文档库 最新最全的文档下载
当前位置:文档库 › 容量衰减的可能性及其原因

容量衰减的可能性及其原因

容量衰减的可能性及其原因
容量衰减的可能性及其原因

本质原因

锂离子电池在两个电极间发生嵌入反应时具有不同的嵌入能量,而为了得到电池的最佳性能,两个宿主电极的容量比应该保持一个平衡值。在锂离子电池中,容量平衡表示成为正极对负极的质量比,即:

γ=m+/m-=ΔxC-/ΔyC+

式中C指电极的理论库仑容量,Δx、Δy分别指嵌入负极及正极的锂离子的化学计量数。从上式可以看出,两极所需要的质量比依赖于两极相应的库仑容量及其各自可逆锂离子的数目。一般说来,较小的质量比导致负极材料的不完全利用;较大的质量比则可能由于负极被过充电而存在安全隐患。总之在最优化的质量比处,电池性能最佳。

对于理想的Li-ion电池系统,在其循环周期内容量平衡不发生改变,每次循环中的初始容量为一定值,然而实际上情况却复杂得多。任何能够产生或消耗锂离子或电子的副反应都可能导致电池容量平衡的改变,一旦电池的容量平衡状态发生改变,这种改变就是不可逆的,并且可以通过多次循环进行累积,对电池性能产生严重影响。

在锂离子电池中,除了锂离子脱嵌时发生的氧化还原反应外,还存在着大量的副反应,如电解液分解、活性物质溶解、金属锂沉积等,如图1所示。Arora等[3]将这些容量衰减的过程与半电池的放电曲线对照起来,使得我们可以清楚地看出电池工作时发生容量衰减的可能性及其原因,如图2所示。

一、过充电

1、石墨负极的过充反应:

电池在过充时,锂离子容易还原沉积在负极表面:Li++e→Li(s),沉积的锂包覆在负极表面,阻塞了锂的嵌入。【电源网】【李伟善】【黄可龙】【阮艳莉】导致放电效率降低和容量损失,原因有:

①可循环锂量减少;【电源网】【李伟善】【阮艳莉】

②沉积的金属锂与溶剂或支持电解质反应形成Li2CO3,LiF 或其他产物;

【电源网】【李伟善】【阮艳莉】

③金属锂通常形成于负极与隔膜之间,可能阻塞隔膜的孔隙增大电池内阻。

【电源网】【李伟善】【阮艳莉】

④由于锂的性质很活泼,易与电解液反应而消耗电解液.从而导致放电效率降低和容量的损失。【黄可龙】

快速充电,电流密度过大,负极严重极化,锂的沉积会更加明显。这种情况容易发生在正极活性物相对于负极活性物过量的场合,【电源网】

但是,在高充电率的情况下,即使正负极活性物的比例正常,也可能发生金属锂的沉积。【李伟善】

2、正极过充反应

当正极活性物相对于负极活性物比例过低时,容易发生正极过充电。

【李伟善】

正极过充导致容量损失主要是由于电化学惰性物质(如Co3O4,Mn2O3 等)的产生,破坏了电极间的容量平衡,其容量损失是不可逆的。

(1)LiyCoO2

LiyCoO2→(1-y)/3[Co3O4+O2(g)]+yLiCoO2 y<0.4

【电源网】【李伟善】【黄可龙】

同时正极材料在密封的锂离子电池中分解产生的氧气由于不存在再化合反应(如生成H2O)与电解液分解产生的可燃性气体同时积累,后果将不堪设想。【电源网】【黄可龙】

(2)λ-MnO2

锂锰反应发生在锂锰氧化物完全脱锂的状态下:

λ-MnO2→Mn2O3+O2(g)【李伟善】

【黄可龙】

3、电解液在过充时氧化反应

当压高于4.5V 时电解液就会氧化生成不溶物(如Li2Co3)和气体,这些不溶物会堵塞在电极的微孔里面阻碍锂离子的迁移而造成循环过程中容量损失。

【电源网】【黄可龙】【阮艳莉】

影响氧化速率因素:

正极材料表面积大小【电源网】【黄可龙】

集电体材料【电源网】【黄可龙】

所添加的导电剂(炭黑等)【电源网】【黄可龙】

炭黑的种类及表面积大小【电源网】【黄可龙】

在目前较常用电解液中,EC/DMC被认为是具有最高的耐氧化能力。

溶液的电化学氧化过程一般表示为:溶液→氧化产物(气体、溶液及固体物质)+ne- 任何溶剂的氧化都会使电解质浓度升高,电解液稳定性下降,最终影响电池的容量。假设每次充电时都消耗一小部分电解液,那么在电池装配时就需要更多的电解液。对于恒定的容器来说,这就意味着装入更少量的活性物质,这样会造成初始容量的下降。此外,若产生固体产物,则会在电极表面形成钝化膜,这将引起电池极化增大而降低电池的输出电压。【阮艳莉】

二、电解液分解(还原)

I在电极上分解

1、电解质在正极上分解:

电解液由溶剂和支持电解质组成,在正极分解后通常形成不溶性产物Li2Co3 和LiF等,通过阻塞电极的孔隙而降低电池容量,电解液还原反应对电池的容量和循环寿命会产生不良影响,并且由于还原产生了气体会使电池内压升高,从而导致安全问题。【电源网】【李伟善】正极分解电压通常大于4.5V(相对于Li/ Li+),所以,它们在正极上不易分解。相反,电解质在负极较易分解。【李伟善】

2、电解质在负极上分解:

电解液在石墨和其它嵌锂碳负极上稳定性不高,容易反应产生不可逆容量。初次充放电时电解液分解会在电极表面形成钝化膜,钝化膜能将电解液与碳负极隔开阻止电解液的进一步分解。从而维持碳负极的结构稳定性。理想条件下电解液的还原限制在钝化膜的形成阶段,当循环稳定后该过程不再发生。【电源网】【黄可龙】

钝化膜的形成

电解质盐的还原参与钝化膜的形成,有利于钝化膜的稳定化,但

(1)还原产生的不溶物对溶剂还原生成物会产生不利影响;【电源网】

(2)电解质盐还原时电解液的浓度减小,最终导致电池容量损失(LiPF6 还原生成LiF、LixPF5-x、PF3O 和PF3);【电源网】【黄可龙】

(3)钝化膜的形成要消耗锂离子,这会导致两极间容量失衡而造成整个电池比容量降低。【电源网】

(4)如果钝化膜上有裂缝,则溶剂分子能透入,使钝化膜加厚,这样不但消耗更多的锂,而且有可能阻塞碳表面上的微孔,导致锂无法嵌入和脱出,造成不可逆容量损失。在电解液中加一些无机添加剂,如CO2,N2O,CO,SO2和Sx2-等,可加速钝化膜的形成,并能抑制溶剂的共嵌和分解,加入冠醚类有机添加剂也有同样的效果,其中以12冠4醚最佳。【黄可龙】

成膜容量损失的因素:

(1)工艺中使用碳的类型;【电源网】

(2)电解液成份;【电源网】

(3)电极或电解液中添加剂。【电源网】

Blyr 认为离子交换反应从活性物质粒子表面向其核心推进,形成的新相包埋了原来的活性物质,粒子表面形成了离子和电子导电性较低的钝化膜,因此贮存之后的尖晶石比贮存前具有更大的极化。Zhang通过对电极材料循环前后的交流阻抗谱的比较分析发现,随着循环次数的增加,表面钝化层的电阻增加,界面电容减小。反映出钝化层的厚度是随循环次数而增加的。锰的溶解及电解液的分解导致了钝化膜的形成,高温条件更有利于这些反应的进行。这将造成活性物质粒子间接触电阻及Li+迁移电阻的增大,从而使电池的极化增大,充放电不完全,容量减小。【刘庆国】

II电解液的还原机理

电解液中常常含有氧、水、二氧化碳等杂质,在电池充放电过程中发生氧化还原反应。【黄可龙】

电解液的还原机理包括溶剂还原、电解质还原及杂质还原三方面:【阮艳莉】

1、溶剂的还原

PC和EC的还原包括一电子反应和二电子反应过程,二电子反应形成Li2CO3:【李伟善】【李伟善】【阮艳莉】

Fong等认为,在第一次放电过程中,电极电势接近O.8V(vs.Li/Li+)时,PC/EC在石墨上发生电化学反应,生成CH=CHCH3(g)/CH2=CH2(g)和LiCO3 (s),导致石墨电极上的不可逆容量损失。

