文档库 最新最全的文档下载
当前位置:文档库 › 食品科学论文外文翻译(水解蛋白)中文译文

食品科学论文外文翻译(水解蛋白)中文译文

食品科学论文外文翻译(水解蛋白)中文译文
食品科学论文外文翻译(水解蛋白)中文译文

核桃(核桃L.)水解蛋白的抗氧化肽的分离纯化和鉴定

陈宁a,b杨红梅a,b孙毅a,b牛军a,b刘淑莹a,c

a张俊应用化学研究所,中国科学院研究所,人民街5625号,长春130022,中华人民共和国

b中国社科院研究生院,北京100039,中国人民共和国

c长春中医大学,长春,中国人民共和国

文章信息:

二零一二年八月二十八日收到稿件

二零一二年九月十四日收到修改稿件

二零一二年九月十四日得到公认

二零一二年九月二十六日在线可用

关键词:

核桃蛋白水解物、清除自由基的活性、纯化、抗氧化肽

摘要:

通过使用三种不同的蛋白酶水解核桃中的蛋白质,来得到抗氧化剂。使用1,1 - 二苯基-2 - 苦肼(DPPH)法来测水解物的抗氧化活性。

其中胃蛋白酶水解物,水解3小时获得具有最高的抗氧化活性,因此可以抑制羟基自由基,亚铁离子螯合物,具有还原性与抑制过氧化脂质的能力。

然后,3小时的胃蛋白酶水解产物顺序通过超滤,凝胶过滤和反相高效液相色谱法纯化。具有最高的抗氧化活性的肽序列被检测为丙氨酸- 天冬氨酸- 丙氨酸- 苯丙氨酸(423.23 Da)的RP-HPLC-ESI-MS,这首次被认定为来自核桃蛋白水解物。

最后,肽对脂质过氧化抑制作用类似于对还原型谷胱甘肽(GSH)的作用。这些结果也表明蛋白水解产物和/或其有效分离的肽可以用作食品添加剂。

1介绍

生物分子的氧化一直被被认为是自由基介导的过程,在所有生物体都是一个重要的反应。自由基是原子,分子或离子的未成对电子或开壳层结构,如羟基自由基(?OH),超氧阴离子自由基(O2?- )[6,34]。过量自由基的合成,可导致细胞损伤和死亡,从而导致许多疾病,如癌症,中风,心肌梗死,糖尿病和主要障碍[2,4,21]。因此,重要的是要抑制的过度自由基形成。

许多合成抗氧化剂如丁基化羟基苯甲醚(BHA),丁基羟基甲苯(BHT),没食子酸丙酯已被用来清除自由基[28,32]。然而,使用合成抗氧化剂已很可能威胁健康造成肝损伤和致癌作用[9,23]。因此,人们在从源代码中发现的天然抗氧化剂的兴趣与日俱增。许多蛋白质水解物中的肽合物,如大豆蛋白[5,15],鹰嘴豆蛋白[12,34],小麦蛋白[18,35],油菜籽蛋白质[17],水稻胚乳中的蛋白质[33],鱼蛋白[10,23,24,29,32],蛋清蛋白[4,7]和牛蛙的皮肤[20]的抗氧化能力已得到评估。这些水解物的抗氧化性能归于许多性能的共同作用。包括他们清除自由基的能力,作为金属离子螯合剂,氧淬灭剂或供氢,抑制脂质过氧化的能力[4,12,15]。一般肽包括3-20个氨基酸残基,并且它们的活性依赖于组成,结构和疏水性[4,5,19,26,27]。

核桃(核桃L.)是世界上最普遍坚果树[14]。这是营养密集的食物,主要是由于其脂肪含量以及蛋白质,维生素和矿物质的比例构成。一些生物活性,如抗动脉粥样硬化,抗炎和

抗突变特性和抗氧化活性[14],核桃中的以上成分一直被报道。多酚和维生素E被认为是抗氧化活性[1,3]的主要来源。然而,很少有实验尝试评估核桃蛋白的抗氧化活性。

在本研究中,蛋白质水解物和它们的核桃隔离的肽进行了调查。此外,针对不同的自由基,其抗氧化效果进行了测试。利用超滤,凝胶过滤色谱法和反相高效液相色谱法(RP-HPLC)纯化抗氧化肽。通过LC-MS/MS确定肽的序列。

2材料与方法

2.1材料

核桃是从中国吉林省当地市场购买的,中性蛋白酶和碱性蛋白酶从诺维信公司(北京,中国)采购。胃蛋白酶获得来自鼎国生物技术有限责任公司(北京,中国)。DPPH(1,1 - 二苯基-2 - 苦基偕腙肼)和GSH(L-谷胱甘肽减少),采购自西格玛化工有限公司的产品(圣圣路易斯,密苏里州,美国)。乙腈(色谱纯)采购自费舍尔化工公司(NJ,USA)。所有其他化学品所用试剂均为分析级。

2.2核桃分离蛋白(WPI)的产生

用石油醚研磨并脱脂的核桃在50?C时将脱脂粉在干燥烘箱干燥。然后将脱脂的四个分散在比为1:15(重量/体积)NaOH溶液中(pH为9.0)并在45?C萃取搅拌1小时。调整pH值至4.5后,在4000×g通过离心分离得到的沉淀物20分钟,冻干在-20?塑料袋中。

2.3制备核桃蛋白水解物(WPH)

核桃蛋白分离物溶解在蒸馏水中浓度为30毫克/毫升,在pH7.0,50 ?C使用中性蛋白酶,在pH8.0,50?C使用碱性蛋白酶和在pH=2.0,37?C使用胃蛋白酶水解4小时。在0.5-,1 - ,2 - ,3 - 和4小时的间隔取出样品,并在沸水浴中加热,在100?C进行10分钟以抑制酶活性。然后以4000×g速度将样品离心15分钟,上清液冻干。

2.4抗氧化肽的分离纯化

2.4.1超滤

对于纯化的抗氧化肽,核桃蛋白水解物通过超滤膜的截留分子量(MWCO)3000沓(Millipore公司,美国)来分馏。所有回收的馏分,冷冻干燥并命名为WPH-I(分子量>3 kDa 的)和WPH-II(<3 kDa的)。

2.4.2 凝胶过滤层析

超滤分离后具有最高的抗氧化活性的馏分在蒸馏水中再溶解,然后使用Sephadex G-25凝胶过滤层析柱分离(10毫米×600毫米,玛西亚生物技术公司,新泽西州,美国)这被用蒸馏水以0.5ml /min速度溶出,并且可监测到280nm。所期望的峰值的馏分组分被冻干并用来与抗氧化活性试验。

