文档库 最新最全的文档下载
当前位置:文档库 › 沥青路面结构厚度计算

沥青路面结构厚度计算

沥青路面结构厚度计算
沥青路面结构厚度计算

新建路面结构厚度计算

公路等级 : 一级公路

新建路面的层数 : 5

标准轴载 : BZZ-100

路面设计弯沉值 : 24.9 (0.01mm)

路面设计层层位 : 4

设计层最小厚度 : 150 (mm)

层位结构层材料名称厚度 20℃平均抗压标准差 15℃平均抗压标准差

容许应力

(mm) 模量(MPa) (MPa) 模量(MPa) (MPa) (MPa)

1 细粒式沥青混凝土40 1400 0 2000 0 .47

2 中粒式沥青混凝土60 1200 0 1800 0 .34

3 粗粒式沥青混凝土80 1000 0 1200 0 .27

4 水泥稳定碎石? 1500 0 3600 0 .25

5 石灰土250 550 0 1500 0 .1

6 新建路基 36

按设计弯沉值计算设计层厚度 :

LD= 24.9 (0.01mm)

H( 4 )= 200 mm LS= 26.3 (0.01mm)

H( 4 )= 250 mm LS= 23.4 (0.01mm)

H( 4 )= 224 mm(仅考虑弯沉)

按容许拉应力计算设计层厚度 :

H( 4 )= 224 mm(第 1 层底面拉应力计算满足要求)

H( 4 )= 224 mm(第 2 层底面拉应力计算满足要求)

H( 4 )= 224 mm(第 3 层底面拉应力计算满足要求)

H( 4 )= 224 mm(第 4 层底面拉应力计算满足要求)

H( 4 )= 274 mm σ( 5 )= .101 MPa

H( 4 )= 324 mm σ( 5 )= .087 MPa

H( 4 )= 277 mm(第 5 层底面拉应力计算满足要求)

路面设计层厚度 :

H( 4 )= 224 mm(仅考虑弯沉)

H( 4 )= 277 mm(同时考虑弯沉和拉应力)

验算路面防冻厚度 :

路面最小防冻厚度 500 mm

验算结果表明 ,路面总厚度满足防冻要求 .

通过对设计层厚度取整, 最后得到路面结构设计结果如下:

----------------------------------------

细粒式沥青混凝土 40 mm

----------------------------------------

中粒式沥青混凝土 60 mm

----------------------------------------

粗粒式沥青混凝土 80 mm

----------------------------------------

水泥稳定碎石 280 mm

----------------------------------------

石灰土 250 mm

----------------------------------------

新建路基

沥青路面结构计算书

新建路面设计 1. 项目概况与交通荷载参数 该项目位于西南地区,属于二级公路,设计时速为40Km/h,12米双车道公路,设计使用年限为12.0年,根据交通量OD调查分析,断面大型客车和货车交通量为1849辆/日, 交通量年增长率为8.2%, 方向系数取55.0%, 车道系数取 70.0%。根据交通历史数据,按表A.2.6-1确定该设计公路为TTC4类,根据表 A.2.6-2得到车辆类型分布系数如表1所示。 表1. 车辆类型分布系数 根据路网相邻公路的车辆满载情况及历史数据的调查分析,得到各类车型非满载与满载比例,如表2所示。 表2. 非满载车与满载车所占比例(%) 根据表6.2.1,该设计路面对应的设计指标为沥青混合料层永久变形与无机结合料层疲劳开裂。根据附表A.3.1-3,可得到在不同设计指标下,各车型对应的非满载车和满载车当量设计轴载换算系数,如表3所示。 表3. 非满载车与满载车当量设计轴载换算系数

根据公式(A.4.2)计算得到对应于沥青混合料层永久变形的当量设计轴载累计作用次数为8,109,551, 对应于无机结合料层疲劳开裂的当量设计轴载累计作用次数为562,339,245。本公路设计使用年限内设计车道累计大型客车和货车交通量为4,989,710,交通等级属于中等交通。 2. 初拟路面结构方案 初拟路面结构如表4所示。 表4. 初拟路面结构 路基标准状态下回弹模量取50MPa,回弹模量湿度调整系数Ks取1.00,干湿与冻融循环作用折减系数Kη取1.00,则经过湿度调整和干湿与冻融循环作用折减的路基顶面回弹模量为50MPa。 3. 路面结构验算 3.1 沥青混合料层永久变形验算 根据表G.1.2,基准等效温度Tξ为20.1℃,由式(G.2.1)计算得到沥青混合料层永久变形等效温度为21.5℃。可靠度系数为1.04。 根据B.3.1条规定的分层方法,将沥青混合料层分为6个分层,各分层厚度(hi)如表5所示。利用弹性层状体系理论,分别计算设计荷载作用下各分层顶部的竖向压应力(Pi)。根据式(B.3.2-3)和式(B.3.2-4),计算得到d1=-8.23,d2=0.77。把d1和d2的计算结果带入式(B.3.2-2),可得到各分层的永久变形修正系数(kRi),并进而利用式(B.3.2-1)计算各分层永久变形量(Rai)。各计算结果汇总于表5中。 各层永久变形累加得到沥青混合料层总永久变形量Ra=19.2(mm),根据表3.0.6-1,沥青层容许永久变形为20.0(mm),拟定的路面结构满足要求。

沥青路面结构设计与计算书

沥青路面结构设计与计算书 1 工程简介 本路段属于安图至汪清段二级公路.K0+000~K3+500,全线设计时速为60km/h的二级公路,路面采用60km/h的二级公路标准。路基宽度为10m,行车道宽度为2×3. 5m,路肩宽度为2×0.75m硬路肩、2×0.75土路肩。路面设计为沥青混凝土路面,设计年限为12年。路面设计以双轮组单轴载100KN为标准轴载,以BZZ-100表示;根据沿线工程地质特征及结合当地筑路材料确定路面结构为:路面的面层采用4cm厚细粒式沥青混凝土和6cm厚中粒式沥青混凝土,基层采用20cm厚水泥稳定碎石,底基层采用石灰粉煤灰土。 2 土基回弹模量的确定 本设计路段自然区划位于Ⅱ3区,当地土质为粘质土,由《公路沥青路面设计规范(JTG D50-2004)》表F.2查得,土基回弹模量在干燥状态取39Mpa,在中湿状态取34.5Mpa. 3 设计资料 (1)交通量年增长率:5% 设计年限:12年