Aurbach等对各种电解液在金属锂电极和碳基电极上还原机理及其产物进行了广泛的研究,发现PC的一电子反应机理产生ROCO2Li和丙烯。ROCO2Li对痕量水很敏感,有微量水存在时主要产物为Li2CO3和丙稀,但在干燥情况下并无Li2CO3产生。

DEC的还原:

【阮艳莉】

Ein-Eli Y报道,由碳酸二乙酯(DEC)和碳酸二甲酯(DMC)混合而成的电解液,在电池中会发生交换反应,生成碳酸甲乙酯(EMC),对容量损失产生一定的影响。

2、电解质的还原

电解质的还原反应通常被认为是参与了碳电极表面膜的形成,因此其种类及浓度都将影响碳电极的性能。在某些情况下,电解质的还原有助于碳表面的稳定,可形成所需的钝化层。【阮艳莉】

一般认为,支持电解质要比溶剂容易还原,还原产物夹杂于负极沉积膜中而影响电池的容量衰减。几种支持电解质可能发生的还原反应如下:

【李伟善】【阮艳莉】

最后一步:【阮艳莉】

3、杂质还原

(1)电解液中水含量过高会生成LiOH(s)和Li2O 沉积层,不利于锂离子嵌入,造成不可逆容量损失:

H2O+e→OH-+1/2H2

OH-+Li+→LiOH(s)

LiOH+Li++e→Li2O(s)+1/2H2 【电源网】【李伟善】【黄可龙】【阮艳莉】

生成LiOH(s)在电极表面沉积,形成电阻很大的表面膜,阻碍Li+嵌入石墨电极,从而导致不可逆容量损失。【黄可龙】

溶剂中微量水(100-300×10-6)对石墨电极性能没影响。【黄可龙】

(2)溶剂中的CO2 在负极上能还原生成CO 和LiCO3(s):

2CO2+2e+2Li+→Li2CO3+CO

CO 会使电池内压升高,而Li2CO3(s)使电池内阻增大影响电池性能。

【电源网】【李伟善】

(3)溶剂中的氧的存在也会形成Li2O

1/2O2+2e+2Li+→Li2O【李伟善】【阮艳莉】

因为金属锂与完全嵌锂的碳之间电位差较小,电解液在碳上的还原与在锂上的还原类似。

三、自放电

自放电是指电池在未使用状态下,电容量自然损失的现象。锂离子电池自放电导致容量损失分两种情况:一是可逆容量损失;二是不可逆容量的损失。可逆容量损失是指损失的容量能在充电时恢复,而不可逆容量损失则相反,正负极在充电状态下可能与电解质发生微电池作用,发生锂离子嵌入与脱嵌,正负极嵌入和脱嵌的锂离子只与电解液的锂离子有关,正负极容量因此不平衡,充电时这部分容量损失不能恢复。如:

锂锰氧化物正极与溶剂会发生微电池作用产生自放电造成不可逆容量损失:

LiyMn2O4+xLi++xe→Liy+xMn2O4【电源网】【李伟善】【阮艳莉】

溶剂分子(如PC)在导电性物质碳黑或集流体表面上作为微电池负极氧化:

xPC→xPC-自由基+xe 【李伟善】

同样,负极活性物质可能会与电解液发生微电池作用产生自放电造成不可逆容量损失,电解质(如LiPF6)在导电性物质上还原:

PF5+xe→PF5-x 【李伟善】

充电状态下的碳化锂作为微电池的负极脱去锂离子而被氧化:

LiyC6→Liy-xC6+xLi++xe 【李伟善】

自放电影响因素:

正极材料的制作工艺;【电源网】【黄可龙】

电池的制作工艺;【电源网】【黄可龙】

电解液的性质;【电源网】【黄可龙】

温度;【电源网】【黄可龙】

时间。【电源网】【黄可龙】

自放电速率主要受溶剂氧化速率控制,因此溶剂的稳定性影响着电池的贮存寿命。【电源网】【黄可龙】【阮艳莉】

溶剂的氧化主要发生在碳黑表面,降低碳黑表面积可以控制自放电速率,【阮艳莉】【黄可龙】但对于LiMn2O4正极材料来说,降低活性物质表面积同样重要,同时集电体表面对溶剂氧化所起的作用也不容忽视。【黄可龙】

通过电池隔膜而泄漏的电流也可以造成锂离子电池中的自放电,但该过程受到隔膜电阻的限制,以极低的速率发生,并与温度无关。考虑到电池的自放电速率强烈地依赖于温度,故这一过程并非自放电中的主要机理。【阮艳莉】

如果负极处于充足电的状态而正极发生自放电,电池内容量平衡被破坏,将导致永久性容量损失。【电源网】【黄可龙】

长时间或经常自放电时,锂有可能沉积在碳上,增大两极间容量不平衡程度。【电源网】【黄可龙】

Pistoia 等比较了3种主要金属氧化物正极在各种不同电解液中的自放电速率,发现自放电速率随电解液不同而不同。并指出自放电的氧化产物堵塞电极材料上的微孔,使锂的嵌入和脱出困难并且使内阻增大和放电效率降低,从而导致不可逆容量损失。【电源网】【黄可龙】

四、电极不稳定性

正极活性物质在充电状态下会氧化电解质分解而造成容量损失。影响正极材料溶解的因素有:

正极活性物质的结构缺陷;【电源网】

充电电势过高;【电源网】

正极材料中炭黑的含量。【电源网】

1、结构变化(相变)

其中电极在充放电循环过程中结构的变化是最重要的因素。【电源网】【李伟善】

(1)锂锰氧化物在充放电过程中存在2种不同的结构变化:一是化学计量不变的情况下发生的相变化;二是充放电过程中锂嵌入和脱嵌量改变时发生的相变。例如锂锰氧化物完全充电脱锂形成λ-MnO2,可能在化学计量不变的情况下发生相变化,经ε-MnO2转变成没有活性的β-MnO2;当锂锰氧化物深度放电嵌入过分的锂时,原来的立方晶系尖晶石发生晶格扭曲,转变成四方晶系的尖晶石,即发生Jahn-Teller扭曲,晶胞中z轴伸长15%,x和Y 轴收缩6%,这样多次循环后,正极材料便会粉化。LiMn2O4在深循环下容易出现容量衰减。

【李伟善】【黄可龙】【阮艳莉】【刘庆国】

Xia等认为在低电压区,电压曲线呈“S”形,此时对应着单一的立方晶体结构,而高电压区“L”形则说明存在两相,正是由于两相结构共存的不稳定性导致了容量的衰减。作者还发现存在氧缺陷的正极材料在循环过程中容易发生相变,在4.0及4.2V处均发生容量衰减;而无氧缺陷的样品在循环过程中不易出现相变,仅在过放电时发生容量衰减。【阮艳莉】

制备富锂型LiMn2O4,使锂占住部分锰的位置使锰的平均化合价升高,可以大大减小Jahn-Telle形变。合成富锂或富氧化合物还能改善LiMn2O4高温电化学性能。掺杂尖晶石LiMn2-xMxO4 (M=Ni,Co,Fe等)的充放电性能有明显的改善。原因在于:①由于Ni,Co,Fe等原子半径小,由他们所制备的LiMn2-xMxO4的晶胞相对较小,在锂脱嵌时,所承受的结构变形扭曲小,因而在充放电过程中其结构更容易保持,其循环性能也就更好。②由于Co,Ni价态均小于3,以Co,Ni等代替Mn,将提高锰的平均价态,减少Mn3+的含量,从而避免在深度放电时由于较多的(50%)Mn3+存在.而引起结构向四面体的形变。Mn3+是造成Jahn-Teller效应的内部原因。【黄可龙】

(2)锂钴氧化物在完全充电状态下为六方晶体,理论容量的50%放电后生成新相单斜晶体,所以LiyCoO2通常在0.5

【电源网】【李伟善】

(3)锂镍氧化物在充放电循环过程中涉及斜方六面体及单斜晶体的变LiyNiO2 通常在0.3

负极碳在嵌锂和脱锂过程中也涉及晶相的变化,但普遍认为负极活性物质的相转变不会造成电池的容量衰减。【李伟善】【黄可龙】

注:LiCoO2 和锂镍氧化物电极也可观察到相变,但与容量损失关系不大[38]。LiyNiO2电极通常在y=0.3和0.9之间循环,而LiyCoO2在y=0.5和 1.0之间循环,可避免循环过程中明显相变。【黄可龙】

