文档库 最新最全的文档下载
当前位置:文档库 › 炼铜反射炉水淬渣工艺矿物学

炼铜反射炉水淬渣工艺矿物学

炼铜反射炉水淬渣工艺矿物学
炼铜反射炉水淬渣工艺矿物学

锌粉反射炉除尘系统设计方案

锌粉反射炉除尘系统设计 方案 1. 项目概况 锌粉工序是一个利用粗锌锭或析出锌片(粒)生产吹制锌粉的生产工序,粗锌锭或析出锌片(粒)通过放射炉加热熔化——吹粉——收尘等工艺过程,生产出产品锌粉(Zn:95-99%)。锌粉工序现有锌粉双室炉2台,锌粉年生产能力为30000吨左右,2台双室炉(炉膛、进料口、扒渣口)产生的烟气分别采用2套旋流板湿法除尘器进行处理,捣渣过程产生的烟气分别采用1套旋流板湿法除尘器进行处理。由于现除尘设施已投入使用10多年,设备老化,烟气经净化处理后达不到环保标准的要求。为实现锌粉放射炉设施产生的废气稳定达标排放,改善车间操作环境,拟对锌粉放射炉废气处理设施进行技术改造。 1.1锌粉生产工艺原理 锌物料(粗锌锭或析出锌片(粒))在放射炉使用天然气作为燃料燃烧加温熔化,然后利用高压风将熔融的锌液雾化产出锌粉,放射炉炉膛出口烟气温度550℃~600℃,炉膛烟气、进料口扒渣口烟气、捣渣过程产生的烟气经除尘器处理后排空。 该工序采用三班制连续生产,正常情况下2台放射炉轮流生产运行。 1.2主要设施 放射炉两台,F1=7.5m2,F2=7.0 m 2; 生产能力800~2600kg/h.台,生产能力800~2600kg/h.台。 湿法旋流收尘器两三台,参数:Φ1800mm×9750mm旋流塔2台,Φ1800mm ×8550mm旋流塔1台,收尘排风机两台Y180L-4,N=22kw,捣渣排风机1台 W047-100N013D,Y2805-4,N=45kw。 3台除尘塔顶部的排气筒的高度均为25m左右。 1.3处理物料成份 析出锌片(Zn≥99.99%)、粗锌锭(Zn≥98.7%)、浮渣粗锌(Zn≥97.7%),熔化过程中加入造渣剂(含氯化铵)。

铜冶炼三种方法

铜冶炼三种方法 This model paper was revised by the Standardization Office on December 10, 2020

目前,中国已引进世界上最先进的炼铜新工艺有:闪速炉熔炼、艾萨熔炼、奥斯麦特熔炼、诺兰达熔炼等。国内自主创新的有白银法熔炼、金川合成炉熔炼、东营方圆的氧气底吹熔炼。后3种都是中国人自己研制的,都具有自主知识产权。这7种也算世界上较先进的炼铜法。通过多年的实践,国外的先进技术尚存不足之处,分述如下: 1、双闪速炉熔炼法: 投资大,专利费昂贵,熔剂和原料先进行磨细再进行深度干燥,需额外消耗能源这不尽合理。熔炉产出的铜硫需要水碎再干燥再细磨,工序繁杂。每道工序均难以保证100%回收率,会产生部分机械损失;热态高温铜锍水碎物理热几乎全部损失,水碎后再干燥,再加上炉内大量水套由冷却水带走热量,热能利用也不尽合理。铜锍水碎需要大量的水冲,增加动力消耗。破碎、干燥要增加人力和动力的消耗。这些都是多年来该工艺没有得到大量推广的重要原因。 2、艾萨法和澳斯麦特法均属于顶吹冶炼系列: 顶吹都要建立高层厂房,噪音大、高氧浓度低烟气量大、顶吹的氧枪12米长,3天至一周要更换一次,不锈钢消耗量大、投资大、操作不方便。都用电炉做贫化炉,渣含铜一般大于%不合国情。 3、三菱法的不足 4个炉子(熔炼炉、贫化电炉、吹炼炉、阳极炉)自流配置,第一道工序的熔炼炉需要配置在较高的楼层位置,建筑成本相对较高,炉渣采用电炉贫化,弃渣含铜量达%~%,远远高于我国多数大型铜矿开采的矿石平均品位,资源没有得到充分的利用。 4、诺兰达和特尼恩特连续吹炼法,尚在工业试验阶段。

炼铜炉渣中铜的化学物相分析

书山有路勤为径,学海无涯苦作舟 炼铜炉渣中铜的化学物相分析 炼铜炉渣有熔炼炉渣、吹炼炉渣、精炼炉渣三种。熔炼炉渣中铜主要以冰铜、Cu2S 状态存在,几乎不含金属铜,CuO 和Cu2O 只在特殊情况下见到。硅酸盐和磁性氧化铁中含铜,可能以化物的细小包裹体形式存在,而不是以硅酸铜 和亚铁酸铜形式存在。吹炼炉渣中铜也主要是冰铜和Cu2S,其次是少量金属铜和硅酸铜,在含铜较高的吹炼炉渣中,Cu2O 的含量也随之增加。精炼炉渣的组成与上述情况就有明显区别,其中铜主要是金属铜、Cu2O、硅酸铜和亚铁酸铜,几乎不含铜硫化物。一、方法概述氧化铜的分离在炼铜炉渣中,游离的CuO 和Cu2O 的含量一般极少,可以不测定。当需要测定时,可用盐酸羟胺溶液分离。于水浴上浸取数分钟,氧化铜和氧化亚铜浸取率在90%以上, Cu2S、冰铜以及亚铁酸铜浸取率很低。金属溶解12%左右,反以金属铜含量较高时,不宜采用此法分离氧化铜。金属铜的分离金属铜可溶于HgCl2-乙醇溶液中,但当直接浸取金属铜时,冰铜和白冰铜分别溶解10%和20%,即使加入还原剂,浸取率仍然较高。研究表明,巯基乙酸的氨性溶液,可使部分冰铜溶解,另一部分冰铜变成方黄铜矿,金属铜也部分溶解,但是于巯基乙酸的氨性溶液中加入2,3-二巯基丙烷磺酸钠或单宁时,金属铜的溶解被抑制。因此,在用HgCl2-乙醇溶液浸取金属铜之前,用巯基乙酸-单宁(或2,3-二巯基丙烷磺酸钠)的氨性溶液处理试样,使部分冰铜溶解,另一部分冰铜转化为黄铜矿。这样可提高测定的准确度。硫化铜的分离一部分硫化物已在分离金属铜之前浸取。剩余的硫化铜可用溴-甲醇溶液浸取。在溴-甲醇溶液部亚铁酸铜、磁性氧化铁、硅酸盐等溶解甚微,留在残渣中。其他化合物中铜的分离留在最终残渣中。炼铜炉渣中铜的化学物相分析流程如下图所示。应指出,此流程更适合熔炼和吹炼炉渣。图中炼铜炉渣中铜的化学物相分析流程二、分析步骤

