文档库 最新最全的文档下载
当前位置:文档库 › 风力发电机组的控制与安全系统技术要求

风力发电机组的控制与安全系统技术要求

风力发电机组的控制与安全系统技术要求
风力发电机组的控制与安全系统技术要求

第九章风力发电机组的控制与安全系统技术要求

风力发电机组控制系统工作的安全可靠性已成为风力发电系统能否发挥作用,甚至成为风电场长期安全可靠运行的重大问题。在实际应用过程中,尤其是一般风力发电机组控制与检测系统中,控制系统满足用户提出的功能上的要求是不困难的。往往不是控制系统功能而是它的可靠性直接影响风力发电机组的声誉。有的风力发电机组控制系统功能很强,但由于工作不可靠,经常出故障,而出现故障后对一般用户来说维修又十分困难。于是,这样一套控制系统可能发挥不了它应有的作用,造成不应有的损失。因此,对于一个风力发电机组控制系统的设计和使用者来说,系统的安全可靠性必须认真加以考虑,必须引起足够的重视。

我们的目的是希望通过控制与安全系统设计,采取必要的手段,使我们的系统在规定的时间内不出故障或少出故障。并且,在出故障之后能够以最快的速度修复系统使之恢复正常工作。第一节控制与安全系统的技术要求

一、风力发电机组的运行的控制要求

(一)控制思想

我国风电场运行的机组多数以定桨距失速型机组为主,所谓失速型风力发电机组就是当风速超过风力发电机组额定风速以上时,为确保风力发电机组功率输出不再增加,导致风力发电机组过载,通过空气动力学的失速特性,使叶片发生失速,从而控制风力发电机组的功率输出。所以,定桨距失速型风力发电机组控制系统控制思想和控制原则以安全运行控制技术要求为主,功率控制由叶片的失速特性来完成。风力发电机组的正常运行及安全性取决于先进的控制策略和优越的保护功能。控制系统应以主动或被动的方式控制机组的运行,使系统运行在安全允许的规定范围内,且各项参数保持在正常工

作范围内。控制系统可以控制的功能和参数包括功率极限、风轮转速、电气负载的连接、起动及停机过程、电网或负载丢失时的停机、纽缆限制、机舱时风、运行时电量和温度参数的限制。如风力发电机组的工作风速是采用BIN法计算10min平均值确定小风脱网风速和大风切出风速,每个参数极限控制均采用回差法,上行点和下行点不同,视实际运行情况而定。对于变桨距风力发电机组与定桨距恒速型风力发电机组控制方法略有不同,即功率调节方式不同,它采用变桨距方式改变风轮能量的捕获,从而使风力发电机组的输出功率发生变化,最终达到限制功率输出的目的。

保护环节以失效保护为原则进行设计,当控制失败,内部或外部故障影响,导致出现危险情况引起机组不能正常运行时,系统安全保护装置动作,保护风力发电机组处于安全状态。在下列情况系统自动执行保护功能:超速、发电机过载和故障、过振动、电网或负载丢失、脱网时的停机失败等。保护环节为多级安全链互锁,在控制过程中具有逻辑“与”的功能,而在达到控制目标方面可实现逻辑“或”的结果。此外,系统还设计了防雷装置,对主电路和控制电路分别进行防雷保护。控制线路中每一电源和信号输入端均设有防高压元件,主控柜设有良好的接地并提供简单而有效的疏雷通道。

(二)自动运行的控制要求

1.开机并网控制当风速10min平均值在系统工作区域内,机械闸松开,叶尖复位,风力作

用于风轮旋转平面上,风力发电机组慢慢起动,当发电机转速大于20%的额定转速持续5%,转速仍达不到60%额定转速,发电机进入电网软拖动状态,软拖方式视机组型号而定。正常情况下,风力发电机组转速连续增高,不必软拖增速,当转速达到软切转速时,风力发电机组进入软切入状态;当转速升到发电机同步转速时,旁路主接触器动作,机组并入电网运行。对于有大、小发电机的失速型风力发电机组,按风速范围和功率的大小,确定大、小电机的投入。软切入控制方式确定参照本章第二节第四条,但大电机和小电机的发电工作转速不一致,通常为1000r/min和1500r/min,在小电机脱网,大电机并网的切换过程中,要求严格控制,通常必须在几秒内完成控制。

2. 小风和逆功率脱网小风和逆功率停机是将风力发电机组停在待风状态,当10min平均风速小于小风脱网风速或发电机输出功率负到一定值后,风力发电机组不允许长期在电网运行,必须脱网,处于自由状态,风力发电机组靠自身的摩擦阻力缓慢停机,进入待风状态。当风速再次上升,风力发电机组又可自动旋转起来,达到并网转速,风力发电机组又投入并网运行。

3.普通故障脱网停机机组运行时发生参数越限、状态异常等普通故障后,风力发电机组进入普通停机程序,机组投入气动刹车,软脱网,待低速轴转速低于一定值后,再抱机械闸,如果是由于内部因素产生的可恢复故障,计算机可自行处理,无需维护人员到现场,即可恢复正常开机。

4.紧急故障脱网停机当系统发生紧急故障如风力发电机组发生飞车、超速、振动及负载丢失等故障时,风力发电机组进入紧急停机程序,机组投入气动刹车的同时执行90°偏航控制,机舱旋转偏离主风向,转速达到一定限制后脱网,低速轴转速小于一定转速后,抱机械闸。

5. 安全链动作停机安全链动作停机指电控制系统软保护控制失败时,为安全起见所采取的硬性停机———叶尖气动刹车、机械刹车和脱网同时动作,风力发电机组在几秒内停下来。

6.大风脱网控制当风速10min 平均值大于25m/s 时,风力发电机组可能出现超速和过载,为了机组的安全,这时风力发电机组必须进行大风脱网停机。风力发电机组先投入气动刹车,同时偏航90°,等功率下降后脱网,20s 后或者低速轴转速小于一定值时,抱机械闸,风力发电机组完全停止。当风速回到工作风速区后,风力发电机组开始恢复自动对风,待转速上升后,风力发电机组又重新开始自动并网运行。

7.对风控制风力发电机组在工作风速区时,应根据机舱的控制灵敏度,确定每次偏航的调整角度。用两种方法判定机舱与风向的偏离角度,根据偏离的程度和风向传感器的灵敏度,时刻调整机舱偏左和偏右的角度。

8. 偏转900 对风控制风力发电机组在大风速或超转速工作时,为了风力发电机组的安全停机,必须降低风力发电机组的功率,释放风轮的能量。当10min平均风速大于25m/s或风力发电机组转速大于转速超速上限时,风力发电机组作偏转90°控制,同时投入气动刹车,脱网,转速降下来后,抱机械闸停机。在大风期间实行90°跟风控制,以保证机组大风期间的安全。

9. 功率调节当风力发电机组在额定风速以上并网运行时,对于失速型风力发电机组由于叶

片的失速特性,发电机的功率不会超过额定功率的15%。一旦发生过载,必须脱网停机。对于变桨距风力发电机组,必须进行变距调节,减小风轮的捕风能力,以便达到调节功率的目的,通常桨距角的调节范围在-2°-86°。

10. 软切入控制风力发电机组在进入电网运行时,必须进行软切人控制,当机组脱离电网运行时,也必须软脱网控制。利用软并网装置可完成软切入/出的控制。通常软并网装置主要由大功率晶闸管和有关控制驱动电路组成。控制目的就是通过不断监测机组的三相电流和发电机的运行状态,限制软切入装置通过控制主回路晶闸管的导通角,以控制发电机的端电压,达到限制起动电流的目的。在电机转速接近同步转速时,旁路接触器动作,将主回路晶闸管断开,软切入过程结束,软并网成功。通常限制软切入电流为额定电流的1.5 倍。

(三)控制保护要求

1. 主电路保护在变压器低压侧三相四线进线处设置低压配电低压断路器,以实现机组电气元件的维护操作安全和短路过载保护,该低压配电低压断路器还配有分动脱扣和辅动触点。发电机三相电缆线入口处,也设有配电自动空气断路器,用来实现发电机的过电流、过载及短路保护。

2. 过电压、过电流保护主电路计算机电源进线端、控制变压器进线端和有关伺服电动机进线端,均设置过电压、过电流保护措施。如整流电源、液压控制电源、稳压电源、控制电源一次侧、调向系统、液压系统、机械闸系统、补偿控制电容都有相应的过电流、过电压保护控制装置。

3.防雷设施及熔丝主避雷器与熔丝,合理可靠的接地线为系统主避雷保护,同时控制系统有专门设计的防雷保护装置。在计算机电源及直流电源变压器一次侧,所有信号的输入端均设有相应的瞬时超电压和过电流保护装置。

4. 热继电保护运行的所有输出运转机构如发电机、电动机、各传动机构的过热、过载保护控制装置。

5.接地保护由于设备因绝缘破坏或其他原因可能引起出现危险电压的金属部分,均应实现保护接地。所有风力发电机组的零部件、传动装置、执行电动机、发电机、变压器、传感器、照明器具及其他电器的金属底座和外壳;电气设备的传动机构;塔架机舱配电装置的金属框架及金属门;配电、控制和保护用的盘(台、箱)的框架;交、直流电力电缆的接线盒和终端盒金属外壳及电缆的金属保护层和窜线的钢管;电流互感器和电压互感器的二次线圈;避雷器、保护间隙和电容器的底座、非金属护套信号线的1—2 根屏蔽芯线;上述都要求保护接地。

二、控制安全系统安全运行的技术要求

控制与安全与系统是风力发电机组安全运行的大脑指挥中心,控制系统的安全运行就是保证了机组安全运行,通常风力发电机组运行所涉及的内容相当广泛就运行工况而言,包括起动、停机、功率调解、变速控制和事故处理等方面的内容。

风力发电机组在起停过程中,机组各部件将受到剧烈的机械应力的变化,而对安全运行起决

定因素是风速变化引起的转速的变化。所以转速的控制是机组安全运行的关键。风力发电机组的运行是一项复杂的操作,涉及的问题很多,如风速的变化、转速的变化、温度的变化、振动等都是直接威胁风力发电机组的安全运行。