2、正极溶解

影响正极材料溶解的因素有:【黄可龙】

①正极活性物质的结构缺陷

LiMn2O4 和LiNi2O4结构中氧原子缺陷能削弱金属原子与氧原子之间的键能,从而导致锰和镍的溶解。溶解在电解液中的Mn2+和Ni2+,最终会以单质形式在负极上沉积,不仅使正极活性物质消耗,而且堵塞负极上的微孔,使锂在负极嵌入和脱出困难,造成容量损失。据文献报道,正极LiMn2O4中的锰溶解进入电解液后,有25%的Mn2+沉积在负极表面,使用高纯度的LiFP6和低比表面的LiMn2O4可以减少Mn2+的溶解。

②充电电势过高;

③正极材料中炭黑的含量

电解液在炭黑表面氧化产生的具有催化性能的物质使金属离子溶解速率增加,因此对正极材料溶解产生不良的影响。【黄可龙】

④催化氧化还原

Robertson 等认为,催化氧化还原导致锰从LiMn2O4正极材料中脱出,生成Li2MnO3和Li2Mn4O9。其中Li2MnO3呈电化学惰性,Li2Mn4O9 在4v附近无充放电容量,会导致不可逆容量损失。此外,Mn3+的歧化溶解形成了缺阳离子型的尖晶石相,使晶格受到破坏并堵塞Li+扩散通道。【刘庆国】【黄可龙】

但是长期以来,尖晶石电极以何种机理溶解一直是有争议的。较为经典的是Hunter所提出的通过歧化反应进行溶解的机理,总反应如下:

4H++2LiMn3+Mn4+O4→3λ-MnO2+Mn2++2Li++2H2O(2)

这是一个由于酸的存在而导致尖晶石的溶解过程。该机理的实质是Mn3+氧化状态不稳定,发生歧化反应而形成Mn2+和Mn4+。Mn2+既可以进入溶液中,在负极上沉积为Mn(s),也可以和Li+一起与电解液的氧化产物反应,在电极表面形成含有锂和锰的钝化膜。这两种

情况都会增大电池内阻,导致容量损失。【阮艳莉】

在完全放电状态下,锂锰氧化物是三价锰占总锰量一半的尖晶石LiMn2O4。三价锰在酸性条件下发生岐化反应:

Mn3+(固体)→Mn2+(溶解)+Mn4+(固体)

酸来自于电解质与电解液中杂质水的作用:

LiPF6+H2O→POF3+2HF+LiF【李伟善】

Inoue认为,高温下LiPF6的分解产物对锰的腐蚀溶解造成了LiMn2O4晶格缺陷,结构无序化使得Li+扩散受阻。他们排除了Mn2+在负极上沉积而对SEI膜造成的破坏、及其对电池性能造成的影响。【刘庆国】

认为不论Mn的溶解是如何发生的,重要的是其间伴随着质子化的过程,这才是容量衰减的原因所在。【阮艳莉】

HF 导致的锰的溶解是造成LiMn2O4容量衰减的直接原因。含F电解液本身含有的HF杂质、溶剂发生氧化产生的质子与F化合形成的HF、以及电液中的水分杂质或电极材料吸附的水造成电解质分解产生的HF造成了尖晶石的溶解。值得一提的是,LiMn2O4对电解质的分解反应具有催化作用,从而使锰的溶解反应具有自催化性。锰的溶解反应是动力学控制的,40℃以上溶解速度加快,且温度越高,锰的溶解损失就越严重。【刘庆国】

然而锰溶解所造成的直接容量损失只占不可逆容量损失的一小部分。显然必定有锰溶解以外的其它原因:即随着锰的溶解,材料的结构也发生了变化。但结构如何变化,锰溶解的机理怎样,目前的研究结果并不一致。Pasquier的研究证明,LiMn2O4在电解液中高温贮存后除表面形成钝化膜外,材料颗粒的核心部分形成了具有低电化学活性的部分质子化的λ-HzMn2-xO4相,导致Li+嵌/脱反应活性降低及容量下降。Wen也指出高压区的容量衰减是由于Mn的溶解,电极材料逐渐转化为具有低压特性的缺陷尖晶石相LixMn4O9。Blyr 研究了Li1.05Mn2O4的锂锰尖晶石在55℃电解液中放电态贮存时的容量衰减问题,指出离子交换反应导致锰的溶解并形成低电位的缺陷尖晶石相。Xia认为,室温下循环过程中的容量衰减仅发生在高电位区,在该区共存的两相在Li+嵌/脱过程中通过MnO的损失转变成稳定的单相结构(LiMn2-xO4-x),这一结构变化构成容量损失的主要部分;而在高温下循环时容量损失则主要发生在高电位区,该区内两相结构更有效地转变成稳定的单相结构,且同时在整个4V区发生Mn2O3的直接溶解。其中,结构变化仍然是导致容量衰减的主要因素。【刘庆国】

锂钴氧化物的溶解也有报道,钴在电解液中的溶解量取决于锂钴氧化物合成时的热处理条件。【李伟善】

LiCo2O4锂离子电池充电电压超过4.2V时,容量损失与在负极检测到的钴含量直接相关,并且充电截止电流电压越高,钴溶解的速率越大。另外,容量损失(或钴的溶解)与合成活性物质的热处理温度有关。【黄可龙】

五、集流体

铜和铝分别是负极和正极集流体最常用的材料。

集流体腐蚀与电解液有关,在LiPF6-EC/DMC电解液中,电压为4.2V(vs.Li/Li+)即可腐蚀铝箔;而在LiBF4-EC/DMC及LiClF4-EC/DMC中,低于4.9V的电压均不能腐蚀铝箔,这是因为LiPF6易生成HF。【阮艳莉】

1、铝箔

铝箔无论是在空气中还是在电解液中都比较容易在表面形成氧化物膜,同时,集流体表面全面腐蚀和局部腐蚀(如点蚀)以及粘附性差等原因都会使得电极反应阻力增大,电池内阻增加,导致容量损失和放电效率降低。【电源网】【李伟善】【黄可龙】

chen 等应用阻抗谱,光电子能谱,俄歇技术等研究了铝在PC/DEC和EC/DMC电解液中的孔蚀。他们认为,经铬酸盐处理后在铝集流体表面形成的包覆层对其有很好的保护作用。【J. Electrochem. Soc,1999, 146(4):1310-1317】

通过添加氟化物可以明显抑制铝的腐蚀过程【阮艳莉】(Solid State Sciences, 2002, 4: 1385-1394)

2、铜箔

铜集流体在使用过程中腐蚀生成一层绝缘腐蚀产物膜。致使电池内阻增大,循环过程中放电效率下降,造成容量损失。

当过放电时,铜箔会发生如下反应:Cu→Cu++e-

所产生的Cu(I)在充电时会以金属铜的形式结晶沉积在负极表面上,形成铜枝晶,极易穿透隔膜造成短路甚至出现爆炸。特别注意的是在选择负极极片时绝对不允许有掉料露铜的极片存在,否则在露铜处极片容易生成枝晶损坏电池。防止铜集流体溶解最好是放电电压应不低于2.5V。【电源网】【李伟善】【黄可龙】

为了减少这些原因造成的影响,从市场上购得的集流体最好进行预处理(酸-碱浸蚀、耐腐蚀包覆、导电包覆等),以提高耐腐蚀性与粘附性能。因为集流体表面粘附力太小,电极局部可能会与集流体分开,增加了极化作用,对容量有很大影响。【电源网】【李伟善】【黄可龙】

大家评价还不错,是我辛辛苦苦花了两三天时间看文献分析综合后得到的,在课题组作报告用的

可能性和可能性大小

《可能性及可能性大小》教学设计 教学内容: 苏教版小学数学四年级上册第64~65页例1和“试一试”,第65~66页例2和“练一练”,第67页第1~4题。 教学目标: 1.使学生结合具体的实例,初步感受简单的随机现象,能列举出简单随机事件中所有可能出现的结果,能正确判断简单随机事件发生的可能性的大小。 2.使学生在观察、操作和交流等具体的活动中,初步感受简单随机现象在日常生活中的广泛使用,能使用有关可能性的知识解决一些简单的实际问题或解释一些简单的生活现象,形成初步的随机意识。 3.使学生在参和学习活动的过程中,获得学习成功的体验,感受和他人合作交流的乐趣,培养对数学学习的兴趣,增强学好数学的自信心。 教具、学具准备: 教师准备红、黄、绿这三种颜色的球各2个(形状、大小、材质完全相同)、扑克牌、投影仪等;学生分小组准备红桃A~4、黑桃4这5张扑克牌。 教学过程: 一、揭题 谈话:同学们喜欢玩游戏吗?今天这节课我们主要通过玩一些游戏,来研究游戏中隐藏着的数学知识。(揭示课题:可能性) 二、探究 1.教学例1。 谈话:先请看,(出示一个不透明的口袋,并示意口袋是空的)这是一个不透明的空口袋,(拿起1个红球和1个黄球)这里还有2个球,1个是红球,1个是黄球,这2个球除了颜色不同外,形状、大小、材质等都完全相同。把这2个球放人口袋里(把球放人口袋),现在口袋里有1个红球和1个黄球,请大家想一想,如果从口袋里任意摸出1个球,你认为摸出的会是哪个球?(可能是红球,也可能是黄球) 启发:可能(板书:可能),这词用得好!你能解释为什么可能摸出红球,也可能摸出黄球吗?