2.4.3 RP-HPLC

凝胶过滤色谱分析后具有最高的抗氧化活性的馏分被进一步纯化为C18 DIAMONSIL 4.6/250柱(250毫米×4.6毫米内径,5m,迪马科技,大连,中国)。该柱以乙腈线性梯度为(5-50%),含0.1%甲酸(FA)以1.0毫升/分的流速洗脱。洗脱峰值在220nm处检测到级分,然后被馏分冷冻干燥。

2.5DPPH自由基清除活性

蛋白水解物的DPPH自由基清除活性使用由张某等人描述的经过一些修改的方法进行测量[34]。在96孔盘中将100·L WPH溶液加入到99.7%的乙醇的100 L的DPPH(0.1毫米)溶液中。96孔盘涡旋混合10秒,且在25?C温育30分钟且在吸光度NACH EN515 nm 处用酶标仪GENios(奥地利Tecan公司)。乙醇取代的DPPH补充空白,同时使用蒸馏水代替样品用于控制。DPPH自由基清除能力(DRSA)计算通过以下公式求得:

DRSA (%)=﹡100(1)

其中A样品,Ablank Acontrol样品的吸光度,

2.6羟基自由基清除活性2.6。羟基自由基清除活性

羟基自由基清除活性(HRSA确定性的定义是使用Li等人描述的经过一些修改的方法[12]。反应混合物含50L的2mM1,10菲罗啉,50 L的2mMFeSO4和30L 的0.2M磷酸缓冲液(pH7.4)与在96 - 孔板中20升的样品溶液(用作对照用相同体积的蒸馏水)混合。过氧化氢(0.1%)加入到混合物中并温育在37度下进行60分钟,并用酶标仪GENios(T ecan 公司,奥地利)的结果,获得了使用以下的方程测量515 nm处的吸光度。:高温合金(%)

HRSA (%)=﹡100 (2)

其中As为样品的混合物的吸光度,A1是吸光度对照组(蒸馏水代替样品);A0是含1,10空白溶液的吸光度- 菲罗啉硫酸亚铁。

2.7还原性检测

使用由yen和Chen [31]开发的测定方法测定水解液对铁(III)的还原能力。将样品溶于蒸馏水中,生成在不同的浓度的溶液。将等分试样(1ml)中的样品溶液与用2.5ml的0.2M 磷酸钠缓冲液和2.5毫升10毫克/毫升铁氰化钾混合。将混合物温育在50?C,30分钟,随后加入2.5ml的10%三氯乙酸溶液。然后3000×g的速度离心混合物10分钟。最后,2.5ml 的上清液混合2.5毫升蒸馏水和0.5毫升的0.1%的氯化铁水溶液和测得的吸光度在700nm 处(卡里50分光光度计,瓦里安,澳大利亚)。减少比例配置是与反应混合物的吸光度成正比的。

2.8 Fe2 +的螯合作用

Fe2 +的螯合是利用张某等人的方法测量[33]。将FeCl2用1毫升m20和1毫升0.5mM 亚铁嗪试剂与0.5ml的等分试样混合。在25?C将反应混合物静置20分钟。吸光度562 nm 处读取金属离子螯合活性,计算如下:金属离子螯合作用

金属离子螯合作用=﹡100 (3)

坯料的制备方式除了使用蒸馏水代替样品外是相同的。EDTA作为阳性对照。

2.9抑制亚油酸过氧化

根据大泽并木[16]的方法测定抗氧化活性。简单地说,将样品溶于10ml的50mM磷酸盐缓冲液(pH7.0)中,并往10毫升99.5%乙醇的溶液中加入0.13毫升亚油酸。然后用蒸馏水将总体积调整至25毫升,并将混合物放在加盖存储瓶孵育在40?C黑暗环境中。将反应溶液100 L与以上介绍的4.7毫升75%乙醇,0.1毫升30%的硫氰酸铵,0.1ml的0.02M 的氯化亚铁溶液与3.5%盐酸混合。3分钟后,在500nm处读取吸光度。

2.10利用电喷雾串联质谱的肽的鉴定

RP-HPLC纯化溶于H2O/acetonitrile(85:15,体积/体积)后的馏分具有最高的抗氧化活性,然后再将其装到Agilent 1200系列RRLC配备的一个反相柱(用Eclipse Plus C18,3.5 M,2.1毫米×150毫米,安捷伦科技,美国)。流速设定为0.3毫升/分钟,柱温为30?C。流动相A为0.1%甲酸的水溶液。流动相B为100%的乙腈。为了样品分析,用作溶剂梯度如下5-70%B(0-20分钟),70%B(20-25分钟)。质谱电喷雾电离源(ESI)在安捷伦6520 Q-TOF(安捷伦科技,美国)上执行。正离子电离模式是在电压3500 V下进行的。

氮气雾化保持在40 psi和9升/分钟,在350?C的蒸发温度。.在350度下蒸发温度保持在40psi雾化和9升/分钟的氮是在。数据被收集在m / z从100到2000的质心模式。群峰查看器4.5(生物信息学解决方案公司,滑铁卢,ON,加拿大)结合使用手动用来处理MS/ MS 数据并进行肽序列从头测序。

2.11统计分析

一式三份,所有的实验数据分析采用SPSS13.0软件(SPSS公司,芝加哥,IL,US 显著的差异有95%的置信区间(P <0.05)。

3结果

3.1 WPHS制备及其抗氧化活性

在最佳水解条件下对核桃分离蛋白分别用中性蛋白酶碱性蛋白酶和胃蛋白酶水来进WPHS制备及其抗氧化活性测试。相对稳定的DPPH自由基已广泛用于测试化合物作为自由基清除剂或供氢和马尔萨斯的能力评估的抗氧化活性[12,25]。较低的吸光度代表较高的DPPH自由基清除。在图1中所示的结果显示水解物的抗氧化作用受到水解时间和酶不同的影响。在第一次则对抗氧化活性降低与增加与中性蛋白酶和碱性蛋白酶水解产物的水解时间增加而减少胃蛋白酶的抗氧化活性有关。从图1,DPPH区别观察中,胃蛋白酶水解3小时获得水解活性最高,呈现75.27%DRSA。因此,3小时的胃蛋白酶的水解产物(指定WPPH)被选定为进一步研究的产物。