。 4 设计任务 4.1 沥青路面结构组合设计 4.2 沥青路面结构层厚度计算,并进行结构层层底拉应力验算 4.3 绘制沥青路面结构图 5 沥青路面结构组合设计 5.1 路面设计以双轮组单轴载100KN 为标准轴载,以BZZ -100表示。标准轴载计算参数如表10-1所示。 5.1.1.1 轴载换算 轴载换算采用如下的计算公式: 35 .41 21∑=? ?? ??=k i i i P P n C C N ,()11 1.211c m =+?-=,计算结果如下表所示。

注:轴载小于25KN 的轴载作用不计 5.1.1.2 累计当量轴次 根据设计规范,二级公路沥青路面设计年限取12年,车道系数η=0.7,γ=5.0% 累计当量轴次: ()[][] 329841405 .07 .005.8113651)05.01(3651112 =???-+=??-+= ηγ γN N t e 次 5.1.2 验算半刚性基层层底拉应力的累计当量轴次 5.1.2.1 轴载验算 验算半刚性基层层底拉应力的轴载换算公式为:

沥青路面结构厚度计算

沥青路面结构厚度计算 路等级 : 一级公路新建路面的层数 :5 标准轴载 : BZZ-100 路面设计弯沉值 : 24、9 (0、01mm) 路面设计层层位 :4 设计层最小厚度 :150 (mm)层位结构层材料名称厚度20℃平均抗压标准差15℃平均抗压标准差容许应力 (mm) 模量(MPa) (MPa) 模量(MPa) (MPa) (MPa) 1 细粒式沥青混凝土401400 02000 0 、47 2 中粒式沥青混凝土601200 01800 0 、34 3 粗粒式沥青混凝土801000 01200 0 、27 4 水泥稳定碎石 ?1500 03600 0 、25 5 石灰土250550 01500 0 、1 6 新建路基36 按设计弯沉值计算设计层厚度 : LD= 24、9 (0、01mm) H(4 )=200 mm LS= 26、3 (0、01mm) H(4 )=250 mm LS= 23、4 (0、01mm)

H(4 )=224 mm(仅考虑弯沉) 按容许拉应力计算设计层厚度 : H(4 )=224 mm(第1 层底面拉应力计算满足要求) H(4 )=224 mm(第2 层底面拉应力计算满足要求) H(4 )=224 mm(第3 层底面拉应力计算满足要求) H(4 )=224 mm(第4 层底面拉应力计算满足要求) H(4 )=274 mm σ(5 )= 、101 MPa H(4 )=324 mm σ(5 )= 、087 MPa H(4 )=277 mm(第5 层底面拉应力计算满足要求) 路面设计层厚度 : H(4 )=224 mm(仅考虑弯沉) H(4 )=277 mm(同时考虑弯沉和拉应力) 验算路面防冻厚度 : 路面最小防冻厚度500 mm 验算结果表明 ,路面总厚度满足防冻要求、通过对设计层厚度取整, 最后得到路面结构设计结果如下:-------------------------------------- 细粒式沥青混凝土40 mm-------------------------------------- 中粒式沥青混凝土60 mm-------------------------------------- 粗粒式沥青混凝土80 mm-------------------------------------- 水泥稳定碎石280 mm-------------------------------------- 石灰土250 mm-------------------------------------- 新建路基

沥青路面面层常见厚度

我国高速公路沥青面层的合理厚度应在12~18 cm(看交通量,实际采用的有很多更厚的,从工程实践的体会中了解到,16cm厚的面层仍感觉有点薄,18cm可能会较合适。)目前我国高速公路沥青面层的厚度差异很大,薄的仅10cm左右,厚的20cm左右,最厚达32cm。壳牌沥青路面设计方法在概括各国的观点和使用经验时指出,水泥底基层上沥青路面面层厚度取决于答应产生裂缝的程度,常变化在15~25cm之间。 采用沥青路面时,二级公路采用的沥青混凝土层厚度应不小于7cm,三级公路采用的沥青混合料层厚度应不小于3cm,并应根据道路交通量的大小等因素进行合理沥青层厚度的选择。采用水泥砼路面时,二级公路板厚应不小于22cm,三级公路板厚一般不小于20cm,四级公路路面宽度为3.5米时板厚不得小于16cm,路面宽度大于3.5米时板厚不得小于18cm。 新建、改建(路面)的农村公路,路面基层应采用水泥稳定碎石、二灰碎石等半刚性材料,其厚度不应小于16cm。新建的农村公路路面底基层应采用水泥稳定粒料(土)、石灰粉煤灰稳定土、石灰稳定粒料(土)、石灰工业废渣、填隙碎石等或其它适宜的当地材料铺筑。 三级公路:基层:水稳砂砾,厚度20厘米;面层:沥青碎石+沥青混凝土,厚度10厘米。三级公路为10年沥青贯入式适用于二、三级公路,也可作为沥青混凝土面层的联结层。沥青表面处治:沥青表面处治可改善路面行车条件,承担行车磨耗及大气作用,延长路面使用年限。所铺筑的沥青路面,其厚度可大于3厘米。在计算路面厚度时,其强度一般不计。沥青表面处治,一般用于三级公路,也可用作沥青路面的磨耗层、防滑层。 我们此次调查的路段有:广州—佛山高速公路、广州—深圳高速公路、广州—花都高速公路和深圳深南大道一级公路。名称路段面层联结层基层广深4cm沥青混凝土磨耗层10cm沥青碎石23cm水泥碎石上基层8cm沥青混凝土上面层25cm级配碎石底基层10cm沥青碎石下面层广佛4cm沥青混凝土上面层6cm沥青碎石25cm6%水泥石屑上基层5cm沥青下面层25~28cm4%水泥土(石粉砂砾)底基层广花3cm沥青混凝土上面层20cm6%水泥稳定碎石上基层,30cm4%水泥稳定碎石、石粉底基层4cm沥青混凝土下面层深南5cm沥青混凝土上面层40cm6%水泥石屑上基层8cm沥青贯入下面层15cm4%水泥石屑底基层从表中的路面结构来看,广深高速公路是最厚的,包括联结层其面层厚度为32cm,路面总厚为100~110cm,这个结构是当时外商出于商业目的,自己定的,不是从技术角度考虑的,所以受到了专家的批评,被认为是不合理不经济的结构,尤其不适用于高温多雨的广东地区 深南大道是1990年建成通车的汽一级专用路,沥青面层13cm厚,沥青下面层是8cm的沥青贯入式,从使用情况来看,这段路结构较合理 杭甬高速公路的情况,这条路始建于1992年,完工于1995年,路面结构为:计划后续3~4cm细粒式沥青混凝土中粒式沥青混凝土4~6cm沥青碎石5~8cm二灰碎石或水泥稳定碎石28~34cm级配碎石20cm杭甬路所经地带的软土深度在全国是最严重的,深达60m,含水量70~80%,沉降量达到填一半陷一半,全线145km,有94.5km为软土,占杭甬路总长的65.2%,考虑到深层特厚软土通车后必定会出现较大的不均匀沉降,计划采用过渡路面,分二期铺筑,一期面层厚度为12cm左右,二期路面间隔5年,铺筑后为12~18cm.全线路基平均高度为3.8m.由于当时工期紧,预压期没达到要求,提前1年完工。通车1年半以后,局部路段不同程度地出现了沥青混凝土路面裂缝、断裂、贫油、松散、龟裂,上基层、底基层开裂、变形、破损、唧浆等病害。由于破坏严重,有些数据已无法统计。从工程实践来看,采用超载

