试法

1.判断函数g (x )=-2x x -1在 (1,+∞)上的单调性.

解:任取x 1,x 2∈(1,+∞),且x 1

x 2-1

2(x 1-x 2)

(x 1-1)(x 2-1)

由于1

所以x 1-x 2<0,(x 1-1)(x 2-1)>0, 因此g (x 1)-g (x 2)<0,即g (x 1)

求函数的单调区间

典题导入

[例2] (2012·长沙模拟)设函数y =f (x )在(-∞,+∞)内有定义.对于给定的正数k ,定

义函数f k (x )=?

????

f (x ),f (x )≤k ,k ,f (x )>k ,取函数f (x )=2-

|x |.当k =12时,函数f k (x )的单调递增区间为

( )

A .(-∞,0)

B .(0,+∞)

C .(-∞,-1)

D .(1,+∞)

[自主解答] 由f (x )>12,得-1

2

,得x ≤-1或x ≥1.

所以f 1

2

(x )=?????

2-

x ,x ≥1,

12,-1<x <1,

2x

,x ≤-1.

故f 1

2(x )的单调递增区间为(-∞,-1).

[答案] C

若本例中f (x )=2

-|x |

变为f (x )=log 2|x |,其他条件不变,则f k (x )的单调增区间为________.

解析:函数f (x )=log 2|x |,k =1

2时,函数f k (x )的图象如图所示,由

图示可得函数f k (x )的单调递增区间为(0, 2 ].

答案:(0, 2 ]

由题悟法

求函数的单调区间的常用方法

(1)利用已知函数的单调性,即转化为已知函数的和、差或复合函数,求单调区间. (2)定义法:先求定义域,再利用单调性定义.

(3)图象法:如果f (x )是以图象形式给出的,或者f (x )的图象易作出,可由图象的直观性写出它的单调区间.

(4)导数法:利用导数的正负确定函数的单调区间.

以题试法

2.函数f (x )=|x -2|x 的单调减区间是( ) A .[1,2] B .[-1,0] C .[0,2]

D .[2,+∞)

解析:选A 由于f (x )=|x -2|x =?

????

x 2-2x ,x ≥2,

-x 2+2x ,x <2.

结合图象可知函数的单调减区间是[1,2].

单调性的应用

典题导入

[例3] (1)若f (x )为R 上的增函数,则满足f (2-m )

(2)(2012·安徽高考)若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a =________. [自主解答] (1)∵f (x )在R 上为增函数,∴2-m 0.∴m >1或m <-2.

(2)由f (x )=???

-2x -a ,x <-a

2,

2x +a ,x ≥-a

2

,可得函数f (x )的单调递增区间为????-a 2,+∞,故3=-a

2

,解得a =-6.

[答案] (1)(-∞,-2)∪(1,+∞) (2)-6

由题悟法

单调性的应用主要涉及利用单调性求最值,进行大小比较,解抽象函数不等式,解题时要注意:一是函数定义域的限制;二是函数单调性的判定;三是等价转化思想与数形结合思想的运用.

以题试法

3.(1)(2013·孝感调研)函数f (x )=

1

x -1

在[2,3]上的最小值为________,最大值为________. (2)已知函数f (x )=1a -1

x (a >0,x >0),若f (x )在????12,2上的值域为????12,2,则a =__________. 解析:(1)∵f ′(x )=-1(x -1)2<0,∴f (x )在[2,3]上为减函数,∴f (x )min

=f (3)=13-1=1

2

,f (x )max =1

2-1

=1.

(2)由反比例函数的性质知函数f (x )=1a -1

x (a >0,x >0)在????12,2上单调递增, 所以???

??

f ????12=12,f (2)=2,

即???

1a -2=12

,1a -1

2=2,

解得a =2

5

.

答案:(1)12 1 (2)2

5

1.(2012·广东高考)下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =ln(x +2) B .y =-x +1 C .y =????12x

D .y =x +1

x

解析:选A 选项A 的函数y =ln(x +2)的增区间为(-2,+∞),所以在(0,+∞)上一定是增函数.

2.若函数f (x )=4x 2-mx +5在[-2,+∞)上递增,在(-∞,-2]上递减,则f (1)=( ) A .-7 B .1 C .17

D .25

解析:选D 依题意,知函数图象的对称轴为x =--m 8=m 8=-2,即 m =-16,从而

f (x )=4x 2+16x +5,f (1)=4+16+5=25.

3.(2013·佛山月考)若函数y =ax 与y =-b

x 在(0,+∞)上都是减函数,则y =ax 2+bx

在(0,+∞)上是( )

A .增函数

B .减函数

C .先增后减

D .先减后增

解析:选B ∵y =ax 与y =-b

x 在(0,+∞)上都是减函数,∴a <0,b <0,∴y =ax 2+bx

的对称轴方程x =-b

2a

<0,∴y =ax 2+bx 在(0,+∞)上为减函数.

4.“函数f (x )在[a ,b ]上为单调函数”是“函数f (x )在[a ,b ]上有最大值和最小值”的( )

A .充分不必要条件

B .必要不充分条件

C .充要条件

D .既不充分也不必要条件

解析:选A 若函数f (x )在[a ,b ]上为单调递增(减)函数,则在[a ,b ]上一定存在最小(大)值f (a ),最大(小)值f (b ).所以充分性满足;反之,不一定成立,如二次函数f (x )=x 2-2x +3在[0,2]存在最大值和最小值,但该函数在[0,2]不具有单调性,所以必要性不满足,即“函数f (x )在[a ,b ]上单调”是“函数f (x )在[a ,b ]上有最大值和最小值”的充分不必要条件.

5.(2012·青岛模拟)已知奇函数f (x )对任意的正实数x 1,x 2(x 1≠x 2),恒有(x 1-x 2)(f (x 1)-f (x 2))>0,则一定正确的是( )

A .f (4)>f (-6)

B .f (-4)

C .f (-4)>f (-6)

D .f (4)

解析:选C 由(x 1-x 2)(f (x 1)-f (x 2))>0知f (x )在(0,+∞)上递增,所以f (4)f (-6).

6.定义在R 上的函数f (x )满足f (x +y )=f (x )+f (y ),当x <0时,f (x )>0,则函数f (x )在[a ,b ]上有( )

A .最小值f (a )

B .最大值f (b )

C .最小值f (b )

D .最大值f ??

??a +b 2

解析:选C ∵f (x )是定义在R 上的函数,且 f (x +y )=f (x )+f (y ),

∴f (0)=0,令y =-x ,则有f (x )+f (-x )=f (0)=0.

∴f (-x )=-f (x ).∴f (x )是R 上的奇函数.设x 1

=f (x 1-x 2)>0.