谈话:对呀:可能是红球,也可能是黄球,到底能摸到哪个球并不确定(板书:不确定)。情况是不是这样呢?我们可以通过摸球游戏来检验,先看老师怎样摸球,(边讲解边示范)像这样每次在摸球前先用手在口袋里把2个球搅一搅,再任意摸出1个球,看一看是什么颜色,并把摸出的结果记录在这张表里,然后把球放回口袋里,搅一搅,再摸。会做这样的游戏了吗?请小组长拿出课前准备好的口袋,在口袋里放1个红球和1个黄球。小组合作,轮流摸球,摸10次,并按顺序记录每次摸出球的颜色。 学生按要求活动,教师巡视。 反馈:你们小组的摸球结果怎样?请各小组选派一名代表到投影仪前展示你们组摸球的结果,并说说摸出红球和黄球各多少次。 展示后,把各小组的记录单对应着排列起来。 讨论:请大家比较各个小组的摸球结果,看你能发现什么? 教师参和学生的讨论,并加以适当引导,明确:各小组摸出红球的次数、黄球的次数不完全相同;每次摸出的球的颜色也不完全相同;但每个小组都既摸出了红球,也摸出了黄球。 提问:通过摸球游戏,你有什么体会? 指出:这样的摸球游戏,之所以要让这两个球除颜色外,其他的都完全一样,就是要使每个球都可能被摸到,也就是每个球被摸到的机会是均等的。 2.教学“试一试”。 出示口袋,并在口袋里放2个红球。 提问:现在口袋里有几个球?是什么颜色的? 再问:如果从这个口袋里任意摸出1个球,结果会怎样?(板书:一定)提问:如果口袋里只放了2个黄球,从中任意摸出1个球,可能摸出红球吗?为什么?(板书:不可能) 追问:如果口袋里放1个黄球和1个绿球,从中任意摸出1个球,能摸出红球吗? 比较:请同学们回顾一下例1和“试一试”的学习过程,想一想,同样在口袋里摸球,例1和“试一试”有什么不同? 3.小结:像这样,有些事件的发生和否是确定的,要么一定发生,要么不

锂离子电池容量损失分析

锂离子电池容量损失分析  锂离子电池是继镍镉、镍氢电池之后发展最快的二次电池。由于其具有比能量高、工作电压高、自放电率低、循环寿命长、环境污染小等独特优势,现已用作高速发展的小型电子产品的电源,也很有希望用作大型动力电池的电源。锂离子电池的应用很大程度上取决于其充放电循环的稳定性,与其他二次电池一样,锂离子电池在循环过程中容量衰减是难以避免的。由于锂离子电池在充放电过程中过充电或过放电、电解液分解、SEI 膜的形成、活性物质的溶解及其他因素会导致电池容量损失,因此分析锂离子电池容量衰减的原因,对我们进行研究开发及生产应用有着重要的作用,也有利于提高我们产品的品质。 一、锂离子电池工作原理 锂离子电池是指分别用两种能可逆嵌入与脱嵌锂离子的层间化合物作正负极活性物质而构成的二次电池,目前生产中普遍采用高嵌脱锂电位的LiCoO2 类材料为正极,低嵌脱锂电位的碳类材料为负极。锂离子电池在最初的充电循环中,在碳负极材料会出现化学/电化学反映过程,分别对应有机电解液的分解和锂离子的嵌入,伴随形成SEI 膜。目前常用的有机溶剂有碳酸丙烯酯(PC)、碳酸乙烯酯(EC)、碳酸二乙酯(DEC)、碳酸二甲酯(DMC)和碳酸甲基乙基酯(EMC)等,电解质一般用锂盐有LiBF6、LiPF4、LiAsF6 和LiCIO4 等。隔膜用PP 微孔薄膜或PE 微孔薄膜。电极反应如下: 正极:LiCoO2充电→← 放电Li1 - xCoO2+xLi++xe-20 负极: 6C + xLi + + xe -充电→← 放电 LixC6 总的反应为: 6C + LiCoO2充电→← 放电 Li1-xCoO2+LixC6 充电时,锂离子从LiCoO2 中立方紧密堆积氧层中八面体位置发生脱嵌,释放一个电子给Co3+,其氧化为Co4+;放电时,锂离子嵌入到八面体位置得到一个电子,Co4+还原为Co3+。负极中当锂离子插入到石墨层中后石墨结构与此同时从外电路得到一个电子使得负极电荷平衡。与其它二次电池一样,锂离子经充放电循环后存在容量损失问题,导致这些问题的原因有很多,有材料方面也有制造工艺方面的因素。 二、容量损失原因分析 1.过充电 所谓过充电就是超过规定的充电终止电压(一般为4.2V)而继续充电

最经典的锂离子电池容量衰减原因分析

本质原因 锂离子电池在两个电极间发生嵌入反应时具有不同的嵌入能量,而为了得到电池的最佳性能,两个宿主电极的容量比应该保持一个平衡值。在锂离子电池中,容量平衡表示成为正极对负极的质量比,即: γ=m+/m-=ΔxC-/ΔyC+ 式中C指电极的理论库仑容量,Δx、Δy分别指嵌入负极及正极的锂离子的化学计量数。 从上式可以瞧出,两极所需要的质量比依赖于两极相应的库仑容量及其各自可逆锂离子的数目。一般说来,较小的质量比导致负极材料的不完全利用;较大的质量比则可能由于负极被过充电而存在安全隐患。总之在最优化的质量比处,电池性能最佳。 对于理想的Li-ion电池系统,在其循环周期内容量平衡不发生改变,每次循环中的初始容量为一定值,然而实际上情况却复杂得多。任何能够产生或消耗锂离子或电子的副反应都可能导致电池容量平衡的改变,一旦电池的容量平衡状态发生改变,这种改变就就是不可逆的,并且可以通过多次循环进行累积,对电池性能产生严重影响。 在锂离子电池中,除了锂离子脱嵌时发生的氧化还原反应外,还存在着大量的副反应,如电解液分解、活性物质溶解、金属锂沉积等,如图1所示。Arora等[3]将这些容量衰减的过程与半电池的放电曲线对照起来,使得我们可以清楚地瞧出电池工作时发生容量衰减的可能性及其原因,如图2所示。 一、过充电1?、石墨负极的过充反应: 电池在过充时,锂离子容易还原沉积在负极表面:Li++e→Li(s),沉积的锂包覆在负极表面,阻塞了锂的嵌入。导致放电效率降低与容量损失,原因有:①可循环锂量减少; ②沉积的金属锂与溶剂或支持电解质反应形成Li2CO3,LiF 或其她产物; ③金属锂通常形成于负极与隔膜之间,可能阻塞隔膜的孔隙增大电池内阻。④由于锂的性质很活泼,易与电解液反应而消耗电解液.从而导致放电效率降低与容量的损失。?快速充电,电流密度过大,负极严重极化,锂的沉积会更加明显。这种情况容易发生在正极活性物相对于负极活性物过量的场合,但就是,在高充电率的情况下,即使正负极活性物的比例正常,也可能发生金属锂的沉积。?2、正极过充反应 当正极活性物相对于负极活性物比例过低时,容易发生正极过充电。?正极过充导致容量损失主要就是由于电化学惰性物质(如Co3O4,Mn2O3 等)的产生,破坏了电极间的容量平衡,其容量损失就是不可逆的。 (1)LiyCoO2 LiyCoO2→(1-y)/3[Co3O4+O2(g)]+yLiCoO2 y<0、4 同时正极材料在密封的锂离子电池中分解产生的氧气由于不存在再化合反应(如生成H2O)与电解液分解产生的可燃性气体同时积累,后果将不堪设想。 (2)λ-MnO2?锂锰反应发生在锂锰氧化物完全脱锂的状态下: λ-MnO2→Mn2O3+O2(g) 3?、电解液在过充时氧化反应 当压高于4、5V 时电解液就会氧化生成不溶物(如Li2Co3)与气体,这些不溶物会堵塞在电极的微孔里面阻碍锂离子的迁移而造成循环过程中容量损失。 影响氧化速率因素: 正极材料表面积大小 集电体材料 所添加的导电剂(炭黑等)?炭黑的种类及表面积大小 在目前较常用电解液中,EC/DMC被认为就是具有最高的耐氧化能力。?溶液的电化学氧化过程一般表示为:溶液→氧化产物(气体、溶液及固体物质)+ne- 任何溶剂的氧化都会使电解质浓度升高,电解液稳定性下降,最终影响电池的容量。假设每次充电时都消耗一小部分电解液,那么在电池装配时就需要更多的电解液。对于恒定的容器来说,这就意味着装入更少量的活性物质,这样会造成初始容量的下降。此外,若产生固体产物,则会在电极表面形成钝化膜,这将引起电池极化增大而降低电池的输出电压。?二、电解液分解(还原)?I 在电极上分解 1、电解质在正极上分解:?电解液由溶剂与支持电解质组成,在正极分解后通常形成不溶性产物Li2Co3 与LiF等,通过阻塞电极的孔隙而降低电池容量,电解液还原反应对电池的容量与循环寿命会产生不良影响,并且由于还原产生了气体会使电池内压升高,从而导致安全问题。?正极分解电压通常大于4、5V(相对于Li/Li+),所以,它们在正极上不易分解。相反,电解质在负极较易分解。2?、电解质在负极上分解:?电解液在石墨与其它嵌锂碳负极上稳定性不高,容易反应产生不可逆容量。初次充放电时电解液