(一)控制系统安全运行的必备条件

1)风力发电机组开关出线侧相序必须与并网电网相序一致,电压标称值相等,三相电压平衡。

2)风力发电机组安全链系统硬件运行正常。

3)调向系统处于正常状态,风速仪和风向标处于正常运行的状态。

4)制动和控制系统液压装置的油压、油温和油位在规定范围内。

5)齿轮箱油位和油温在正常范围。

6)各项保护装置均在正常位置,且保护值均与批准设定的值相符。

7)各控制电源处于接通位置。

8)监控系统显示正常运行状态。

9)在寒冷和潮湿地区,停止运行一个月以上的风力发电机组再投入运行前应检查绝缘,合格后才允许起动。

10)经维修的风力发电机组控制系统在投入起动前,应办理工作票终结手续。

(二)风力发电机组工作参数的安全运行范围

1.风速自然界风的变化是随机的没有规律的,当风速在3-25m/s的规定工作范围时,只对风力发电机组的发电有影响,当风速变化率较大且风速超过25m/s以上时,则对机组的安全性产生威胁。

2. 转速风力发电机组的风轮转速通常低于40r/min,发电机的最高转速不超过额定转速的2 0%,不同型号的机组数字不同。当风力发电机组超速时,对机组的安全性产生严重威胁。

3. 功率在额定风速以下时,不作功率调节控制,只有在额定风速以上应作限制最大功率的控制,通常运行安全最大功率不允许超过设计值20%。

4. 温度运行中风力发电机组的各部件运转将会引起温升,通常控制器环境温度应为0-30℃,齿轮箱油温小于120℃,发电机温度小于150℃,传动等环节温度小于70℃。

5.电压发电电压允许的范围在设计值的10%,当瞬间值超过额定值的30% 时,视为系统故

障。

6.频率机组的发电频率应限制在50Hz±1Hz,否则视为系统故障。

7. 压力机组的许多执行机构由液压执行机构完成,所以各液压站系统的压力必须监控,由压力开关设计额定值确定,通常低于100HPa

(三)系统的接地保护安全要求

1)配电设备接地。变压器、开关设备和互感器外壳、配电柜、控制保护盘,金属构架、防雷设施及电缆头等设备必须接地。

2)塔筒与地基接地装置,接地体应水平敷设。塔内和地基的角钢基础及支架要用截面25m m×4mm的扁钢相连作接地干线,塔筒做一组,地基做一组,两者焊接相连形成接地网。

3)接地网形式以闭合型为好。当接地电阻不满足要求时,引入外部接地体。

4)接地体的外缘应闭合,外缘各角要作成圆弧形,其半径不宜小于均压带间距的一半,埋设深度应不小于0.6m,并敷设水平均压带。

5)变压器中线点的工作接地和保护地线,要分别与人工接地网连接。

6)避雷线宜设单独的接地装置。

7)整个接地网的接地电阻应小于4Ω。

8)电缆线路的接地。当电缆绝缘损坏时,在电缆的外皮、铠甲及接线头盒均可能带电,要求必须接地。

9)如果电缆在地下敷设,两端都应接地。低压电缆除在潮湿的环境须接地外,其他正常环境不必接地。高压电缆任何情况都应接地。

三、控制与安全系统安装和维护的技术要求

(一)一般安全守则

1)维修前机组必须完全停止下来,各维修工作按安全操作规程进行。

2)工作前检查所有维修用设备仪器,严禁使用不符合安全要求的设备和工具。

3)各电器设备和线路的绝缘必须良好,非电工不准拆装电器设备和线路。

4)严格按设计要求进行控制系统硬件和线路安装,全面进行安全检查。

5)电压、电流、断流容量、操作次数、温度等运行参数应符合要求。

6)设备安装好后,试运转合闸前,必须对设备及接线仔细检查,确认无问题时方可合闸。

7)操作刀闸开关和电气分合开关时,必须带绝缘手套,并要设专门人员监护。电动机、执行机构进行实验或试运行时,也应有专人负责监视,不得随意离开。如发现异常声音或气味时,应立即停止机器切断电源进行检查修理。

8)安装电机时,必须检查绝缘电阻是否合格,转动是否灵活,零部件是否齐全,同时必须安装接地线。

9)拖拉电缆应在停电情况下进行,若因工作需要不能停电时,应先检查电缆有无破裂之处,确认完好后,带好绝缘手套才能拖拉。

10)带熔断器的开关,其熔丝应与负载电流匹配,更换熔丝必须向拉开刀开关。

11)电器元件应垂直安装,一般倾斜不超过5°,应使螺栓固定在支持物上,不得采用焊接,安装位置应便于操作,手柄与周围建筑物间应保持一定距离,不易被碰坏。

12)低压电器的金属外壳或金属支架必须接地(或接零),电器的裸露部分应加防护罩,双头刀开关的分合闸位置上应有防止自动合闸的位置。

(二)运行前的检查和试验要求

1)控制器内是否清洁,无垢,所安装的电器其型号、规格是否与图纸相符,电器元件安装是否牢靠。

2)用手操作的刀开关、组合开关、断路器等,不应有卡住或用力过大的现象。

3)刀开关、断路器、熔断器等各部分应接触良好。

4)电器的辅助触点的通断是否可靠,断路器等主要电器的通断是否符合要求。

5)二次回路的接线是否符合图纸要求,线段要有编号,接线应牢固、整齐。

6)仪表与互感器的变比与接线极性是否正确。

7)母线连接是否良好,其支持绝缘子、夹持件等附件是否牢固可靠。

8)保护电器的整定值是否符合要求,熔断器的熔体规格是否正确,辅助电路各元件的节点是否符合要求。

9)保护接地系统是否符合技术要求,并应有明显标记。表计和继电器等二次元件的动作是否准确无误。

10)用欧姆表测量绝缘电阻值是否符合要求,并按要求作耐压试验。

(三)控制与安全系统运行的检查

1)保持柜内电器元件的干燥、清洁。

2)经常注意柜内各电器元件的动作顺序以是否正确、可靠。

3)运行中特别注意柜中的开断元件及母线等是否有温升过高或过热、冒烟、异常的声音及不应有的的放电等不正常现象,如发现异常,应及时停电检查,并排除故障,并避免事故的扩大。

4)对断开、闭合次数较多的断路器,应定期检查主触点表面的烧损情况,并进行维修。断路器每经过一次断路电流,应及时对其主触点等部位进行检查修理。

5)对主接触器,特别是动作频繁的系统,应及时检查主触点表面,当发现触点严重烧损时,应及时更换不能继续使用。

6)定期检查接触器、断路器等电器的辅助触点及电器的触点,确保接触良好。定期检查电流继电器、时间继电器、速度继电器、压力继电器等整定值是否符合要求,并作定期整定,平时不应开盖检修。

7)定期检查各部位接线是否牢靠及所有紧固件有无松动现象。

8)定期检查装置的保护接地系统是否安全可靠。

9)经常检查按钮、操作键是否操作灵活,其接触点是否良好。

第二节风力发电机组控制系统的结构原理

一、风力发电机组的控制目标

风力发电机组是实现由风能到机械能和由机械能到电能两个能量转换过程的装置,风轮系统实现了从风能到机械能的能量转换,发电机和控制系统则实现了从机械能到电能的能量转换过程,在考虑风力发电机组控制系统的控制目标时,应结合它们的运行方式重点实现以下控制目标:

1. 控制系统保持风力发电机组安全可靠运行,同时高质量地将不断变化的风能转化为频率、电压恒定的交流电送人电网。

2. 控制系统采用计算机控制技术实现对风力发电机组的运行参数、状态监控显示及故障处理,完成机组的最佳运行状态管理和控制。

3. 利用计算机智能控制实现机组的功率优化控制,定桨距恒速机组主要进行软切入、软切出及功率因数补偿控制,对变桨距风力发电机组主要进行最佳尖速比和额定风速以上的恒功

率控制。

4.大于开机风速并且转速达到并网转速的条件下,风力发电机组能软切入自动并网,保证电流冲击小于额定电流。当风速在4-7m/s之间,切入小发电机组(小于300kW)并网运行,当风速在7-30m /s之间,切人大发电机组(大于500kW)并网运行。

主要完成下列自动控制功能:

1)大风情况下,当风速达到停机风速时,风力发电机组应叶尖限速脱网抱液压机械闸停机,而且在脱网同时,风力发电机组偏航90°。停机后待风速降低到大风开机风速时,风力发电机组又可自动并人电网运行。

2)为了避免小风时发生频繁开、停机现象,在并网后10min 内不能按风速自动停机。同样,在小风自动脱网停机后,5min 内不能软切并网。

3)当风速小于停机风速时,为了避免风力发电机组长期逆功率运行,造成电网损耗,应自动脱网,使风力发电机组处于自由转动的待风状态。

4)当风速大于开机风速,要求风力发电机组的偏航机构始终能自动跟风。跟风精度范围±1 5°。

5)风力发电机组的液压机械闸在并网运行、开机和待风状态下,应该松开机械闸,其余状态下(大风停机、断电和故障等)均应抱闸。

6)风力发电机组的叶尖闸除非在脱网瞬间、超速和断电时释放,起平稳刹车作用。其余时间(运行期间、正常和故障停机期间)均处于归位状态。

7)在大风停机和超速停机的情况下,风力发电机组除了应该脱网、抱闸和甩叶尖闸停机外,还应该自动投入偏航控制,使风力发电机组的机舱轴心线与风向成一定的角度,增加风力发电机组脱网的安全度,待机舱转约90°后,机舱保持与风向偏90°跟风控制,跟风范围±15°。

8)在电网中断、缺相和过电压的情况下,风力发电机组应停止运行,此时控制系统不能供电。如果正在运行时风力发电机组遇到这种情况,应能自动脱网和抱闸停机,此时偏航机构不会动作,风力发电机组的机械结构部分应能承受考验。

9)风力发电机组塔架内的悬挂电缆只允许扭转±2.5 圈,系统已设计了正/ 反向扭缆计数器,超过时自动停机解缆,达到要求后再自动开机,恢复运行发电。

10)风力发电机组应具有手动控制功能(包括远程遥控手操),手动控制时“自动”功能应该解除,相反地投入自动控制时,有些“手动”功能自动屏蔽。

11)控制系统应该保证风力发电机组的所有监控参数在正常允许的范围内,一旦超过极限并出现危险情况,应能自动处理并安全停机。

二、控制系统主要参数

1. 主要技术参数

1)主发电机输出功率(额定)P e(kW)

2)发电机最大输出功率 1.2P e(kW)

3)工作风速范围4-25m/ s

4)额定风速V e(m/ s)