火法炼铜工艺讲解

------------------------------------------精品文档------------------------------------- 1 概述 铜是人类应用的最古老的金属之一,它有很长的、很光辉的历史。考古学证明,早在一万年前,西亚人已用铜制作装饰品之类的物件。铜和锡可制成韧性合金青铜,考古发现在公元前约3000年,历史已进入了青铜时代。而今铜的化学、物理学和美学性质使它成为广泛应用于家庭、工业和高技术的重要材料。铜具有优良可锻性、耐腐蚀性、韧性,适于加工;铜的导电性仅次于银,而其价格又较便宜,故而被广泛应用于电力;铜的导热性能也颇佳;铜和其他金属如锌、铝、锡、镍形成的合金,具有新的特性,有许多特殊的用途。铜是所有金属中最易再生的金属之一,再生铜约占世界铜供应总量的40%。铜以多种形态在自然环境中存在,它存在于硫化物矿床中(黄铜矿、辉铜矿、斑铜矿、蓝铜矿)、碳酸盐矿床中(蓝铜矿、孔雀石)和硅酸盐矿床中(硅孔雀石、透视石),也以纯铜即所谓“天然铜”的形态存在。铜以硫化矿或氧化矿形式露天开采或地下开采,采出矿石经破碎后,再在球磨机或棒磨机中磨细。矿石含铜一般低于1%。 1.1 国内外铜冶金的发展现状 目前国内外的铜冶炼技术的发展主要还是以火法冶炼为主,湿法为辅。铜的火法生产量占总产量的80%左右。目前,全世界约有110座大型火法炼铜厂。其中,传统工艺(包括反射炉、鼓风炉、电炉)约占1/3;闪速熔炼(以奥托昆普炉为主)约占1/3;熔池熔炼(包括特尼恩特炉、诺兰达炉、三菱炉、艾萨炉、中国的白银炉、水口山炉等)约占1/3。 另外,世界范围内铜冶金工业同样面临铜矿资源短缺的问题,国土资源部信息中心统计资料表明:在世界范围内,铜是仅次于黄金的第2个固体矿产勘查热点,全球固体矿产勘查支出中约20%是找铜的,并且这一比例还有增加的趋势。相应地,铜也是各大势力集团争夺的焦点之一。从全球角度看铜的保证年限只有约29年。铜的主要出口国是拉美发展中国家。 1.2商洛情况 全市已发现各类矿产60种,已探明矿产储量46种,其中大型矿床15处,中型矿床24处。储量居全省首位的有铁、钒、钛、银、锑、铼、水晶、萤石、白云母和钾长石等20种,其中柞水大西沟铁矿储量3.02亿吨,占全省的46%,种。13居全省第二位的有铜、锌、钼、铅等. 铜矿主要分布于丹凤、山阳、柞水和商州,矿床3处,矿(化)点51处,探明储量16.86万吨。成因类型有硅卡岩型、热液型、沉积型和火山岩型,以前三种为主。皇台铜矿,位于蟒岭岩体与前奥陶系大理岩形成的硅卡岩中,矿石矿物有磁铁矿、黄铁矿、黄铜矿和少量铅锌矿。铜矿品位0.5~1.4%,铁品位可达20%,探明储量40365吨。柞水穆家庄铜矿,位于中泥盆统青石垭组的粉砂质千枚岩、白云岩和白云质粉砂岩中,矿石平均品位1.07%,提交D+E级普查储量3.689 万吨。热液型铜矿区内分布近40处,分布在商州市两水寺、古墓沟,山阳县色河干沟、三十里铺、红铜沟,商南县过风楼等地。伴生铜矿在本区也有分布,主要见于山阳黑沟多金属矿和柞水银洞子银铅矿、大西沟。 2.工艺流程图 熔剂燃料硫化铜精矿

(本科毕业设计论文)10t熔铝保温炉的设计

10t熔铝保温炉的设计 摘要:本文对10t熔铝保温炉进行了设计,熔体温度680~780℃,额定容量10t /炉,炉型为固定式反射炉,用天然气作为燃料,热值为35421KJ/m3,炉膛最高温度1050℃,液体升温速度为≥30℃/h。设计主要结果如下:炉子的炉膛尺寸为:长3132mm,宽2913mm,高507mm;炉子的炉体尺寸为:长5509mm,宽5203mm,高3160mm。炉子耐火材料选择如下:炉底耐火材料采用三层结构,内层选用高铝砖,中间层选用浇注料,外层选用轻质保温砖;炉壁耐火材料选择如下:内层跟铝液接触部分采用高铝砖,外层采用浇注料;上部不跟铝液接触部分内层采用耐火粘土砖,外层采用轻质保温砖再加一层硅钙板。炉顶耐火材料采用耐火粘土砖外加一层轻质保温砖。炉子热负荷计算结果如下:炉子总热量消耗为 2.433106KJ,烟气带走的热量为9.873105KJ,炉底热损失为1.93105KJ,炉壁热损失为119515KJ,炉顶散热损失为98626KJ。根据炉子的热量损失,选用两个高速调温烧嘴,燃料为天然气。同时对炉门形状以及升降系统进行了设计;通过对炉子的整体受力分析,选用了合适的外部型钢。对排烟系统,预热器进行了选用。使用AutoCAD软件绘制了10t保温炉总图,保温炉钢结构总图,炉门总图。 关键词:保温炉;热负荷;耐火材料;烧嘴 The design of 10t heat holding furnace Abstract:This paper designs 10t melting heat holding preservation furnace, the melting temperature is 680 to 780℃, Nominal capacity is 10T/furnace, the Furnace type is stationary reverberatory furnace, Using natural gas as fuel, the calorific value is 35421KJ/m3 , the Furnace high temperature is 1050℃,the Liquid heating rate is ≥30℃/h. Design is the main part of the furnace in molten pool size—— the length is 3132mm, the breadth is 2913mm, the height is 507mm, the whole size of the furnace is——the length is 5509mm, the breadth is 5203mm, the height is 3160mm. select of the refractory materials is: refractory materials of furnace bottom is three layers, the inner layer uses alumina bricks; the middle layer uses castable; the external layer uses lightweight insulation brick; select of the furnace wall the refractory materials is: the Inner layer with a contact portion of the liquid aluminum uses high alumina bricks; the outer layer uses castable; the upper part is not in contact with liquid aluminum inner refractory clay brick; the outer