(完整版)2017沥青路面计算书

三长线 新建路面设计 1. 项目概况与交通荷载参数 该项目位于江西省,属于一级公路,起点桩号为K0+000,终点桩号为K44+086,设计使用年限为15.0年,根据交通量OD调查分析,断面大型客车和货车交通量为3855辆/日, 交通量年增长率为5.0%, 方向系数取55.0%, 车道系数取60.0%。根据交通历史数据,按表A.2.6-1确定该设计公路为TTC3类,根据表A.2.6-2得到车辆类型分布系数如表1所示。 表1. 车辆类型分布系数 根据路网相邻公路的车辆满载情况及历史数据的调查分析,得到各类车型非满载与满载比例,如表2所示。 表2. 非满载车与满载车所占比例(%) 根据表6.2.1,该设计路面对应的设计指标为沥青混合料层永久变形与无机结合料层疲劳开裂。根据附表A.3.1-3,可得到在不同设计指标下,各车型对应的非满载车和满载车当量设计轴载换算系数,如表3所示。 表3. 非满载车与满载车当量设计轴载换算系数

根据公式(A.4.2)计算得到对应于沥青混合料层永久变形的当量设计轴载累计作用次数为22,351,024, 对应于无机结合料层疲劳开裂的当量设计轴载累计作用次数为1,670,542,389。本公路设计使用年限内设计车道累计大型客车和货车交通量为10,019,677,交通等级属于重交通。 2. 初拟路面结构方案 初拟路面结构如表4所示。 表4. 初拟路面结构 路基标准状态下回弹模量取90MPa,回弹模量湿度调整系数Ks取0.80,干湿与冻融循环作用折减系数Kη取0.85,则经过湿度调整和干湿与冻融循环作用折减的路基顶面回弹模量为61MPa。 3. 路面结构验算 3.1 沥青混合料层永久变形验算 根据表G.1.2,基准等效温度Tξ为23.8℃,由式(G.2.1)计算得到沥青混合料层永久变形等效温度为25.4℃。可靠度系数为1.28。 根据B.3.1条规定的分层方法,将沥青混合料层分为6个分层,各分层厚度(hi)如表5所示。利用弹性层状体系理论,分别计算设计荷载作用下各分层顶部的竖向压应力(Pi)。根据式(B.3.2-3)和式(B.3.2-4),计算得到d1=-7.67,d2=0.76。把d1和d2的计算结果带入式(B.3.2-2),可得到各分层的永久变形修正系数(kRi),并进而利用式(B.3.2-1)计算各分层永久变形量(Rai)。各计

路面结构设计计算书(有计算过程的)DOC.doc

公路路面结构设计计算示例 一、刚性路面设计 交通组成表 车型 前轴重 后轴重 后轴数 后轴轮组数 后轴距 交通量 ( m ) 小客车 1800 解放 CA10B 19.40 60.85 1 双 — 300 黄河 JN150 49.00 101.60 1 双 — 540 交通 SH361 60.00 2× 110.00 2 双 130.0 120 太脱拉 138 51.40 2× 80.00 2 双 132.0 150 吉尔 130 25.75 59.50 1 双 — 240 尼桑 CK10G 39.25 76.00 1 双 — 180 1)轴载分析 路面设计双轮组单轴载 100KN ⑴ 以设计弯沉值为指标及验算面层层底拉力中的累计当量轴次。 ① 轴载换算: n 16 P i N s i N i 100 i 1 式中 : N s —— 100KN 的单轴—双轮组标准轴载的作用次数; P i —单轴—单轮、单轴—双轮组、双轴—双轮组或三轴—双轮组轴型 i 级轴载的总重 KN ; N i —各类轴型 i 级轴载的作用次数; n —轴型和轴载级位数; i —轴—轮型系数,单轴—双轮组时, i =1;单轴—单轮时,按式 i 2.22 103 P i 0.43 计算; 双轴—双轮组时,按式 i 1.07 10 5 P i 0. 22 ;三轴—双轮组时,按式 i 2.24 10 8 P i 0. 22 计算。 轴载换算结果如表所示 车型 P i N i P i 16 i i N i ( P ) 解放 CA10B 后轴 60.85 1 300 0.106 黄河 JN150 前轴 49.00 2.22 103 49 0.43 540 2.484 后轴 101.6 1 540 696.134 交通 SH361 前轴 60.00 2.22 103 60 0.43 120 12.923 后轴 2 110.00 1.07 10 5 220 0.22 120 118.031

