文档库 最新最全的文档下载
当前位置:文档库 › 钛酸锶陶瓷材料制备方法的进展

钛酸锶陶瓷材料制备方法的进展

钛酸锶陶瓷材料制备方法的进展
钛酸锶陶瓷材料制备方法的进展

钛酸锶陶瓷材料

钛酸锶作为重要的、新兴的电子陶瓷材料,具有高的介电常数和高的折射常数,有显著的压电性能,是重要的铁电体,可作为介电材料和光电材料。

钛酸锶(SrTiO3 ) 是一种立方钙钛矿型复合氧化物,在室温下,满足化学计量比的钛酸锶晶体是绝缘体,但在强制还原或搀杂施主金属离子的情况下可以实现半导化。钛酸锶是重要的、新兴的电子陶瓷材料,具有高的介电常数和高的折射常数,有显著的压电性能,是重要的铁电体。,有稳定的电滞性质。在高温超导薄膜、催化、高温固体氧化物燃料电池、电极材料、电化学传感器、氧化物薄膜衬底材料、特殊光学窗口及高质量的溅射靶材等方面应用广泛,可作为介电材料和光电材料,用来制造高压陶瓷电容器、PTC 热敏电阻、晶界层电容器( Grain Boundary Layer Capacitor ,简称GBLC) 、电子元件、光催化电极材料,制造既有电容器功能又有吸收浪涌的压敏电阻器等,它们都具有高性能、高可靠性、体积小等优点。并且与钛酸钡材料相比,还具有介电损耗低、温度稳定性好,高耐电压强度等优点。

钛酸锶的物理特性:室温下,SrTiO3属于立方晶系,空间群Pm3m,禁带宽度约为3.2eV,

a=b=c=0.39051nm,α=β=γ=90。是一种典型的AB03型钙钛矿型复合氧化物。许多文献报

道钛酸锶的居里温度T C=106K,当T

SrTi03晶体中,大的阳离子Sr2+位于简立方原胞的顶上,小的阳离子Ti4+位于体心,阴离子02-位于面心。这样的结构亦可看作是氧八面体顶角相连的网络,较小的阳离子填充氧八面体空位,较大的阳离子填充十二面体空位,如图1-1所示。而SrTi03的晶界结构如图1-2所示,由图可看出,SrTi03晶界上有很多偏离空间电荷区域(Space Charge Region)的正电荷。对于产生正电荷的原因,J.C_.verbiinger认为可能是因为晶界表面有很多钛原子(由偏析引起),而这些钛原子没能很好地与氧原子结合,即钛原子的核电荷没有被中和,最终结果便是在晶界上产生了正电荷。该晶界模型能很好地解释SrTi03经掺杂后,其晶粒直径减小。比如,受主掺杂的原子,它们能很顺利地插入到空间电荷区域(空间电荷区域同时会阻止它们进入晶界内部),形成一中间晶界层,并同时会中和一部分晶界表面的正电荷,使空间区域收缩,因而晶粒直径减小。

实验研究现状::第一是SrTi03粉体的制备工艺研究;第二是SrTi03的结构性能、形成机理及动力学研究;第三是SrTi03基系列掺杂物的结构与性能研究;第四是以SrTi03为载体的超导研究。

是基于密度泛函理论(DFT)框架下的第一性原理平面波超软赝势方法。计算结果表明:SrTi03是一种间接禁带半导体,其价带顶位于布里渊区内的R点,导带底位于r点。Mulliken 布局分析、态密度、差分电荷密度分析均表明,Ti原子与O原子形成的是共价成分较高的共价键,而Sr原子与O原子形成的是离子键。

3月31

不同掺杂物对SrTiO3晶相的影响(采用溶胶-凝胶法进行掺杂)

以金属离子为掺杂物(设计分子式为:Sr x A y TiO3,其中A=Mg, Mn, Co, Ca, Zn, Pb),所指的的样品的XRD衍射谱数据可知主要晶相是SrTiO3,有少量杂项产生。