铜冶炼炉渣混合浮选工艺研究及生产实践

铜冶炼炉渣混合浮选工艺研究及生产实践 张鑫,惠兴欢,朱江,杞学峰,王礼珊 (楚雄滇中有色金属有限责任公司,楚雄) 摘要:本文针对楚雄滇中有色金属公司铜冶炼过程产生的电炉渣、转炉渣进行了混合浮选研究。混合渣含铜,磨至细度为后进入浮选作业,通过二次粗选、二次扫选、粗精矿不磨三次精选的工艺流程,可获得铜精矿品位为,尾矿品位以下,回收率以上的工艺指标。在实际生产中,通过对工艺流程的改造,又进一步优化了浮选指标。 关键词:电炉渣;转炉渣;浮选 , , , , ( . ,,) :( ) . . ( ) . , ( ) . . : , , 引言 我国铜炉渣数量大,其中大量铜及相当数量的贵金属和稀有金属长期堆存,占用大量用地,严重污染环境。随着冶炼技术的发展,髙效率熔炼炉的应用,炉渣含金属量还有上升趋势。因此,开发利用铜炉渣资源具有重要意义和十分可观的经济效益。 近年来,国内外很多单位对铜渣的利用进行了不同规模的研究,主要集中在以下两方面:()提取有价金属[];()生产化工产品和制备建筑材料等[].尽管取得一定成绩,但是铜渣综合利用水平低,循环力度弱的状况仍未改变。铜渣的贫化方法有熔炼法和缓冷选矿法,选择何种方法,要根据渣中金属存在形态和经济效果的对比来决定。魏明安[]研究了转炉渣的特性和铜转炉渣选矿的一般特点。并在此基础上,针对国内某铜转炉渣中铜赋存状态复杂、嵌布粒度细及难磨等的特点,提出处理该转炉渣的适宜技术条件为阶段磨矿阶段选别,在浮选机充气量3.3L和高浓度浮选的条件下,取得了铜精矿铜品位、回收率为的实验室闭路试验指标。云南耿马铜渣由于其含铜品位低,回收利用难,研究结果表明,浮选可以很好地对其进行回收利用,浮选条件为:磨矿细度-0.074mm占、捕收剂用量为162g、活化剂硫化钠用量为3.4kg的条件下得到了品位、回收率的较好试验结果[]。宋温等[]针对某转炉冶炼厂的炉渣硬度大、难磨且氧化程度较高的情况,采用一粗一精二扫中矿循序返回的浮选流程。药剂采用丁黄药、松醇油。原矿品位为,得到了铜精矿品位,铜回收率的浮选指标。 采用选矿方法从炉渣中可以回收大部分铜,不但可获得一定的经济效益,而且还可实现铜资源最大限度的合理利用,这符合当前发展循环经济,建设节约型社会的基本国策。 铜渣的工艺矿物学研究 楚雄滇中有色金属有限责任公司冶炼厂采用的铜冶炼工艺为:富氧顶吹熔炼电炉沉降转炉吹炼,沉降电炉排出的渣含铜品位约~左右,转炉渣不返入电炉(品位约),转炉渣分解破碎后大部分进入艾萨熔炼系统,使得生产成本急剧增加,同时也会造成电炉渣含铜增加,每年损失大量铜金属,为此,需要对炉渣贫化进行专门研究。 铜渣的物理特性 楚雄滇中有色金属有限责任公司冶炼铜渣经缓冷后,外观呈黑色,松散容重2.4g,密度。性质比较稳定,嵌布粒度较细。铜渣含铁量很高,故它的质地致密、坚硬,莫氏硬度达到度,

水渣定义为非固废

寻关于国家将水渣定义为非固废的文件 浏览次数:584次悬赏分:100 |提问时间:2010-6-16 18:47 |提问者:zhanghua172|问题为何被关闭 听说国家规定:高炉水渣不是固体废弃物,到底是哪个文件?最好有文件的地址问题补充: 《资源综合利用目录(2003年修订)》 我自己都找到这个文件了 其他回答共3条 高炉水渣 (Q/BQB 901-2005 代替Q/BQB 901-1998 ) 宝钢资源查询 1 范围 本标准规定了高炉水渣的定义、技术要求、试验方法、检验规则、运输、贮存、检测报告。 本标准适用于宝山钢铁股份有限公司高炉炼铁产生的水渣。 2 规范性引用标准 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 176 水泥化学分析方法 GB/T 203 用于水泥中的粒化高炉矿渣 GB/T 6003.2—1997 金属穿孔板试验筛 GB/T 6645—1986 用于水泥中的粒化电炉磷渣 GB/T 10322.5—2000 铁矿石交货批水分含量的测定 3 定义 高炉水渣为高炉冶炼生铁时所产生的以硅酸钙与硅铝酸钙为主的熔融物,经水淬冷成粒的材料,简称水渣、水淬矿渣等。 4 技术要求 4.1 质量系数和化学成分 高炉水渣的质量系数和化学成分应符合表1的规定。 表1 高炉水渣质量系数及化学成分指标名称指标 质量系数()不小于 1.60 氧化锰(MnO),% 不大于 2.0 二氧化钛(TiO 2),% 不大于 1.5 硫化物(以S计),% 不大于 1.5 水分(H2O),% 不大于15.0 注1:质量系数中的CaO、MgO、Al2O3、SiO2、MnO、TiO 2均为质量百分数。 注2:加钛矿护炉二氧化钛大于1.5%时,由供需双方协商。