∴f (x )在R 上是减函数.∴f (x )在[a ,b ]有最小值f (b ). 7.函数y =-(x -3)|x |的递增区间是________. 解析:y =-(x -3)|x |

=?????

-x 2+3x ,x >0,x 2-3x ,x ≤0.

作出该函数的图象,观察图象知递增区间为????0,3

2. 答案:???

?0,3

2 8.(2012·台州模拟)若函数y =|2x -1|,在(-∞,m ]上单调递减,则m 的取值范围是________.

解析:画出图象易知y =|2x -1|的递减区间是(-∞,0], 依题意应有m ≤0. 答案:(-∞,0]

9.若f (x )=ax +1

x +2在区间(-2,+∞)上是增函数,则a 的取值范围是________.

解析:设x 1>x 2>-2,则f (x 1)>f (x 2), 而f (x 1)-f (x 2)=ax 1+1x 1+2-ax 2+1

x 2+2

=2ax 1+x 2-2ax 2-x 1

(x 1+2)(x 2+2)

(x 1-x 2)(2a -1)

(x 1+2)(x 2+2)

>0,则2a -1>0.

得a >12

.

答案:???

?1

2,+∞ 10.求下列函数的单调区间: (1)y =-x 2+2|x |+1;

(2)y =a 1-2x -x 2(a >0且a ≠1).

解:(1)由于y =?????

-x 2+2x +1,x ≥0,

-x 2-2x +1,x <0,

即y =?

????

-(x -1)2+2,x ≥0,

-(x +1)2+2,x <0.

画出函数图象如图所示,单调递增区间为(-∞,-1]和[0,1],单调递减区间为[-1,0]和[1,+∞).

(2)令g (x )=1-2x -x 2=-(x +1)2+2,

所以g (x )在(-∞,-1)上单调递增,在(-1,+∞)上单调递减.

当a >1时,函数y =a 1-2x -x 2的增区间是(-∞,-1),减区间是(-1,+∞); 当0

x

x -a

(x ≠a ). (1)若a =-2,试证f (x )在(-∞,-2)内单调递增; (2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围. 解:(1)证明:设x 1

x 2+2

2(x 1-x 2)

(x 1+2)(x 2+2)

.

∵(x 1+2)(x 2+2)>0,x 1-x 2<0, ∴f (x 1)

∴f (x )在(-∞,-2)内单调递增. (2)设1

x 2-a

a (x 2-x 1)

(x 1-a )(x 2-a )

.

∵a >0,x 2-x 1>0, ∴要使f (x 1)-f (x 2)>0,

只需(x 1-a )(x 2-a )>0恒成立, ∴a ≤1.

综上所述,a 的取值范围为(0,1].

12.(2011·上海高考)已知函数f (x )=a ·2x +b ·3x ,其中常数a ,b 满足ab ≠0. (1)若ab >0,判断函数f (x )的单调性; (2)若ab <0,求f (x +1)>f (x )时x 的取值范围.

解:(1)当a >0,b >0时,任意x 1,x 2∈R ,x 10?a (2x 1-2x 2)<0, 3x 1<3x 2,b >0?b (3x 1-3x 2)<0,

∴f (x 1)-f (x 2)<0,函数f (x )在R 上是增函数. 同理,当a <0,b <0时,函数f (x )在R 上是减函数. (2)f (x +1)-f (x )=a ·2x +2b ·3x >0, 当a <0,b >0时,????32x >-a 2b , 则x >log 1.5???

?-a

2b ; 同理,当a >0,b <0时,????32x <-a

2b , 则x

?-a

2b .

1.设函数f (x )定义在实数集上,f (2-x )=f (x ),且当x ≥1时,f (x )=ln x ,则有( ) A .f ????13

13

D .f (2)

13

解析:选C 由f (2-x )=f (x )可知,f (x )的图象关于直线x =1对称,当x ≥1时,f (x )=ln x ,可知当x ≥1时f (x )为增函数,所以当x <1时f (x )为减函数,因为????12-1

13-1<|2-1|,所以f ????12

2.(2012·黄冈模拟)已知函数y =1-x +x +3的最大值为M ,最小值为m ,则m M

的值为( )

A.14

B.12

C.

2

2

D.32

解析:选C 显然函数的定义域是[-3,1]且y ≥0,故y 2=4+2(1-x )(x +3)=4+

2-x 2-2x +3=4+2-(x +1)2+4,根据根式内的二次函数,可得4≤y 2≤8,故2≤y ≤22,即m =2,M =22,所以m M =22

.

3.函数f (x )的定义域为(0,+∞),且对一切x >0,y >0都有f ????

x y =f (x )-f (y ),当x >1时,有f (x )>0.

(1)求f (1)的值;

(2)判断f (x )的单调性并加以证明; (3)若f (4)=2,求f (x )在[1,16]上的值域. 解:(1)∵当x >0,y >0时, f ????x y =f (x )-f (y ),

∴令x =y >0,则f (1)=f (x )-f (x )=0. (2)设x 1,x 2∈(0,+∞),且x 1

∵x 2>x 1>0.∴x 2

x 1

>1,∴f ????x 2x 1>0. ∴f (x 2)>f (x 1),即f (x )在(0,+∞)上是增函数. (3)由(2)知f (x )在[1,16]上是增函数. ∴f (x )min =f (1)=0,f (x )max =f (16), ∵f (4)=2,由f ????x y =f (x )-f (y ), 知f ????164=f (16)-f (4), ∴f (16)=2f (4)=4,

∴f (x )在[1,16]上的值域为[0,4].

1.求函数f (x )=x 2+x -6的单调区间. 解:设u =x 2+x -6,y =u . 由x 2+x -6≥0,得x ≤-3或x ≥2.

结合二次函数的图象可知,函数u =x 2+x -6在(-∞,-3]上是递减的,在[2,+∞)上是递增的.

又∵函数y =u 是递增的,∴函数f (x )=x 2+x -6在(-∞,-3]上是递减的,在[2,+∞)上是递增的.

2.定义在R 上的函数f (x )满足:对任意实数m ,n ,总有f (m +n )=f (m )·f (n ),且当x >0

时,0

(1)试求f(0)的值;

(2)判断f(x)的单调性并证明你的结论;

(3)设A={(x,y)|f(x2)·f(y2)>f(1)},B={(x,y)|f(ax-y+2)=1,a∈R},若A∩B=?,试确定a的取值范围.

解:(1)在f(m+n)=f(m)·f(n)中,令m=1,n=0,

得f(1)=f(1)·f(0).

因为f(1)≠0,所以f(0)=1.