(1)采用溶胶—凝胶法进行掺杂,设计分子式为Sr x A y TiO3 (A=Mg, Mn, Co, Ca, Zn, Pb),实际得到的是以SrTiO3为主相的固溶体;分散开的样品颗粒近似呈球形,颗粒粒径约50nm,有团聚现象。(2)以Y2O3为掺杂物所制得的样品,颗粒分布均一,粒径约为250nm,颗粒呈六边形。(3)以为SrTiO3基体以Y2O3为掺杂物,当掺杂量为3.54%(Y%)时,样品的阻温特性曲线与纯SrTiO3的阻温特性曲线相近。(4)以SrTiO3为基体,以La2O3为掺杂物,当掺杂量为1.23%( La%) 时,样品的阻温特性曲线与纯SrTiO3的阻温特性曲线接近

4月1号(对SrTiO3陶瓷发光、介电和磁学性质的影响)

未掺杂的STO是一种先兆性铁电体(incipient ferroelectric),或者也被称为量子顺电体(quantum paraelectric),其本身不具有发光和磁学特性。在温度低于150K时,STO中存在着一个从立方相到四方相的结构相变。由于具有较大的量子起伏效应,直到温度降至OK附近,在STO中也不能观测到铁电相的存在【l】。但是当采用一些稀土元素,例如La、Pr等替换Sr位时,可以观测到由此所产生的铁电性或者介电异常行为【2】【3】。

陶瓷室温下的介电性能和频率的关系采用HP4294A阻抗分析仪进行测量,测量范围

从100Hz到10MHz。室温下磁学性能的测量通过Riken BHV-55振动样品磁强计(VSM)测量,测试时所加磁场范围为-10到+10kOe。

Eu3+掺杂STO陶瓷是通过传统固相反应烧结的,分别采用Sr空位(STO-A),氧空位(STO-B),以及自补偿(STO—AB)实现三种不同的电荷补偿机制。在室温下研究了其结构和发光、介电和磁学等多功能性质。

1:测试了不同位置掺杂样品的介电性质与频率关系。与纯STO样品相比,STO-A和STO-B 样品的介电常数几乎没变,但STO-AB样品的介电常数(在100KHz时值为550)显著地增加了。这可能与STO-AB中额外形成的电偶极矩有关。

同时我们还发现STO-AB的介电常数与Eu3+离子的掺杂浓度有关,其介电常数的最大值又出现在X值为0.05处,介电常数的降低以及介电损耗的增强仍然与杂相出现有关。

2:测量了室温下纯STO和STO-AB样品的磁化曲线(M-H),纯STO样品表现为抗磁性的。而STO-AB样品的M.H曲线为线性的,并且具有一定的磁矩,说明了STO-AB样品处于典型的顺磁有序状态。通过测量我们还发现如果Eu掺杂浓度一样,Eu在不同替代位掺杂的STO陶瓷的磁学性质没有什么差别,意味着样品的磁学性质与电荷补偿机制是无关的。

3:由于Eu3+离子的磁化率随着温度的降低会升高【l】。并且稀土掺杂的STO的介电性质在低温下和室温条件下也有很大的区别. 最近Shvartsman等人【|2】报道了在Mn掺杂的STO 中间发现了磁电耦合现象(ME.coupling),这启发我们,样品在低温下可能会出现多铁现象。因此,拟进一步在低温下测量样品的发光性质,介电性质以及磁学性能,以研究这些性质之间的相互影响。

稀土Nd掺杂SrTiO<,3>基高储能介质陶瓷缺陷结构及介电性能研

(针对国内外研究存在的问题,本论文选取SrTi03为研究主体,采用三价稀土

离子Nd3+对其进行掺杂改性,目的在于提高SrTi03陶瓷的室温相对介电常数,并研究探讨掺杂的缺陷结构对性能影响的机制,该研究有着重要的科学意义和实际应用前景。)

SrTi03是一种量子顺电相(quantum paraeleetic)材料【71】,铁电相被量子起伏抑制从而顺电相在低温下仍然保存下来,其从接近于OK的低温下到常温300K的介电常数随温度变化关系如图1.8所示。单晶SrTi03的介电常数偏离传统的居里一外斯定律,并且在4K以下其介电常数保持为一个定值。