沥青路面结构厚度计算

新建路面结构厚度计算 公路等级 : 一级公路 新建路面的层数 : 5 标准轴载 : BZZ-100 路面设计弯沉值 : 24.9 (0.01mm) 路面设计层层位 : 4 设计层最小厚度 : 150 (mm) 层位结构层材料名称厚度 20℃平均抗压标准差 15℃平均抗压标准差 容许应力 (mm) 模量(MPa) (MPa) 模量(MPa) (MPa) (MPa) 1 细粒式沥青混凝土40 1400 0 2000 0 .47 2 中粒式沥青混凝土60 1200 0 1800 0 .34 3 粗粒式沥青混凝土80 1000 0 1200 0 .27 4 水泥稳定碎石? 1500 0 3600 0 .25 5 石灰土250 550 0 1500 0 .1 6 新建路基 36 按设计弯沉值计算设计层厚度 : LD= 24.9 (0.01mm) H( 4 )= 200 mm LS= 26.3 (0.01mm) H( 4 )= 250 mm LS= 23.4 (0.01mm) H( 4 )= 224 mm(仅考虑弯沉) 按容许拉应力计算设计层厚度 : H( 4 )= 224 mm(第 1 层底面拉应力计算满足要求) H( 4 )= 224 mm(第 2 层底面拉应力计算满足要求) H( 4 )= 224 mm(第 3 层底面拉应力计算满足要求) H( 4 )= 224 mm(第 4 层底面拉应力计算满足要求) H( 4 )= 274 mm σ( 5 )= .101 MPa H( 4 )= 324 mm σ( 5 )= .087 MPa

H( 4 )= 277 mm(第 5 层底面拉应力计算满足要求) 路面设计层厚度 : H( 4 )= 224 mm(仅考虑弯沉) H( 4 )= 277 mm(同时考虑弯沉和拉应力) 验算路面防冻厚度 : 路面最小防冻厚度 500 mm 验算结果表明 ,路面总厚度满足防冻要求 . 通过对设计层厚度取整, 最后得到路面结构设计结果如下: ---------------------------------------- 细粒式沥青混凝土 40 mm ---------------------------------------- 中粒式沥青混凝土 60 mm ---------------------------------------- 粗粒式沥青混凝土 80 mm ---------------------------------------- 水泥稳定碎石 280 mm ---------------------------------------- 石灰土 250 mm ---------------------------------------- 新建路基

(全过程精细讲解)路面结构设计及计算

路面结构设计及计算 7.1 轴载分析 路面设计以双轴组单轴载100KN 作为标准轴载 a.以设计弯沉值为指标及验算沥青层层底拉应力中的累计当量轴次。 (1)轴载换算 轴载换算采用如下的计算公式:35 .421? ? ? ??=P P N C C N i i (7.1) 式中: N —标准轴载当量轴次,次/日 i n —被换算车辆的各级轴载作用次数,次/日 P —标准轴载,KN i p —被换算车辆的各级轴载,KN K —被换算车辆的类型数 1c —轴载系数,)1(2.111-+=m c ,m 是轴数。当轴间距离大于3m 时,按单独的一个轴载计算;当轴间距离小于3m 时,应考虑轴数系数。 2c :轮组系数,单轮组为6.4,双轮组为1,四轮组为0.38。

轴载换算结果如表所示: 注:轴载小于25KN 的轴载作用不计。 (2)累计当量轴数计算 根据设计规,一级公路沥青路面的设计年限为15年,四车道的车道系数η取0.40,γ =4.2 %,累计当量轴次: ][γ η γ13651)1(N N t e ??-+= [] 次)(.5484490042 .040 .0327.184********.0115 =???-+= (7.2) 验算半刚性基层层底拉应力的累计当量轴次 b.轴载换算 验算半刚性基底层底拉应力公式为 8 1 ' 2' 1' ) (∑==k i i i P p n c c N (7.3) 式中:'1c 为轴数系数,)1(21' 1-+=m c '2c 为轮组系数,单轮组为1.85,双轮组为1,四轮组为0.09。 计算结果如下表所示: 表7.3

实验1路面平整度的检测方法 (1)

实验1 路面平整度的检测方法:3米直尺法实验2 压实度试验检测方法(环刀法) 实验目的1掌握环刀法现场测定土的含水量,2掌握测定现场路基土密度的方法 实验目的1用于测定新建道路的路基、路面各层表面的平整度,以评定其的施工质量; 2 用于测定既有道路的路面平整度(主要是车辙),为路面维修提供依据; 3掌握用3m直尺测路面平整度的方法; 3掌握原始数据处理方法; 4 学会分析平整度检测误差来源的系统思维方法,为提高测量可信度奠定基础; 实验原理: 3m直尺测定法有单尺测定最大间隙及等距离(1.5m)连续测定两种。两种方法测定的路面平整度有较好的相关关系。 实验难点: 1测点的选择 实验过程备注器 材 (1)3m直尺(2)塞尺 实验流程一、讲解实验的理论,操作方法和数据处理方法。 重点讲解平整度检测误差来源的系统思维方法、用3m直尺测路面平整度的步骤,掌握结果处理方法 方法:1结合实验理论教学 2动手操作示范 二、准备工作 1在测试路段路面上选择测试地点 注意:1当为施工过程中质量检测需要时,测试地点根据需要确定,可以单杆检测; 2当为路基、路面工程质量检查验收或进行路况评定需要时,应首尾相接连续测量10尺。 3对旧路面已形成车辙的路面,应取车辙中间位置为测定位置,用粉笔在路面上作好标记。 三、实验步骤 1 在施工过程中检测时,按根据需要确定的方向,将3m直尺摆在测试地点的路面上。 2 目测3m直尺底面与路面之间的间隙情况,确定间隙为最大的位置。 3 用有高度标线的塞尺塞进间隙处,量记最大间隙的高度,精确至0.2mm。 4 施工结束后检测时,按现行《公路工程质量检验评定标准》(JTJ 071-98)的规定,每1处连续检测10尺,按上述步骤测记10个最大间隙。 四、结果处理 1计算: 单杆检测路面的平整度计算,以3m直尺与路面的最大间隙为测定结果。连续测定10尺时,判断每个测定值是否合格,根据要求计算合格百分率,并计算10个最大间隙的平均值。 合格率=(合格尺数/总测尺数)×100% 2单杆检测的结果应随时记录测试位置及检测结果。连续测定10尺时,应报告平均值、不合格尺数、合格率。