可能性的大小教案

可能性的大小 北师大版教材五年级上册第87-89页 教材分析 本节课所学的内容是在三、四年级的基础上的一个延伸和发展,本节课的主要内容是让学生体会用数来表示可能性的大小的简洁性并学会如何用数来表示可能性的大小;通过游戏来体会不确定现象的特点和价值。为后面根据指定的条件合理设计可能性的大小,运用所学的知识解决现实生活中的问题做知识铺垫。教材在呈现本专题的内容是分为三个部分:首先呈现了提供给学生开展试验活动的材料,通过学生的试验进一步必会磨出一个球颜色的可能性的大小;其次呈现了“想一想”的内容,通过讨论结果,将描述可能性的语言“不可能”、“一定能”转化为数据表示,为后续用分数表示可能性作了铺垫;我对教材做了稍微的变动,因为我想让学生对概率有一个较直接的认识,而不是单纯的教会孩子们如何用数来表示这个可能性的大小,而是告诉他们为什么可以用这个数来表示它的可能性大小,可能性就存在着不确定性,如何体现不确定现象的特点和价值,并且把这一思考落实在具体的教学中,我选择了让学生经历学习、猜测、推理、试验验证、反思、应用等学习历程,希望能上出数学课的研究气氛。 学情分析 因为在三年级的学习中,学生已经认识了可能性的大小,在四年级的学习中,他们又认识了可能性,而本节课所学的概率知识主要是用分数表示可能性的大小,分数来表示可能性的大小对学生来说并不难,他们可能会对游戏中的出现的问题会比较感兴趣,而这也是我这节课的难点所在。我会引导他们游戏、讨论、发现、思索等等,探索出我们的本节课的“魂”。根据对我的学生的了解,我相信他们可以通过实验,找到实验数据和理论数据的矛盾点,从而开始探索之旅。 教学目标 知识与技能: 1、学生通过试验操作活动,进一步认识客观事件发生的可能性的大小; 2、他们能够学会用分数表示可能性的大小; 过程与方法: 1、让学生经历猜测、收集数据、分析数据、验证假设的过程,体验概率感念的形成过程; 2、培养学生的交流、合作、对话意识,体验合作学习的必要性; 情感、态度与价值观: 1、是学生进一步认识可能性,了解生活中充满了不确定性,培养唯物主义辩证思想; 2、通过动手试验、数据分析、体验数学的内在魅力,激发学生探究数学的兴趣。 教学准备:多媒体课件、大小和形状完全相同的白球和黄球若干个、布袋子若干

锂离子电池容量衰减机理和界面反应研究

Capacity Fade Mechanisms and Side Reactions in Lithium-Ion Batteries Pankaj Arorat and Ralph E. White Center For Electrochemical Engineering, Department of Chemical Engineering, University of South Carolina,Columbia, South Carolina 29208, USA ABSTRACT The capacity of a lithium-ion battery decreases during cycling. This capacity loss or fade occurs due to several different mechanisms which are due to or are associated with unwanted side reactions that occur in these batteries. These reactions occur during overcharge or overdischarge and cause electrolyte decomposition, passive film formation, active material dissolution, and other phenomena. These capacity loss mechanisms are not included in the present lithium-ion battery mathematical models available in the open literature. Consequently, these models cannot be used to predict cell performance during cycling and under abuse conditions. This article presents a review of the current literature on capacity fade mechanisms and attempts to describe the information needed and the directions that may be taken to include these mechanisms in advanced lithium-ion battery models。锂离子电池容量衰减机 理和界面反应研究 作者:Pankaj Arorat and Ralph E. White 美国,南卡罗来纳29208,哥伦比亚,南卡罗来纳州大学,化工学院化工系 摘要 锂电池在循环过程中,其容量会逐渐衰减。而出现容量衰减主要归因于几个不同的机理,这些机理大多与电池内部的界面反应相关,这些反应持续性的发生在电池的充放电环节,并且引起电解液的分解、钝化膜的形成、活性材料的溶解等其它现象。关于容量衰减的机理在目前公开的锂离子电池数学模型的文献中并未加以阐述,因此在锂电池循环过程中和处于苛刻的条件下,我们无法通过模型来对锂电池的性能作出有效的预测。本篇文章将陈述容量衰减的机理,并且试着去解释其本质,为构建先进的锂电池模型指明方向。 lntroduction The typical lithium-ion cell(Fig. 1) is made up of a coke or graphite negative electrode, an electrolyte which serves as an ionic path between electrodes and separates the two materials, and a metal oxide (such as LiCoO2, LiMn2O4, or LiNiO2) positive electrode. This secondary (rechargeable) lithium-ion cell has been commercialized only 概论 传统的锂电池由碳或石墨负极材料、作为电极间的离子传输通道的电解液、金属氧化物(例如LiCoO2、LiMn2O4、LiNiO2)正极材料三部分组成,这种二次(可充电)电池已经商业化。依照这种原理制作的锂电池已

五年级数学上_第六单元可能性大小知识点及练习

可能性练习题一、摸球游戏

练习: 1、填一填 (1)太阳从西边出来的可能性是 1。() (2)盒子里有红球1个、白球3个、黄球3个,任意摸一个,摸到黄球的可能性是 3/7。() (3) 0乘任何数得0的可能性为 0。() (4)一粒有数字1~6的色子,任意投掷,出现数字1的可能性为1/5 。() 2、从1~10共10张数字卡片中,任意抽取一张: 抽出2的倍数的可能性为(); 抽出3的倍数的可能性为();