5)切攻风速(1min 平均值)4m/ s

6)切出风速(1min 平均值)25m/ s

7)风轮转速N(r/min)

8)发电机并网转速1000/1500+20r/min 9)发电机输出电压V±10%

10)发电机发电频率50Hz±0.5 Hz 11)并网最大冲击电流(有效值)<1.51e

12)电容补偿后功率因数0.6-0.92

2.控制指标及效果

1)方式专用微控制器

2)过载开关<690V,660A

3)自动对风偏差范围±15°

4)风力发电机组自动起、停时间<60s

5)系统测试精度≥0.5%

6)电缆缠绕2.5 圈自动解缆

7)解缆时间55min

8)手动操作响应时间<5s

3.保护功能

1)超电压保护范围连续30s>1.3U e(V)

2)欠电流保护范围连续30s<1.3I e(A)

3)风轮转速极限<40r/min

4)发电机转速极限<1800r/min

5)发电机过功率保护值连续60s>1.2P e(kW)

6)发电机过电流保护值连续30>1.51e(A)

7)大风保护风速连续600s>25m/s

8)系统接地电阻<4Ω

9)防雷感应电压>3500V

三、恒速恒频风力发电机组控制系统组成

控制系统组成框图,如图9-1所示。这是定桨距双速发电机型机组控制系统的组成,对于变桨距风力发电机组只是发电机软切人控制略有区别。

控制系统由微机控制器(包括监控显示运行控制器、并网控制器、发电机功率控制器)、运行状态数据监测系统、控制输出驱动电路模板(输出伺服电动机、液压伺服机构、机电切换装置)等系统组成。主要有空气断路器、控制切换接触器、过电流、过电压及避雷保护器件、电流、电压及温度的变换电路、发电机并网控制装置、偏航控制系统、相位补偿系统、停机制动控制装置。传感信号主要由信号接口电路完成,它们向计算机控制器提供电气隔离标准信号。这些信号有模拟量20 点、开关量60多点、频率量10 多点,信号的电压和电流范围一般为工业标准信号。

1. 控制系统输入信号系统监测的参数有三相电压、三相电流、电网频率、功率因数、输出功率、发电机转速、风轮转速、发电机绕组温度、齿轮箱油温、环境温度、控制板温度、机械制动闸片磨损及温度、电缆扭绞、机舱振动、风速仪和风向标等。为了得到系统运行的情况,系统还需监测各接触器的开关、液压阀压力状况、偏航运作和按键输入等情况。而控制系统输出控制的是并网晶闸管触发、相补偿、旁路接触器的开合、空气断路器的开合、空气制动、机械制动和偏航。这些控制输出都需要状态反馈,所以系统的输入量包括20多点模拟量、10 点频率量、60多点开关量。他们主要为系统的模拟输入量:发电机和电网的三相电压、三相电流和发电机绕组温度、齿轮箱油温、环境温度、传动机构等旋转机构的热升温度;频率输入量有风轮转速、发电机转速、风速仪、风向仪,偏航正反向计数、扭缆正反向计数等;开关输入量主要有按键信号16 个、制动闸片磨损、制动闸片热、风向标0°、风

向标90°、偏航顺时针传感、偏航逆时针传感、机舱振动、偏航电动机过载、旁路接触器状态、风轮液压压力信号(风轮转速过高时出现)、机械制动液压压力高、机械制动液压压力低、外部错误信号等等。

2. 控制系统输出信号而系统的控制输出主要是控制各电磁阀、接触器线圈、空气断路器的开合输出。电磁阀和接触器侧的开合则与发电动机的并网、偏航电动机(顺时针和,逆时针)的动作、相位补偿的三步投切、空气制动及机械制动系统的动作等。还有系统的软并网和软脱网控制。此外,对变桨距风力发电机组还要求根据风速变化调节变桨距控制输出。

四、控制系统工作原理

主开关合上后,风力发电机组控制器准备自动运作。首先系统初始化,检查控制程序、微控制器硬件和外设、传感器来的脉冲及比较所选的操作参数,备份系统工作表,接着就正式起动。起动的第一秒钟内,先检查电网、设置各个计数器、输出机构初始工作状态及晶闸管的开通角。所有这些完成后,风力发电机组开始自动运行。用于风轮的叶尖本来是90°,现在恢复为0°,风轮开始转动。计算机开始时刻监测各个参数、输入,判断是否可以并网,判断参数有否超过极限、执行偏航、相位补偿、机械制动或空气制动。其中相位补偿的作用在于使功率因数保持在0.95-0.99之间。其详细的控制系统工作原理流程框图(见图9-2)。

五、并网控制基本原理

恒速恒频发电机并网控制系统一般来说比较简单,根据发电机不同种,即采用不同方法,对于同步发电机和笼型感应发电机方法各不相同。前者运行于由电机极数和频率所决定的同步转速,后者则以稍高于同步速的转速运行。

(一)同步发电机的并网运行控制

由于发电机有固定的旋转方向,只要使发电机的输出端与电网各项互相对应即可满足条件。

起动和并网过程如下:由风向传感器测出风向,并使偏航控制器动作,使风力发电机组对准风向。当风速超过切人风速时,桨距控制器调节叶片桨距角使风力发电机组起动。但发电机被风力发电机组带到接近同步速时,励磁调节器动作,向发电机供给励磁,并调节励磁电流使发电机的端电压接近于电网电压。在发电机被加速,几乎达到同步速度时,发电机的电动势或端电压的幅值将大致与电网电压相同。它们频率之间的很小差别将使发电机的端电压和

电网电压之间的相位差在0°和360°的范围内缓慢的变化,检测出断路器两侧的电位差,当其为零或非常小时就可使断路器合闸并网。合闸后由于有自整步作用,只要转子转速接近同步转速就可以使发电机牵人同步,即使发电机与电网保持频率完全相同。以上过程可以通过微机自动检测和操作。

这种同步机并网方式,可使并网时的瞬态电流减至最小,因而风力发电机组和电网受到的冲击也最小。但是要求风力发电机组调速器调节转速使发电机频率与电网频率的偏差达到容许值时方可并网,所以对调速器的要求较高,如果并网时刻控制不当,则有可能产生较大的冲击电流,甚至并网失败。另外,为了实现上述同步并网所需要的控制系统,一般不是很便宜的,对于小型风力发电机组将会占其整个成本的一个相当大的部分,由于这个原因,同步发电机一般用于较大型的风力发电机组。

(二)感应发电机的并网运行控制

1. 电机并网感应发电机可以直接并入电网,也可以通过晶闸管调压装置与电网连接。感应发电机的并网条件如下:

1)转子转向应与定子旋转磁场转向一致,即感应发电机的相序应和电网相序相同;

2)发电机转速应尽可能接近同步转速时并网。

并网的第一个条件必须满足,否则电机并网后将处于电磁制动状态,在接线时应调整好相序;第二个条件不是非常严格,但愈是接近同步转速并网,冲击电流衰减的时间愈少。

当风速达到起动条件时风力发电机组起动,感应发电机被带到同步转速附近(一般为98% -100%同步转速)时合闸并网。由于发电机并网时本身无电压,故并网时必将伴随一个过渡过程,流过5-6 倍额定电流的冲击电流,一般零点几秒后即可转入稳态。感应发电机并网时的转速虽然对过渡过程的时间有一定影响,但一般来说问题不大,所以对风力发电机并网合闸时的转速要求不是非常严格,并网比较简单。风力发电机组与大电网并联时,合闸瞬间的冲击电流对发电机及大电网系统的安全运行不会有太大的影响。当对小容量的电网系统,并联瞬间会引起电网电压大幅度下跌,从而影响接在同一电网上的其他电器设备的正常运行,甚至会影响到小电网系统的稳定与安全。为了抑制并网时的冲击电流,可以在感应发电机与三相电网之间串接电抗器,使系统电压不致下跌过大,待并网过渡过程结束后,再将其短接。

对于较大型的风力发电机组,目前比较先进的并网方法是采用双向晶闸管控制的软投入法,如图9-3 所示。当风力发电机组将发电机带到同步速附近时,发电机输出端的短路器闭合,使发电机经一组双向晶闸管与电网连接,双向晶闸管触发角由180°-0°逐渐打开,双向晶闸管的导通角由0°-180°通过电流反馈对双向晶闸管导通角的控制,将并网时的冲击电流限制在1.5 倍额定电流以内,从而得到一个比较平滑的并网过程,瞬态过程结束后,微处理机发出信号,利用一组开关将双向晶闸管短接,从而结束了风力发电机的并网过程。进入正常的发电运行。

2. 并网运行时的功率输出感应发电机并网运行时,它向电网送出的电流的大小及功率因数,取决于转差率/ 及电机的参数,前者与感应发电机的负载的大小有关,后者对设计好的电机是给定的数值,因此这些量都不能加以控制或调节。并网后电机运行在其转矩—转速曲线的稳定区(见图9-4)。当风力发电机组传给发电机的机械功率及转矩随风速而增加时,发电机的输出功率及其转矩也相应增大,原先的转矩平衡点A1沿其运行特性曲线移至转速较前稍高的一个新的平衡点A2,继续平稳运行。但当发电机的输出功率超过其最大转矩所对应的功率时,其反转矩减小,从而导致转速迅速升高,在电网上引起飞车,这是十分危险的。为此必须具有合理可靠的失速叶片或限速机构,保证风速超过额定风速或阵风时,从风力发电机组输入的机械功率被限制在一个最大值范围内,保证发电机的输出电功率不超过其最大转矩所对应的功率值。

需要指出的是,感应发电机的最大转矩与电网电压的平方成正比,电网电压下降会导致发电机的最大转矩成平方关系下降,因此如电网电压严重下降也会引起转子飞车;相反如电网电压上升过高,会导致发电机励磁电流增加,功率因数下降,并有可能造成电机过载运行。所以对于小容量电网应该配备可靠的过电压和欠电压保护装置,另一方面要求选用过载能力强(最大转矩为额定转矩1.8倍以上)的发电机。

3.无功功率及其补偿感应发电机需要落后的无功功率主要是为了励磁的需要,另外也为了供应定子和转子漏磁所消耗的无功功率。单就前一项来说一般中、大型感应电机,励磁电流约为额定电流的20%-25%,因而励磁所需的无功功率就达到发电机容量的20%-25%,再加上第二项,这样感应发电机总共所需的无功功率约为发电机容量的20%-25%。