手工铺砂法测定路面构造深度试验方法

手工铺砂法测定路面构造深度试验方法 1、目的与适用范围 本方法适用于测定沥青路面及水泥混凝土路面表面构造深度,用以评定路面表面的宏观 构造。 2 、仪具与材料技术要求,本方法需要下列仪具与材料: ⑴人工铺砂仪:由圆筒、推平板组成。 ①量砂筒:形状一端是封闭的,容积为25mL±0.15mL,可通过称量砂筒中水的质量以确定其容积V,并调整其高度,使其容积符合规定。带一专门的刮尺,可将筒口量砂刮平。 ②推平板:推平板应为木制或铝制,直径50mm,底面粘一层厚1.5mm的橡胶片,上面有一圆柱把手。 ③刮平尺:可用30cm钢板尺代替。 ⑵量砂:足够数量的干燥洁净的匀质砂 粒径0.15~0.3mm。 ⑶量尺:钢板尺、钢卷尺,或采用已按式将直径换算成构造深度作为刻度单位的专用的构造深度尺。 ⑷其他:装砂容器(小铲)、扫帚或毛刷、挡风板等。 3 方法与步骤 3.1 准备工作 ⑴量砂准备:取洁净的细砂,晾干过筛,取0.15~0.3mm的砂置适当的容器中备用。量 砂只能在路面上使用一次,不宜重复使用。 ⑵按本规程附录A的方法,对测试路段按随机取样选点的方法,决定测点所在横断面 位置。测点应选在行车道的轮迹带上,距路面边缘不应小于1m。 3.2 测试步骤 ⑴用扫帚或毛刷子将测点附近的路面清扫干净,面积不小于30cm×30cm。 ⑵用小铲装砂,沿筒壁向圆筒中注满砂,手提圆筒上方,在硬质路表面上轻轻地叩打3 次,使砂密实,补足砂面用钢尺一次刮平。 注:不可直接用量砂筒装砂,以免影响量砂密度的均匀性。 ⑶将砂倒在路面上,用底面粘有橡胶片的推平板,由里向外重复作旋转摊铺运动,稍稍 用力将砂细心地尽可能地向外摊开,使砂填入凹凸不平的路表面的空隙中,尽可能将砂摊成圆形,并不得在表面上留有浮动余砂。注意,摊铺时不可用力过大或向外推挤。 ⑷用钢板尺测量所构成圆的两个垂直方向的直径,取其平均值,准确至5mm。 ⑸按以上方法,同一处平行测定不少于3次,3个测点均位于轮迹带上,测点间距3~5m。 对同一处,应该由同一个试验员进行测定。该处的测定位置以中间测点的位置表示。 4 计算 4.1 路面表面构造深度测定结果按式(T 0961)计算 : 式中:TD——路面表面构造深度 (mm);V——砂的体积 25cm3;D——摊平砂的平均直径(mm)。 4.2 每一处均取3次路面构造深度的测定结果的平均值作为试验结果,准确至0.01mm。 4.3 计算每一个评定区间路面构造深度的平均值、标准差、变异系数。 5 报告:1列表逐点报告路面构造深度的测定值及3次测定的平均值。当平均值小于0.2mm 时,试验结果以<0.2mm表示。2 每个评定区间路面构造深度的平均值、标准差、变异系数。

沥青路面结构层计算示例

沥青路面结构层计算示例

1设计原始资料和依据 该公路处于II 5 区,路线经过地区属于湿暖带半湿润季风气候区,海洋型和大陆型过渡的气候特征比较明显,气候温暖、四季分明、雨量充沛、冬寒夏热。年内夏、秋季降水相对集中,易出现暴雨造成涝灾,其余季节降水偏少。 气候区内年平均气温13.7 o C,以7、8月份最热,年平均最高气温19.4 o C,年平均最低气温9.1 o C,历年极端最高气温39.9 o C,历年极端最低气温-22.4 o C。历年最大积雪深度20cm,最大冻土深度33 cm,历年平均无霜期163.5天。气候区内年平均降雨量884.0mm,历年最大降雨量1358.0mm,以7~10月降雨相对较为集中。 区域内常年主导风向为东北风,历年平均风速3.3m/s。最大风速16.8m/s。8、9月份受台风影响区内空气湿度较高,年平均相对湿度为70%左右,最小相对湿度65%、最大相对湿度85%。 设计线路经过地段主要由第四系松散沉积 层所组成。第四纪沉积层由全新(Q4a1)的低~高液限粘土夹中粗砂及上更新(Q3a1)的低~高液限粘土所组成。由于古河道多次变迁作用,地层厚度分布不均,堆积层厚度上部全新(Q4a1)一般在3~9m局部达10m,地层岩性主要为低~高液限粘土,其CBR为2%~10%;下部上更新统(Q3a1)沉积层厚度一般为10~40m,地层岩性主要为低~高液限粘土,呈中~高压缩性。 1.1.1路线服务范围交通运输要求和经济技术调查资料

由于此路段处于江地势平缓,沿线以农业为主,该路段经过两条大渠和一条铁路,故该道路的修通对于完善苏北地区贸易交往,改善该地区的投资环境具有深远的意义。另外修建该路所需的路基填料、石灰、碎石等集料在附近地区都非常丰富,并且都能满足技术指标要求。 1.1.2交通量资料 交通量平均增长率7.5% 表1-1 交通量资料 车型小客 车 中客 车 SH14 1 大客 车 CA50 小货 车 BJ130 交通量 (辆/ 日) 1400 500 1100 1800 车型中货 车 EQ14 大货 车 JN150 铰接 挂车 SP925 交通量 (辆/ 日) 970 230 80 1.2设计依据 本设计AB段高速公路位于徐州市洞山地