抽出质数的可能性为(); 抽出合数的可能性为(); 3、(1)一定能发生的事的可能性用数字( )表示,不可能发生的事的可能性用数字( ) 表示。 (2)一个盒子里有1个白球,2个红球.摸到白球的可能性是( ),摸到红球的可能性是 ( )。 (3)左图表示的是一个盒子里,红球和绿球占总个数的几分之几,那么从这个盒子里摸 出红球的可能性是( ),摸出绿球的可能性是( )。 (4)一个盒子里装红、黄、白三种球共12个,已知摸到红球的可能性是1 2,摸到黄球 的可能性是1 4 ,那么摸到白球的可能性是( ),有( )个白球。 (5)用数字表示可能性。太阳从西边出来的可能性是( );今天是星期六,明天是星期 天的可能性是( )。 (6)在一个正方体的一个面上标上数字“1”,两个面上标上数字“2”,其余每个面上标上 数字“3”,掷出后“1”朝上的可能性是( );“3”朝上的可能性是( )。 (7)一枚一元的硬币,抛出后,正面朝上的可能性是( ),一枚5角的硬币抛出后反面 朝上的可能性是( )。 (8)一个袋子里装5个球,有2个白球。从袋子中摸一次, 摸出的是白球的可能性是 ( ),要使摸出白球的可能性为1 2 ,袋子里还应增加( ) 个白球。 二、判断(在括号里对的打“√”,错的打“×”)(10分)。 (1)入冬以来北方某地没下雪,因此说这个地方下雪的可能性是0。( ) (2)一个盒子里装了红、黄两色数量相等且除颜色外都同样的球,那么摸到红球和摸到黄球 的可能性相等。( ) 四、下面是五(1)班同学的身高统计。(15分) 身高/cm 130-135 136-140 141-145 146-150 151-155 156-160 161-165 人数 2 4 8 14 12 5 3 (1)从这个班里任选一名同学,身高是(136——140)cm的可能性是( )。 (2)从这个班里任选一名同学,身高是(141——145)cm的可能性是( )。 (3)从这个班里任选一名同学,身高是(146——155)cm的可能性比1 2大吗? 二、活动设计方案: 1、要在一个口袋里放入若干个红、黄、蓝不同颜色的球,使得从口袋中摸出一个红球的可 能性为,应该怎么办呢? 2、在这个正方体的6个面上分别标上数字,使得正方体掷出后,“3”朝上的可能性为, 与同学交流你的做法。

锂离子电池正极材料硅酸锰锂的改性及容量衰减机理

罗明勇等:水蒸气等温吸附表征水泥基材料孔隙结构· 1409 ·第41卷第10期 DOI:10.7521/j.issn.0454-5648.2013.10.14 锂离子电池正极材料硅酸锰锂的改性及容量衰减机理 程琥1,高丹2,施志聪2 (1. 贵州师范大学化学与材料科学学院,贵州省功能材料化学重点实验室,贵阳 550001;2. 广州市香港科大 霍英东研究院,绿色产品和加工技术研究中心,广州 511458) 摘要:以醋酸锂、醋酸锰、醋酸镁、正硅酸四乙酯为原料,采用溶胶–凝胶法制备Li2Mn1–x Mg x SiO4/C正极材料。用X射线衍射和扫描电子显微镜表征材料的晶体结构和形貌。结果表明,掺杂10%Mg的Li2MnSiO4材料仍具有正交斜方结构。电化学测试结果表明:Mg掺杂能够提高Li2MnSiO4材料的比容量,在16.65mA/g电流密度下,Li2Mn1–x Mg x SiO4/C(x=0.1)材料的首次放电比容量为212mA?h/g。用X射线衍射和X射线光电子能谱研究了硅酸锰锂正极材料的容量衰减机理,其主要是由硅酸锰锂晶体结构退化引起的。 关键词:锂离子电池;正极材料;硅酸锰锂;硅酸盐;镁掺杂 中图分类号:O614 文献标志码:A 文章编号:0454–5648(2013)10–1409–06 网络出版时间:2013–09–24 18:23:01 网络出版地址:https://www.wendangku.net/doc/4511273218.html,/kcms/detail/11.2310.TQ.20130924.1823.014.html Modification and Deterioration Mechanism of Lithium Manganese Silicate as Cathode Material for Lithium-ion Batteries CHENG Hu1,GAO Dan2,SHI Zhicong2 (1. School of Chemistry and Material Science, Key Lab for Functional Materials Chemistry of Guizhou Province, Guizhou Normal University, Guiyang 550001, China; 2. Center for Green Products and Processing Technologies, Guangzhou HKUST Fok Ying Tung Research Institute, Guangzhou 511458, China) Abstract: Li2Mn1–x Mg x SiO4/C cathode material for lithium-ion batteries was synthesized by a sol–gel method using LiCH3COO?2H2O, Mn(CH3COO)2?4H2O, Mg(CH3COO)2?4H2O, and Si(OC2H5)4 as starting materials under Ar/H2 atmosphere. The crystal structures and morphology of the as-prepared compounds were characterized by X-ray powder diffraction (XRD) and scanning electron mi-croscopy, respectively. The Li2MnSiO4 material maintains an orthorhombic structure with up to 10% (mass fraction) Mg doping on the Mn sites. The result obtained by electrochemical tests of the cathode materials reveals that Mg doping can improve the specific capacity of Li2MnSiO4. An initial specific discharge capacity of 212mAh/g can be achieved for the Li2Mn1–x Mg x SiO4/C (x=0.1) cathode material at a current density of 16.65mA/g. The deterioration mechanism was also discussed based on the results determined by XRD and X-ray photoelectronic spectroscopy. The poor capacity retention is mainly caused by the deterioration of the silicate crystal. Key words: lithium-ion batteries; cathode materials; lithium manganese silicate; silicates; magnesium doping 1 Introduction The lithium-ion batteries (LIBs) industry is developed with dominating applications in portable electronic de-vices.[1] Recent development on hybrid electric vehicles (HEVs) and electric vehicles (EVs) promotes low carbon transportation and energy and environmental require-ments.[2] However, the conventional cathode materials, i.e., LiCoO2, LiNiO2, LiMnO2 and their ternary systems, can not meet the requirements for automotive applications due to their unsafety and high cost.[6–8] Polyanion systems based on the olivine structure have attracted considerable attention since Goodenough and co-workers developed it as the cathode material for lithium-ion batteries.[9–12] 收稿日期:2013–03–28。修订日期:2013–05–09。 基金项目:国家自然科学基金(21176045);贵州省科学技术基金(黔科合J字[2012]2284)。 第一作者:程琥(1977—),男,副教授。 通信作者:施志聪(1975—),男,副教授。Received date:2013–03–28. Revised date: 2013–05–09. First author: CHENG Hu (1977–), male, Associate Professor. E-mail: chenghu8802@https://www.wendangku.net/doc/4511273218.html, Correspondent author: SHI Zhicong (1975–), male, Associate Professor. E-mail: zhicong@ust.hk 第41卷第10期2013年10月 硅酸盐学报 JOURNAL OF THE CHINESE CERAMIC SOCIETY Vol. 41,No. 10 October,2013

锂电池随使用而最大容量下降的原因

锂电池随着使用次数增加而最大容量下降 将分为内因和外因来说: 1.内因 (1)在电极方面,反复充放电使电极活性表面积减少,电流密度提高,极化增大;活性材料的结构发 生变化;活性颗粒的电接触变差,甚至脱落;电极材料(包括集流体)腐蚀; 现阶段常用电池负极为石墨,正极是LiCoO2,LiFePO4以及LiMn2O4等,电池放点初期电解液会在电 极表面形成一层SEI(固态电解质)膜,其成分主要是ROCO2Li(EC和PC环状碳酸酯还原产物)、ROCO2Li和ROLi(DEC和DMC等链状碳酸酯的还原产物)、Li2CO3(残余水和ROCO2Li反应产物),若用LiPF6时,残余的HF会与SEI中ROCO2Li,使SEI中主要是LiF和ROLi。 SEI是Li+导体,脱嵌锂时碳电极体积变化很小,但即使很小,其产生的内应力也会使负极破裂,暴露 出来新的碳表面再与溶剂反应形成新的SEI膜,这样就造成了锂离子和电解液的损耗,同时,正极材料 活性物质膨胀超过一定程度也会形成无法修复的永久性结构触损耗,这样正极和负极的不断损耗造成了 容量的不断衰减;再者,增加的SEI膜会造成界面的电阻层架,使电化学反应极化电位升高,造成电池 性能衰减 在电极中,随着充放电反应的进行,黏结剂的性能也会逐步下降,,黏结强度降低,使电极材料脱落; 铜箔和铝箔是常用的负极和正极集流体,两者都容易发生腐蚀,腐蚀产物聚集在集流体表面成膜,增加 内阻,铜离子还能形成枝晶,穿透隔膜,使电池失效。 (2)在电解质溶液方面,电解液或导电盐分解导致其电导率下降,分解物造成界面钝化; 锂离子电池液体电解质一般由溶质(如LiPF6、LiBF4、LiClO4等锂盐)、溶剂和特种添加剂构成。电 解质具有良好的离子导电性和电子绝缘性,在正负极之间起着输送离子传导电流的作用。锂离子电池在 第一次充放电、过充和过放时以及长期循环之后,电解质会发生降解作用,并伴有气体产生,气体的组 成较为复杂,还无法通过某种反应在电池内加以消除。随着电池充放电次数的增加。由于电极材料氧化 腐蚀会消耗掉一部分电解液,导致电解液缺乏,极片不能完全清润到电解液,从而电化学反应的不完全,使得电池容量达不到设计要求。 (3)隔膜阻塞或损坏,电池内部短路等 隔膜的作用是将电池正负极分开防止两极直接短路。在锂离子电池循环过程中,隔膜逐渐干涸失效是电 池早期性能衰退的一个重要原因。这主要是由于隔膜中电解液变干使溶液电阻增大,隔膜电化学稳定 性和机械性能,以及对电解质浸润性在反复充电过程中变差造成的。由于隔膜的干涸,电池的欧姆内阻 增大,导致放电不完全,电池反复受到大容量过充,电池容量无法回复到初始状态,大大降低了电池的 放电容量和使用寿命。 2.外因 (1)快速充放电 快速充电时,电流密度过大,负极严重极化,,锂的沉积会更明显,使在铜箔与碳类活性物质边界处的铜 箔脆化,极易产生裂缝。电芯自发卷绕受到固定空间的限制,铜箔无法自由伸展产生压力,在压力的作 用下,原有的裂缝扩散生长,因扩展空间不够,铜箔发生断裂。 (2)温度 在明显高于室温的情况下,有机电解质的热稳定性成为首先要考虑的问题,这全要包括有机电解质自身 热稳定性以及电极隋机电解质相互作用的热稳定性两个方面。一般认为,正极/有机电解质的反应对铿 离子电池安全性的影响是主要因素。因为正极、电解质的反应动力学非常快,故控制着整个电池耐热