接在电网上的负载,一般来说,其功率因数都是落后的,亦即需要落后的无功功率,而接在电网上的感应发电机也需从电网吸取落后的无功功率,这无疑加重了电网上其他同步发电机提供无功功率的负担,造成不利的影响。所以对配置感应电机的风力发电机,通常要采用电容器进行适当的无功补偿。

变速恒频风力发电机组的一个重要优点是可以使风力发电机组在很大风速范围内按最佳效率运行。从风力发电机组的运行原理分析,要求风力发电机组的转速正比于风速变化,并保持一个恒定的最佳叶尖速比,从而使风力发电机组风轮的风能利用系数C p保持最大值不变,风力发电机组输出最大的功率。因此,对变速恒频风力发电机组的要求,除了能够稳定可靠地并网运行之外,最重要的一点就是要实现最大功率输出控制。

(四)同步发电机交/直/ 交系统的并网运行

这种系统与电网并联运行的特点如下:

1)由于采用频率变换装置进行输出控制,所以并网时没有电流冲击,对系统几乎没有影响。

2)为采用交值佼转换方式,同步发电机的工作频率与电网频率是彼此独立的,风轮及发电机的转速可以变化,不必担心发生同步发电机直接并网运行时可能出现的失步问题。

3)由于频率变换装置采用静态自励式逆变器,虽然可以调节无功功率,但有高频电流流向电网。

4)在风电系统中采用阻抗匹配和功率跟踪反馈来调节输出负荷可使风力发电机组按最佳效率运行,向电网输送更多的电能。

(五)双馈发电机系统的并网运行

双馈发电机定子三相绕组直接与电网相联,转子绕组经交—交循环变流器联入电网。这种系统并网运行的特点:

1. 风力机起动后带动发电机至接近同步转速时,由循环变流器控制进行电压匹配、同步和相位控制,以便迅速地并入电网,并网时基本上无电流冲击。对于无初始起动转矩的风力发电机组(如达里厄型风力发电机组),风力发电机组在静止状态下的起动可由双馈电机运行于电动机工况来实现。

2. 风力发电机的转速可随风速及负载的变化及时做出相应的调整,使风力发电机组以最佳叶尖速比运行,产生最大的电能输出。

3.双馈发电机励磁可调量有三个,即励磁电流的频率、幅值和相位。调节励磁电流的频率,保证发电机在变速运行的情况下发出恒定频率的电力;通过改变励磁电流的幅值和相位,可达到调节输出有功功率和无功功率的目的。当转子电流相位改变时,由转子电流产生的转子磁场在电机气隙空间的位置有一个位移,从而改变了双馈电机定子电动势与电网电压向量的相对位置,也即改变了电机的功率角,所以调节励磁不仅可以调节无功功率,也可以调节有功功率。

六、风力发电机组的变距控制原理

风力发电机组的变距系统主要包含着两种控制方式,即并网前的速度控制与并网后的功率控制。由于异步电机的功率与速度是严格对应的,功率控制最终也是通过速度控制来实现的。

变桨距风轮的叶片在静止时,节距角为90°,如图9-5 所示,这时气流对叶片不产生力矩,整个叶片实际上是一块阻尼板。当风速达到起动风速时,叶片向0°方向转动,直到气流对叶片产生一定的攻角,风轮开始起动。风轮从起动到额定转速,其叶片的节距角随转速的升高是一个连续变化的过程。根据给定的速度参考值,调整节距角,进行所谓的速度控制。

当转速达到额定转速后,电机并人电网。这时电机转速受到电网频率的牵制,变化不大,主要取决于电机的转差,电机的转速控制实际上已转为功率控制。为了优化功率曲线,在进行功率控制的同时,通过转子电流控制器对电机转差进行调整,从而调整风轮转速。当风速较低时,电机转差调整到很小(1%),转速在同步速附近;当风速高于额定风速时,电机转差调整到很大(10%),使叶尖速比得到优化,使功率曲线达到理想的状态。

(二)变距控制

如图9-6所示,变距控制系统实际上是一个随动系统。变距控制器是一个非线性比例控制器,它可以补偿比例阀的死带和极限。变距系统的执行机构是液压系统,节距控制器的输出信号经D/A转换后,变成电压信号控制比例阀(或电液伺服阀),驱动油缸活塞,推动变距机

构,使叶片节距角变化。

活塞的位移反馈信号由位移传感器测量,经转换后输入比较器。

七、风力发电机组现场数据采集的信号特征

1. 电量信号

1)电压、电流:测量信号范围宽,要求有较好的线性度;测量信号谐波丰富,频谱特性复杂;电压、电流信号为矢量信号,暂态反应速度应低于0.02s,精度高于0.5 级。

2)功率因数:影响风力发电机组发电量计量和补偿电容投入容量,要求较高精度。

3)电网频率:一般在工频附近,精度要求±0.1Hz,反应速度快。

一次电压、电流由PT、CT 变换为可采样的交流信号,经滤波整形限幅后进行A/ D转换。以上数据信号采集点集中,数据流量大,采样速度高。风力发电机组的电压电流的采样数据有两个用途:

a. 在发电机或主回路元件故障及电网发生危及风力发电机运行的异常状态时作为微机保护的判据。

b.作为风力发电机组发电量统计、性能评估、状态显示的重要参数。以及超功率和低功率时作为风力发电机组退出运行判据。同时,也作为就地电容补偿投切重要判据。风力发电机组继电保护属于低压电流、电压保护。根据风力发电机组的与电网连接和运行特点,电力故障的形式比较简单,输入信号的暂态分量不丰富,仅要求纯基频分量的输入信号,即可作为风力发电机组电力故障判据。同时,算法选择还需兼顾数据统计的需要,因而选择傅氏全波算法作为风力发电机组微机继电保护的算法。傅氏算法数据窗长度为20ms,计算量和采样频率对于单片机系统来说是一个需要妥善处理的问题,对于IPC 系统则需要妥善处理数据流量分配的问题,可直接应用于低压网络的电压、电流后备保护,配备差分滤波器以削弱电流中衰减的直流分量作为电流速断保护,加速出口故障的切除时间。

2. 温度信号数据信号采集点相对集中,距离主控位置50m。器件热容量较大,反应到温度变化较慢,可采用铂电阻测量。温度参数可作为器件疲劳程度和风力发电机组运行效能的判据,而不宜作为突发故障的保护判据。温度统计对于故障分析和历史数据趋势分析有一定作用。

由PT100铂电阻对温度进行采样,采样信号经电路处理后形成0-5V 电压。根据采样点空间布置和距离数据处理中心位置,在机舱上设计一个采集模块就地将温度值转化为数字信号,模块采用RS-485 通信方式把数据送给计算机。温度采集模块采用ICL7135芯片,其分辨率为十进制输出4.5位,可接受从±150mV- ±10V之间不同范围的电压信号,并在与外界接口处加装DC 3000V 的光耦合器隔离,保护采集模块易受高压或地线电流的冲击而损坏。测量控制盘温度的传感器位于电控柜,经电路处理后形成0-5V 电压直接送至A/ D转换板,由计算机分析判断晶闸管的温度状况。

3. 风向风力发电机组对风向的测量由风向标实现。风向瞬时波动频繁,幅度不大。风力发电机组为主动对风设计,当风向发生变化时,由偏航机构根据风向标信号带动机头随风转动,对风向的测量不要求具体位置。风力发电机组对风向的测量由风向标来完成。随着数字电路的发展,风向标的种类也有许多。其中一种内部带有一个8位的格雷码盘,当风向标随风转动时,同时也带动格雷码盘转动,由此得到不同的格雷码数,通过光电感应元件,形成一组8位的数字输入信号。格雷码盘将360°划分成256个区,每个区分为1.41°,所以其测量精度为() *(%。这种风向标可以确定风向具体位置。

另一种风向标如图9-7所示。风向标形成的信号为两个开关量,正向是一号传感器,为0°轴,二号传感器同一号传感器成90°夹角,为90°轴,这样形成一个带四个象限的虚拟坐标。当风向标转动后,就会同风力发电机组现在的方向形成夹角,而风力发电机组现在的方向必定会落在风向标所形成的坐标象限内,从而来确定风力发电机组的偏航方向和停止偏航的标记。其中0/ 1表示传感器送来的信号在0和1之间不停的摆动;表示传感器送来的信号可以为0也可以为1。本系统选用了这种风向标对风向进行测量。

变速变桨距风力发电机组控制策略改进与仿真

变速变桨距风力发电机组控制策略改进与仿真 刘 军,何玉林,李 俊,黄 文 (重庆大学机械传动国家重点实验室,重庆市400030) 摘要:在分析变速变桨距风力发电机组基本控制策略的基础上,提出一种扩大过渡区的改进控制策略,用来消除额定功率运行点附近切换造成的功率波动及突变载荷等不利影响。依据改进的控制策略设计了3个控制器平滑过渡方案,实现对该策略的最佳跟踪。运用MAT LAB 仿真平台模拟了改进控制策略下的风力发电机组运行特性,结果表明了改进控制策略的正确性及控制器设计的有效性。 关键词:风力发电机组;变速变桨距;控制策略;扩大过渡区;平滑控制 收稿日期:2010 06 23;修回日期:2010 10 09。重庆市科技攻关重点项目(CST C2007A A3027)。 0 引言 风力发电机组的控制技术由原来单一的定桨距失速控制转向变桨距变速控制,目的是为了防止风能转换系统承受的载荷过重,从风场中最大限度地捕获能量以及为电网提供质量较好的电能。然而,风力发电机组作为一种复杂的、多变量、强耦合、非线性的系统,要想减小风力机载荷以延长其使用寿命,抑制功率波动以降低对电网的不利影响,控制策略的选取及控制器的设计至关重要[1 6]。 本文通过对变速变桨距风力发电机组基本控制策略的分析,针对过渡区运行过程中出现的功率波动大及突变载荷强等情况,提出一种改进的控制策略来减缓此种影响。为最佳跟踪改进的控制策略,设计了3个控制器以实现3个运行区间的平滑过渡。同时应用M ATLAB 仿真平台对变速变桨距风力发电机组运行特性进行了仿真,结果表明了所提出方案的合理性和可行性。 1 基本的变速变桨距控制策略 如图1所示,在转速 转矩平面图中,曲线A BC 描述了变速变桨距风力发电机组的基本控制策略。在低风速区,风电机组从切入风速为V in 的A 点到风速为V N 的B 点,沿着C pmax 曲线轨迹运行,此区间称为恒C p 运行区。由于在B 点发电机转速达到了其上限值 N ,当风速从V N 上升到V N 时,转速将恒定在 N ,提升发电机转矩使风电机组达到其额定功率,在图1中为BC 段,也称为恒转速区或过渡区。当风速超过额定风速V N 时,变桨距系统将开 始工作,通过改变桨距角保持功率的恒定,风电机组将持续运行在C 点,直到风速超过切出风速V out ,此区间称为恒功率区,而此区间内桨距角控制方式采用统一桨距控制,它是指风力机所有桨距角均同时 改变相同的角度[7 8] 。在此需要注意的是:若最大功率P N 曲线与C pmax 曲线的相交点在额定转速极限值左侧,就会造成风电机组在未达到额定转速时,已进入失速状态,相应的A B 区间将被缩小,这时就需 对整个风电机组额定点进行重新选取。 图1 变速变桨距风力发电机组控制策略Fig.1 C ontrol strategy of the variable speed pitch controlled wind turbine driven generator system 从图1可以看出,3个区间工作点的划分非常明显,而控制器的设计与工作点的选取有着必然的联系,因此,基本的变速变桨距风电机组通常会设计2个独立的控制器,一个用来跟踪参考速度,另一个用来跟踪额定功率。由于2个控制器都有各自的控制目标,在运行过程中相互独立,然而在工作点附近,2个控制器又相互制约,这种制约就会导致风电机组在C 点控制系统的调节能力下降,在突遇阵风 82 第35卷 第5期2011年3月10日Vo l.35 N o.5M ar.10,2011