4月5

许多文献报道了SrTiO3可通过掺杂来诱发其铁电相,如BaxSr1-xTiO3,PbxSr1-xTiO3等,此等A位取代研究均属于等价取代。其中有一部分以三价离子不等价取代A位的Sr2+离子引起关注,因为这种不等价取代除了牵涉到诱发铁电相的研究外,还牵涉到电荷补偿问题。Chen Ang等人【72-83】系统研究了Bi3+掺杂SrTiO3的介电弛豫和铁电弛豫特性;

N.G.Eror等人【84-85】专门研究了La3+掺杂SrTiO3陶瓷的电荷自补偿机制;

根据文献报道【72-74】三价离子掺杂改性的SrTiO3陶瓷常温介电常数能够得到提高,Bi3+掺杂SrTiO3陶瓷就具有比SrTiO3更高的室温介电常数。

D.C.Sinclair等人[86.92]研究的La3+掺杂BaTi03陶瓷具有巨介电常数的特点

5月20

钛酸锶常温下相对介电常数为300

功能陶瓷材料研究进展综述

功能陶瓷材料的应用 研究 姓名:刘军堂___________ 学号: 23122837________ 班级: 机械1201_________ 任课老师:张志坚__________

功能陶瓷材料的应用研究 1.选择一个课题进行相关检索,要求对课题作简要分析,并在分析的基础上确定检索词,准确描述检索过程。(10分)(可选择其他课程中以论文方式考核的科目,如无此类题目,可自选或用备选题目) 功能陶瓷 功能陶瓷材料是具有特殊优越性能的新型材料,各国在基础与应用研究以及工程化方面,均给予了特殊重视,特别是在信息、国防、现代交通与能源产业中均将其置于重要地位。根据功能陶瓷材料的应用前景,本文介绍了功能陶瓷新材料的性能、应用范围,市场的开发应用现状和开发应用新领域,以及正在研发的高性能陶瓷材料;同时介绍了功能陶瓷材料今后的发展趋势。 关键词:功能陶瓷材料;应用现状;趋势 检索过程 第一步:进入“中国知网”主页,网址是“https://www.wendangku.net/doc/49617266.html, 第三步:登录成功后会进入操作界面, 第四步:选择要检索的文献数据库。在操作界面上,中国知网将其文献分成了不同的库,我们根据自己的文献范围属性进行选择。 第五步:检索参数设置。在操作界面的上部,有搜索参数设置对话框。最好逐一填写。(1)检索项,系统对文献进行了检索编码,每一个文献都有一一对应的编码,一个编码就是一种检索项。点击检索项框右边的向下箭头,就能弹出所有检索项,选中一个就好。(2)检索词,填入要求系统搜索的内容。没有明确严格要求,不一定是词语。但是需要考虑到它应当与你选中的检索项相一致。如检索项用了“关键词”,就不能用一个长句等作检索词了。(3)文献时间选择,根据文献可能出现的年代,点击对话框右边的小三角就可以选了。需要说明的是,中国知网建立时间是1994年,所以1994年及其后的数据才是最全的。现在他们在逐渐补充1994年以前的文献数据,但是,全面性可能要差些。(4)排序,提示系统将找到的文献按什么顺序呈现。(5)匹配,即要求系统按自己的检索要求进行哪种精确程度的检索。如果你确定你的文献参数,那么选择“精确”,如果不确定,就选择“模糊”。 第六步:点击“搜索”就完成了第一阶段的操作了。然后就进入检索结果呈现的界面:中国知网2.rar(点击打开查看),中国知网的结果呈现表中,对文献的基本信息:文献题目、文献的载体、发表时间及在中国知网中的收藏库名进行了说明。