可能性及可能性的大小

《可能性及可能性的大小》 刘春松 【教学目标】: 1、学生通过摸球、装球、抽奖等活动,能初步用“一定”、“不可能”、“可能”等词语来描述生活中的一些事情的可能性,体验有些事情的发生是确定的,有些则是不确定的。 2、培养学生初步的判断能力和推理能力。 3、培养学生学习数学的兴趣,形成良好的合作学习兴趣。 【教学重点】:让学生初步体验事件发生的可能性,理解可能性的抽象概念。 【教学难点】:用“一定”“可能”“不可能”等词语来描述生活中的事情。 【教学过程】: 一、谈话引入 同学们!你们知道再过两天是什么日子吗?(生:国庆节。)是呀!在那天将在首都北京举行国庆庆祝活动。森林学校的小动物门也想去北京参加庆祝活动,有聪明的小猴,漂亮的松鼠,憨厚的小熊,它们都想去北京参加庆祝活动,可名额只有一个。小朋友们猜猜会是谁呢?(引导学生:可能是……) 师:是呀!三个小动物任何一个都有去可能。生活中,有些事情我们不能确定它的结果。人们常用“可能”这个词来描述,我们也称之为事情发生的可能性。今天我就和大家一起,从数学的角度来研究一下这个“可能性”。(板书或课件揭示:可能性)。 二、初步感知: 1、摸球中体验“可能” 谈话:先请看,这是一个不透明的空口袋,这里还有2个球,1个是红球,1个是黄球。把这2个球放入口袋里,想一想: ①如果从口袋里任意摸出1个球,你认为摸出的会是哪种颜色的球? ②你能解释为什么可能摸出红球,也可能摸出黄球吗? 相机板书:可能 谈话:可能是红球,也可能是黄球,到底能摸到哪个球并不确定(板书:不确定)。情况是不是这样呢?我们可以通过摸球游戏来检验。我们来个男女大比拼:(出示规则:每次任意摸一个,然后放回搅拌。一共摸10次。摸到红球算女生得1分;摸到黄球算男生的1分。)小组合作,轮流摸球,摸10次,用画正法统计摸球结果。

小学数学《可能性大小》教案

《可能性大小》教案 教学内容:《五年级》 教学目标:用数表示可能性的大小 教学重点:根据可能性的大小来设计方案 教学难点:游戏的公平性 教学方法:自主探究、合作交流 教学准备:多媒体课件 教学过程: 一、导入新课 师:让学生分成小组,我拿出事先准备的几个盒子{盒子上设计了一个拳头大的口},每个盒子里装有两个球,有的盒子里放的两个全是白球或全是黄球,有的盒子里放的是一白一黄两个球。每个同学一次只能摸一个球,看一看是什么颜色的球,摸好后继续把球放在盒子里,另一个同学继续摸,每组推选一人记录。 师:数学中也有许多有趣的可能性问题,这节课老师带你们去数学迷宫探索这些可能性问题,好吗? 板书课题:可能性大小 二、自主探究,学习新知 1、讲解 2、出示例1 【例1】小立为全班同学参加运动会购买运动装,他统计了全班同学服装号码。

从全班中任选一个同学,他的服装号码是65或70号的可能性比12 大吗? ①引导学生读题。 ②引导学生分析条件,找到问题突破口。 ③引导学生自己解决问题 ④交流答案,说想法。 ⑤教师总结,归纳方法。 2、巩固练习:盒子里有5个白球,3个红球,任意摸出一个球,摸到白球的可能性为( ),摸到红球的可能性为( )。 ①引导学生自己解决问题。 ②交流答案,说想法。教师总结, 3、出示例2 【例2】盒子里有9张红桃,1张梅花。小强任意抽出一张,他抽到什么花色的可能性最大? ①引导学生读题。 ②引导学生分析条件,找到问题突破口。 ③引导学生自己解决问题 ④交流答案,说想法。 ⑤教师总结,归纳方法。 三、游戏练习

踩汽球 目的:活跃气氛,增进协调性和协作能力。 要求:人数为十名,男女各半,一男一女组成一组,共五组。 步骤:当场选出十名员工,男女各半,一男一女搭配,左右脚捆绑三至四个汽球,在活动开始后,互相踩对方的汽球,并保持自已的汽球不破,或破得最少,则胜出。 四、课堂小结: 1.用数表示可能性的大小:(1)无论怎么实验,无论做多少次实验,一定“不可能”发生的事情,它的可能性就是“0”。 (2)无论怎么实验,无论做多少次实验,“一定能”发生,并且只有这一种情况发生而没有其他情况出现的事件,它的可能性是“1”。 (3)要表示可能性的大小,只要数出总共的数目做分数的分母,要求的事件出现的数目做分数的分子,可能性就可以用真分数来表示。 2.用实验法验证可能性的大小:当两种事件都存在时,则这两种事件都有发生的可能性,在众多事件当中,数量多的发生的可能性就大,反之,数量少的发生的可能性就小。 3.根据可能性的大小来设计方案:当两种事件都存在时,则这两种事件都有发生的可能性,在众多事件当中,数量多的发生的可能性就大,反之,数量少的发生的可能性就小。 师:今天我们学习了什么?你有什么收获? 师:根据可能性的大小来设计活动方案,应用的是逆向思维,也就是数学中的倒推法。应用逆向思维可以设计出我们需要的可能性方案。