炉渣的主要成分

矿中的脉石、炉料中的熔剂和其他造渣组分在火法冶金过程中形成的金属硅酸盐、亚铁酸盐和铝酸盐等混合物。此外,炉渣还含有少量的金属硫化物、金属和气体。从广义说,有色金属的吹炼渣、黄渣、蒸馏罐渣、精炼渣等都属有色金属冶金炉渣。 炉渣富集了炉料中的脉石成分和不希望进入主金属的杂质,是一个成分复杂的多元体系。炉渣的主要成分为氧化物。可将构成炉渣的氧化物分为酸性氧化物(如SiO2、Fe2O。等)、碱性氧化物(如FeO、CaO、MgO等)和两性氧化物(如Al2O3、ZnO等)。它们之间的区别在于各氧化物对氧离子的亲疏关系,容易放出氧离子的为碱性氧化物,反之为酸性氧化物。这些氧化物相互结合成各种化合物、固溶体及共晶混合物。 炉渣组成的来源有色金属冶金炉渣中的组分主要来源于五个方面:(1)矿石或精矿中的脉石,如SiO2、CaO、Al2O3、MgO等;(2)炉料在熔炼过程中生成的氧化物,如FeO、Fe3O4等;(3)为满足熔炼需要而加入的熔剂,如SiO2、CaO、FeO、Fe3O4等;(4)熔蚀或冲刷下来的炉衬材料,如MgO、SiO2、Al2O3等;(5)燃料燃烧的灰分,如Al2O3、SiO2等。 有色金属冶金炉渣属FeO–CaO–SiO2系,主要是由FeO、CaO、SiO2组成的硅酸盐,三者之和约占渣量75%~85%,有时甚至达90%。因此,渣的性质在很大程度上由这三个组分所决定。

在冶炼过程中的作用炉渣是火法冶金的必然产物,其量又相当大。例如反射炉炼铜产出的炉渣约为熔锍质量的200%~500%。炉渣在冶炼过程中主要起八方面的作用。 (1)熔融炉渣富集了炉料中几乎全部的脉石和大部分的杂质,并在造渣过程中完成了金属的某些熔炼和精炼过程。例如铜、镍硫化矿造锍熔炼时,铜、镍等硫化物与硫化亚铁富集为熔锍,而铁的氧化物与脉石、熔剂和燃料灰分等形成熔渣。(2)熔炼生成的金属或锍熔体液滴分散在熔渣中,它们的汇合长大和澄清分离都是在熔渣介质中进行的。因此,熔渣对熔炼生成的金属或熔锍与造渣成分分离的程度起着重要的作用。(3)覆盖在金属或熔锍表面的熔渣层起保护金属和熔锍的作用。(4)熔渣在冶炼过程中除富集炉料中的脉石等成分外,有时还起富集有价组分的作用,如钛精矿还原熔炼所得的高钛渣,以及吹炼含钒和含铌的生铁所得的钒渣和铌渣等都是提取钛、钒和铌等的原料。(5)熔渣在一些冶炼过程中还起着特殊作用,在烧结焙烧过程中造渣成分起到粘合结块的作用;在鼓风炉熔炼过程中,炉渣的组成基本上决定了炉内的温度,低熔点渣型的强化熔炼只能提高炉子生产能力而不能提高炉内温度,要提高炉内温度必须选择熔点高的渣型;在电炉熔炼时,炉渣起电阻发热体作用。(6)炉渣的性质决定着熔炼过程的燃料消耗量,热焓量大的和熔点高的炉渣,熔炼的燃料消耗量也增加。(7)炉渣的性质和熔炼产出的渣量是影响金属回收率的一个重要因素,因为渣含金属的损失是冶金过程中金属损失

铜冶炼水淬渣中铜的资源化利用研究

铜冶炼水淬渣中铜的资源化利用研究 本文采用湿法冶金技术对我国铜冶炼过程中产生的大量水淬渣进行铜的资 源化利用研究,研究采用氧化氨浸法对铜冶炼水淬渣中铜进行浸取,并考察浸取 时间、浸出温度、过硫酸铵用量、氨水浓度、渣样粒度大小、搅拌转速、液固比对铜浸出率的影响,得出铜浸出的最佳条件。浸出后的溶液与硫化铵反应,制取硫化铜,并研究硫化铵用量、反应温度、机械搅拌速度、反应时间对浸出液中铜回收率及硫化铜纯度的影响,得出影响浸出液中铜回收率及硫化铜纯度的最佳条件。 具体实验结果如下:(1)取10g渣样,当控制温度为50℃,浸取时间为120min,粒径大小为100目,转速为400r/min,(NH4)2S2O8用量为渣样的0.7倍,NH3·H2O 浓度为10mol/L时考察液固比(m/m)对铜冶炼水淬渣中铜、锌浸出率的影响。实验结果表明:最佳液固比为4:1(m/m),此时,Cu浸出率为49.1%,Zn浸出率为 0.32%。 (2)取10g渣样,当控制液固比(m/m)为4:1,浸取时间为120min,粒径大小为100目,转速为400r/min,用量为渣样的0.7倍,NH3·H2O浓度为10mol/L时考察温度对铜冶炼水淬渣中铜、锌浸出率的影响。实验结果表明:最佳温度为35℃,此时,Cu的浸出率为53.5%,Zn的浸出率为0.15%。 (3)取10g渣样,当控制液固比(m/m)为4:1,温度为35℃,粒径大小为100目,转速为400r/min,用量为渣样的0.7倍,NH3·H2O浓度为10mol/L时考察浸取时间对铜冶炼水淬渣中铜、锌浸出率的影响。实验结果表明:最佳浸取时间为180min,此时,Cu的浸出率为58.3%,Zn的浸出率为0.23%。 (4)取10g渣样,当控制液固比(m/m)为4:1,温度为35℃,浸取时间为180min,转速为400r/min,用量为渣样的0.7倍,NH3·H2O浓度为10mol/L时考察粒径大