(2)任取x1,x2∈R,且x1

在已知条件f(m+n)=f(m)·f(n)中,若取m+n=x2,m=x1,则已知条件可化为:f(x2)=f(x1)·f(x2-x1).

由于x2-x1>0,所以0

为比较f(x2),f(x1)的大小,只需考虑f(x1)的正负即可.

在f(m+n)=f(m)·f(n)中,令m=x,n=-x,

则得f(x)·f(-x)=1.

因为当x>0时,0

所以当x<0时,f(x)=1

f(-x)

>1>0.

又f(0)=1,所以综上可知,对于任意的x1∈R,均有f(x1)>0.

所以f(x2)-f(x1)=f(x1)[f(x2-x1)-1]<0.

所以函数f(x)在R上单调递减.

(3)f(x2)·f(y2)>f(1),即x2+y2<1.

f(ax-y+2)=1=f(0),即ax-y+2=0.

由A∩B=?,得直线ax-y+2=0与圆面x2+y2<1无公共点,所以

2

a2+1

≥1,解得

-1≤a≤1.

函数的单调性教案

函数的单调性教案 一、研究教材 1.认知基础分析:在初中通过对两个变量之间的数量关系的探究认识了函数的概念,学习了一元一次函数、一元二次函数、正比例函数与反比例函数的概念,初步掌握了这些函数图象的画法及其图象特征,能应用图象研究这些简单函数的基本性质,通过图象的升降关系(单调性的图象特征)了解函数值的变化与自变量的变化关系(单调性的定性描述).在高中通过对两个非空数集之间的对应关系以及映射的研究深化了对函数概念的理解,进一步学习了函数的三种表示方法,实现从初中的形象思维逐步过渡到逻辑思维,从具体向抽象的代数推理过渡. 2.地位与作用: 函数的单调性是函数的重要性质, 它既是函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性等内容的基础,在解决函数的值域、定义域、不等式、比较两个实数的大小等具体问题中有着广泛的应用. 函数单调性概念的形成过程中蕴涵作许多数学思想方法,对于进一步探索、研究函数的其它性质起作启发与示范作用. 二、教学目标 1.知识与技能 (1)理解函数的单调性的概念及其几何意义; (2)能应用函数的图象和单调性的定义判断或证明简单函数的单调性; (3)学会运用函数的图象理解和研究函数的性质,突出数形结合思想在研究函数性质中的重要性. 2. 过程与方法 (1)首先是通过初中已经学习过的函数特别是二次函数图象的直观感悟,让学生获得图象的上升与下降来刻画函数的单调性的特征(单调性的几何语言),第二利用列表法,启发学生获得“函数的增、减性就是随着自变量的值的增大,函数值也随之增大(或减小)”(单调性的文字语言);第三通过交流合作,将文字语言转化为抽象的符号语言(形式化的精确定义); (2)通过函数的单调性的学习,体会文字语言、图形语言、符号语言的相互转化; (3)通过函数的单调性概念的形成过程的学习,让学生领悟到从观察具体特例的图象到归纳猜想再到推理论证的科学思维方法. 3.情感、态度与价格观 在形与数的结合中感知数学的内在美,在图形语言、自然语言、数学语言的转化中感知数学的严谨美. 三、教学重点和难点重点:理解增函数、减函数的概念;难点:单调性概念的形成 与定义的应用. 四、教法与学法 重视诱思探究的教学理论在课堂教学中的渗透,在课堂教学中体现“教师为主导、学生为主体”,教师启发诱导,学生自主探究,激发学生的学习兴趣、培养学生良好的思维习惯和思维品质.

高中数学《函数的单调性》教案

《函数的单调性》说课稿 各位评委老师,上午好,我是号考生叶新颖。今天我的说课题目是函数的单调性。首先我们来进行教材分析。 一、教材分析 本课是苏教版新课标普通高中数学必修一第二章第1节《函数的简单性质》的内容,该节中内容包括:函数的单调性、函数的最值、函数的奇偶性。 函数的单调性是函数众多性质中的重要性质之一,函数的单调性一节中的知识是今后研究具体函数的单调性理论基础;在解决函数值域、定义域、不等式、比较两数大小等具体问题中均有着广泛的应用;在历年的高考中对函数的单调性考查每年都有涉及;同时在这一节中利用函数图象来研究函数性质的数形结合思想将贯穿于我们整个高中数学教学。 利用函数的单调性的定义证明具体函数的单调性一个难点,也是对函数单调性概念的深层理解,且在“作差、变形、定号”过程学生不易掌握。 学生刚刚接触这种证明方法,给出一定的步骤是必要的,有利于学生理解概念,也可以对学生掌握证明方法、形成证明思路有所帮助。另外,这也是以后要学习的不等式证明的比较法的基本思路,现在提出来对今后的教学也有了一定的铺垫。 二、教学目标: 根据新课标的要求,以及对教材结构与内容分析,考虑到学生已有的认知结构及心理特征,制定如下教学目标: 1、知识目标: (1)使学生理解函数单调性的概念,能判断并证明一些简单函数在给定区间上的单调性。 (2)通过函数单调性的教学,逐步培养学生观察、分析、概括与合作能力;2、能力目标: (1)通过本节课的学习,通过“数与形”之间的转换,渗透数形结合的数学思想。 (2)通过探究活动,明白考虑问题要细致、缜密,说理要严密、明确。 3、情感目标:在平等的教学氛围中,通过学生之间、师生之间的交流、合作与

6、函数之函数的单调性(教师版)

6、函数之函数的单调性 函数单调性的相关知识点: 一:函数的单调性的定义。(设函数)(x f y = 的定义域为 I )。 1.增函数:如果对于定义域I 内某个区间D 上的任意两个自变量的值 2121x x x x <,且、。当1x <2x 时,都有)(1x f <)(2x f ,那么称函数)(x f 在区间D 上是增 函数。相应的区间D 为函数)(x f 的单调递增区间。 2.减函数:如果对于定义域I 内某个区间D 上的任意两个自变量的值 2121x x x x <,且、。当1x <2x 时,都有)(1x f <)(2x f ,那么称函数)(x f 在区间D 上是减 函数。相应的区间D 为函数)(x f 的单调递减区间。 3.单调性:如果一个函数)(x f 在某个区间上是增函数或是减函数,就说这个函 数)(x f 在这个区间上具有单调性,或者说函数在区间上是单调的。 二:证明或判断单调性的方法与步骤。 1. 定义法:(1)取值。 (2)作差变形。 (3)定号。 (4)下结论。 2. 导数法:(1)求导。 (2)判断导函数f ′(x )的符号。若f ′(x ) > 0,则函数 为增函数。 若f ′(x ) < 0,则函数为减函数。 3. 图像法:主要用来判断。 三:函数单调性的有关性质。 若函数)()(x g x f 、在区间D 上具有单调性,则在区间D 上具有以下性质。 1. 函数C x f x f +)()(与具有相同的单调性。 2. 函数)()(x af x f 与,当0>a 时,具有相同的单调性,当0