沥青路面结构设计

第四章路面结构设计 1.1设计资料 (1)自然地理条件 新建济南绕城高速,道路路基宽度为24.5米,全长5km,结合近几年济南经济增长及人口增长的情况,根据近期的交通量预测该路段的年平均交通量为5000辆/日,交通量平均年增长率γ=4%。路面结构设计为沥青混凝土路面结构, 设计年限为15年。 (2)土基回弹模量 济南绕城高速北环所在地区为属于温带季风气候,季风明显,四季分明,春季干旱少雨,夏季温热多雨,秋季凉爽干燥,冬季寒冷少雪。据区域资料,年平均气温13.8℃,无霜期178天,最高月均温27.2℃(7月),最低月均温-3.2℃ ω=1.3;因此该路基(1月),年平均降水量685毫米。道路沿线土质路基稠度c Ⅱ区,根据【JTG 处于干燥状态,根据公路自然区划可知济南绕城高速处于5 D50-2006】《公路沥青路面设计规范》中表5.1.4-1可确定工程所在地土基回弹模量设计值为46MPa。 (3)交通资料

1.2交通分析 (1)轴载换算 路面设计以双轮组-单轴载为100KN 为标准轴载,以BZZ-100表示。标准轴载的计算参数按表1-2确定。 ○ 1当以设计弯沉为指标时及验算沥青层层底拉应力时,凡大于25kN 的各级轴载Pi 的作用次数Ni 按下式换算成标准轴载P 的当量作用次数N 的计算公式为: 35 .4121∑=? ?? ??=k i i i P P N C C N 式中:N ——标准轴载当量轴次数(次/d ); Ni ——被换算的车型各级轴载作用次数(次/d ); P ——标准轴载(kN ); Pi ——被换算车型的各级轴载(kN ); C1——被换算车型的各级轴载系数,当其间距大于3m 时,按单独的一个 轴计算,轴数系数即为轴数m ,当其间距小于3m 时,按双轴或多轴计算,轴数系数为C1=1+1.2(m-1); C2——被换算车型的各级轴载轮组系数,单轮组为6.4,双轮组为1.0, 四轮组为0.38。 沥青路面营运第一年双向日平均当量轴次为: 35 .41 21∑=? ?? ??=k i i i P P N C C N = 4709.00(次/d ) ○ 2当以半刚性层底拉应力为设计指标时,标准轴载当量轴次数N ': 8 121 k i i i P N C C N P =?? '''= ? ??∑ 式中: 1C ' ——轴数系数 2C ' ——轮组系数,单轮组为18.5,双轮组为1.0,四轮组为0.09。 注:轴载小于50KN 的特轻轴重对结构的影响可以忽略不计,所以不纳入当 量换算。 沥青路面营运第一年双向日平均当量轴次:

(全过程精细讲解)路面结构设计及计算

路面结构设计及计算 7.1 轴载分析 路面设计以双轴组单轴载100KN 作为标准轴载 a.以设计弯沉值为指标及验算沥青层层底拉应力中的累计当量轴次。 (1)轴载换算 轴载换算采用如下的计算公式:35 .421? ? ? ??=P P N C C N i i (7.1) 式中: N —标准轴载当量轴次,次/日 i n —被换算车辆的各级轴载作用次数,次/日 P —标准轴载,KN i p —被换算车辆的各级轴载,KN K —被换算车辆的类型数 1c —轴载系数,)1(2.111-+=m c ,m 是轴数。当轴间距离大于3m 时,按单独的一个轴载计算;当轴间距离小于3m 时,应考虑轴数系数。 2c :轮组系数,单轮组为6.4,双轮组为1,四轮组为0.38。 轴载换算结果如表所示: 表7.2 轴载换算结果表

注:轴载小于25KN 的轴载作用不计。 (2)累计当量轴数计算 根据设计规,一级公路沥青路面的设计年限为15年,四车道的车道系数η取0.40,γ =4.2 %,累计当量轴次: ][γ η γ13651)1(N N t e ??-+= [] 次)(.5484490042 .040 .0327.184********.0115 =???-+= (7.2) 验算半刚性基层层底拉应力的累计当量轴次 b.轴载换算 验算半刚性基底层底拉应力公式为 8 1 ' 2' 1' ) (∑==k i i i P p n c c N (7.3) 式中:'1c 为轴数系数,)1(21' 1-+=m c '2c 为轮组系数,单轮组为1.85,双轮组为1,四轮组为0.09。 计算结果如下表所示:

沥青路面设计计算实例

沥青混凝土路面计算书 一、轴载分析 路面设计以双轮组单轴载100kN 为标准轴载。 1.以设计弯沉值为指标及验算沥青层层底拉应力中的累计当量轴次 3)轴载换算: 轴载换算的计算公式:N= 4.35121 ()k i i i P C C n P =∑ 2)累计当量轴次: 根据设计规范,二级公路沥青路面的设计年限取15年,双车道的车道系数取0.6 累计当量轴次: () '111365t e N N γηγ??+-???=()151 5.4%1365 ×885.380.65.4% ??+-???=? =(次) 3)验算半刚性基层层底拉应力中的累计当量轴次 注:轴载小于50kN 的轴载作用不计 验算半刚性基层层底拉应力的轴载换算公式: N=8121 ()k i i i P C C n P =∑ (2)累计当量轴次: ()'111365t e N N γηγ??+-???==()151 5.4%1365×505.650.65.4% ??+-????=2462767.6(次) 二、结构组合与材料选取 根据规范推荐结构,并考虑到公路沿途筑路材料较丰富,路面结构采用沥青混凝土(15cm ),基层采用二灰碎石(20cm ),基底层采用石灰土(厚度待定)。 二级公路面层采用三层式沥青面层, 表面层采用细粒式密级配沥青混凝土 (厚度3cm ), 中间层采用中粒式密级配沥青混凝土 (厚度5cm ), 下层采用粗粒式密级配沥青混凝土 (厚度7cm )。 三、各层材料的抗压模量与劈裂强度 抗压模量取20℃的模量,各值均取规范给定范围的中值,因此得到20℃的抗压模量: 细粒式密级配沥青混凝土为 1400MPa , 中粒式密级配沥青混凝土为 1200MPa , 粗粒式密级配沥青混凝土为 1000MPa , 二灰碎石为 1500MPa , 石灰土为 550MPa 。 各层材料的劈裂强度: 细粒式密级配沥青混凝土为 1.4MPa , 中粒式密级配沥青混凝土为 1.0MPa , 粗粒式密级配沥青混凝土为 0.8MPa , 二灰碎石为 0.5MPa ,