风力发电并网技术及电能质量控制策略

风力发电并网技术及电能质量控制策略 发表时间:2018-08-20T17:02:21.880Z 来源:《红地产》2017年8月作者:熊毅 [导读] 随着我国科学技术的发展,社会的进步,加上矿物资源越来越贫乏, 随着风力发电技术的不断发展,已经从过去的小型风力发电机独立运行发展为大型发电机组并网运行,也就是常说的风力发电场并网运行。采用这种运行方式以后,不但提高了对风力的利用率,还在电能供给方面做出了卓越的成绩。在电能的质量控制面,因为风力发电并网技术的实行,使电能质量控制达到了良的效果,从而在根本上改变了人们的用电状况,为人们的工作和生活增添了一份助力。 1 风力发电的原理和技术 空旷的原野和辽阔的海面是风能的优质资源,风力发电是利用大自然中的空气以一定速度流动所产生的风能驱动风车的叶片旋转,将此旋转运动在增速机中转速提升,在由此产生的力矩带动下,发电机组中的导体通过切割磁力线产生感应电动势,外接闭合回路在导体中会有电流产生,实现风能向电能的转换。依据目前的风车技术,只要风速大于 3 米 / 秒便可以产生电能,实现发电目的。 风力发电机一般有风轮、偏航装置、发电机组、塔架、限速安全机构和储能用蓄电池等部件构成。风轮是由,个或、个叶片组成的集风装置,它的作用是采集风的动能转变为风轮旋转的机械能。风轮后面的调向器也叫尾舵,它的功能是控制风轮的迎风方向,使风轮随时面对风向,最大限度地获取风能。限速安全机构的作用是对风轮的转速予以一定的限制,使之在规定的范围内保持相对稳定,起到保证风力发电机限速平稳运行的作用。塔架则是机组的承载和风轮的支撑机构。 由于自然界的风速极不稳定,其很强的随机性和间歇性致使风力发电机的输出功率也极不稳定,高峰和低谷落差甚大,所以,风力发电机发出的电能不能直接用在电负载上,而是先用铅酸蓄电池储存起来,以保持风力发电系统持续稳定的供电运行状态。 2 风力发电并网技术 风电并网技术,是发电机输出电压,在频率、幅值和相位以上及电网系统电压是一致的。而随着风电机组容量的逐渐增大,风电电力并网的时候对电网的冲击也随之增大,因此选择科学的风电并网技术是十分必要的。 2.1 同步风力发电机组并网技术 同步发电机在运行的过程当中,一方面要输出有功功率,而另一方面则需提供无功功率,此外还需周波稳定及质量高,所以被广泛采用。然而怎么将这项技术与风电机组的并网结合起来也是一个问题,通常因风速不稳定等因素造成了转子转矩的不稳定,在并网的时候调速的性能不能达到精度要求,若不采取有效的控制,就会出现无功振荡或失步的问题。特别是重载情况,结果可能会更加的严重。但是近些年,随着科学技术不断提高,新型的电力电子技术能够在一定的程度上处理好这个问题,例如说一些变频装置。所以同步风力发电机组并网技术应当给予足够重视。 2.2 异步风力发电机组并网技术 与同步风电机组并网技术不同,异步风电机运行的过程当中,其主要凭借转差率调整负荷,因此调速的精度要求较低,也不需要同步设备与整步操作,只需要在其转速接近同步转速的时候,就能够轻松的并网。风电机组配用异步发电机,优点就在这项技术控制装置相对较为简单,在并网之后无振荡与失步问题,并且运行稳定及可靠。而缺点是直接并网可能会造成大冲击电流出现,降低电压,从而对系统运行的安全造成一定影响,系统的本身没有无功功率,其需要进行无功补偿。若不稳定系统频率太低的话,就会使电流剧增及电压过载。因此,对异步风电机组要进行严格的监视,并采取有效的措施,才能够保证发电机组的安全运行。 3 电能质量控制策略 3.1 改善电能质量 电能质量就是电力系统中电能的质量,理想的电能应该是美对称的正弦波,但有些因素会使波形偏离对称正弦,由此便产生了电能质量问题。很多城市的电能质量较低,对人们的生活和工作产生了很大的影响,因此必须改善电能质量。主要方法为:首先可以改善电功率因数,使无功就地平衡,但要注意的是,一定要合理选择供电半径。其次要合理选择供电系统线路的导线截面,但要注意合理配置变电与配电设备,防止其过负荷运行。第三要适当设置调压措施,例如串联补偿、变压器加装有载调压装置、装同期调试相机或者静电电容器等。以上三种措施,在实际的用中对电能质量的改善具有良好的效果,可以大力推广。同时,我们要注意及时对百姓的用电情况进行调查,找出不足之处,以便于对电能质量及时进行改善。 3.2 提高电能质量 电能质量的高低影响着人们的日常生活和工作,因此在改善电能质量的基础上,必须有所提高。很多城市的电能质量虽然得了改善,但还是没有办法满足人们的需求,因此,提高电能质量成为了人们的迫切要求,对于科研人员来说也是一项重要的任务。要想提高电能质量,首先要找出供电电压超过允许偏差的原因,经过大量的调查和研究,我们发现原因主要有三点,一是冲击性负荷、非对称性负荷的影响;二是调压措施缺乏或使用不当;三是线路过负荷运行。根据上述三点原因,使用风力发电并网技术可以有效的提高电能质量,不仅节省了运营成本,而且对风能的利用率也提高了不少。 4 结束语 综上所述,研究风力发电并网技术及电能质量控制策略对确保电网电能质量具有重要的作用。因此要进一步提高风力发电并、网技术及电能质量控制策略,这样才能促进整个电力系统的稳定运行。 参考文献: [1] 常耀华 . 对风力发电并网技术与其电能质量控制策略浅论 [J]. 电子制作 ,2014(01):266. [2] 齐洁 , 常耀华 . 对风力发电并网技术与其电能质量控制策略浅论 [J]. 企业研究 ,2014(02):153. [3] 魏巍 , 关乃夫 , 徐冰 . 风力发电并网技术及电能质量控制 [J]. 吉林电力 ,2014,42(05):24-26. [4] 樊裕博 . 风力发电并网技术及电能质量控制策略 [J].科技传播 ,2015,7(21):43-44. [5] 邹金运 . 风力发电并网技术及电能质量控制策略 [J].黑龙江科技信息 ,2015(35):88. [6] 谢鹏 . 风力发电并网技术与电能质量控制 [J]. 科技创新导报 ,2016,13(13):41+70. [7] 路立仁 . 浅析风力发电并网技术及电能控制策略 [J].科技与创新 ,2016(17):134. [8] 张国新 . 风力发电并网技术及电能质量控制策略 [J].电力自动化设备 ,2009,29(06):130-133.

风力发电机组出质保验收技术规范

CGC 北京鉴衡认证中心认证技术规范 CGC/GF 030:2013 CNCA/CTS XXXX-2013 风力发电机组出质保验收技术规范 2013-××-××发布2013-××-××实施 北京鉴衡认证中心发布

目次 前言....................................................................................................................................... I I 引言...................................................................................................................................... I II 1 目的和范围 (1) 2 规范性引用文件 (1) 3 术语及定义 (1) 4 验收依据 (2) 5 验收过程 (3) 6 验收内容和方法 (3) 6.1文档资料验收 (3) 6.2单台机组验收 (4) 6.2.1一致性检查 (4) 6.2.2机组运行数据分析 (5) 6.2.3机组及主要部件检查 (6) 6.2.4附属设备 (6) 6.3其他验收项目 (7) 6.3.1应用软件 (7) 6.3.2专用工具、备品备件及消耗品 (7) 7 验收结论与整改要求 (7) 7.1验收结论 (7) 7.2整改要求 (8) 7.3遗留问题 (8) 8 验收报告 (8) 附录A质保期满验收所需资料清单 (9) 附录B功率曲线和发电量考核方法 (10) 附录C可利用率考核方法 (14) 附录D机组部件检查方法 (17) D.1整体情况检查 (17) D.2主要系统检查 (17) D.3主要部件检查 (20)