调性。 3. 当函数)(x f 恒不等于0时。函数 )() (1 x f x f 与具有相反的单调性。 4. 当函数0)(≥x f 时。函数)()(x f x f 与具有相同的单调性。 5. 若)(),(x g x f 均为某个区间上的增(减)函数,则:)()(x g x f +为某个区间上的增(减)函数。 6. 若)(),(x g x f 均为某个区间上的增(减)函数,则)()(x g x f ?:当两者都恒大于零时,是增(减)函数;当两者都恒小于零时,是减(增)函数。 7. 奇函数在原点的两侧具有相同的单调性,偶函数在原点的两侧具有相反的单调性。 8. 互为反函数的两个函数具有相同的单调性。 9. 若)(x f 在区间D 上为增函数,且D x x ∈21,。则:()[]0 ) ()()3(0)()()()2() ()(12 12121212121>-->-?-?

《3.3.1函数的单调性与导数》教学案

3.3.1《函数的单调性与导数》教学案 教学目标: 1.了解可导函数的单调性与其导数的关系; 2.能利用导数研究函数的单调性,会求函数的单调区间,对多项式函数一般不超过三次; 教学重点: 利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间 教学难点: 利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间 教学过程: 一.创设情景 函数是客观描述世界变化规律的重要数学模型,研究函数时,了解函数的赠与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的.通过研究函数的这些性质,我们可以对数量的变化规律有一个基本的了解.下面,我们运用导数研究函数的性质,从中体会导数在研究函数中的作用. 二.新课讲授 1.问题:图3.3-1(1),它表示跳水运动中高度h 随时间t 变化的函数2() 4.9 6.510h t t t =-++的图像,图3.3-1(2)表示高台跳水运动员的速度v 随时间t 变化的函数'()()9.8 6.5v t h t t ==-+的图像. 运动员从起跳到最高点,以及从最高点到入水这两段时间的运动状态有什么区别? 通过观察图像,我们可以发现: (1)运动员从起点到最高点,离水面的高度h 随时间t 的增加而增加,即()h t 是增函数.相应地,'()()0v t h t =>. (2) 从最高点到入水,运动员离水面的高度h 随时间t 的增加而减少,即()h t 是减 函数.相应地,'()()0v t h t =<. 2.函数的单调性与导数的关系 观察下面函数的图像,探讨函数的单调性与其导数正负的关系. 如图3.3-3,导数'0()f x 表示函数()f x 在 点00(,)x y 处的切线的斜率. 在0x x =处,'0()0f x >,切线是“左下右上”式的,

《函数的单调性与极值》教学案设计

《函数的单调性与极值》教学案设计 教学目标:正确理解利用导数判断函数的单调性的原理; 掌握利用导数判断函数单调性的方法; 教学重点:利用导数判断函数单调性; 教学难点:利用导数判断函数单调性 教学过程: 一 引入: 以前,我们用定义来判断函数的单调性.在假设x 10时,函数y=f(x) 在区间(2,∞+)内为增函数;在区间(∞-,2)内, 切线的斜率为负,函数y=f(x)的值随着x 的增大而减小,即/y <0时,函数y=f(x) 在区间 (∞-,2)内为减函数. 定义:一般地,设函数y=f(x) 在某个区间内有导数,如果在这个区间内/y >0,那么函数y=f(x) 在为这个区间内的增函数;,如果在这个区间内/ y <0,那么函数y=f(x) 在为这个区间内的减函数。 例1 确定函数422+-=x x y 在哪个区间内是增函数,哪个区间内是减函数。 例2 确定函数76223+-=x x y 的单调区间。 y

2 极大值与极小值 观察例2的图可以看出,函数在X=0的函数值比它附近所有各点的函数值都大,我们说f(0)是函数的一个极大值;函数在X=2的函数值比它附近所有各点的函数值都小,我们说f(0)是函数的一个极小值。 一般地,设函数y=f(x)在0x x 及其附近有定义,如果)(0x f 的值比0x 附近所有各点的函数值都大,我们说f(0x )是函数y=f(x)的一个极大值;如果)(0x f 的值比0x 附近所有各点的函数值都小,我们说f(0x )是函数y=f(x)的一个极小值。极大值与极小值统称极值。 在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值。请注意以下几点: (ⅰ)极值是一个局部概念。由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小。并不意味着它在函数的整个的定义域内最大或最小。 (ⅱ)函数的极值不是唯一的。即一个函数在某区间上或定义域内极大值或极小值可以不止一个。 (ⅲ)极大值与极小值之间无确定的大小关系。即一个函数的极大值未必大于极小值,如下图所示,

高中数学 第6课时函数的单调性(1)(教师版) 苏教版

高中数学 第6课时函数的单调性(1)(教师版) 苏教 版 【学习导航】 知识网络 学习要求 1.理解函数单调性概念; 2.掌握判断函数单调性的方法,会证 明一些简单函数在某个区间上的 单调性; 3.提高观察、抽象的能力.; 自学评价 1.单调增函数的定义: 一般地,设函数()y f x =的定义域为 A ,区间I A ?. 如果对于区间I 内的任意两个值1x , 2x ,当12x x <时,都有12()()f x f x <,那 么就说()y f x =在区间I 上是单调增 函数,I 称为()y f x =的单调 增 区间. 注意:⑴“任意”、“都有”等关键词; ⑵. 单调性、单调区间是有区别的; 2.单调减函数的定义: 一般地,设函数()y f x =的定义域为 A ,区间I A ?. 如果对于区间I 内的任意两个值1x , 2x ,当12x x <时,都有 12()()f x f x >, 那么就说()y f x =在区间I 上是单调 减 函数,I 称为()y f x =的单调 减 区间. 3.函数图像与单调性:函数在单调增区间上的图像是 上升 图像;而函数在其单调减区间上的图像是 下降 的图像。(填"上升"或"下降") 12x x < ; (2) 比较12(),()f x f x 大小 ; (3) 下结论"函数在某个区间上是单调增 (或减)函数" . 【精典范例】 一.根据函数图像写单调区间: 例1:画出下列函数图象,并写出单调区间. (1)2 2y x =-+; (2)1 y x =; (3)21, 0 ()22, 0x x f x x x ?+≤=?-+>? . 【解】 (图略) (1)函数2 2y x =-+的单调增区间为 (,0)-∞,单调减区间为(0,)+∞; (2)函数1 y x = 在(,0)-∞和(0,)+∞上分别单调减,即其有两个单调减区间分别是(,0)-∞和 (0,)+∞. (3)函数21, 0 ()22, 0x x f x x x ?+≤=?-+>? 在实数集R 上是减函数;