3.2羟3结果

羟基自由基清除活性

羟基是最活泼的自由基,可以从超氧阴离子和过氧化氢金属离子如铜或铁形成。当羟基基团与芳族化合物起反应,还可以添加对跨双键,产生自由基hydroxycyclohexadienyl。产生的自由基可以进行进一步的反应,如与氧气的反应,得到过氧自由基或分解phenoxyltype去水自由基[11,12]。如图2所示,WPPH显示了良好的HRDA 5:04±0点19毫克/毫升IC50的值,这是比GSH高1.3倍。在泥鳅和卵清蛋白[4,33]的水解产物中观察到了类似的现象,但在以前的文献中WPPH比的IDENTIFIED的每个水解产物的活性相对较高。

图(1)

图(2)

3.3还原力检测

还原力测定法通常用于评估抗氧化剂贡献电子的能力,通过这些电子可以稳定自由基[23]。水解产物的还原力随着WPPH增加而增加,且其活性可与GSH相比(图3)。因此,水解产物的还原能力依赖于WPPH的浓度。我们的研究结果与小麦胚芽,竹荚鱼和黄花鱼皮肤蛋白水解物[23,35]的报道是相似的。

图(3)

图(4)

3.4 Fe2 +的螯合作用

过渡金属,如铁,铜,作为一个电子供体很快与过氧化物反应并形成烷氧自由基。鉴于此,由抗氧化的过渡金属离子螯合延缓氧化过程[23,30]。图4显示了WPPH(1毫克/毫升),GSH(1毫克/毫升)和乙二胺四乙酸(EDTA,0.1毫克/毫升)亚铁离子的螯合能力。WPPH 表现出良好的螯合作用(40%),其结果可与乙二胺四乙酸(P <0.05)比较。WPPH亚铁螯合作用远远强于GSH(1毫克/毫升),对亚铁离子几乎没有螯合能力。金属螯合能力可能参与抗氧化活性,并影响其他功能[15,30]。因此,有几篇论文报告了不同的蛋白水解物[23,30]类似的结果。金属离子具有螯合作用的肽的抗氧化可能是一个将会有所利于发挥防止氧化损伤的机制。

3.5 抗氧化肽的分离纯化

截留分子量为3 kDa的MWCO用于将WPPH分成两部分,WPPH-I(分子量> 3 kDa)和WPPH-II(MW <3 kDa)的超滤膜。WPPH II在2毫克/毫升(60.25%)溶液中具有较

高的DPPH自由基清除活性。这与You等报告的结果是一致的[32],他发现了这种蛋白质在MW <3 kDa的水解液比其他分子具有较高的抗氧化活性。然后通过凝胶过滤将WPPH-II 分离为4个级分(F1-F4)(图5a)。所有组分对DPPH自由基清除活性进行了测试,如在图5b所示,F3具有最高的抗氧化活性。在活性级分上利用C18柱进行了进一步的反相高效液相色谱进行并分级分离。对14峰(图6a)分别收集。各馏分收集并冻干并对DPPH 自由基清除活性的进行测量。从图6b中,一个明显的区别是可观察到产生的14个级分中F3-6有最高活性。F3-6随后服从LC-MS/MS肽识别序列,并且其氨基酸序列为丙氨酸- 天冬氨酸- 丙氨酸- 苯丙氨酸(423.23沓)(图7)。

3.6纯化的肽的抗氧化活性

使用的清除自由基的活动,降低还原性,螯合作用和抑制脂质过氧化活性对纯化肽的活性进行评价。如表1中所示,纯化的肽可有效地骤冷DPPH自由基和羟基自由基,图 5 Sephadex G-25凝胶过滤色谱法超滤后的核桃蛋白水解物(a)和DPPH自由基清除活性的洗脱峰的活性级分的抗氧化肽的分离。所有结果以均数±标准差(二)一式三份。清除活性可与谷胱甘肽相媲美。此外,纯化的肽表现出良好的还原力,比GSH活性高。纯化的肽Fe2 +的螯合能力(36.34%)在相同浓度为0.2毫克/毫升时活性低于EDTA。脂质过氧化反应是一个复杂的过程,涉及到在氧的存在下脂质自由基和脂质过氧化氢的形成和扩展(R ?,RO?或ROO·)[23]。正如在图8中所示,在亚油酸乳液体系中肽将显著抑制脂质过氧化,类似还有的谷胱甘肽。抑制脂质过氧化的化合物[5]存在的疏水性能是非常重要的。WPPH 净化大大增加了抗氧化活性[4。]在纯化步骤中获得的结果总结在表2中。纯化肽表明DPPH 自由基清除能力相比WPPH增加6.65倍。

图(5)

图(6)

图(7)

表1纯化肽的抗氧化活性

Antioxidant DRSA (%)a HRSA (%)b Reducing powerc Chelating activity (%)c Purified peptide 40.97+20.74 31.01+1.37 1.07+0.08 36.34+1.64

GHS 46.98+1.6 34.84+1.88 0.64+0.03 3.25+0.53

EDTA 97.39+1.04

表2DPPH自由基清除活性核桃蛋白水解物和纯化倍数

Antioxidant DRSA (IC50, mg/ml)a Purification fold

WPPH 2.06+0.21 1

Ultrafiltration (WPPH-II) 1.64+0.12 1.26

Gel filtration (F3) 0.73+0.10 2.82

RP-HPLC (F3-6) 0.31+0.03 6.65

图(8)

4讨论

本研究旨在核桃蛋白抗氧化肽的分离和鉴定。为了这个目的,核桃蛋白水解使用中性蛋白酶碱性蛋白酶和胃蛋白酶。在水解过程中,依赖于酶的特异性和水解时间[4]会产生各种各样的较小的肽。将活性肽螯合氧自由基,螯合促氧化的金属离子和抑制脂质过氧化的化合物在食品体系中[8,32]。在本研究中,胃蛋白酶水解3小时,显示DPPH自由基清除能力比其他蛋白酶水解产物更强。因此,3小时的胃蛋白酶水解物被选定为进一步研究对象。采用超滤技术隔离的抗氧活性肽对核桃水解分馏。在低分子量重量多肽组分(<3 kDa的)中观察到了更高的抗氧化活性,这被认为是由于脂质自由基反应很容易发生减少自由基介导的脂质过氧化反应[4,29]。其次通过凝胶过滤和反相高效液相色谱法对水解产物进行纯化。所有组分的抗氧化测试活动如示于图(图5和图6)。最后,得到了新的抗氧化肽丙氨酸- 天冬氨酸- 丙氨酸- 苯丙氨酸。纯化肽DPPH自由基清除活性高于原油WPPH6.65倍。因此Chen等人用凝胶过滤和反相高效液相色谱法从卵蛋白水解物(EPH)中得到了两个孤立肽酪氨酸- 亮氨酸- 甘氨酸- 丙氨酸- 赖氨酸(P1)和甘- 甘- 亮氨酸- 谷氨酸-Pro的-异亮氨酸-天冬酰胺-苯丙氨酸-谷氨酰胺(P2)。P1和P2纯化后增加了抗氧化活性(分别高于EPH的7.48和6.02倍)。一般研究结果证实了短大肽具有比他们的父母天然蛋白质或大型多肽[32]强的抗氧化活性。