《风力发电场安全、检修、运行规程》题库资料

《风力发电场安全规程》、《风力发电场检修规程》、《风力发电场运行规程》考试题库(796/797/666-2012) 《风力发电场安全规程》 一、填空题 1、风电场安全工作必须坚持“(安全第一)、(预防为主)、(综合治理)”的方针,加强人员(安全培训),完善(安全生产条件),严格执行(安全技术)要求,确保(人身),和(设备)安全。 2、风电场输变电设备是指风电场升压站(电气设备)、(集电线路)、(风力发电机组升压变)等。 3、飞车是指风力发电机组(制动系统)失效,风能转速超过(允许或额定)转速,且机组处于(失控)状态。 4、安全链是由风力发电机组(重要保护元件)串联形成,并独立于机组(逻辑控制)的硬件保护回路。 5、风电场工作人员应具备必要的机械、电气、安装知识,熟悉风电场输变电设备、风力发电机组的(工作原理)和(基本结构),掌握判断一般故障的(产生原因)及(处理方法),掌握(监控系统)的使用方法。 6、风电场工作人员应掌握(安全带)、(防坠器)、(安全帽)、(防护服)和(工作鞋)等个人防护设备的正确使用方法,具备(高处作业)、(高空逃生)及(高空救援)相关知识和技能,特殊作业应取得(特殊作业操作证)。 7、风电场人员应熟练掌握(触电)、(窒息急救法),熟悉有关(烧

伤)、(烫伤)、(外伤)、(气体中毒)等急救常识,学会使用(消防器材)、(安全工器具)和(检修工器具)。 8、外单位工作人员应持有相关的(职业资格证书),了解和掌握工作范围内的(危险因素)和(防范措施),并经过(考试合格)方可开展工作。 9、临时用工人员应进行现场(安全教育和培训),应被告知其作业现场和工作岗位存有的(危险因素)、(防范措施)及事故(紧急处理措施)后,方可参加(指定)的工作。 10、进入工作现场必须(戴安全帽),登塔作业必须(系安全带)、(穿防护鞋)、(戴防滑手套)、使用(防坠落保护)装置,登塔人员体重及负重之和不宜超过(100),身体不适、情绪不稳定,不应(登塔作业)。 11、禁止使用(破损)及(未经检验合格)的安全工器具和个人防护用品。 12、风力发电机组底部应设置“(未经允许,禁止入内)”标志牌:基础附近应增设“(请勿靠近,当心落物)”、“(雷雨天气,禁止靠近)”警示牌:塔筒爬梯旁应设置“(必须系安全带)”、“(必须戴安全帽)”、“(必须穿防护鞋)”指令标识:36V及以上带电设备应在醒目位置设置“(当心触电)”标识。 13、风力发电机组内无防护罩的旋转部件应粘贴“(禁止踩踏)”标识;机组内易发生机械卷入、轧压、碾压、剪切等机械伤害的作业地点应设置“(当心机械伤人)”标识;机组内安全绳固

风电工程专用标准清单

2.风电工程专用标准 2.1 风电场工程可行性研究报告设计概算编制办法及计算标准 FD001—2007 2.2 风电场工程等级划分及安全标准(试行) FD002—2007 2.3 风电机组地基基础设计规定(试行) FD003—2007 2.4 风电场工程概算定额 FD004—2007 2.5 风力发电厂设计技术规范 DL/T 5383—2007 2.6 风力发电工程施工组织设计规范 DL/T 5384—2007 2.7 风力发电场项目建设工程验收规程 DL /T 5191—2004 2.8 风力发电机组验收规范 GB/T 20319—2006 2.9风力发电场运行规程 DL/T 666-2012 2.10风力发电场安全规程 DL 796-2012 2.11风力发电场检修规程 DL/T 797-2012 2.12风力发电场项目可行性研究报告编制规程 DL/T 5067-1996 2.13风力发电机组设计要求GB/T18451.1 2.15风电场风能资源测量方法 GB/T 18709-2002 2.16风电场风能资源评估方法 GB/T 18710-2002 2.17风力发电机组装配和安装规范 GB/T 19568-2004 2.18风电场场址工程地质勘察技术规定发改能源[2003]1403号 2.19风电特许权项目前期工作管理办法发改能源[2003]1403号 2.20风电场工程前期工作管理暂行办法发改办能源[2005]899号 2.21风电场工程建设用地和环境保护管理暂行办法发改能源[2005]1511号 2.22风电工程安全设施竣工验收办法水电规办[2008]001号 2.23风力发电机组第1部分:通用技术条件 GB/T 19960.1-2005 2.24风力发电机组第2部分:通用试验方法 GB/T 19960.2-2005 2.25风力发电机组电能质量测量和评估方法 GB/T 20320-2014 2.26风力发电机组异步发电机第1部分:技术条件 GB/T 19071.1-2003 2.27风力发电机组异步发电机第2部分:试验方法 GB/T 19071.2-2003 2.28风力发电机组塔架 GB/T 19072-2010 2.29风力发电机组功率特性试验 GB/T 18451.2-2012 2.30风力发电机组电工术语 GB/T 2900.53-2001 2.31风力发电机组控制器技术条件 GB/T 19069-2003 2.32风力发电机组控制器试验方法 GB/T 19070-2003 2.33风力发电机组齿轮箱 GB/T 19073-2008 2.34风力发电机组风轮叶片 JB/T 10194-2000

风力发电机组安全操作知识

风力发电安全操作知识培训教材 1 总则 为贯彻“电业生产,安全第一”的方针,保障电力系统的正常生产和检修、维护工作人员的安全,在风力发电机组的检修和维护前要认真学习风力发电机组安全操作知识。 2.1 个人防护 进入风机作业现场,必须使用个人防护设备,包括: 1)全护体安全带、安全帽、安全靴、手套,必要时还需要保暖衣。 2)个人防护设备必须是得到批准的型号,其上标有产品合格标志,表明适合于使用者准备从事的相关工作和保护,适合于工作地区的气候条件。 3)如果有多人同时攀登风力发电机塔筒,每人都必须配备个人所需的防护设备。 4)个人防护设备必须送请有资质的单位检查和检验,每年至少一次。 5)维护部员工必须正确妥善保存全护体安全带,并且必须随时检查。 2.2 安全带的穿戴 安全带的配戴程序如下: 1、通过扣眼(1)扣紧安全带,使大腿圈(2)下垂 2、将肩带(3)以背旅行包的方式放在肩上,使锁 扣(1)的塑料带靠在后背上。 3、把松开的大腿圈(2)从里到外套在大腿上。 4、大腿圈(2)的皮带穿入搭扣(4)内,并拉紧。 5、将大腿圈皮带的末端穿进皮带的带袢(5)内。 图4 – 1 6、拉紧胸部的窄皮带(6) 7、以中部的皮带调整器(7)调整皮带的正确位置。 2.3 安全防护设备的日常保养 1)绝对不能与酸类或与腐蚀性化学药品接触。 2)不得接触尖锐边缘以及带尖锐边缘的物体。

4)必须存放在通风良好的地方,并避免太阳直接照射。 5)每次在使用安全带避免了事故之后,应由专业人员对安全带加以检查。一年必须至少检修一次。任何有瑕疵设备都必须立刻停止使用。 3 风力发电机组现场安装安全规程 风力发电机组的塔筒、机舱和风轮的安装工作必须严格按照吊装说明或安装指导进行。 3.1 现场安全防护一般规定 3.1.1 进入施工现场的所有人员必须穿戴好安全帽、穿安全鞋和合适的工作服。 3.1.2 凡从事两米以上的高空作业人员必须系好安全带。 3.1.3 正确使用安全用具,未经安全培训人员和未携带安全用具人员禁止进入现场工作。 3.1.4 高空作业人员严禁带病作业,禁止酒后作业。 3.1.5 定期对安全用具进行检验,检验合格后方可继续使用。安全用具如有破损时,必须随时更换。 3.1.6 高空作业时严禁临空投掷物料。 3.1.7 施工现场禁止流动吸烟,吸烟人员必须在指定的吸烟点吸烟,施工人员禁止作业时吸烟。3.1.8施工人员必须牢记“三不伤害”原则:不伤害自己,不伤害他人,不被他人伤害。 3.1.9 现场应配备足够的干粉灭火器材,消防器材应保证灵敏有效,干粉灭火器必须按规定时间更换干粉。 3.1.10 夜间施工必须有足够照明,危险作业面周围应红灯示警。 3.1.11 重要操作或检修时工作负责人必须要到现场检查安全措施是否到位。 3.1.12 雷雨天气禁止近距离巡视风机。 3.2 设备安装安全防护 3.2.1 使用液压设备时,操作人员必须戴护目镜。 3.2.2 手持电动工具的使用应符合国家标准的有关规定。工具的电源线、插头和插座应完好,电源线不得任意接长和调换,工具的外绝缘应完好无损,维修和保管应由专人负责。 3.2.3 噪音为90分贝或超过90分贝时,操作人员必须戴耳套。

风力发电机的控制方式综述

风力发电机及风力发电控制技术综述 摘要:本文分析比较了各种风力发电机的优缺点,介绍了相关风力发电控制技术,风力发 电系统中的应用,最后对未来风力发电机和风力发电控制技术作了展望。 关键词:风力发电机电力系统控制技术 Overview of Wind Power Generators and the Control Technologies SU Chen-chen Abstract:This paper analyzes the advantages and disadvantages of the various wind turbine control technology of wind power, wind power generation system, and finally prospected the future control of wind turbines and wind power technology. 1 引言 在能源短缺和环境趋向恶化的今天,风能作为一种可再生清洁能源,日益为世界各国所重视和开发。由于风能开发有着巨大的经济、社会、环保价值和发展前景,近20年来风电技术有了巨大的进步,风电开发在各种能源开发中增速最快。德国、西班牙、丹麦、美国等欧美国家在风力发电理论与技术研发方面起步较早,因而目前处于世界领先地位。与风电发达国家相比,中国在风力发电机制造技术和风力发电控制技术方面存在较大差距,目前国内只掌握了定桨距风机的制造技术和刚刚投入应用的兆瓦级永磁直驱同步发电机技术,在风机的大型化、变桨距控制、主动失速控制、变速恒频等先进风电技术方面还有待进一步研究和应用[1]。发电机是风力发电机组中将风能转化为电能的重要装置,它不仅直接影响输出电能的质量和效率,也影响整个风电转换系统的性能和装置结构的复杂性。风能是低密度能源,具有不稳定和随机性特点,控制技术是风力机安全高效运行的关键,因此研制适合于风电转换、运行可靠、效率高、控制且供电性能良好的发电机系统和先进的控制技术是风力发电推广应用的关键。本文分析比较了各种风力发电机的优缺点,介绍了相关风力发电控制技术,风力发电系统中的应用,最后对未来风力发电机和风力发电控制技术作了展望。 2 风力发电机 2.1 风电机组控制系统概述 图1为风电机组控制系统示意图。系统本体由“空气动力学系统”、“发电机系统”、“变流系统”及其附属结构组成; 电控系统(总体控制)由“变桨控制”、“偏航控制”、“变流控制”等主模块组成(此外还有“通讯、监控、健康管理”等辅助模块)。各种控制及测量信号在机组本体系统与电控系统之间交互。“变桨控制系统”负责空气动力系统的“桨距”控制,其成本一般不超过整个机组价格5%,但对最大化风能转换、功率稳定输出及机组安全保护至关重要,因此是风机控制系统研究重点之一。“偏航控制系统”负责风轮自动对风及机舱自动解缆,一般分主动和被动两种偏航模式,而大型风电机组多采用主动偏航模式。“变 流控制系统”通常与变桨距系统配合运行,通过双向变流器对发电机进行矢量或直接转矩控制,独立调节有功功率和无功功率,实现变速恒频运行和最大(额定)功率控制。