铜冶炼

铜冶炼方法综述 摘要:目前世界上从硫化矿中提取铜, 85% ~90%是采用火法冶炼,因为该法与湿法冶炼相比,无论是原料的适应性,还是在生产规模、贵、稀金属富集回收方面都有明显的优势。因此为了降低能耗,减少火法炼铜的环境污染,闪速熔炼、熔池熔炼以及其它熔炼技术都在不断改进和发展。 关键词:铜冶炼火法炼铜熔池熔炼闪烁熔炼 1.前言 随着环境保护的日益严格,铜冶金工业面临着严峻挑战。当今世界铜冶金方法主要有火法和湿法两种,其中火法占主导地位。火法冶金种类较多,目前国际上存在的主要火法炼铜工艺有闪速炉、反射炉、鼓风炉、诺兰达炉、艾萨炉(奥斯麦特炉)、瓦纽可夫炉、三菱炉、特尼恩特炉、电炉、白银炉等十几种冶炼工艺。大部分工艺存在能力低、成本高、能耗大、污染严重等问题,严重制约着铜冶金工业的发展。 2.火法炼铜 火法炼铜主要包括[1]: (1)铜精矿的造锍熔炼;(2)铜锍吹炼成粗铜; (3)粗铜火法精炼; (4)阳极铜电解精炼。经冶炼产出最终产品-电解铜(阴极铜)。 2.1熔炼 2.1.1熔池熔炼 在熔池熔炼工艺中,精矿被抛到熔体的表面或者被喷入熔体内,通常向熔池中喷入氧气和氮气使熔池发生剧烈搅拌,精矿颗粒被液体包围迅速融化,因此,吹炼反应能够产生维持熔炼作业所需的大部分热量,使含有氧气的气泡和包裹硫化铜/铁的溶液发生质量传递。 澳斯麦特熔炼法/艾萨熔炼法是20世纪70年代由澳大利亚联邦科学工业研究组织矿业工业部J.M.Floyd博士领导的研究小组发明的。随后芒特#艾萨矿物控股有限公司(简称MIM)和澳大利亚国家科学院(简称CSIRO)在20世纪80年代联合开发了艾萨熔炼法,MIM于1987年在铜冶炼厂建起了一座示范工厂, 1996年MIM开发了Enterprise和ErnentHenry矿,铜精矿产量增加,于是决定扩建铜

国家标准《 反射炉精炼安全生产规范》编制说明

国家标准 GB XX-XXXX 《反射炉精炼安全生产规范》 (讨论稿) 编制说明 大冶有色金属集团公司 二○一一年四月

国家标准 GB XX-XXXX《反射炉精炼安全生产规范》 编制说明 一、工作简况 1、项目立项 随着我国有色金属行业的快速发展,生产规模日益扩大;同时,大量进入精炼加工领域。精炼反射炉因为基建投资省、操作维护难度相对较少,因而被有色冶金企业广泛采用。反射炉精炼生产过程具有风险因素多、风险后果严重的特点。但目前行业内尚无《反射炉精炼安全生产规范》的相关规范,新建企业尤为缺乏精炼反射炉安全生产的经验和技能,反射炉精炼的安全性越来受到国家、社会的关注。构建和谐社会要求“以人为本”,为提高反射炉精炼生产的安全性,推动我国反射炉精炼技术的进步、过程控制水平的提高,根据中国有色金属标委会中色协综字[2011]4号文转发国标委综合[2010]87国家标准制(修)订计划,由大冶有色金属股份有限公司承担国家标准《反射炉精炼安全生产规范》(以下简称标准)的制定任务,国标委项目编号:20101192—T—610。 2、主要工作过程 为完成标准制定任务,我公司进行了大量的相关工作。组织安全管理、反射炉精炼生产的相关人员成立了规范编制小组,明确了人员职责,对项目组织、编写、实施进度等具体事项均逐一进行了安排、落实,确立了实施方案。 编制小组成立后,首先广泛收集了、整理了反射炉精炼生产的工艺、装备现状的有关资料,其次收集了国内反射炉安全生产的相关要求及规定,再次参观调研了云南铜业、江西铜业、白银公司、方圆集团等冶炼企业的标准化、安全管理工作情况。最终参考我公司内的已成功运用的安全操作规范开始了本规范的编写工作。于2011年2月底完成标准稿。 编制小组组织我公司内部标准化、安全、反射炉精炼的专业技术人员对标准初稿进行了讨论,广泛听取了生产管理人员的意见,在此基础上,对标准进行修改,形成上报的讨论稿。

火法炼铜工艺

1 概述 铜是人类应用的最古老的金属之一,它有很长的、很光辉的历史。考古学证明,早在一万年前,西亚人已用铜制作装饰品之类的物件。铜和锡可制成韧性合金青铜,考古发现在公元前约3000年,历史已进入了青铜时代。而今铜的化学、物理学和美学性质使它成为广泛应用于家庭、工业和高技术的重要材料。铜具有优良可锻性、耐腐蚀性、韧性,适于加工;铜的导电性仅次于银,而其价格又较便宜,故而被广泛应用于电力;铜的导热性能也颇佳;铜和其他金属如锌、铝、锡、镍形成的合金,具有新的特性,有许多特殊的用途。铜是所有金属中最易再生的金属之一,再生铜约占世界铜供应总量的40%。铜以多种形态在自然环境中存在,它存在于硫化物矿床中(黄铜矿、辉铜矿、斑铜矿、蓝铜矿)、碳酸盐矿床中(蓝铜矿、孔雀石)和硅酸盐矿床中(硅孔雀石、透视石),也以纯铜即所谓“天然铜”的形态存在。铜以硫化矿或氧化矿形式露天开采或地下开采,采出矿石经破碎后,再在球磨机或棒磨机中磨细。矿石含铜一般低于1%。 1.1 国内外铜冶金的发展现状 目前国内外的铜冶炼技术的发展主要还是以火法冶炼为主,湿法为辅。铜的火法生产量占总产量的80%左右。目前,全世界约有110座大型火法炼铜厂。其中,传统工艺(包括反射炉、鼓风炉、电炉)约占1/3;闪速熔炼(以奥托昆普炉为主)约占1/3;熔池熔炼(包括特尼恩特炉、诺兰达炉、三菱炉、艾萨炉、中国的白银炉、水口山炉等)约占1/3。 另外,世界范围内铜冶金工业同样面临铜矿资源短缺的问题,国土资源部信息中心统计资料表明:在世界范围内,铜是仅次于黄金的第2个固体矿产勘查热点,全球固体矿产勘查支出中约20%是找铜的,并且这一比例还有增加的趋势。相应地,铜也是各大势力集团争夺的焦点之一。从全球角度看铜的保证年限只有约29年。铜的主要出口国是拉美发展中国家。 1.2商洛情况 全市已发现各类矿产60种,已探明矿产储量46种,其中大型矿床15处,中型矿床24处。储量居全省首位的有铁、钒、钛、银、锑、铼、水晶、萤石、白云母和钾长石等20种,其中柞水大西沟铁矿储量3.02亿吨,占全省的46%,居全省第二位的有铜、锌、钼、铅等13种。