高中数学必修一教案-函数的单调性

课题:§1.3.1函数的单调性 教学目的:(1)通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义; (2)学会运用函数图象理解和研究函数的性质; (3)能够熟练应用定义判断数在某区间上的的单调性. 教学重点:函数的单调性及其几何意义. 教学难点:利用函数的单调性定义判断、证明函数的单调性. 教学过程: 一、引入课题 1.观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律:○1随x的增大,y的值有什么变化? ○2能否看出函数的最大、最小值? ○3函数图象是否具有某种对称性? 2.画出下列函数的图象,观察其变化规律:1.f(x) = x ○1从左至右图象上升还是下降 ______? ○2在区间 ____________ 上,随着x的增大,f(x)的值随着 ________ . 2.f(x) = -2x+1 ○1从左至右图象上升还是下降 ______? ○2在区间 ____________ 上,随着x的增大,f(x)的值随着 ________ . 3.f(x) = x2 ○1在区间 ____________ 上,f(x)的值随着x的增大而 ________ . ○2在区间 ____________ 上,f(x)的值随着x的增大而 ________ . 二、新课教学

(一)函数单调性定义 1.增函数 一般地,设函数y=f(x)的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1

7第七讲 函数的单调性及最值(教师版)

第一课时:单调性 知识点一 函数的单调性 思考 画出函数f (x )=x 、f (x )=x 2的图象,并指出f (x )=x 、f (x )=x 2的图象的升降情况如何? 答案 两函数的图象如下: 函数f (x )=x 的图象由左到右是上升的;函数f (x )=x 2的图象在y 轴左侧是下降的,在y 轴右侧是上升的. 梳理 一般地,单调性是相对于区间来说的,函数图象在某区间上上升,则函数在该区间上为增函数,该区间称为增区间.反之则为减函数,相应区间称为减区间.因为很多时候我们不知道函数图象是什么样的,而且用上升下降来刻画单调性很粗糙.所以有以下定义: 设函数f (x )的定义域为I : (1)如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2,当x 1f (x 2),那么就说函数f (x )在区间D 上是减函数. 知识点二 函数的单调区间 思考 我们已经知道f (x )=x 2的减区间为(-∞,0],f ( x )=1 x 的减区间为(-∞,0),这两个减区间能不能交换? 答案 f (x )=x 2的减区间可以写成(-∞,0),而f (x )=1 x 的减区间(-∞,0)不能写成(-∞,0],因为0不属 第七节.函数的单调性与最值 基本不等式

于f (x )=1 x 的定义域. 梳理 一般地,有下列常识: (1)函数单调性关注的是整个区间上的性质,单独一点不存在单调性问题,所以单调区间的端点若属于定义域,则该点处区间可开可闭,若区间端点不属于定义域则只能开. (2)单调区间D ?定义域I . (3)遵循最简原则,单调区间应尽可能大. 类型一 求单调区间并判断单调性 例1 如图是定义在区间[-5,5]上的函数y =f (x ),根据图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数? 解 y =f (x )的单调区间有[-5,-2],[-2,1],[1,3],[3,5],其中y =f (x )在区间[-5,-2],[1,3]上是减函数,在区间[-2,1],[3,5]上是增函数. 反思与感悟 函数的单调性是在定义域内的某个区间上的性质,单调区间是定义域的子集;当函数出现两个以上单调区间时,单调区间之间可用“,”分开,不能用“∪”,可以用“和”来表示;在单调区间D 上函数要么是增函数,要么是减函数,不能二者兼有. 跟踪训练1 写出函数y =|x 2-2x -3|的单调区间,并指出单调性. 解 先画出f (x )=????? x 2-2x -3,x <-1或x >3,-(x 2 -2x -3),-1≤x ≤3 的图象,如图.

函数单调性教学案例分析

“函数的单调性”案例分析 连江一中数学组李锋 数学概念的教学是培养学生创新精神和实践能力的一个很好的切入点,重视数学概念的发生、发展、形成的过程的体验,让学生进行深入的思考和全方位的探索。对于提高学生学习数学的兴趣,培养学生创新精神和实践能力将是十分有利的。现以《函数的单调性》教学实例来进行分析: 一、案例课题:函数的单调性(第一课时) 二、实施过程(注:课堂实录已经简化) 1.问题引入 师:我们观察某自来水厂在一天24小时内,水压Y随时间X的的变化情况。不妨设其函数解析式:y=f(x); x [0,24] 师:“在哪些时间段内,水压在逐渐上升?在哪能些时间段内,水压在下降?” (很快得出正确答案。) 师:在某一时间段内水压在上升,实际上是水压Y的值随时间X的增大在逐渐增大,于是我说函数y=f(x)在区间[0,3]上,是单调递增函数。同理,函数y=f(x)在区间[3,9]上是单调递减函数。这就是我们要研究的函数的又一特性——函数的单调性。 2.定义探究 师:在某个区间上:①函数值Y随X的增大而增大(图象从左——右,呈上升趋势),就说这个函数在这个区间上是增函数。②函数值Y随X的增大而减小(图象从左——右,呈下降趋势),就说这个函数在这个区间上是减函数。 提出问题1:请同学仔细阅读课本中函数单调性的定义,思考课本定义方法和上面定义方法是否一致?如果一致,定义中哪一句表达了该意思? 生:我认为是一致的.定义中的“当x1<x2时,都有f(x1)<f(x2)”描述了y随x的增大而增大;“当x1<x2时,都有f(x1)>f(x2)”描述了y随x的增大而减少. 师:说得非常正确.定义中用了两个简单的不等关系“x1<x2”和“f(x1)<f(x2)或f(x1)>f(x2)”,它刻划了函数的单调递增或单调递减的性质.这就是数学的魅力!定义中只用了两个简单的不等关系,就刻划出了单调递增和单调递减的性质特征,把文字语言表达为数学语言,简单明了。 师:提出问题2:我们思考这样一个问题:定义中有哪些关键的词语或句子至关重要?能不能把它找出来。(有的同学回答不准确) 生1:我们认为在定义中,有一个词“给定区间”是定义中的关键词语.(阐述了理由)。