生物活性肽,每分子一般包括2-20个氨基酸残基,分子量越低,越过肠屏障发挥生物学他们效果的机会越大[13,19,23,24]。抗氧化肽具有一些金属螯合或氢/电子的活动,这可能使他们与自由基和终止自由基链反应[22]。

Chen等人[5]发现通过增加脂质肽溶解度对于抑制脂质过氧化疏水性氨基酸可能发挥

重要的作用。You等[32]分离出的肽的脯氨酸-丝氨酸- 酪氨酸-缬氨酸,来自泥鳅蛋白水解产物,其中有3个序列中的疏水氨基酸(75%):抗氧化肽酪氨酸- 丙氨酸- 谷氨酸- 谷氨酸- 精氨酸-酪氨酸-脯氨酸的-异亮氨酸-亮氨酸,酪氨酸- 甘氨酸- 精氨酸- 甘氨酸-亮氨酸-谷氨酸-脯氨酸的-异亮氨酸-天冬酰胺,苯丙氨酸-酪氨酸-异亮氨酸-谷氨酰胺-甘氨酸-亮氨酸,通过胃蛋白酶从蛋清制备的水解物中纯化,其中疏水性氨基酸的肽链代表分别为66.7%,50%和60%[7]。在这项研究中,分离的肽(丙氨酸- 天冬氨酸-

丙氨酸- 苯丙氨酸)有三个疏水性氨基酸的肽序列(75%),这可能是对亚油酸模型系统中的抗氧化活性产生影响的原因。芳香族氨基酸,如苯丙氨酸反应的氧气的存在允许直接电子转移(ROS)[20]。结果来源于Nazeer和[24]陈等人[4]。他们发现了苯丙氨酸肽的抗氧化活性的重要作用。

5结论

根据我们在这项研究中的研究结果,核桃蛋白水解物和/或隔离肽具有优异的抗氧化活性,如自由基清除活性,还原性和抑制脂质过氧化。此外,核桃蛋白水解物的金属离子螯合能力是高于谷胱甘肽。因此,核桃蛋白水解物和/或其孤立肽可以用于功能性食品组分和/或药品中的抗氧化剂并且很有前途。

致谢

这项工作由国家科学技术部(编号:2011BAI03B01),吉林省科学技术部(YYZX201131)和中国博士后科学基金会资助项目支持(2012M511355)。

参考文献

[1] Blomhoff R, Carlsen MH, Andersen LF, Jacobs Jr DR. Health benefits of nuts: potential role of antioxidants. Br J Nutr 2006;96:s52–60.

[2] Butterfield DA, Castenga A, Pocernich CB, Drake J, Scapagnini G, Calabrese V. Nutritional approaches to combat oxidative stress in Alzheimer’s disease. J Nutr Biochem 2002;13:444–61.

[3] Carvalho M, Ferreira PJ, Mendes VS, Silva R, Pereira JA, Jerónimo C, et al. Human cancer cell antiproliferative and antioxidant activities of Juglans regia L. Food

Chem Toxicol 2010;48:441–7.

[4] Chen C, Chi Y, Zhao M, Lv L. Purification and identification of antioxidant peptides from egg white protein hydrolysates. Amino Acids 2012;43:457–66.

[5] Chen HM, Muramoto K, Yamauchi F, Nokihara K. Antioxidant activity of

designed peptides based on the antioxidative peptide isolated from digests

of a soybean protein. J Agric Food Chem 1996;44:2619–23.

[6] Dahl MK, Richardson T. Photogeneration of superoxide anion in serum of bovine

milk and in model systems containing riboflavin and amino acid. J Dairy Sci

1978;61:400–7.

[7] Dávalos A, Miguel M, BartoloméB, López-Fandi?no R. Antioxidant activity of peptides derived from egg white proteins by enzymatic hydrolysis. J Food

Protect 2004;67:1939–44.

[8] Elias RJ, Kellerby SS, Decker EA. Antioxidant activity of proteins and peptides.

Crit Rev Food Sci Nutr 2008;48:430–41.

[9] Ito N, Hirose M, Fukushima S, Tsuda H, Shirai T, Tatematsu M. Studies on antioxidants:

their carcinogenic and modifying effects on chemical carcinogenesis.

Food Chem Toxicol 1986;24:1099–102.

[10] Kim SK, Kim Y, Byun HG, Nam KS, Joo DS, Shahidi F. Isolation and characterization of antioxidative peptides from gelatin hydrolysate of Alaska Pollack Skin.

J Agric Food Chem 2001;49:1984–9.

[11] Lee J, Koo N, Min DB. Reactive oxygen species, aging, and antioxidant nutraceuticals.

Compr Rev Food Sci F 2004;3:21–33.

[12] Li YH, Jiang B, Zhang T, Mu WM, Liu J. Antioxidant and free radical-scavenging activities of chickpea protein hydrolysate (CPH). Food Chem 2008;106:

444–50.

[13] Ma YY, Xiong YL, Zhai JJ, Zhu HN, Dziubla T. Fractionation and evaluation of radical scavenging peptides from in vitro digests of buckwheat protein. Food

Chem 2010;118:582–8.

[14] Martínez ML, Labuckas DO, Lamarque AL, Maestri DM. Walnut (Juglans regia L.): genetic resources, chemistry, by-products. J Sci Food Agric 2010;90:1959–67.

[15] Moure A, Domínguez H, ParajóJC. Antioxidant properties of ultrafiltrationrecovered soy protein fractions from industrial effluents and their hydrolysates.

Process Biochem 2006;41:447–56.

[16] Osawa T, Namiki M. Natural antioxidants isolated from eucalyptus leaf waxes.

J Agric Food Chem 1985;33:777–80.