浅谈多孔陶瓷

浅谈多孔陶瓷 08 化本黄振蕾080900029 摘要:随着控制材料的细孔结构水平的不断提高以及各种新材质高性能多孔陶瓷材料的不断出现,多孔陶瓷的应用领域与应用范围也在不断扩大,目前其应用已遍及环保、节能、化工、石油、冶炼、食品、制药、生物医学等多个科学领域,引起了全球材料学 关键词:多孔陶瓷制备应用发展 0. 引言 多孔陶瓷是一种经高温烧成、内部具有大量彼此相通, 并与材料表面也相贯通的孔道结构的陶瓷材料。多孔陶瓷的种类很多, 可以分为三类: 粒状陶瓷烧结体、泡沫陶瓷和蜂窝陶瓷[ 1]。多孔陶瓷由于均匀分布的微孔和孔洞、孔隙率较高、体积密度小, 还具有发达的 比表面, 陶瓷材料特有的耐高温、耐腐蚀、高的化学和尺寸稳定性, 使多孔材料可以在气体液体过滤、净化分离、化工催化载体、吸声减震、保温材料、生物殖入材料, 特种墙体材料 和传感器材料等方面得到广泛的应用[ 2]。因此, 多孔陶瓷材料及其制备技术受到广泛关注。 1 多孔陶瓷材料的制备方法 1. 1 挤压成型法 挤压是一种塑性变形工艺, 可分为热挤压和冷挤压。一般是在压力机上完成, 使工件产生塑性变形, 达到所需形状的一种工艺方法。其过程是将制备好的泥条通过一种预先设计好的具有蜂窝网格结构的模具挤出成形, 经过烧结后就可以得到典型的多孔陶瓷。目前, 我国已研制出并生产使用蜂窝陶瓷挤出成型模具达到了400孔/ 2. 54 cm X 2. 54 cm 的规格。 美国与日本已研制出了600孔/ 2. 54 cm X 2. 54 cm、900孔/ 2.54 cm X 2. 54 cm 的高孔密度、超薄壁型蜂窝陶瓷。我国亦开始了600 孔/ 2. 54 cm X2. 54 cm 挤出成型模具的研究, 并取得了初步成功[ 3]。例如, 现在用于汽车尾气净化的蜂窝状陶瓷, 它是将制备好的泥条通过一种预先设计好的具有蜂窝网格结构的模具挤出成型, 经过烧结后得到典型 的多孔陶瓷。其工艺流程为:原料合成+水+有机添加剂T混合练混T挤出成型T干燥T 烧成T制品。这种工艺的优点在于,可根据实际需要对孔形状和大小进行精确设计;缺点 是不能成型复杂孔道结构和孔尺寸较小的材料, 同时对挤出物料的塑性有较高要求[ 4]。 1. 2 颗粒堆积成孔工艺法颗粒堆积工艺是在骨料中加入相同组分的微细颗粒,利用微细颗粒易于烧结的特点,在高温下液化,从而使骨料连接起来。骨料粒径越大,形成的多孔陶瓷平均孔径就越大,并呈线性关系。骨料颗粒尺寸越均匀,产生的气孔分布也越均匀,孔径分布也越小。另外,添加剂的含量和种类,以及烧成温度对微孔体的分布和孔径大小也有直接关系。如 Yang 等[ 5] 用Yb2O3作为助剂制备了多孔氮化硅陶瓷,通过加入Yb2O3后,使氮化硅微孔陶瓷孔的分布更加均匀,经烧结后使孔隙率达到很好的要求。另外,孔隙率可通过调整颗粒级配对孔结构进行控制,制品的孔隙率一般为20%~ 30% 。若在原料中加入碳粉、木屑、淀粉、塑料等成孔剂,高温下使其挥发可将整体孔隙率提高至75% 左右[ 6]。主要优点在于工艺简单,制备强度高;不足之处在于气孔率低。

现代陶瓷研究进展

材料与化工学院 2012级材料科学与工程二班 课程作业:无机非金属材料工艺学学生姓名:刘健 学生学号: 授课老师:

目录 1.传统陶瓷材料------------------------------------------------------------------------------------------------3 2.新型陶瓷材料------------------------------------------------------------------------------------------------3 2.1生物陶瓷材料------------------------------------------------------------------------------------------4 2.1.1生物陶瓷研究背景------------------------------------------------------------------------------4 2.1.2生物陶瓷研究的一些成果---------------------------------------------------------------------4 2.1.3生物陶瓷在国外的研究动态和发展趋势-------------------------------------------------4 2.1.4我国生物陶瓷材料研究设想与展望--------------------------------------------------------5 2.2高温压电陶瓷材料-------------------------------------------------------------------------------------5 2.2.1改性钛酸铅压电陶瓷----------------------------------------------------------------------------5 2.2.2 PZT基多元系压电陶瓷--------------------------------------------------------------------------6 2.3超级亲水易洁陶瓷材料-------------------------------------------------------------------------------6 2.4热障涂层陶瓷材料--------------------------------------------------------------------------------------7 2.4.1几类热障陶瓷涂料研究近况-------------------------------------------------------------------7 2.4.1.1氧化物稳定的ZrO2---------------------------------------------------------------------------7 2.4.1.2焦绿石或萤石结构A2B2O7陶瓷----------------------------------------------------------7 2.4.2需要达到的目标------------------------------------------------------------------------------------8 3.结语----------------------------------------------------------------------------------------------------------------8