冶金出渣

冶金出渣项目 一、炼钢出渣 1、出渣工艺 炼钢过程中由于铁和渣密度不同而自然分层,并按生产顺序先后排出炉外,出渣时温度接近1100℃。 2、钢渣成分 钢渣按照所选取的冶炼工艺的不同分为平炉钢渣、转炉钢渣以及电炉渣;平炉渣又可分为初期渣、精炼渣、出钢渣和浇钢余渣,电炉渣可分为氧化渣、还原渣。 由下表可看出,钢渣的主要成分为氧化铁、氧化铝、氧化钙、氧化镁等成分,还有一定的三氧化二磷。 3、出渣设备 铁水出渣主要采用铁水扒渣机。以下为集中常见的扒渣机: A.气动扒渣机全部由气缸驱动,小车行走带动扒渣臂进行扒渣

B.伸缩臂式扒渣机由液压马达通过链条直接拖动扒渣臂前后行走 C.小车走行式液压扒渣机由行走液压马达通过链条拖动安装扒渣臂的小车前后行走 D.捞渣机

以上介绍了常见四种扒渣机设备,其主要技术指标为铁水消耗量、扒渣时间、扒渣板消耗、操作维护性能。其中,扒渣板的消耗一方面涉及成本大小,另一方面更换扒渣板影响设备作业效率。扒渣板一般采用普通钢板,扒渣板的消耗主要由扒渣设备技术水平和扒渣时间决定,一块扒渣板可以扒渣50-150罐。在扒渣使用过程中,也有些用户对扒渣板的材质(采用铸造耐热钢等)和形状根据实际情况进行改进,适当提高了扒渣板的使用寿命并降低了扒渣的铁水消耗。 4、钢渣处理技术 由于钢铁生产的发展,导致大量钢渣弃置,堆积成渣山。钢渣的有效利用不仅能为工厂带来经济效益,更能达到环境保护的作用。 我国应用的钢渣处理方法有以下几种:

以上各种处理工艺中,应用较多的钢渣处理工艺为热泼法和热闷法;钢渣冷却以水冷为主,产生大量蒸汽、粉尘、污水。 现阶段,国内已对钢渣进行多层次的利用。众多钢厂将钢渣返回烧结做冶炼溶剂;经过破碎磁选回收废钢;制作钢渣水泥,钢渣筑路;制作渣砖等。 二、炼铝出渣 1、出渣工艺 铝渣是在扒渣工序中,以及每炉“清炉”和按规定“大清炉”时被扒出炉外。 2、铝渣成分 根据资料显示,铝渣量为炉料量的2%~5%,而渣中含有大量的铝(40%~60%)、氧化铝、铁硅镁的氧化物及K/Na/Ca/Mg的氯化物。 3、出渣设备

炉渣的主要成分

炉渣的主要成分 Prepared on 22 November 2020

炉渣(s l a g)矿中的脉石、炉料中的熔剂和其他造渣组分在火法冶金过程中形成的金属硅酸盐、亚铁酸盐和铝酸盐等混合物。此外,炉渣还含有少量的金属硫化物、金属和气体。从广义说,有色金属的吹炼渣、黄渣、蒸馏罐渣、精炼渣等都属有色金属冶金炉渣。 炉渣富集了炉料中的脉石成分和不希望进入主金属的杂质,是一个成分复杂的多元体系。炉渣的主要成分为氧化物。可将构成炉渣的氧化物分为酸性氧化物(如SiO2、Fe2O。等)、碱性氧化物(如FeO、CaO、MgO等)和两性氧化物(如Al2O3、ZnO等)。它们之间的区别在于各氧化物对氧离子的亲疏关系,容易放出氧离子的为碱性氧化物,反之为酸性氧化物。这些氧化物相互结合成各种化合物、固溶体及共晶混合物。 炉渣组成的来源有色金属冶金炉渣中的组分主要来源于五个方面:(1)矿石或精矿中的脉石,如SiO2、CaO、Al2O3、MgO等;(2)炉料在熔炼过程中生成的氧化物,如FeO、Fe3O4等;(3)为满足熔炼需要而加入的熔剂,如SiO2、CaO、FeO、Fe3O4等;(4)熔蚀或冲刷下来的炉衬材料,如MgO、SiO2、Al2O3等;(5)燃料燃烧的灰分,如Al2O3、SiO2等。

有色金属冶金炉渣属FeO–CaO–SiO2系,主要是由FeO、CaO、SiO2组成的硅酸盐,三者之和约占渣量75%~85%,有时甚至达90%。因此,渣的性质在很大程度上由这三个组分所决定。 在冶炼过程中的作用炉渣是火法冶金的必然产物,其量又相当大。例如反射炉炼铜产出的炉渣约为熔锍质量的200%~500%。炉渣在冶炼过程中主要起八方面的作用。(1)熔融炉渣富集了炉料中几乎全部的脉石和大部分的杂质,并在造渣过程中完成了金属的某些熔炼和精炼过程。例如铜、镍硫化矿造锍熔炼时,铜、镍等硫化物与硫化亚铁富集为熔锍,而铁的氧化物与脉石、熔剂和燃料灰分等形成熔渣。(2)熔炼生成的金属或锍熔体液滴分散在熔渣中,它们的汇合长大和澄清分离都是在熔渣介质中进行的。因此,熔渣对熔炼生成的金属或熔锍与造渣成分分离的程度起着重要的作用。(3)覆盖在金属或熔锍表面的熔渣层起保护金属和熔锍的作用。(4)熔渣在冶炼过程中除富集炉料中的脉石等成分外,有时还起富集有价组分的作用,如钛精矿还原熔炼所得的高钛渣,以及吹炼含钒和含铌的生铁所得的钒渣和铌渣等都是提取钛、钒和铌等的原料。(5)熔渣在一些冶炼过程中还起着特殊作用,在烧结焙烧过程中造渣成分起到粘合结块的作用;在鼓风炉熔炼过程中,炉渣的组成基本上决定了炉内的温度,低熔点渣型的强化熔炼只能提高炉子生产能力而不能提高炉内温度,要提高炉内温度必须选择熔点高的渣型;在电炉熔炼时,炉渣起电阻发热体作用。(6)炉渣的性质决定着熔炼过程的燃料消耗量,热焓量大的和熔点高的炉渣,熔炼的燃料消耗量也增加。(7)炉渣的性质和熔炼产