函数单调性的应用 教案

《函数单调性的应用》教案 一、教材分析-----教学内容、地位和作用 本课是北师大版新课标普通高中数学必修一第二章第三节《函数的单调性》的内容,该节中内容包括:函数的单调性、函数的最值。总课时安排为3课时,《函数单调性的应用》是本节中的第三课时。 函数的单调性是函数众多性质中的重要性质之一,函数的单调性一节中的知识是今后研究具体函数的单调性理论基础;在解决函数值域、最值,比较两个函数值的大小或自变量的大小、求参变量的取值范围以及解函数不等式等具体问题中均有着广泛的应用;在历年的高考中对函数的单调性的应用考查每年都有涉及;同时在这一节中利用函数图象来研究函数性质的数形结合思想将贯穿于我们整个高中数学教学。 在本节课是以函数的单调性的应用为主线,它始终贯穿于整个课堂教学过程;这是本节课的重点内容。 二、学情分析 教学目标的制定与实现,主要取决于我们对学习者掌握的程度。只有了解学习者原来具有的认知结构,学习者的准备状态,学习风格,情感态度等,我们才能制定合适的教学目标,安排合适的教学活动与评价标准。不同的教学环境,不同的学习主体有着不同的学习动机和学习特点。 我所教授的班级的学生具体学情具体到我们班级学生而言有以下特点:学习习惯不太好,需要不断的引导和规范;数学基本功不太扎实,演算不能做到又准又快;独立解决问题能力弱,畏难情绪严重,探索精神不足。只有少部分学生学习习惯良好,学风严谨,思维缜密。 三、教学目标: 根据新课标的要求,以及对教材结构与内容分析,考虑到学生已有的认知结构及心理特征,制定如下教学目标: (一)三维目标 1 知识与技能: (1).会利用函数单调性求最值或值域. (2).会利用函数单调性比较两个函数值或两个自变量的大小. (3).会利用函数单调性求参变量的取值范围. (4).会利用函数单调性解函数不等式. (5) .通过函数单调性应用的教学,逐步培养学生观察、分析、概括与合作能力; 2 过程与方法: (1)通过本节课的学习,通过“数与形”之间的转换,渗透数形结合的数学思想。 (2)通过合作探究活动,明白考虑问题要细致、缜密,说理要严密、明确。 3 情感,态度与价值观:在平等的教学氛围中,通过学生之间、师生之间的交流、合作与评价,拉近学生之间、师生之间的情感距离,培养学生对数学的兴趣。。(二)重点、难点 重点:利用函数单调性求最值或值域,求参变量的取值范围

函数的单调性教案

课题:1.3.1函数的单调性 教学目标 (一)、知识目标 1、使学生从形与数两方面理解函数单调性的概念; 2、初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法; (二)、能力目标 1、对函数单调性定义的探究,渗透数形结合数学思想方法,培养学生观察、归纳、抽象的能力和语言表达能力; 2、对函数单调性的证明,提高学生的推理论证能力. (三)、情感目标 1、由知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯; 2、让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程,感受数形结合的美. 教学重点:函数单调性的概念、判断及证明函数的单调性. 教学难点:归纳抽象函数单调性的定义,用定义证明函数的单调性. 教学用具:直尺,彩色粉笔,小黑板 课型:新授课. 课时:第1课时. 教学方法:探究研讨法,讲练结合法。 教学过程: (一)创设情境,引入课题 这是某市2010年元旦这一天24小时的温度变化图,观察这个温度变化图,

(1) 什么时候温度最低,什么时候温度最高 (4点最低,14点的时候最高) (2)从0点到14点,温度是怎样变化的,从4点到14点,温度有事随着时间怎样变化的(0点到4点,逐渐下降,4点到14点逐渐上升的) 随着时间的推移,气温先下降,后上升再下降. 这里的上升和下降在数学中就反映出函数的一个基本性质-单调性. (二)讲授新课 函数,我们在初中的时候都已经学过了,也学过函数的增减性,那对于一个函数的“上升”和“下降”的性质,我们是如何知道的呢?通过观察图像 那我们先来看一下几个简单的函数图像,画出 2y x =+,2y x =-+,2y x =函数的图像 大家先观察第一个图像,从左至右上升 第二个图像,从左至右下降 那对于第三个图像呢,(,0)-∞下降,(0,)+∞上升,图像这种上升和下降的性质描述的就是单调性,也就是说函数的单调性描述的是函数图像的上升和下降,那思考一下,如何来描述函数的单调性呢?我们先来看一下2y x =这个图像,我们可以再y 轴右边取一些 通过这个表格,我们可以发现, 自变量x 增大时,函数值y 也相应的增大,那如果我们在y 轴右边不是取的一些整数点,而是任意的取两点,1x ,2x ,同学们思考一下是不是有 22 12 x x <,函数2()f x x =图象在y 轴左侧从左至右“下降”,函数图象在y 轴右侧从左至右

导数应用:含参函数的单调性讨论教师版

导数应用:含参函数的单调性讨论教师版 https://www.wendangku.net/doc/4915341216.html,work Information Technology Company.2020YEAR

导数应用:含参函数的单调性讨论教师版 一、思想方法: 上为常函数 在区间时上为减函数 在区间时上为增函数 在区间时和增区间为和增区间为D x f x f D x D x f x f D x D x f x f D x D C x f D C x x f B A x f B A x x f )(0)(')(0)(')(0)('... ,)(...0)('... ,)(...0)('?=∈?<∈?>∈?∈? 讨论函数的单调区间可化归为求解导函数正或负的相应不等式问题的讨论。 二、典例讲解 例1 讨论x a x x f + =)(的单调性,求其单调区间 解:x a x x f +=)(的定义域为),0()0,(+∞-∞ )0(1)('222≠-=-=x x a x x a x f (它与a x x g -=2)(同号) I )当0≤a 时,)0(0)('≠>x x f 恒成立, 此时)(x f 在)0,(-∞和),0(+∞都是单调增函数, 即)(x f 的增区间是)0,(-∞和),0(+∞; II) 当0>a 时 a x a x x x f >-或)0(0)(' a x x a x x f <<<<-?≠<00)0(0)('或 此时)(x f 在),(a --∞和),(+∞a 都是单调增函数, )(x f 在)0,(a -和),0(a 都是单调减函数, 即)(x f 的增区间为),(a --∞和),(+∞a ; )(x f 的减区间为)0,(a -和),0(a . 步骤小结:1、先求函数的定义域, 2、求导函数(化为乘除分解式,便于讨论正负), 3、先讨论只有一种单调区间的(导函数同号的)情况, 4、再讨论有增有减的情况(导函数有正有负,以其零点分界), 5、注意函数的断点,不连续的同类单调区间不要合并。 变式练习1 : 讨论x a x x f ln )(+=的单调性,求其单调区间 解:x a x x f ln )(+=的定义域为),0(+∞ )0(1)('>+=+=x x a x x a x f (它与a x x g +=)(同号)