GBT 19963 风电场接入电力系统技术规定--报批稿

ICS 中华人民共和国国家标准 风电场接入电力系统技术规定 Technical rule for connecting wind farm to power system 中华人民共和国国家质量监督检验检疫总局 发 布

GB/T 19963—200 目次 前言...................................................................................................................................................................... I I 1 范围 (1) 2 规范性引用文件 (1) 3 术语和定义 (1) 4 风电场送出线路 (2) 5 风电场有功功率 (2) 6 风电场功率预测 (3) 7 风电场无功容量 (3) 8 风电场电压控制 (3) 9 风电场低电压穿越 (4) 10 风电场运行适应性 (5) 11 风电场电能质量 (6) 12 风电场仿真模型和参数 (6) 13 风电场二次系统 (6) 14 风电场接入系统测试 (7) 参考文献 (9) I

GB/T 19963—200 II 前言 本标准根据国家标准化管理委员会下达的国标委综合【2009】93号《2009年第二批国家标准计划 项目》标准计划修订。 本标准与能源行业标准《大型风电场并网设计技术规范》共同规定了风电场并网的相关技术要求,能源行业标准规定了大型风电场并网的设计技术要求,本标准规定了风电场并网的通用技术要求。 本标准规定了对通过110(66)kV及以上电压等级线路与电力系统连接的新建或扩建风电场的技术要求。 本标准由全国电力监管标准化技术委员会提出并归口。 本标准主要起草单位:中国电力科学研究院。 本标准参加编写单位:龙源电力集团股份有限公司、南方电网科学研究院有限责任公司、中国电力工程顾问集团公司。 本标准主要起草人:王伟胜、迟永宁、戴慧珠、赵海翔、石文辉、李琰、李庆、张博、范子超、陆志刚、胡玉峰、陈建斌、张琳、韩小琪。

风力发电机偏航系统控制策略研究

风力发电机偏航系统控制策略研究 摘要:风能作为一种可再生的清洁能源,是人与自然和谐共处,实现社会与经 济可持续发展的新能源。风向是在不断变化,水平轴的风力发电组就需要不断利 用偏航系统来进行方向的调整,通过风能最大限度的利用,就能够满足实际的需求。因此,本文就风力发电机偏航系统的控制策略进行探讨。 关键词:风力发电机;偏航系统控制策略 1研究现状综述 纵观整个风电技术的发展历程及其现阶段所呈现出的发展趋势,现代大型风 力发电机组的单机容量不断增大,原来适用于中小型风机的风速、风载等分析模 型在大型化的风机应用中逐渐显现出不适性,巨大的风轮扫略平面内风速的空间 分布差异变得很大,长长的叶片在旋转过程中所处的方位不同,所处的风况也不 尽相同。现有的风速建模研究文献多倾向于简化风速模型或未深入考虑风速的空 间分布对机组运行的影响。由于风轮扫略面积成倍增大,偏航误差造成的叶片动 力学特性及机组的偏航力矩、倾斜力矩等载荷波动也会被成倍放大,对于中小型 风机能够容许的偏航误差对于大型风机则未必适用,而偏航容许误差的调整可能 会很大程度上影响偏航控制算法。现有的文献大多局限于研究偏航误差对偏航控 制和气动性能的影响以及如何针对性的进行优化提高,而频繁偏航造成的偏航硬 件设备的耗损和高故障率很少被关注,在偏航误差对风电机组并网运行特性的影 响方面以及基于偏航系统可靠性的偏航控制策略优化设计更是少有研究成果问世。 2风力发电机偏航控制系统分析 2.1风力机组 风力发电机是直接将风能转化为机械功,然后利用机械功实现对转子的带动 旋转,最终输出交流电。在转换能量的时候,基于风力机将风能直接转变为机械能,然后将机械能转换成为电能,这样就可以满足实际的转换,让风力机组可以 满足其实际的应用目标偏航系统结构。基于大型水平轴风电机组,其包含的部分 主要是针对偏航轴承、驱动装置、计数器等。 2.2偏航系统功能 偏航控制系统也属于对风装置,其包含的具体功能在于:配合机组控制系统,放出现风速矢量方向改变的时候,利用偏航控制系统的处理,就可以实现风向平 稳而快速的对准,并且也可以满足风轮最大风能的实现;针对风机电缆而言,还 需要考虑到单向缠绕偏多从而引发电缆出现断裂现象。一旦电缆缠绕,就能适应 自动解缆处理的需求,进而实现风机的运行安全性,其实际的控制流程见图1。 2.3风速和风向 风是地球上的一种自然现象,由太阳辐射热引起。太阳照射到地球表面,地 表各处因受热不均产生温差,从而引起大气对流运动形成风。自然风有大小也有 方向,通常用风速或风力描述风的大小、用风向描述风的方向。气象上把风吹来 的方向称为风向。风向的度量有多种方法:在陆上多采用16方位度量法;在海 上多采用36方位度量法;而在高空则多用角度表示,将圆周标成360°,北风(N) 对应0°(或360°),东风(E)对应90°,南风(S)对应180°,西风(W)对应270°,其它细分风向可由此计算得出,风的大小也称风的强度常用风力或风速表示。 2.4偏航误差 当风向发生变化或机组偏航对风不准时,风向与风轮轴线就会偏差一定角度,

最新风力发电标准大全

风力发电标准大全 本文从国家标准、电力行业标准、机械行业标准、农业标准、IEC标准、AGMA美国齿轮制造商协会标准、ARINC美国航空无线电设备公司标准、ASTM 美国材料和实验协会标准等几个方面总结风力发电标准大全。1、风力发电国家标准 GB/T 2900.53-2001电工术语风力发电机组 GB 8116—1987风力发电机组型式与基本参数 GB/T 10760.1-2003离网型风力发电机组用发电机第1部分:技术条件 GB/T 10760.2-2003离网型风力发电机组用发电机第2部分:试验方法 GB/T 13981—1992风力设计通用要求 GB/T 16437—1996小型风力发电机组结构安全要求GB 17646-1998小型风力发电机组安全要求 GB 18451.1-2001风力发电机组安全要求 GB/T 18451.2-2003风力发电机组功率特性试验 GB/T 18709—2002风电场风能资源测量方法 GB/T 18710—2002风电场风能资源评估方法 GB/T 19068.1-2003离网型风力发电机组第1部分技术条件 GB/T 19068.2-2003离网型风力发电机组第2部分试验方法 GB/T 19068.3-2003离网型风力发电机组第3部分风洞试验方法 GB/T 19069-2003风力发电机组控制器技术条件 GB/T 19070-2003风力发电机组控制器试验方法 GB/T 19071.1-2003风力发电机组异步发电机第1部分技术条件

GB/T 19071.2-2003风力发电机组异步发电机第2部分试验方法 GB/T 19072-2003风力发电机组塔架 GB/T 19073-2003风力发电机组齿轮箱 GB/T 19115.1-2003离网型户用风光互补发电系统第1部分:技术条件 GB/T 19115.2-2003离网型户用风光互补发电系统第2部分:试验方法 GB/T 19568-2004风力发电机组装配和安装规范 GB/T 19960.1-2005风力发电机组第1部分:通用技术条件 GB/T 19960.2-2005风力发电机组第2部分:通用试验方法 GB/T 20319-2006风力发电机组验收规范 GB/T 20320-2006风力发电机组电能质量测量和评估方法GB/T 20321.1-2006离网型风能、太阳能发电系统用逆变器第1部分:技术条件 GB/T 21150-2007失速型风力发电机组 GB/T 21407-2008双馈式变速恒频风力发电机组 2、风力发电电力行业标准 DL/T 666-1999风力发电场运行规程 DL 796-2001风力发电场安全规程 DL/T 797—2001风力发电厂检修规程 DL/T 5067—1996风力发电场项目可行性研究报告编制规程 DL/T 5191—2004风力发电场项目建设工程验收规程DL/T 5383-2007风力发电场设计技术规范3、风力发电机械行业标准 JB/T 6939.1—2004离网型风力发电机组用控制器第1部分:技术条件

风力发电机液压变桨系统简介

风力发电机液压变桨系统简介 全球投入商业运行的兆瓦级以上风力发电机均采用了变桨距技术,变桨距控制与变频技术相配合,提高了风力发电机的发电效率和电能质量,使风力发电机在各种工况下都能够获得最佳的性能,减少风力对风机的冲击,它与变频控制一起构成了兆瓦级变速恒频风力发电机的核心技术。液压变桨系统具有单位体积小、重量轻、动态响应好、转矩大、无需变速机构且技术成熟等优点。本文将对液压变桨系统进行简要的介绍。 风机变桨调节的两种工况 风机的变桨作业大致可分为两种工况,即正常运行时的连续变桨和停止(紧急停止)状态下的全顺桨。风机开始启动时桨叶由90°向0°方向转动以及并网发电时桨叶在0°附近的调节都属于连续变桨。液压变桨系统的连续变桨过程是由液压比例阀控制液压油的流量大小来进行位置和速度控制的。当风机停机或紧急情况时,为了迅速停止风机,桨叶将快速转动到90°,一是让风向与桨叶平行,使桨叶失去迎风面;二是利用桨叶横向拍打空气来进行制动,以达到迅速停机的目的,这个过程叫做全顺桨。液压系统的全顺桨是由电磁阀全导通液压油回路进行快速顺桨控制的。 液压变桨系统 液压变桨系统由电动液压泵作为工作动力,液压油作为传递介质,电磁阀作为控制单元,通过将油缸活塞杆的径向运动变为桨叶的圆周运动来实现桨叶的变桨距。 液压变桨系统的结构 变桨距伺服控制系统的原理图如图1所示。变桨距控制系统由信号给定、比较器、位置(桨距)控制器、速率控制器、D/A转换器、执行机构和反馈回路组成。 图1 控制原理图 液压变桨执行机构的简化原理图如图2所示,它由油箱、液压动力泵、动力单元蓄压器、液压管路、旋转接头、变桨系统蓄压器以及三套独立的变桨装置组成,图中仅画出其中的一套变桨装置。