多孔陶瓷材料的制备技术

第14卷第3期Vol.14No.3 材 料 科 学 与 工 程 Materials Science&Engineering 总第55期 Sept.1996多孔陶瓷材料的制备技术 朱时珍 赵振波 北京理工大学 北京 100081 刘庆国 北京科技大学 北京 100083 【摘 要】 本文评述了近年来多孔陶瓷材料制备技术的研究现状,对目前研究比较活跃,应用比较成功的几种制备技术进行了分析,并讨论了今后的发展趋势。 【关键词】 多孔陶瓷 制备 造孔剂 泡沫浸渍 Techniques For Preparation of Porous Ceramic Materials Zhu Shizhen Zhao Zhenbo Beij ing Institute of Technology Beijing 100081 Liu Qingguo Beij ing University of Science and Technology Beij ing 100083【Abstr act】 T he r ecent status of techniques for prepar ation of por ous ceramic mater ials was re-viewed.Var ious t echniques for pr epar ation of por ous cer amic mater ials resear ched mor e actively and ap-plied more successfully wer e analyzed,and the future development tr ends were discussed. 【Key wor ds】 Porous cer amics,F abr ication,P or e-form ing mat er ials,F oam impregna tion 一、前 言 近年来表面与界面起突出作用的新型材料日益受到重视,既发现一些新的物理现象和效应,在应用上又很有潜力,具有广泛的发展前景[1]。多孔陶瓷材料正是一种利用物理表面的新型材料。例如,利用多孔陶瓷的均匀透过性,可以制造各种过滤器、分离装置、流体分布元件、混合元件、渗出元件和节流元件等;利用多孔陶瓷发达的比表面积,可以制成各种多孔电极、催化剂载体、热交换器、气体传感器等;利用多孔陶瓷吸收能量的性能,可以用作各种吸音材料、减震材料等;利用多孔陶瓷低的密度、低的热传导性能,还可以制成各种保温材料、轻质结构材料等[2],加之其耐高温、耐气候性、抗腐蚀,多孔陶瓷材料的应用已遍及冶金、化工、环保、能源、生物等各个部门,引起了全球材料学界的高度重视,并得到了较快发展,每年这方面的专利都有近百篇,而且有逐年增长的趋势。但由于绝大多数制备工艺参数及关键问题处于技术保密状态,目前尚无系统论述各种制备技术的文章,本文结合作者研制用于高温固体氧化物燃料电池的多孔A l2O3陶瓷支持管(体)的研究工作,分析了多孔陶瓷材料制备技术的现状及今后的发展趋势。 ? 33 ?

特种陶瓷材料的研究进展[1]