函数单调性的教学案例

函数单调性的教学案例 西安市培华职业中专王买霞 【学生】职一某班. 【教学环境】电脑教室,每生一台机,教师机可以控制学生机,例如观察某一台学生机学生的操作,让某一学生机学生观看教师机的操作,让所有学生观看教师机的操作,等等。 【理论指导】建构主义学习理论强调的是学生的认知主体作用,也就是认为学生是信息加工的主体,是意义的主动建构者,教师扮演组织者、指导者、帮助者和促进者的角色。 数学课堂生态化研究,强调的是一种动态的、生长的、可持续发展的课堂教学氛围,而不是以牺牲学生个性为代价追求效率的做法。数学课堂生态化研究,注重在教学过程中,教师、学生、内容和环境各个要素内部以及各个要素之间的相互沟通。 多媒体信息具有直观性强的特点,对学生形成多感官刺激,能引起学生的强烈兴趣和注意。利用多媒体的交互性,学生获得了对信息的完全控制,能激发学生的求知欲、创造欲。所以,以学生为中心、教师为主导的多媒体辅助教学往往能营造出一个让学生发现问题、讨论问题的全新的学习环境。 【构想及教学目的】在建构主义学习理论及生态学理论的指导下,我们的课堂教学应该为学生创造一个全新的学习环境,指导学生自主学习,让学生更注重知识的发生过程,为学生营造出一个在体验中发现、在发现中讨论、在讨论中解决的学习环境。为了深入学习函数单调性,我利用电脑辅助,创设问题情境,激发学习兴趣,让学生在充实背景下分析问题,思考问题,从而发现规律,抓住问题的本质。 本节课的教学目的是: (1)要求学生掌握函数单调性的定义,并激发学生思考函数单调性的判断方法。 (2)渗透数形结合思想,了解数形结合方法。 【教学过程】 创设情境引入新课 师:上节课,我们学习了函数的三种表示法,分别为: (师语音拉长,师生一块儿回答) 生:列表法、公式法、图像法。 师:它们的区别是什么?生:列表法就是用表格来表示函数的方法;公式法是用函数解析式来表示函数的方法;图像法是使用平面直角坐标系里的图形来表示函数的方法。 师:这三者之间又有密切的联系,它们之间可以相互转化。我们要研究一个函数,可

函数的单调性教案课程(优秀)

课题:函数的单调性 授课教师:王青 【教学目标】 1.知识与技能:使学生从形与数两方面理解函数的单调性概念,初步掌握利用 函数图象和单调性定义判断、证明函数的单调性的方法,了解函数单调区间的概念。 2.过程与方法:通过对函数单调性定义的探究,渗透数形结合的数学思想方法, 培养学生的观察、归纳、抽象思维能力。 3.情感态度与价值观:在参与的过程中体验成功的喜悦,感受学习数学的乐趣。【教学重点】函数单调性的概念、判断及证明. 【教学难点】归纳抽象函数单调性的定义以及根据定义证明函数的单调性.【教学方法】教师启发讲授,学生探究学习. 【使用教具】多媒体教学 【教学过程】 一、创设情境,引入课题 1、下图是北京市今年8月8日一天24小时内气温随时间变化的曲线图. 引导学生识图,捕捉信息,启发学生思考. 问题: (1)当天的最高温度、最低温度以及何时达到; (3)哪些时段温度升高?哪些时段温度降低? 在生活中,我们关心很多数据的变化规律,了解这些数据的变化规律,对我们的生活是很有帮助的. 归纳:用函数观点看,其实就是随着自变量的变化,函数值是变大还是变小.〖设计意图〗由生活情境引入新课,激发兴趣.

二、归纳探索,形成概念 对于自变量变化时,函数值是变大还是变小,初中同学们就有了一定的认识,但是没有严格的定义,今天我们的任务首先就是系统地学习这块内容. 1.借助图象,直观感知 问题1:分别作出函数1+=x y ,1+-=x y ,2)(x x f =的图象,并且思考 (1) 函数1+=x y 的图象从左至右是上升还是下降,在区间_____上) (x f 的值随x 的增大而_______ (2) 函数1+-=x y 的图象从左至右是上升还是下降,在区间_____上 )(x f 的值随x 的增大而_______ (3) 函数2)(x x f =在区间_____上,)(x f 的值随x 的增大而增大 (4) 函数2)(x x f =在区间_____上,)(x f 的值随x 的增大而减小 〖设计意图〗从图象直观感知函数单调性,完成对函数单调性的第一次认识. 2.抽象思维,形成概念 问题:你能用数学符号语言描述第(3)(4)题吗? 任取2121),,0[,x x x x <+∞∈且,因为0))((21212 221<-+=-x x x x x x ,即2 221x x <,所以()()21x f x f > 任意的x 1,x 2∈(0-,∞),x 1 任意的x 1,x 2∈(0-,∞),x 1

(完整版)2017高考一轮复习教案-函数的单调性

函数的单调性与最 值 、函数的单调性 1.单调函数的定义 2. 单调区间的定义 如果函数 y=f(x) 在区间 A 上是增加的或是减少的,那么称 A为单调区间. 3 求函数单调区间的两个注意点: (1)单调区间是定义域的子集,故求单调区间应树立“定义域优先”的原则. (2)单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结. 4 必记结论 1.单调函数的定义有以下若干等价形式: 设 x1,x2∈[a ,b] ,那么 f x1 - f x2 ① 1 - 2 >0? f(x) 在[a ,b]上是增函数; x1-x2 x1-x2 <0? f(x) 在[a ,b] 上是减函数. f x1 -f x2

②(x 1-x 2)[f(x 1) - f(x 2)]>0 ? f(x) 在[a ,b] 上是增函数; (x 1-x 2)[f(x 1) -f(x 2)]<0 ? f(x) 在[a ,b] 上是减函数. 2.复合函数 y =f[g(x)] 的单调性规律是“同则增,异则减”,即 y =f(u) 与 u =g(x) 若具有相同的单调性,则 y =f[g(x)] 为增函数,若具有不同的单调性, 则 y = f[g(x)] 必为减函数. 考点一 函数单调性的判断 1.下列四个函数中,在 (0 ,+∞) 上为增函数的是 ( 解析:当 x>0 时,f (x)=3-x 为减函数; 32 当 x ∈ 0,2 时,f(x)=x 2-3x 为减函数, 3 当 x ∈ 2,+∞ 时,f(x)=x 2 -3x 为增函数; 1 当 x ∈ (0 ,+∞ )时, f (x)=-x +1为增函数; 当 x ∈ (0 ,+∞ )时, f (x)=-| x| 为减函数.故选 C.答案: C -2x 2.判断函数 g(x) = 在(1 ,+∞ )上的单调性. x -1 解:法一:定义法 任取 x 1,x 2∈(1 ,+∞ ),且 x 1