推荐的废渣处理技术

推荐的废渣处理技术 种类处置技术适用途径及原理 铅渣 铅渣中铅的回收 对含铅烟灰加水湿润,再配入铅精矿反复捣混均匀,再配入返 粉、熔剂、水淬渣和焦粉,最后进行烧结焙烧。适用于炼铅厂 家现有工艺设备处理因非正常原因引起的铅烟火积压现象。 铅阳极泥湿法提铅 用盐酸和氯化钠浸出铅阳极泥中的单质铅和氧化铅,在高温下 转化为氯化铅进入溶液。将浸出液趁热过滤后冷却至室温结 晶,以结晶氯化铅析出。 铜转炉烟灰矿渣综合回收铅 主要为硫酸铅,难溶于酸,将硫酸铅转化为易溶于酸的硝酸铅, 除去铅,并经过一系列化学反应浸出砷和铋。闭路循环,无废 水、废气产生。 制备三盐基硫酸铅 将铅浸出液加入碳酸钠或碳酸氢钠使铅转化为碳酸铅沉淀,再 用硫酸和硫酸盐沉淀,得到硫酸铅,再缓慢加入氢氧化钠溶液,

按理论量1.05—1.1倍加入,反应2h,控制终点pH在9—10,沉淀经过过滤、洗涤、干燥即成三盐基硫酸铅产品。 生产建筑材料熔融的鼓风炉渣、回收铅锌后的水淬渣,可用作生产建筑材料加以处置,可代替骨料生产灰渣瓦,作为制水泥的辅助原料, 制备铸石。 铬渣铬硫两渣高炉炼铁技术 铬渣中的钙镁含量可替代炼铁使用的白云石和石灰石,炼铁过 程中,六价铬完全还原,还原后的金属铬进入生铁中,提高其 力学性能、硬度、耐磨性、耐腐蚀性能。 冶炼含铬生铁 以铬浸出为碱性熔剂及含铬原料,配入含铁原料铁精矿粉、富 矿粉等和燃料,经烧结制成含铬的自熔性烧结矿,经高炉冶炼, 制成含铬合金生铁。 制钙镁磷肥 将铬渣、磷矿石、白云石、蛇纹石和焦炭按一定比例配料投入 高炉,在1350—1450℃进行熔融反应。六价铬还原成三价铬,

课程设计心得体会范文

课程设计心得体会范文 范文一 整个设计通过了软件和硬件上的调试。我想这对于自己以后的学习和工作都会有很大的帮助。在这次设计中遇到了很多实际性的问题,在实际设计中才发现,书本上理论性的东西与在实际运用中的还是有一定的出入的,所以有些问题不但要深入地理解,而且要不断地更正以前的错误思维。一切问题必须要靠自己一点一滴的解决,而在解决的过程当中你会发现自己在飞速的提升。对于教材管理系统,其程序是比较简单的,主要是解决程序设计中的问题,而程序设计是一个很灵活的东西,它反映了你解决问题的逻辑思维和创新能力,它才是一个设计的灵魂所在。因此在整个设计过程中大部分时间是用在程序上面的。很多子程序是可以借鉴书本上的,但怎样衔接各个子程序才是关键的问题所在,这需要对系统的结构很熟悉。因此可以说系统的设计是软件和硬件的结合,二者是密不可分的。通过这次课程设计我也发现了自身存在的不足之处,虽然感觉理论上已经掌握,但在运用到实践的过程中仍有意想不到的困惑,经过一番努力才得以解决。 这也激发了我今后努力学习的兴趣,我想这将对我以后的学习产生积极的影响。其次,这次课程设计让我充分认识到团队合作的重要性,只有分工协作才能保证整个项目的有条不絮。另外在课程设计的过程中,当我们碰到不明白的问题时,指导老师总是耐心的讲解,给我们的设计以极大的帮助,使我们获益匪浅。因此非常感谢老师的教导。通过这次设计,我懂得了学习的重要性,了解到理论知识与实践相结合的重要意义,学会了坚持、耐心和努力,这将为自己今后的学习和工作做出了最好的榜样。我觉得作为一名软件工程专业的学生,这次课程设计是很有意义的。更重要的是如何把自己平时所学的东西应用到实际中。虽然自己对于这门课懂的并不多,很多基础的东西都还没有很好的掌握,觉得很难,也没有很有效的办法通过自身去理解,但是靠着这一个多礼拜的“学习”,在小组同学的帮助和讲解下,渐渐对这门课逐渐产生了些许的兴趣,自己开始主动学习并逐步从基础慢慢开始弄懂它。 我认为这个收获应该说是相当大的。一开始我们从参考书上找来了课题,但是毕竟是参考书,做到后来发现很多程序都是不完整的,这让我们伤透了脑筋。看着别的小组都弄得有模有样了,可是我们连一个课题都还没有定好。好不容易又找到了课题,可是结果还是很不尽人意。程序接线什么的都弄好了,调试也没有问题,可是就是无法达到预期想要的结果。参考书毕竟只是一个参考,设计这种东西最后还是要靠自己动脑筋。然后我们大家一起齐心协力,从平时做的实验﹑老师上课的举例﹑书本上的知识以及老师的辅导和其他同学的帮助下终于完成了。应该说这是通过我们小组成员的共同努力和动脑完成的,虽然内容并不是很复杂,但是我们觉得设计的过程相当重要,学到了很多,收获了很多。我觉得课程设计反映的是一个从理论到实际应用的过程,但是更远一点可以联系到以后毕业之后从学校转到踏上社会的一个过程。小组人员的配合﹑相处,以及自身的动脑和努力,都是以后工作中需要的。 所以我认为这次的课程设计意义很深,和其他4位同学的共同学习﹑配合﹑努力的 过程也很愉快,另外还要感谢老师的耐心辅导。 范文二 对于此次课程设计,我早在寒假就借了linux相关书籍参看,但上面讲的主要是有关linux操作方面的内容,编程方面讲得很少,而且在假期中也并不知道课设的题目是什么,因此此次课设基本上都是在开学后的这两周内完成的。 以前做过的软件方面的课设如c语言课设、数据结构课设都是在假期完成的,由于自己是一个十分追求完美的人,因此几乎每次都花了将近大半个假期的时间来做,如c语言就花了一个多月的时间来做,分数当然也较高,有90来分。对于课程设计,我历来都是相当认真的,此次操作系统的课程设计当然也不例外。可是linux以前没怎么接触过,学校也没怎么系统地讲过,在刚接到题目时除了知道如何用gcc编译等等,几乎可以算作处于一无所知的