[17] Pan M, Jiang TS, Pan JL. Antioxidant activities of rapeseed protein hydrolysates. Food Bioprocess Technol 2011;4:1144–52.

[18] Pe?na-Ramos EA, Xiong YL. Antioxidative activity of whey protein hydrolysates

in a liposomal system. J Dairy Sci 2001;84:2577–83.

[19] Pihlanto Leppala A. Bioactive peptides derived from bovine whey proteins:

opioid and ACE-inhibitory peptides. Trends Food Sci Technol 2001;11:

347–56.

[20] Qian ZJ, Jung WK, Kim SK. Free radical scavenging activity of a novel antioxidative peptide purified from hydrolysate of bullfrog skin, Rana catesbeiana Shaw.

Bioresour Technol 2008;99:1690–8.

[21] Rajamani K, Manivasagam T, Anantharaman P, Balasubramanian T, Somasundaram ST. Chemopreventive effect of Padina boergesenii extracts on ferric

nitrilotriacetate (Fe-NTA)-induced oxidative damage in Wistar rats. J Appl Phycol 2011;23:257–63.

[22] Ren JY, Zhao MM, Shi J, Wang JS, Jiang YM, Cui C, et al. Purification and identification of antioxidant peptides from grass carp muscle hydrolysates by consecutive chromatography and electrospray ionization-mass spectrometry.

Food Chem 2008;108:727–36.

[23] Sampath Kumar NS, Nazeer RA, Jaiganesh R. Purification and identification of antioxidant peptides from the skin protein hydrolysate of two marine fishes,

horse mackerel (Magalaspis cordyla) and croaker (Otolithes ruber). Amino Acids

2012;42:1641–9.

[24] Sampath Kumar NS, Nazeer RA, Jaiganesh R. Purification and biochemical

characterization

of antioxidant peptide from horse mackerel (Magalaspis cordyla)

viscera protein. Peptides 2011;32:1496–501.

[25] Shimada K, Fujikawa K, Yahara K, Nakamura T. Antioxidative properties of xanthan on the antioxidation of soybean oil in cyclodextrin emulsion. J Agric Food

Chem 1992;40:945–8.

[26] Sarmadia BH, Ismaila A. Antioxidative peptides from food proteins: a review. Peptides 2010;31:1949–56.

[27] Tang X, He Z, Dai Y, Xiong YL, Xie M, Chen J. Peptide fractionation and free radical scavenging activity of zein hydrolysate. J Agric Food Chem 2010;58:587–93.

[28] Wanita A, Lorenz K. Antioxidant potential of 5-N pentadecylresorcinol. J Food Process Pres 1996;20:417–29.

[29] Wu HC, Chen HM, Shiau CY. Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food

Res Int 2003;36:949–57.

[30] Xie Z, Huang J, Xu X, Jin Z. Antioxidant activity of peptides isolated from alfalfa

leaf protein hydrolysate. Food Chem 2008;111:370–6.

[31] Yen GC, Chen HY. Antioxidant activity of various tea extracts in relation to their antimutagenicity. J Agric Food Chem 1995;43:27–32.

[32] You L, Zhao M, Regenstein JM, Ren J. Purification and identification of antioxidative peptides from loach (Misgurnus anguillicaudatus) protein hydrolysate by

consecutive chromatography and electrospray ionization-mass spectrometry.

Food Res Int 2010;43:1167–73.

[33] Zhang J, Zhang H, Wang L, Guo X, Wang X, Yao H. Antioxidant activities of the

rice endosperm protein hydrolysate: identification of the active peptide. Eur

Food Res Technol 2009;229:709–19.

[34] Zhang T, Li YH, Miao M, Jiang B. Purification and characterisation of a new antioxidant peptide from chickpea (Cicer arietium L.) protein hydrolysates. Food

Chem 2011;128:28–33.

[35] Zhu KX, Zhou HM, Qian HF. Antioxidant and free radical-scavenging activities

of wheat germ protein hydrolysates (WGPH) prepared with alcalase. Process

Biochem 2006;41:1296–302.

毕业论文外文翻译模版

吉林化工学院理学院 毕业论文外文翻译English Title(Times New Roman ,三号) 学生学号:08810219 学生姓名:袁庚文 专业班级:信息与计算科学0802 指导教师:赵瑛 职称副教授 起止日期:2012.2.27~2012.3.14 吉林化工学院 Jilin Institute of Chemical Technology

1 外文翻译的基本内容 应选择与本课题密切相关的外文文献(学术期刊网上的),译成中文,与原文装订在一起并独立成册。在毕业答辩前,同论文一起上交。译文字数不应少于3000个汉字。 2 书写规范 2.1 外文翻译的正文格式 正文版心设置为:上边距:3.5厘米,下边距:2.5厘米,左边距:3.5厘米,右边距:2厘米,页眉:2.5厘米,页脚:2厘米。 中文部分正文选用模板中的样式所定义的“正文”,每段落首行缩进2字;或者手动设置成每段落首行缩进2字,字体:宋体,字号:小四,行距:多倍行距1.3,间距:前段、后段均为0行。 这部分工作模板中已经自动设置为缺省值。 2.2标题格式 特别注意:各级标题的具体形式可参照外文原文确定。 1.第一级标题(如:第1章绪论)选用模板中的样式所定义的“标题1”,居左;或者手动设置成字体:黑体,居左,字号:三号,1.5倍行距,段后11磅,段前为11磅。 2.第二级标题(如:1.2 摘要与关键词)选用模板中的样式所定义的“标题2”,居左;或者手动设置成字体:黑体,居左,字号:四号,1.5倍行距,段后为0,段前0.5行。 3.第三级标题(如:1.2.1 摘要)选用模板中的样式所定义的“标题3”,居左;或者手动设置成字体:黑体,居左,字号:小四,1.5倍行距,段后为0,段前0.5行。 标题和后面文字之间空一格(半角)。 3 图表及公式等的格式说明 图表、公式、参考文献等的格式详见《吉林化工学院本科学生毕业设计说明书(论文)撰写规范及标准模版》中相关的说明。