最全最经典的电池容量衰减原因总结

最全最经典的锂离子电池容量衰减原因分析(附各原因专家分析) 0本质原因 锂离子电池在两个电极间发生嵌入反应时具有不同的嵌入能量,而为了得到电池的最佳性能,两个宿主电极的容量比应该保持一个平衡值。在锂离子电池中,容量平衡表示成为正极对负极的质量比,即: γ=m+/m-=ΔxC-/ΔyC+ 式中C指电极的理论库仑容量,Δx、Δy分别指嵌入负极及正极的锂离子的化学计量数。从上式可以看出,两极所需要的质量比依赖于两极相应的库仑容量及其各自可逆锂离子的数目。一般说来,较小的质量比导致负极材料的不完全利用;较大的质量比则可能由于负极被过充电而存在安全隐患。总之在最优化的质量比处,电池性能最佳。 对于理想的Li-ion电池系统,在其循环周期内容量平衡不发生改变,每次循环中的初始容量为一定值,然而实际上情况却复杂得多。任何能够产生或消耗锂离子或电子的副反应都可能导致电池容量平衡的改变,一旦电池的容量平衡状态发生改变,这种改变就是不可逆的,并且可以通过多次循环进行累积,对电池性能产生严重影响。 在锂离子电池中,除了锂离子脱嵌时发生的氧化还原反应外,还存在着大量的副反应,如电解液分解、活性物质溶解、金属锂沉积等,如图1所示。Arora等[3]将这些容量衰减的过程与半电池的放电曲线对照起来,使得我们可以清楚地看出电池工作时发生容量衰减的可能性及其原因,如图2所示。 一、过充电 1、石墨负极的过充反应: 电池在过充时,锂离子容易还原沉积在负极表面:Li++e→Li(s),沉积的锂包覆在负极表面,阻塞了锂的嵌入。【电源网】【李伟善】【黄可龙】【阮艳莉】导致放电效率降低和容量损失,原因有: ①可循环锂量减少;【电源网】【李伟善】【阮艳莉】 ②沉积的金属锂与溶剂或支持电解质反应形成Li2CO3,LiF 或其他产物;【电源网】【李伟善】【阮艳莉】 ③金属锂通常形成于负极与隔膜之间,可能阻塞隔膜的孔隙增大电池内阻。 【电源网】【李伟善】【阮艳莉】 ④由于锂的性质很活泼,易与电解液反应而消耗电解液.从而导致放电效率降低和容量的损失。【黄可龙】 快速充电,电流密度过大,负极严重极化,锂的沉积会更加明显。这种情况容易发生在正极活性物相对于负极活性物过量的场合,【电源网】但是,在高充电率的情况下,即使正负极活性物的比例正常,也可能发生金属锂的沉积。【李伟善】 2、正极过充反应 当正极活性物相对于负极活性物比例过低时,容易发生正极过充电。【李伟善】 正极过充导致容量损失主要是由于电化学惰性物质(如Co3O4,Mn2O3 等)的产生,破坏了电极间的容量平衡,其容量损失是不可逆的。 (1)LiyCoO2: LiyCoO2→(1-y)/3[Co3O4+O2(g)]+yLiCoO2 y<0.4【电源网】【李伟善】【黄可龙】 同时正极材料在密封的锂离子电池中分解产生的氧气由于不存在再化合反应(如生成H2O)与电解液分解产生的可燃性气体同时积累,后果将不堪设想。【电源网】【黄可龙】 (2)λ-MnO2锂锰反应发生在锂锰氧化物完全脱锂的状态下: λ-MnO2→Mn2O3+O2(g)【李伟善】【黄可龙】 3、电解液在过充时氧化反应 当压高于4.5V 时电解液就会氧化生成不溶物(如Li2Co3)和气体,这些不溶物会堵塞在电极的微孔里面阻碍锂离子的迁移而造成循环过程中容量损失。【电源网】【黄可龙】【阮艳莉】 影响氧化速率因素: 正极材料表面积大小【电源网】【黄可龙】 集电体材料【电源网】【黄可龙】 所添加的导电剂(炭黑等)【电源网】【黄可龙】

可能性大小概率

概率 教学目标: 1、理解随机事件的定义,概率的定义; 2、会用列举法求随机事件的概率;利用频率估计概率(试验概率); 3、体会随机观念和概率思想,逐步学习利用列举法分析问题和解决问题,提高解决实际问题的能力。 重难点: 1.计算简单事件概率的方法,主要是列举法(包括列表法和画树形图法)。 2.利用频率估计概率(试验概率)。 教学过程 一 知识梳理 1.基本概念 (1)必然事件是指一定能发生的事件,或者说发生的可能性是100%; (2)不可能事件是指一定不能发生的事件; (3)随机事件是指在一定条件下,可能发生也可能不发生的事件; (4)随机事件的可能性 一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同. (5)概率 一般地,在大量重复试验中,如果事件A 发生的频率m n 会稳定在某个常数P 附近,?那么这个常数P 就叫做事件A 的概率,记为P (A )=P . (6)可能性与概率的关系 事件发生的可能性越大,它的概率越接近于1,反之事件发生的可能性越小,则它的概率越接近0.(图6-30) (7)古典概率 一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性相等,?事件A 包含其中的m 种结果,那么事件A 发生的概率为P (A )=m n . (8)几何图形的概率 概率的大小与面积的大小有关,?事件发生的概率等于此事件所有可能结果所组成图形的面积除以所有可能结果组成图形的面积. 2.概率的理论计算方法有:①树状图法;②列表法. 3.通过大量重复实验得到的频率估计事件发生概率的值 4.利用概率的知识解决一些实际问题,如利用概率判断游戏的公平性等 三 典型例题 例1、下列事件中,是必然事件的是( ) A.购买一张彩票中奖一百万 B.打开电视机,任选一个频道,正在播新闻

造成锂离子电池容量不同的原因分析

造成锂离子电池容量不同的原因 锂离子电池是继镍镉、镍氢电池之后发展最快的二次电池。由于其具有比能量高、工作电压高、自放电率低、循环寿命长、环境污染小等独特优势,现已用作高速发展的小型电子产品的电源,也很有希望用作大型动力电池的电源。锂离子电池的应用很大程度上取决于其充放电循环的稳定性,与其他二次电池一样,锂离子电池在循环过程中容量衰减是难以避免的。由于锂离子电池在充放电过程中过充电或过放电、电解液分解、SEI 膜的形成、活性物质的溶解及其他因素会导致电池容量损失,因此分析锂离子电池容量衰减的原因,对我们进行研究开发及生产应用有着重要的作用,也有利于提高我们产品的品质。 一、锂离子电池工作原理 锂离子电池是指分别用两种能可逆嵌入与脱嵌锂离子的层间化合物作正负极活性物质而构成的二次电池,目前生产中普遍采用高嵌脱锂电位的LiCoO2 类材料为正极,低嵌脱锂电位的碳类材料为负极。锂离子电池在最初的充电循环中,在碳负极材料会出现化学/电化学反映过程,分别对应有机电解液的分解和锂离子的嵌入,伴随形成SEI 膜。目前常用的有机溶剂有碳酸丙烯酯(PC)、碳酸乙烯酯(EC)、碳酸二乙酯(DEC)、碳酸二甲酯(D MC)和碳酸甲基乙基酯(EMC)等,电解质一般用锂盐有LiBF6、LiPF4、LiAsF6 和Li CIO4 等。隔膜用PP 微孔薄膜或PE 微孔薄膜。电极反应如下: 正极:LiCoO2充电→← 放电Li1 -xCoO2+xLi++xe-20 负极:6C +xLi ++xe -充电→← 放电LixC6 总的反应为:6C +LiCoO2充电→← 放电Li1-xCoO2+LixC6 充电时,锂离子从LiCoO2 中立方紧密堆积氧层中八面体位置发生脱嵌,释放一个电子给Co3+,其氧化为Co4+;放电时,锂离子嵌入到八面体位置得到一个电子,Co4+还原为Co3+。负极中当锂离子插入到石墨层中后石墨结构与此同时从外电路得到一个电子使得负极电荷平衡。与其它二次电池一样,锂离子经充放电循环后存在容量损失问题,导致这些问题的原因有很多,有材料方面也有制造工艺方面的因素。 二、容量损失原因分析 1.过充电 所谓过充电就是超过规定的充电终止电压(一般为4.2V)而继续充电的过程。在过充的情况下会造成电池容量的衰减,主要有如下因素:①石墨负极的过充反应;②正极过充反应; ③电解液在过充时氧化反应。电池在过充时,锂离子容易还原沉积在负极表面:Li++e→L i(s) 沉积的锂包覆在负极表面,阻塞了锂的嵌入。导致放电效率降低和容量损失,原因有:①可循环锂量减少;②沉积的金属锂与溶剂或支持电解质反应形成Li2CO3,LiF 或其他产物; ③金属锂通常形成于负极与隔膜之间,可能阻塞隔膜的孔隙增大电池内阻。快速充电,电流密度过大,负极严重极化,锂的沉积会更加明显。正极过充导致容量损失主要是由于电化学惰性物质(如Co3O4,Mn2O3 等)的产生,破坏了电极间的容量平衡,其容量损失是不可逆的。 LiyCoO2→(1-y)/3[Co3O4+O2(g)]+yLiCoO2 y<0.4 同时正极材料在密封的锂离子电池中分解产生的氧气由于不存在再化合反应(如生成H2 O)与电解液分解产生的可燃性气体同时积累,后果将不堪设想。过充还会导致电解液的氧化反应,其氧化速率跟正极材料表面积大小、集电体材料以及所添加的导电剂(炭黑等)有很大关系,同时,炭黑的种类及表面积大小也是影响电解液氧化的一个重要因素,其表面积越大,溶剂更容易在表面氧化。当压高于4.5V 时电解液就会氧化生成不溶物(如Li2

相关文档
相关文档 最新文档