路面结构计算书

阿图什市哈拉峻乡至吐古买提乡至铁 列克乡公路工程 路面结构计算书

1.概述 本项目位于克孜勒苏柯尔克孜自治州北部,项目起点于哈拉峻乡西北侧接规划国道219线,利用现有哈拉峻乡至吐古买提乡老路进行布线,在K34+000处从巴什苏洪木村东侧避饶,随后继续利用现状道路,于K54+700处从吐古买提乡北侧绕行,继续向西 布线至阿图什、乌恰交界处,路线全长74.985公里。 本工程沥青混凝土路面结构计算采用双圆垂直均布荷载下层状弹性体系理论,采用单轴双轮组BZZ-100作为标准轴载,设计年限为15年。 2.计算软件、版本 本工程路面结构计算采用公路路面设计程序系统(HPDS2011)进行计算。 3.计算依据 (1)《公路沥青路面设计规范》(JTG D50--2006) (2)《公路水泥混凝土路面设计规范》(JTG D40-2011) (3)其他相关规范 4. 计算内容 根据本项目预测的交通量,采用现行路面设计规范中的设计理论及技术标准,计算本工程沥青路面结构厚度及设计弯沉。 5.参数选取 (1)交通量 本项目车种组成预测结单位:pcu/d表1 年份小客大客小货中货大货汽车列车客车货车2020 68.9% 4.8%11.6% 5.9% 4.9% 3.9%73.7%26.3% 2025 70.1% 4.6%11.2% 5.7% 4.4% 4.0%74.7%25.3% 2030 71.4% 4.3%10.8% 5.5% 3.7% 4.3%75.7%24.3% 2035 72.0% 4.1%10.5% 5.3% 3.5% 4.6%76.1%23.9% 代表车型表表2货车类型代表车型前轴轴重(kN)后轴轴重(kN)后轴轴数后轴轮组数小客江淮AL6600 17.0 26.5 1 双轮组大客会客JT692A 28.4 67.7 2 双轮组

路面结构设计计算书(有计算过程的)

公路路面结构设计计算示例 一、刚性路面设计 1)轴载分析 路面设计双轮组单轴载100KN ? 以设计弯沉值为指标及验算面层层底拉力中的累计当量轴次。 ① 轴载换算: 16 1 100∑=? ?? ??=n i i i i s P N N δ 式中 :s N ——100KN 的单轴—双轮组标准轴载的作用次数; i P —单轴—单轮、单轴—双轮组、双轴—双轮组或三轴—双轮组轴型i 级轴载的总重KN ; i N —各类轴型i 级轴载的作用次数; n —轴型和轴载级位数; i δ—轴—轮型系数,单轴—双轮组时,i δ=1;单轴—单轮时,按式43 .031022. 2-?=i i P δ计算;双轴—双轮组时,按式22.051007.1--?=i i P δ;三轴—双轮组时,按式22 .081024.2--?=i i P δ计算。

注:轴载小于40KN 的轴载作用不计。 ② 计算累计当量轴次 根据表设计规范,一级公路的设计基准期为30年,安全等级为二级,轮迹横向分布系数η是0.17~0.22取0.2 ,08.0=r g ,则 [][] 362.69001252.036508 .01 )08.01(389.8343651)1(30=??-+?=?-+= ηr t r s e g g N N 其交通量在4 4 102000~10100??中,故属重型交通。 2)初拟路面结构横断面 由表3.0.1,相应于安全等级二级的变异水平为低~中。根据一级公路、重交通等级和低级变异水平等级,查表4.4.6 初拟普通混凝土面层厚度为24cm ,基层采用水泥碎石,厚20cm ;底基层采用石灰土,厚20cm 。普通混凝土板的平面尺寸为宽3.75m ,长5.0m 。横缝为设传力杆的假缝。 3)确定基层顶面当量回弹模量tc s E E , 查表的土基回弹模量a MP E 0.350=,水泥碎石a MP E 15001=,石灰土a MP E 5502= 设计弯拉强度:a cm MP f 0.5=, a c MP E 4101.3?= 结构层如下: 水泥混凝土24cm 水泥碎石20cm 石灰土20cm × 按式(B.1.5)计算基层顶面当量回弹模量如下: a x MP h h E h E h E 102520.020.0550 20.0150020.02 222222122 2121=+?+?=++= 1 2 211221322311)11(4)(1212-++++=h E h E h h h E h E D x 1233)2 .05501 2.015001(4)2.02.0(122.0550122.01500-?+?++?+?= )(700.4m MN -= m E D h x x x 380.0)1025 7.412()12(3 1 31 =?==

路面构造深度(手工铺砂法)(一类建资)

第1题 其他情况一致的条件下,路表构造深度越大,路面的抗滑性能()。 A.越差 B.越强 C.不一定越强 D.强、弱无规律 答案:B 您的答案:B 题目分数:5 此题得分:5.0 批注: 第2题 手工铺砂法测定路面构造深度所采用的量砂规格为()。 A.0.3mm~0.6mm B.0.6~1.0mm C.0.15mm~0.3mm D.0~1.0mm 答案:C 您的答案:C 题目分数:5 此题得分:5.0 批注: 第3题 使用手工铺砂法进行路面构造深度测定时,对测试路段按随机选点的方法,决定测定所在横断面位置。测点应选在车道的轮迹带上,距路面边缘不应小于()。 A.2m B.0.5m C.2m D.1m 答案:D 您的答案:D 题目分数:5 此题得分:5.0 批注: 第4题