毕业论文英文参考文献与译文

Inventory management Inventory Control On the so-called "inventory control", many people will interpret it as a "storage management", which is actually a big distortion. The traditional narrow view, mainly for warehouse inventory control of materials for inventory, data processing, storage, distribution, etc., through the implementation of anti-corrosion, temperature and humidity control means, to make the custody of the physical inventory to maintain optimum purposes. This is just a form of inventory control, or can be defined as the physical inventory control. How, then, from a broad perspective to understand inventory control? Inventory control should be related to the company's financial and operational objectives, in particular operating cash flow by optimizing the entire demand and supply chain management processes (DSCM), a reasonable set of ERP control strategy, and supported by appropriate information processing tools, tools to achieved in ensuring the timely delivery of the premise, as far as possible to reduce inventory levels, reducing inventory and obsolescence, the risk of devaluation. In this sense, the physical inventory control to achieve financial goals is just a means to control the entire inventory or just a necessary part; from the perspective of organizational functions, physical inventory control, warehouse management is mainly the responsibility of The broad inventory control is the demand and supply chain management, and the whole company's responsibility. Why until now many people's understanding of inventory control, limited physical inventory control? The following two reasons can not be ignored: First, our enterprises do not attach importance to inventory control. Especially those who benefit relatively good business, as long as there is money on the few people to consider the problem of inventory turnover. Inventory control is simply interpreted as warehouse management, unless the time to spend money, it may have been to see the inventory problem, and see the results are often very simple procurement to buy more, or did not do warehouse departments . Second, ERP misleading. Invoicing software is simple audacity to call it ERP, companies on their so-called ERP can reduce the number of inventory, inventory control, seems to rely on their small software can get. Even as SAP, BAAN ERP world, the field of

概率论毕业论文外文翻译

Statistical hypothesis testing Adriana Albu,Loredana Ungureanu Politehnica University Timisoara,adrianaa@aut.utt.ro Politehnica University Timisoara,loredanau@aut.utt.ro Abstract In this article,we present a Bayesian statistical hypothesis testing inspection, testing theory and the process Mentioned hypothesis testing in the real world and the importance of, and successful test of the Notes. Key words Bayesian hypothesis testing; Bayesian inference;Test of significance Introduction A statistical hypothesis test is a method of making decisions using data, whether from a controlled experiment or an observational study (not controlled). In statistics, a result is called statistically significant if it is unlikely to have occurred by chance alone, according to a pre-determined threshold probability, the significance level. The phrase "test of significance" was coined by Ronald Fisher: "Critical tests of this kind may be called tests of significance, and when such tests are available we may discover whether a second sample is or is not significantly different from the first."[1] Hypothesis testing is sometimes called confirmatory data analysis, in contrast to exploratory data analysis. In frequency probability,these decisions are almost always made using null-hypothesis tests. These are tests that answer the question Assuming that the null hypothesis is true, what is the probability of observing a value for the test statistic that is at [] least as extreme as the value that was actually observed?) 2 More formally, they represent answers to the question, posed before undertaking an experiment,of what outcomes of the experiment would lead to rejection of the null hypothesis for a pre-specified probability of an incorrect rejection. One use of hypothesis testing is deciding whether experimental results contain enough information to cast doubt on conventional wisdom. Statistical hypothesis testing is a key technique of frequentist statistical inference. The Bayesian approach to hypothesis testing is to base rejection of the hypothesis on the posterior probability.[3][4]Other approaches to reaching a decision based on data are available via decision theory and optimal decisions. The critical region of a hypothesis test is the set of all outcomes which cause the null hypothesis to be rejected in favor of the alternative hypothesis. The critical region is usually denoted by the letter C. One-sample tests are appropriate when a sample is being compared to the population from a hypothesis. The population characteristics are known from theory or are calculated from the population.

毕业论文 外文翻译#(精选.)

毕业论文(设计)外文翻译 题目:中国上市公司偏好股权融资:非制度性因素 系部名称:经济管理系专业班级:会计082班 学生姓名:任民学号: 200880444228 指导教师:冯银波教师职称:讲师 年月日

译文: 中国上市公司偏好股权融资:非制度性因素 国际商业管理杂志 2009.10 摘要:本文把重点集中于中国上市公司的融资活动,运用西方融资理论,从非制度性因素方面,如融资成本、企业资产类型和质量、盈利能力、行业因素、股权结构因素、财务管理水平和社会文化,分析了中国上市公司倾向于股权融资的原因,并得出结论,股权融资偏好是上市公司根据中国融资环境的一种合理的选择。最后,针对公司的股权融资偏好提出了一些简明的建议。 关键词:股权融资,非制度性因素,融资成本 一、前言 中国上市公司偏好于股权融资,根据中国证券报的数据显示,1997年上市公司在资本市场的融资金额为95.87亿美元,其中股票融资的比例是72.5%,,在1998年和1999年比例分别为72.6%和72.3%,另一方面,债券融资的比例分别是17.8%,24.9%和25.1%。在这三年,股票融资的比例,在比中国发达的资本市场中却在下跌。以美国为例,当美国企业需要的资金在资本市场上,于股权融资相比他们宁愿选择债券融资。统计数据显示,从1970年到1985年,美日企业债券融资占了境外融资的91.7%,比股权融资高很多。阎达五等发现,大约中国3/4的上市公司偏好于股权融资。许多研究的学者认为,上市公司按以下顺序进行外部融资:第一个是股票基金,第二个是可转换债券,三是短期债务,最后一个是长期负债。许多研究人员通常分析我国上市公司偏好股权是由于我们国家的经济改革所带来的制度性因素。他们认为,上市公司的融资活动违背了西方古典融资理论只是因为那些制度性原因。例如,优序融资理论认为,当企业需要资金时,他们首先应该转向内部资金(折旧和留存收益),然后再进行债权融资,最后的选择是股票融资。在这篇文章中,笔者认为,这是因为具体的金融环境激活了企业的这种偏好,并结合了非制度性因素和西方金融理论,尝试解释股权融资偏好的原因。