高中数学教师资格面试函数的单调性教案

高中数学教师资格面试函数的单调性教案 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

高中数学教师资格面试《函数的单调性》教案: 函数的单调性 课题:函数的单调性 课时:一课时 课型:新授课 一、教学目标 1.知识与技能: (1)从形与数两方面理解单调性的概念。 (2)绝大多数学生初步学会利用函数图象和单调性定义判断、证明函数单调性的方法。 2.过程与方法: (1)通过对函数单调性定义的探究,提高观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高推理论证能力。 (2)通过对函数单调性定义的探究,体验数形结合思想方法。 (3)经历观察发现、抽象概括,自主建构单调性概念的过程,体会从具体到抽象,从特殊到一般,从感性到理性的认知过程。

3.情感态度价值观: 通过知识的探究过程养成细心观察、认真分析、严谨论证的良好思维习惯;感受用辩证的观点思考问题。 二、教学重点 函数单调性的概念形成和初步运用。 三、教学难点 函数单调性的概念形成。 四、教学关键 通过定义及数形结合的思想,理解函数的单调性。 五、教学过程 (一)创设情境,导入新课 教师活动:分别作出函数y=2x,y=-2x和y=x2+1的图象,并且观察函数变化规律,描述前两个图象后,明确这两种变化规律分别称为增函数和减函数。然后提出两个问题:问题一:二次函数是增函数还是减函数问题二:能否用自己的理解说说什么是增函数,什么是减函数 学生活动:观察图象,利用初中的函数增减性质进行描述,y=2x的图象自变量x 在实数集变化时,y随x增大而增大,y=-2x的图象自变量x在实数集变化时,y随x增

《函数的单调性》教案

课题函数的单调性 教学目标 1。函数单调性的研究经历了从直观到抽象,以图识数的过程,在这个过程中,让学生通过自主探究活动,体验数学概念的形成过程的真谛,学会运用函数图像理解和研究函数的性质。 2。理解并掌握函数的单调性及其几何意义,掌握用定义证明函数单调性的步骤,会求函数的单调区间,提高应用知识解决问题的能力。 3。能够用函数的性质解决日常生活中的简单的实际问题,使学生感受到学习函数单调性的必要性与重要性,增强学生学习函数的紧迫感,激发学生学习的积极性。 教材分析重点函数的单调性。 难点增函数、减函数形式化定义的形成。教具记号笔、白板、多媒体教具 教学过程 导入新课 德国有一位著名的心理学家名叫艾宾浩斯(Hermann Ebbinghaus,1850—1909),他以自己为实验对象,共做了163次实验,每次实验连续要做两次无误的背诵。经过一定时间后再重学一次,达到与第一次学会的同样的标准。他经过对自己的测试,得到了一些数据。 时间间 隔t 0分钟 20分 钟 60分 钟 8~9 小时 1天2天6天 一个 月 记忆量 y(百分 比) 100% 58。2% 44。2% 35。 8% 33。7% 27。8% 25。 4% 21。1% 观察这些数据,可以看出:记忆量y是时间间隔t的函数。当自变量(时间间隔t)逐渐增大时,你能看出对应的函数值(记忆量y)有什么变化趋势吗?描出这个函数图像的草图(这就是著名的艾宾浩斯曲线)。从左向右看,图像是上升的还是下降的?你能用数学符号来刻画吗?通过这个实验,你打算以后如何对待刚学过的知识?(可以借助信息技术画图像) 学生:先思考或讨论,回答:记忆量y随时间间隔t的增大而增大;以时间间隔t为横轴,以记忆量y为纵轴建立平面直角坐标系,描点连线得函数的草图——艾宾浩斯遗忘曲线如图1所示。 图1 遗忘曲线是一条衰减曲线,它表明了遗忘的规律。随着时间的推移,记忆保持量在递减,刚开始遗忘速度最快,我们应利用这一规律,在学习新知识时一定要及时复习巩固,加深理解和记忆。教师提示、点拨,并引出本节课题。 推进新课 新知探究 提出问题 ①如图2所示的是一次函数y=x,二次函数y=x2和y=-x2的图像,它们的图像有什么变化规律?这反映了相应的函数值的哪些变化规律?

函数的单调性教学案例

函数的单调性教学案例-中学数学论文 函数的单调性教学案例 浙江浦江县第三中学潘娟春 教学目标: (1)理解函数的单调性的概念; (2)能判别或证明一些简单函数的单调性; (3)学会理性地认识与描述生活中的增长递减等现象,体会数形结合思想。重难点:用图象直观地认识函数的单调性,并利用函数的单调性求函数的值域。教学过程: 一、认识函数的一种性质 材料:观察某市一天24小时的气温变化图,回答下列问题: 问题1.说出气温在哪些时段内是逐步升高的?哪些时段内是下降的? 问题2.当t1=8时,f(t1)= ;t2=10时,f(t2)= 。对于自变量810,对应的函数值有什么关系? 问题3.请你用自己的语言描述“在区间[4,14]上,气温随时间增大而升高”这一特征。 问题4.若用x表示时间,y用表示温度,如何表述随着时间x增大,温度y逐渐增大?

(学生思考回答,学生代表回答、其他学生补充、教师梳理。) 二、函数的单调性概念的形成 通过讨论,结合图给出在区间上单调性的定义: (一)单调增函数 一般地,设函数y=f(x)的定义域为A。区间I?哿A.如果对于区间I内的任意两个值x1,x2,当x1<x2时,都有f(x1)<f(x2)那么就说y=f(x)在区间I上是单调增函数,I称为y= f(x)的单调增区间。 问题5.你能找出气温图中的单调增区间吗? 问题6.类比单调增函数概念,你能给出单调减函数的定义吗? (二)单调减函数 如果对于区间I内的任意两个值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说y=f(x)在区间I上是单调减函数,I称为y=f(x)的单调减区间.问题7.你能找出气温图中的单调减区间吗? (三)函数的单调性与单调区间。 如果函数y=f(x)在区间I是单调增函数或单调减函数,那么就说函数y=f(x)在区间I上具有单调性.单调增区间与单调减区间统称为单调区间。(学生独立思考,学生代表回答其他学生补充,师生共同给出) 下面请辨析下列三个问题。 (1)定义在R上的函数f(x)满足f(2)>f(1),则函数f(x)是R上的增函数。() (2)函数f(x)是R上的增函数,则必有f(2)>f(1).() (3)定义在R上的函数f(x)满足f(2)>f(1),则函数f(x)在R上不

相关文档
相关文档 最新文档