手工铺砂法开始测试之前清扫出的测试面积不小于()。 A.30cm×30cm B.25cm×25cm C.20cm×20cm D.50cm×50cm 答案:A 您的答案:A 题目分数:5 此题得分:5.0 批注: 第5题 使用手工铺砂法进行路面构造深度的测定时,每处的测定位置以()的位置表示。 A.最前测点 B.中间测点 C.最后测点 D.都可以 答案:B 您的答案:D 题目分数:5 此题得分:0.0 批注: 第6题 手工铺砂法以3次测定的平均值作为构造深度,以下数据表示正确的是()。 A.0.15mm B.0.1mm C.<0.2mm D.0.10mm 答案:C 您的答案:A 题目分数:5 此题得分:0.0 批注: 第7题 用铺砂法测定路面构造深度,若量砂没有摊铺好,表面留有浮动余砂或用的砂过粗,则试验结果()。

手工铺砂法测定路面构造深度试验方法

T0961-1995 手工铺砂法测定路面构造深度试验方法 1 目的与适用范围 本方法适用于测定沥青路面及水泥混凝土路面表面构造深度,用以评定路面表面的宏观结构。 2 仪具与材料技术要求 本方法需要下列仪具与材料: (1)人工铺砂仪:由圆筒、推平板组成。 ①量砂筒:形状尺寸如图。一端是封闭的,容积为25mL±,可通过称量砂筒中的水质量确定其容积V,并调整其高度,使其符合规定。带一专门的刮尺,可将筒口量砂刮平。 ②推平板:形状尺寸如图。推平板应为木质或铝制,直径50mm,底面粘一层厚的橡胶片,上面有一圆柱把手。 ③刮平尺:可用30cm厚钢板尺替代。 量砂筒(单位:mm)推平板(单位:mm) (2)量砂:足够数量的干燥洁净的匀质砂,粒径~。

(3)量尺:钢板尺、钢卷尺,或采用已按公式将直径换算成构造深度作为刻度单位的专用的构造深度尺。. (4)其他:装砂容器(小铲)、扫帚或毛刷、挡风板。 3 方法与步骤 准备工作 (1)量砂准备:取洁净的细砂,晾干过筛,取~的砂置适当的容器中备用。量砂只能在路面上使用一次,不宜重复使用。 (2)按规程的方法,对测定路段按随机取样选点的方法,决定测点所在横断面位置。测点应选在车道的轮迹带上,距路面边缘不应小于1m。 测试步骤 (1)用扫帚或毛刷将测点附近的路面清扫干净,面积不小于 30cm*30cm。 (2)用小铲装砂,沿筒壁向圆筒中注满砂,手提圆筒上方,在硬质路表面上轻轻地叩打3次,使砂密实,补足砂面用钢尺一次刮平。(不可直接用量砂筒装砂,以免影响筒内量砂的密度均匀性。) (3)将砂倒在路面上,用底面粘有橡胶板的推平板,由里向外重复作旋转摊铺运动,稍稍用力将砂细心的尽可能向外摊开,使砂填入凹凸不平的路表面的空隙中,尽可能将砂摊成圆形,并不得在表面留有浮动砂砾。注意摊铺时不可用力过大或向外推挤。 (4)用钢板尺测量所构成圆的两个垂直方向的直径,取其平均值,精确至5mm。

沥青路面的设计指标计算

新建路面结构设计指标与要求 一、沥青路面结构设计指标 沥青路面结构设计应满足结构整体刚度、沥青层或半刚性基层抗疲劳开裂和沥青层抗变形的要求。应根据道路等级选择路表弯沉值、沥青层层底拉应变、半刚性材料基层层底拉应力和沥青层剪应力作为沥青路面结构设计指标,并应符合下列规定: 1 快速路、主干路和次干路采用路表弯沉值、沥青层层底拉应变、半刚性材料基层层底拉应力、沥青层剪应力为设计指标。 2 支路可仅采用路表弯沉值为设计指标。 3 可靠度系数可根据当地相关研究成果选择; 当无资料时可按下表取用 可靠度系数 二、沥青路面结构设计的各项设计指标应符合下列规定: 1 轮隙中心处路表计算的弯沉值应小于或等于道路表面的设计弯沉值,应满足下式要求: γa l s≤l d 式中:γa——沥青路面可靠度系数; l s ——轮隙中心处路表计算的弯沉值(0.01mm); l d——路表的设计弯沉值(0.01mm); 2 柔性基层沥青层层底计算的最大拉应变应小于或等于材料的容许拉应变,应满 足下式要求: γaεt≤[εR ] 式中:εt——沥青层层底计算的最大拉应变;

[εR ] ——沥青层材料的容许拉应变。 3 半刚性材料基层层底计算的最大拉应力应小于或等于材料的容许抗拉强度,应满足下式要求: γa σm ≤[σR ] 式中: σm ——半刚性材料基层层底计算的最大拉应力(MPa ); [σR ]——路面结构层半刚性材料的容许抗拉强度(MPa )。 4 沥青面层计算的最大剪应力应小于或等于材料的容许抗剪强度,应满足下式要求: γa τm ≤[τR ] 式中: τm ——沥青面层计算的最大剪应力(MPa ); [τR ]——沥青面层的容许抗剪强度(MPa )。 三、 沥青路面表面设计弯沉值应根据道路等级、设计基准期内累计当量轴次、面层和基层类型按下式计算确定: l d =600 N e -0.2A c A s A b 式中 : A c ——道路等级系数,快速路、主干路为1.0,次干路为1.1,支路为1.2; A s ——面层类型系数,沥青混合料为1.0,热拌和温拌或冷拌沥青碎石、 沥青表面处治为1.1; A b ——基层类型系数,无机结合料类(半刚性)基层1.0,沥青类基层 和粒料基层1.6。 四、 沥青路面材料的容许拉应变[εR ]应按下列公式计算确定: [εR ] =0.15 E m -1/3 10M / 4N e e -1 / 4 )(69.0V V 84.4M a b b -+=V 式中: M ——沥青混合料空隙率与有效沥青含量的函数; E m ——沥青混合料20℃动态回弹模量(MPa );

相关文档
相关文档 最新文档