文章编号:1006-2874(2010)05-0071-04 特种陶瓷材料的研究进展 葛伟青 (唐山学院,唐山:063000) 中图分类号:TQ174.75文献标识码:A 特种陶瓷也称为先进陶瓷、现代陶瓷、新型陶瓷、高性能陶瓷、高技术陶瓷和精细陶瓷,突破了传统陶瓷以黏土为主要原料的界限,主要以氧化物、炭化物、氮化物、硅化物等为主要原料,有时还可以与金属进行复合形成陶瓷金属复合材料,是一种采用现代材料工艺制备的、具有独特和优异性能的陶瓷材料。已成为现代高性能复合材料的一个研究热点。特种陶瓷于二十世纪发展起来,在近二、三十年内,新产品不断涌现,在现代工业技术,特别是在高技术、新技术领域中的地位日趋重要。许多科学家预言:特种陶瓷在二十一世纪的科学技术发展中,必将占据十分重要的地位。 特种陶瓷不同的化学组成和组织结构决定了它不同的特殊性质和功能,可作为工程结构材料和功能材料应用于机械、电子、化工、冶炼、能源、医学、激光、核反应、宇航等领域。一些经济发达国家,特别是日本、美国和西欧国家,为了加速新技术革命,为新型产业的发展奠定物质基础,投入大量人力、物力和财力研究开发特种陶瓷,因此,特种陶瓷的发展十分迅速,在技术上也有很大突破。 1概述 特种陶瓷通常包括结构陶瓷、功能陶瓷(电子陶瓷)和生物陶瓷等.结构陶瓷具有高强度、高硬度、高耐磨、耐高温、耐腐蚀等特性,功能陶瓷具有导电、半导性、绝缘、压电、透光、光电、电光、声光、磁光等性能,生物陶瓷具有医疗(人工关节.骨、牙齿等)和催化等功能,在现代工业技术,特别是在高新技术领域中的地位日趋重要。 中国科学院上海硅酸盐研究所所长罗宏杰在佛山市加快发展特种陶瓷推介会上发言说,特种陶瓷具备传统陶瓷不具备的多种特性,消耗低、利润高,应用前景十分广阔。预计2010年全国的市场规模将达到400亿元。世界的市场规模将达到1500亿美元。中国经济的高速发展,将为特种陶瓷制造业提供广阔的市场与发展空间。 目前,高温结构陶瓷研究的主要目标仍然是燃气轮机、活塞发动机和磁流体发电机用的材料。高温结构陶瓷的应用在汽车、飞机、火箭等领域获得了成功。福特公司研制的汽车用轮机的机头、定子和叶轮都是用氮化硅制作的,热交换器是用蜂窝状结构的结晶化玻璃制成的。超音速飞机发动机和火箭燃烧室内壁、隔热衬层等高温部位都利用到了陶瓷材料。美国研制成功了AGT100和AGT101型全陶瓷汽车发动机,其进口温度分别达到了1290℃和1370℃,比超合金高200 ~260℃。 2粉末制备技术进展情况 目前最引人注目的粉末制备技术是超高温技术。利用超高温技术可廉价地研制特种陶瓷。 超高温技术具有如下优点:能生产出用以往方法所不能生产的物质,能够获得纯度极高的物质,生产率会大幅度提高,可使作业程序简化、易行。目前,在超高温技术方面居领先地位的是日本。此外,溶解法制备粉末、化学气相沉积法制备陶瓷粉末、溶胶-凝胶法生产莫来石超细粉末以及等离子体气相反应法等也引起了人们的关注。 3特种陶瓷成形方法及特点 3.1干法成型 干法成型包括钢模压制成型、等静压成型、超高压成型、粉末电磁成型等方法。 3.1.1钢模压制成型(干压法) 将含有少量增塑剂、具有一定粒度配比的陶瓷粉末放在金属模内,在压机上受压,使之密实成型。钢模压制的优点是易于实现自动化,所以在工业生产中得到较大的应用。 3.1.2等静压成型 等静压成型是通过施加各项同性压力而使粉料一边压缩一边成型的方法。等静压力可达300MPa左右。在常温下成型时称为冷等静压成型,在几百摄氏度到2000℃温区内成型时称为热等静压成型。等静压有两种方式:干袋法和湿袋法。湿袋法是将粉末或颗粒密封于成型橡胶模型内,置于高压容器 收稿日期:2010-04-15 通讯联系人:葛伟青,E-mail:hbtsgwq@https://www.wendangku.net/doc/49617266.html, CHINACERAMICINDUSTRYOct.2010Vol.17,No.5 中国陶瓷工业 2010年10月第17卷第5期