毕业论文外文翻译模板

农村社会养老保险的现状、问题与对策研究社会保障对国家安定和经济发展具有重要作用,“城乡二元经济”现象日益凸现,农村社会保障问题客观上成为社会保障体系中极为重要的部分。建立和完善农村社会保障制度关系到农村乃至整个社会的经济发展,并且对我国和谐社会的构建至关重要。我国农村社会保障制度尚不完善,因此有必要加强对农村独立社会保障制度的构建,尤其对农村养老制度的改革,建立健全我国社会保障体系。从户籍制度上看,我国居民养老问题可分为城市居民养老和农村居民养老两部分。对于城市居民我国政府已有比较充足的政策与资金投人,使他们在物质和精神方面都能得到较好地照顾,基本实现了社会化养老。而农村居民的养老问题却日益突出,成为摆在我国政府面前的一个紧迫而又棘手的问题。 一、我国农村社会养老保险的现状 关于农村养老,许多地区还没有建立农村社会养老体系,已建立的地区也存在很多缺陷,运行中出现了很多问题,所以完善农村社会养老保险体系的必要性与紧迫性日益体现出来。 (一)人口老龄化加快 随着城市化步伐的加快和农村劳动力的输出,越来越多的农村青壮年人口进入城市,年龄结构出现“两头大,中间小”的局面。中国农村进入老龄社会的步伐日渐加快。第五次人口普查显示:中国65岁以上的人中农村为5938万,占老龄总人口的67.4%.在这种严峻的现实面前,农村社会养老保险的徘徊显得极其不协调。 (二)农村社会养老保险覆盖面太小 中国拥有世界上数量最多的老年人口,且大多在农村。据统计,未纳入社会保障的农村人口还很多,截止2000年底,全国7400多万农村居民参加了保险,占全部农村居民的11.18%,占成年农村居民的11.59%.另外,据国家统计局统计,我国进城务工者已从改革开放之初的不到200万人增加到2003年的1.14亿人。而基本方案中没有体现出对留在农村的农民和进城务工的农民给予区别对待。进城务工的农民既没被纳入到农村养老保险体系中,也没被纳入到城市养老保险体系中,处于法律保护的空白地带。所以很有必要考虑这个特殊群体的养老保险问题。

大学毕业论文---软件专业外文文献中英文翻译

软件专业毕业论文外文文献中英文翻译 Object landscapes and lifetimes Tech nically, OOP is just about abstract data typing, in herita nee, and polymorphism, but other issues can be at least as importa nt. The rema in der of this sect ion will cover these issues. One of the most importa nt factors is the way objects are created and destroyed. Where is the data for an object and how is the lifetime of the object con trolled? There are differe nt philosophies at work here. C++ takes the approach that con trol of efficie ncy is the most importa nt issue, so it gives the programmer a choice. For maximum run-time speed, the storage and lifetime can be determined while the program is being written, by placing the objects on the stack (these are sometimes called automatic or scoped variables) or in the static storage area. This places a priority on the speed of storage allocatio n and release, and con trol of these can be very valuable in some situati ons. However, you sacrifice flexibility because you must know the exact qua ntity, lifetime, and type of objects while you're writing the program. If you are trying to solve a more general problem such as computer-aided desig n, warehouse man ageme nt, or air-traffic con trol, this is too restrictive. The sec ond approach is to create objects dyn amically in a pool of memory called the heap. In this approach, you don't know un til run-time how many objects you n eed, what their lifetime is, or what their exact type is. Those are determined at the spur of the moment while the program is runnin g. If you n eed a new object, you simply make it on the heap at the point that you n eed it. Because the storage is man aged dyn amically, at run-time, the amount of time required to allocate storage on the heap is sig ni fica ntly Ion ger tha n the time to create storage on the stack. (Creat ing storage on the stack is ofte n a si ngle assembly in structio n to move the stack poin ter dow n, and ano ther to move it back up.) The dyn amic approach makes the gen erally logical assumpti on that objects tend to be complicated, so the extra overhead of finding storage and releas ing that storage will not have an importa nt impact on the creati on of an object .In additi on, the greater flexibility is esse ntial to solve the gen eral program ming problem. Java uses the sec ond approach, exclusive". Every time you want to create an object, you use the new keyword to build a dyn amic in sta nee of that object. There's ano ther issue, however, and that's the lifetime of an object. With Ian guages that allow objects to be created on the stack, the compiler determines how long the object lasts and can automatically destroy it. However, if you create it on the heap the compiler has no kno wledge of its lifetime. In a Ianguage like C++, you must determine programmatically when to destroy the

电子信息工程专业毕业论文外文翻译中英文对照翻译

本科毕业设计(论文)中英文对照翻译 院(系部)电气工程与自动化 专业名称电子信息工程 年级班级 04级7班 学生姓名 指导老师

Infrared Remote Control System Abstract Red outside data correspondence the technique be currently within the scope of world drive extensive usage of a kind of wireless conjunction technique,drive numerous hardware and software platform support. Red outside the transceiver product have cost low, small scaled turn, the baud rate be quick, point to point SSL, be free from electromagnetism thousand Raos etc.characteristics, can realization information at dissimilarity of the product fast, convenience, safely exchange and transmission, at short distance wireless deliver aspect to own very obvious of advantage.Along with red outside the data deliver a technique more and more mature, the cost descend, red outside the transceiver necessarily will get at the short distance communication realm more extensive of application. The purpose that design this system is transmit cu stomer’s operation information with infrared rays for transmit media, then demodulate original signal with receive circuit. It use coding chip to modulate signal and use decoding chip to demodulate signal. The coding chip is PT2262 and decoding chip is PT2272. Both chips are made in Taiwan. Main work principle is that we provide to input the information for the PT2262 with coding keyboard. The input information was coded by PT2262 and loading to high frequent load wave whose frequent is 38 kHz, then modulate infrared transmit dioxide and radiate space outside when it attian enough power. The receive circuit receive the signal and demodulate original information. The original signal was decoded by PT2272, so as to drive some circuit to accomplish

毕业论文外文资料翻译

毕业论文外文资料翻译题目(宋体三号,居中) 学院(全称,宋体三号,居中) 专业(全称,宋体三号,居中) 班级(宋体三号,居中) 学生(宋体三号,居中) 学号(宋体三号,居中) 指导教师(宋体三号,居中) 二〇一〇年月日(宋体三号,居中,时间与开题时间一致)

(英文原文装订在前)

Journal of American Chemical Society, 2006, 128(7): 2421-2425. (文献翻译必须在中文译文第一页标明文献出处:即文章是何期刊上发表的,X年X 卷X期,格式如上例所示,四号,右对齐,杂志名加粗。) [点击输入译文题目-标题1,黑体小二] [点击输入作者,宋体小四] [点击输入作者单位,宋体五号] 摘要[点击输入,宋体五号] 关键词[点击输入,宋体五号] 1[点击输入一级标题-标题2,黑体四号] [点击输入正文,宋体小四号,1.25倍行距] 1.1[点击输入二级标题-标题3,黑体小四] [点击输入正文,宋体小四,1.25倍行距] 1.1.1[点击输入三级标题-标题4,黑体小四] [点击输入正文,宋体小四,1.25倍行距] 说明: 1.外文文章必须是正规期刊发表的。 2.翻译后的中文文章必须达到2000字以上,并且是一篇完整文章。 3.必须要有外文翻译的封面,使用学校统一的封面; 封面上的翻译题目要写翻译过来的中文题目; 封面上时间与开题时间一致。 4.外文原文在前,中文翻译在后; 5.中文翻译中要包含题目、摘要、关键词、前言、全文以及参考文献,翻译要条理