高原型风力发电机组技术规范

认证技术规范《高原型风力发电机组技术规范》编制说明(一)制订技术规范的必要性; 随着我国风电产业的快速发展,高原地区风力资源得以大量开发,适用于高原地区的风力发电机组开始广泛应用,但仅限于整机制造企业对机组要求的一些研究和企业自发的内部设计。在国家标准和行业标准中仅仅考虑了主要的风资源条件,对高原型风力发电机组的设计和要求未作相关的规定。为了规范高原型风力发电机组的设计、制造、使用、维护以及检测认证,由北京鉴衡认证中心牵头,南车株洲电力机车研究所有限公司、东方汽轮机有限公司、新疆金风科技股份有限公司、天津瑞能电气有限公司、北车风电有限公司、中国明阳风电集团有限公司、华锐风电科技(集团)股份有限公司、国电联合动力技术有限公司、北京国华电力有限责任公司、龙源电力集团股份有限公司、华能新能源股份有限公司共同编写了此技术规范。 (二)与相关法律法规的关系; 本标准符合我国相关法律、法规,与有关现行法律、法规和强制性标准不抵触、不矛盾。 (三)与现行标准的关系,以及存在的差异及理由; 至今我国还没有高原型风力发电机组的国家标准和行业标准,有关风力发电机组的标准有GB 18451.1《风力发电机组安全要求》,这个标准规定了适用于一般环境条件下的风力发电机组的安全要求,而高原地区的环境条件不满足该标准的使用条件。由于高原型气候条件(比如空气密度小、太阳辐射强度高)会对机组的运行和安全产生严重影响,在满足GB 18451.1《风力发电机组安全要求》之外,还需对机组提出更高的设计要求。为此,标准起草小组参考了国外先进产品及有关标准制定了此认证技术规范。 (四)参与修订认证技术规范的主要单位情况; 北京鉴衡认证中心是经国家认证认可监督管理委员会批准,由中国计量科学

风力发电机组验收标准

国电电力山西新能源开发有限公司 风力发电机组验收规范为确保风力发电机组在现场安装调试完成后,综合检验风电机组的安全性、功率特性、电能质量、可利用率和噪声水平,并形成稳定生产能力,制定本验收标准。 一、编制依据: 1、风力发电机组验收规范 GB/T20319-2006 2、建筑工程施工质量验收统一标准GB50300 3、风力发电场项目建设工程验收规程 DL/T5191-2004 4、电气设备交接试验标准GB50150 5、电气装置安装工程接地装置施工及验收规范GB50169 6、电气装置安装工程盘、柜及二次回路结线施工及验收规范GB50171 7、电气装置安装工程低压电器施工及验收规范GB50254 8、电器安装工程高压电器施工及验收规范GBJ147 9、建筑电气工程施工质量验收规范GB50303 10、风力发电厂运行规程DL/T666 11、电力建设施工及验收技术规程DL/T5007 12、联合动力风电机组技术说明书、使用手册和安装手册

13、风电机组订货合同中的有关技术性能指标要求 14、风力发电机组塔架及其基础设计图纸与有关标准 二、验收组织机构 风电机组工程调试完成后,建设单位组建验收领导小组,设组长1名、副组长4名、组员若干名,由建设、设计、监理、施工、安装、调试、生产厂家等有关单位负责人及有关专业技术人员组成。 三、验收程序 1 现场调试 (1)风力发电机组安装工程完成后,设备通电前应符合下列要求: (a)现场清扫整理完毕; (b)机组安装检查结束并经确认(内容见附表1); (c)机组电气系统的接地装置连接可靠,接地电阻经检测符合机组的设计要求(小于4欧姆); (d) 测定发电机定子绕组、转子绕组的对地绝缘电阻,符合机组的设计要求; (e) 发电机引出线相序正确,固定牢固,连接紧密; (f) 照明、通讯、安全防护装置齐全。 (2) 机组启动前应进行控制功能和安全保护功能的检查和试验,确认各项控制功能好安全保护动作准确、可靠。

风力发电场安全规程dlt796-

1 范围 本标准规定了风力发电场人员、环境、安全作业的基本要求,风力发电机组安装、调试、检修和维护的安全要求,以及风力发电机组应急处理的相关安全要求。 本标准适用于陆上并网型风力发电场。 2 规范性引用文件 下列文件对于本文件的应用时必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡不是注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB 2894 安全标志及其使用导则 GB/T 电工术语风力发电机组 GB/T6096安全带测试方法 GB 灯具第一部分:一般要求与试验 GB 风力发电机组设计要求 GB19155 高处作业吊篮 GB/T20319 风力发电机组验收规范 GB 电业安全工作规程第一部分:热力和机械 GB 26859电力安全工作规程电力线路部分 GB 26860 电力安全工作规程发电厂和变电站电气部分 GB 50016 建筑设计防火规范

GB 50140建筑灭火器配置设计规范 GB 50303建筑电气工程施工质量验收规范 DL/T 572 电力变压器运行规程 DL/T 574 变压器分接开关运行维修导则 DL/T 587 微机继电保护装置运行管理规程 DL/T 741 架空输电线路运行规程 DL/T 969 变电站运行导则 DL/T 5284 履带起重机安全操作规程 DL/T 5250 汽车起重机安全操作规程 JGJ 46 施工现场临时用电安全技术规范 3 术语和定义 下列术语和定义适用于本标准 风电场输变电设备 风电场升压站电气设备、集电线路、风力发电机组升压变等。 坠落悬挂安全带 高出作业或登高人员发生坠落时,将坠落人员安全悬挂的安全带。 飞车

第五章 风力发电机组的液压系统和刹车

第五章风力发电机组的液压系统和刹车 风力发电机组的液压系统和刹车机构是一个整体。在定桨距风力发电机组中,液压系统的主要任务是执行风力发电机组的气动刹车和机械刹车;在变桨距风力发电机组中,液压系统主要控制变距机构,实现风力发电机组的转速控制、功率控制,同时也控制机械刹车机构。 第一节定桨距风力发电机组的刹车机构 一、气动刹车机构 气动刹车机构是由安装在叶尖的扰流器通过不锈钢丝绳与叶片根部的液压油缸的活塞杆相联接构成的。扰流器的结构(气动刹车结构)如图5-1 所示。当风力发电机组正常运行时,在液压力的作用下,叶尖扰流器与叶片主体部分精密地合为一体,组成完整的叶片。当风力发电机组需要脱网停机时,液压油缸失去压力,扰流器在离心力的作用下释放并旋转80°-9 0°形成阻尼板,由于叶尖部分处于距离轴最远点,整个叶片作为一个长的杠杆,使扰流器产生的气动阻力相当高,足以使风力发电机组在几乎没有任何磨损的情况下迅速减速,这一过程即为叶片空气动力刹车。叶尖扰流器是风力发电机组的 主要制动器,每次制动时都是它起主要作用。 在叶轮旋转时,作用在扰流器上的离心力和弹簧力会使叶尖扰流器力图脱离叶片主体转动到制动位置;而液压力的释放,不论是由于控制系统是正常指令,还是液压系统的故障引起,都将导致扰流器展开而使叶轮停止运行。因此,空气动力刹车是一种失效保护装置,它使整个风力发电机组的制动系统具有很高的可靠性。 二、机构刹车机构 图5-2为机构刹车机构由安装在低速轴或高速轴上的刹车圆盘与布置在四周的液压夹钳构成。液压夹钳固定,刹车圆盘随轴一起转动。刹车夹钳有一个预压的弹簧制动力,液压力通过油缸中的活塞将制动夹钳打开。机械刹车的预压弹簧制动力,一般要求在额定负载下脱网时能够保证风力发电机组安全停机。但在正常停机的情况下,液压力并不是完全释放,即在制动过程中只作用了一部分弹簧力。为此,在液压系统中设置了一个特殊的减压阀和蓄能器,以保证在制动过程中不完全提供弹簧的制动力。

大型风力发电机组控制系统的安全保护功能(新编版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 大型风力发电机组控制系统的安全保护功能(新编版) Safety management is an important part of production management. Safety and production are in the implementation process

大型风力发电机组控制系统的安全保护功 能(新编版) 1制动功能 制动系统是风力发电机组安全保障的重要环节,在硬件上主要由叶尖气动刹车和盘式高速刹车构成,由液压系统来支持工作。制动功能的设计一般按照失效保护的原则进行,即失电时处于制动保护状态。在风力发电机组发生故障或由于其他原因需要停机时,控制器根据机组发生的故障种类判断,分别发出控制指令进行正常停机、安全停机以及紧急停机等处理,叶尖气动刹车和盘式高速刹车先后投入使用,达到保护机组安全运行的目的。 2独立安全链 系统的安全链是独立于计算机系统的硬件保护措施,即使控制系统发生异常,也不会影响安全链的正常动作。安全链采用反逻辑

设计,将可能对风力发电机造成致命伤害的超常故障串联成一个回路,当安全链动作后,将引起紧急停机,执行机构失电,机组瞬间脱网,从而最大限度地保证机组的安全。发生下列故障时将触发安全链:叶轮过速、看门狗、扭缆、24V电源失电、振动和紧急停机按钮动作。 3防雷保护 多数风机都安装在山谷的风口处或海岛的山顶上,易受雷击,安装在多雷雨区的风力发电机组受雷击的可能性更大,其控制系统最容易因雷电感应造成过电压损害,因此在600kW风力发电机组控制系统的设计中专门做了防雷处理。使用避雷器吸收雷电波时,各相避雷器的吸收差异容易被忽视,雷电的侵入波一般是同时加在各相上的,如果各相的吸收特性差异较大,在相间形成的突波会经过电源变压器对控制系统产生危害。因此,为了保障各相间平衡,我们在一级防雷的设计中使用了3个吸收容量相同的避雷器,二、三级防雷的处理方法与此类同。控制系统的主要防雷击保护:①主电路三相690V输入端(即供给偏航电机、液压泵等执行机构的前段)

相关文档
相关文档 最新文档