铜冶炼铜电解铜废渣废物废泥铜合金硫化铜矿铜精矿回收处理工艺技术与设备专利技术资料汇编样本

4铜冶炼、铜电解、铜废渣泥、铜合金、硫化铜矿、铜精矿、回收处理工艺与方法、专利技术资料汇编( 全套80元) 1.铜锌物料鼓风炉熔炼铜锌分离方法 2.铜回收法 3.铜沉淀方法 4.印制线路板碱性蚀刻铜废液处理方法 5.分离回收镀白铜针铜锡的方法及其阳极滚筒装置 6.废铜箔回收的方法1 7.废铜箔的回收方法2 8.在印刷电路板制造中利用对铜箔的金属化处理来产生细线条并替代氧化过程 9.铜锌钴分离的熔炼法 10.用不污染环境的方法回收覆铜板的铜 11.一种铜电解液净化除杂质的方法 12.紫杂铜一步电解生产阴极铜方法 13.湿法提铜工艺 14.电解铜废液处理工艺 15.一种铜转炉烟灰矿渣成团冶炼铅的新工艺及其成团配方 16.铜回收的方法 17.由电解含铜萃取有机相制备高纯铜的方法 18.含砷硫化铜精矿湿法冶炼新工艺 19.冶炼炉渣中的有价金属细菌回收方法 20.一种废锌铜镍合金的湿法分离方法 21.黑铜提锡工艺 22.双金属银铜复合边角料分离回收法 23.氯化铜废液的处理方法 24.用碳铵溶液电解退除铁基体铜,镍镀层的方法 25.一种新的硫酸铜制备方法 26.不锈钢阳极框杂铜直接电解精炼法 27.铜系废催化剂的回收方法

28.氧化铜矿直接制取硫酸铜工艺 29.从稀溶液中电解回收铜或银的装置 30.液-液萃取法净化铜电解液 31.使用卤化物的铜蚀刻方法 32.从黄杂铜中分离铜、锌、铅、铁、锡的工艺方法 33.铜及铜合金制品表面上铅锡的回收 34.一种从氧化铜矿中回收铜的湿法冶金方法 35.湿法冶铜新工艺 36.铜矿石生产硫酸铜的方法 37.氨浸沉淀法处理低品位铜渣或氧化铜矿的工艺 38.铜精矿粉末冶炼备料新工艺 39.废复铜板回收工艺 40.从硫化物铜矿中浸提回收铜、银、金、铅、铁、硫的方法及设备 41.一种从含铜较高的金精矿中提取铜的方法 42.从炼铜废渣中回收锡、铜、铅、锌等金属的方法 43.含铜废料直接电解精炼的方法 44.一种铜精矿粉制块工艺 45.回收铜的方法 46.生产一水硫酸铜的方法 47.从矿石中水冶提取铜、镍、钴的简易方法及其装置 48.从铅阳极泥提取金、银及回收锑、铋、铜、铅的方法 49.从绕组回收铜的方法 50.一种硫化铜镍矿选矿方法 51.铜的回收方法 52.铜、镍硫化矿无污染火冶法 53.由硫化镍精矿中提取镍、铜、钴、镁及制造镍铁的工艺 54.一种湿法分离锌、铜、镉、铅冶金物料的方法及应用 55.回收铜和镍 56.电路板的铜箔回收方法

高炉渣的综合利用。

高炉渣的综合利用 摘要 高炉渣是高炉炼铁过程中排出的固体废弃物,随着弃置量增大,产生的问题也日趋严重。通过分析我国高炉渣的现状及特点,阐述了对其综合利用的重要意义,回顾了高炉渣综合利用的研究进展。系统地介绍了高炉渣在制备混凝土材料、矿渣砖、墙体材料和新型矿棉、微晶玻璃等材料的应用情况。阐述了二次资源综合利用的社会效益、经济效益和环境效益。从资源有效利用和产业化的角度,指出了未来高炉渣的技术开发与综合利用的发展方向。 关键词: 高炉渣;利用途径;综合利用;矿棉;微晶玻璃; 前言 高炉渣是冶金行业产生数量最多的一种副产品,其处理过程中不仅消耗大量的能源,同时也排出大量的有害物质。因此,开展高炉渣回收利用方面的研究十分必要。国内外的生产企业十分注重高炉渣再利用技术的研究,近年来从能源节约和资源综合利用来看,提高炉渣的利用率和再利用价值,寻求高炉渣资源化利用新途径和利用高炉渣开发高附加值产品已成为国内外研究的热点。积极探索利用量大、附加值高的高炉渣利用新途径以促进经济社会与环境协调发展。 本文阐述了高炉矿渣的分类及主要成分,本着综合利用的原则,详细介绍了各种高炉矿渣的综合利用途径及工艺。积极探索利用量大、附加值高的高炉渣利用新途径以促进经济社会与环境协调发展。 研究背景 我国工业发展长期以来侧重于资源密集型产业,由此造成的大量工业固体废弃物处理问题也随着经济发展而不断突出。工业废物数量庞大,种类繁多,成分复杂,不仅占用大量土地,而且污染环境经过日晒、风吹雨淋,造成二次污染[1]。工业固体废弃物资源的回收再利用产业,是国内外循环经济发展的一个重要链条,发达国家已将其视为继现有三大产业之后的又一个重要产业支柱,又称“第

相关文档