清晰,中文翻译要与英文一一对应。 6.翻译中的中文文章字体为小四,所有字母、数字均为英文格式下的,中文为宋体, 标准字符间距。 7.原文中的图片和表格可以直接剪切、粘贴,但是表头与图示必须翻译成中文。 8.图表必须居中,文章段落应两端对齐、首行缩进2个汉字字符、1.25倍行距。 例如: 图1. 蛋白质样品的PCA图谱与8-卟啉识别排列分析(a)或16-卟啉识别排列分析(b)。为了得到b 的 数据矩阵,样品用16-卟啉识别排列分析来检测,而a 是通过捕获首八卟啉接收器数据矩阵从 b 中 萃取的。

本科毕业设计外文翻译(原文)

Real-time interactive optical micromanipulation of a mixture of high- and low-index particles Peter John Rodrigo, Vincent Ricardo Daria and Jesper Glückstad Optics and Plasma Research Department, Ris? National Laboratory, DK-4000 Roskilde, Denmark jesper.gluckstad@risoe.dk http://www.risoe.dk/ofd/competence/ppo.htm Abstract: We demonstrate real-time interactive optical micromanipulation of a colloidal mixture consisting of particles with both lower (n L < n0) and higher (n H > n0) refractive indices than that of the suspending medium (n0). Spherical high- and low-index particles are trapped in the transverse plane by an array of confining optical potentials created by trapping beams with top-hat and annular cross-sectional intensity profiles, respectively. The applied method offers extensive reconfigurability in the spatial distribution and individual geometry of the optical traps. We experimentally demonstrate this unique feature by simultaneously trapping and independently manipulating various sizes of spherical soda lime micro- shells (n L≈ 1.2) and polystyrene micro-beads (n H = 1.57) suspended in water (n0 = 1.33). ?2004 Optical Society of America OCIS codes: (140.7010) Trapping, (170.4520) Optical confinement and manipulation and (230.6120) Spatial Light Modulators. References and links 1. A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. USA 94, 4853-4860 (1997). 2. K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247-285 (1994). 3. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810-816 (2003). 4. M. P. MacDonald, G. C. Spalding and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421-424 (2003). 5. J. Glückstad, “Microfluidics: Sorting particles with light,” Nature Materials 3, 9-10 (2004). 6. A. Ashkin, “Acceleration and trapping of particles by radiation-pressure,”Phys. Rev. Lett. 24, 156-159 (1970). 7. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288-290 (1986). 8. K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, “Optical trapping of a metal particle and a water droplet by a scanning laser beam,” Appl. Phys. Lett. 60, 807-809 (1992). 9. K. T. Gahagan and G. A. Swartzlander, “Trapping of low-index microparticles in an optical vortex,” J. Opt. Soc. Am. B 15, 524-533 (1998). 10. K. T. Gahagan and G. A. Swartzlander, “Simultaneous trapping of low-index and high-index microparticles observed with an optical-vortex trap,” J. Opt. Soc. Am. B 16, 533 (1999). 11. M. P. MacDonald, L. Paterson, W. Sibbett, K. Dholakia, P. Bryant, “Trapping and manipulation of low-index particles in a two-dimensional interferometric optical trap,” Opt. Lett. 26, 863-865 (2001). 12. R. L. Eriksen, V. R. Daria and J. Glückstad, “Fully dynamic multiple-beam optical tweezers,” Opt. Express 10, 597-602 (2002), https://www.wendangku.net/doc/494035311.html,/abstract.cfm?URI=OPEX-10-14-597. 13. P. J. Rodrigo, R. L. Eriksen, V. R. Daria and J. Glückstad, “Interactive light-driven and parallel manipulation of inhomogeneous particles,” Opt. Express 10, 1550-1556 (2002), https://www.wendangku.net/doc/494035311.html,/abstract.cfm?URI=OPEX-10-26-1550. 14. V. Daria, P. J. Rodrigo and J. Glückstad, “Dynamic array of dark optical traps,” Appl. Phys. Lett. 84, 323-325 (2004). 15. J. Glückstad and P. C. Mogensen, “Optimal phase contrast in common-path interferometry,” Appl. Opt. 40, 268-282 (2001). 16. S. Maruo, K. Ikuta and H. Korogi, “Submicron manipulation tools driven by light in a liquid,” Appl. Phys. Lett. 82, 133-135 (2003). #3781 - $15.00 US Received 4 February 2004; revised 29 March 2004; accepted 29 March 2004 (C) 2004 OSA 5 April 2004 / Vol. 12, No. 7 / OPTICS EXPRESS 1417

电气专业毕业论文外文翻译分析解析

本科毕业设计 外文文献及译文 文献、资料题目:Designing Stable Control Loops 文献、资料来源:期刊 文献、资料发表(出版)日期:2010.3.25 院(部):信息与电气工程学院 专班姓学业:电气工程与自动化级: 名: 号: 指导教师:翻译日期:2011.3.10

外文文献: Designing Stable Control Loops The objective of this topic is to provide the designer with a practical review of loop compensation techniques applied to switching power supply feedback control. A top-down system approach is taken starting with basic feedback control concepts and leading to step-by-step design procedures,initially applied to a simple buck regulator and then expanded to other topologies and control algorithms. Sample designs are demonstrated with Math cad simulations to illustrate gain and phase margins and their impact on performance analysis. I. I NTRODUCTION Insuring stability of a proposed power supply solution is often one of the more challenging aspects of the design process. Nothing is more disconcerting than to have your lovingly crafted breadboard break into wild oscillations just as its being demonstrated to the boss or customer, but insuring against this unfortunate event takes some analysis which many designers view as formidable. Paths taken by design engineers often emphasize either cut-and-try empirical testing in the laboratory or computer simulations looking for numerical solutions based on complex mathematical models.While both of these approach a basic understanding of feedback theory will usually allow the definition of an acceptable compensation network with a minimum of computational effort. II. S TABILITY D EFINED Fig. 1.Definition of stability Fig. 1 gives a quick illustration of at least one definition of stability. In its simplest terms, a system is stable if, when subjected to a perturbation from some source, its response to that

相关文档