多孔陶瓷的制备及性能分析

第一章综述 1.1 多孔陶瓷的概述 多孔陶瓷是一种经高温烧成、体内具有大量彼此相通或闭合气孔结构的陶瓷材料,是具有低密度、高渗透率、抗腐蚀、耐高温及良好隔热性能等优点的新型功能材料。 多孔陶瓷的种类繁多,几乎目前研制生产的所有陶瓷材料均可通过适当的工艺制成陶瓷多孔体。根据成孔方法和孔隙结构的不同,多孔陶瓷可分为三类:粒状陶瓷烧结体、泡沫陶瓷和蜂窝陶瓷。根据所选材质不同,可分为刚玉质、石英质、堇青石质、莫来石质、碳化硅质、硅藻土质、氧化锆质及氧化硅质等。 多孔陶瓷材料一般具有以下特性:化学稳定性好,可制成使用于各种腐蚀环境的多孔陶瓷;具有良好的机械强度和刚度,在气压、液压或其他应力载荷下,多孔陶瓷的孔道形状和尺寸不会发生变化;耐热性好,用耐高温陶瓷制成的多孔陶瓷可过滤熔融钢水和高温气体;具有高度开口、内连的气孔;几何表面积与体积比高;孔道分布较均匀,气孔尺寸可控,在0.05~600μm范围内可以制出所选定孔道尺寸的多孔陶瓷制品。 多孔陶瓷的优良性能,使其已被广泛应用于冶金、化工、环保、能源、生物等领域。如利用多孔陶瓷比表面积高的特性,可制成各种多孔电极、催化剂载体、热交换器、气体传感器等;利用多孔陶瓷吸收能量的性能,可制成各种吸音材料、减震材料等;利用多孔陶瓷的低密度、低热传导性,可制成各种保温材料、轻质结构材料等;利用多孔陶瓷

的均匀透过性,可制成各种过滤器、分离装置、流体分布元件、混合元件、渗出元件、节流元件等。因此,多孔材料引起了材料科学工作者的极大兴趣并在世界范围内掀起了研究热潮。 1.2 多孔陶瓷的制备方法 多孔陶瓷是由美国于1978年首先研制成功的。他们利用氧化铝、高岭土等陶瓷材料制成多孔陶瓷用于铝合金铸造中的过滤,可以显著提高铸件质量,降低废品率,并在1980年4月美国铸造年会上发表了他们的研究成果。此后,英、俄、德、日等国竞相开展了对多孔陶瓷的研究,已研制出多种材质、适合不同用途的多孔陶瓷,技术装备和生产工艺日益先进,产品已系列化和标准化,形成为一个新兴产业。我国从20世纪80年代初开始研制多孔陶瓷。 多孔陶瓷首要特征是其多孔特性,制备的关键和难点是形成多孔结构。根据使用目的和对材料性能的要求不同,近年逐渐开发出许多不同的制备技术。其中应用比较成功,研究比较活跃的有:添加造孔剂工艺,颗粒堆积成型工艺,发泡工艺,有机泡沫浸渍工艺,溶胶凝胶工艺等传统制备工艺及孔梯度制备方法、离子交换法等新制备工艺。 1.2.1挤压成型工艺 本工艺的特点是靠设计好的多孔金属模具来成孔。将制备好的泥浆通过一种具有蜂窝网格结构的模具基础成型,经过烧结就可以得到最典型的多孔陶瓷即现用于汽车尾气净化的蜂窝状陶瓷。此外,也可以 在多孔金属模具中利用泥浆浇注工艺获得多孔陶瓷。该类工艺的特点在于可以根据需要对孔形状和孔大小进行精确设计,对于蜂窝陶瓷最

陶瓷材料的研究进展

论文 题目:陶瓷材料的研究进展 姓名: 专业:化学工程与工艺 学号: 日期:2009-6-21

陶瓷材料的研究进展 摘要:近年来,随着科学的进步,陶瓷材料越来越多的进入我们的生产和生活,并且在性能和作用上体现出出乎意料的优越性。就我所知,陶瓷材料大体上可以分为四个类型:传统工艺陶瓷,结构陶瓷,功能陶瓷和生物陶瓷。本文仅对后三种新型陶瓷材料的研究进展做一个简单综述。 关键词:结构陶瓷功能陶瓷生物陶瓷纳米技术Abstract: In recent years, along with the science progress, the ceramic material more and more entered our production and the life, and manifested the superiority unexpectedly in the performance and the function. I know, the ceramic material may divide into four types on the whole: Traditional process ceramics, structure ceramics, functional ceramic and biological ceramics. This article only makes a simple summary to the latter three kind of new ceramic material's research development. Key word: Structure ceramics,functional ceramic,biology ceramics ,nanotechnology

试验一多孔陶瓷的制备与加工

实验指导书多孔陶瓷的制备 学科部(系):材料工程系执笔人:刘曙光,张爱娟,王卫伟、李成峰 一、实验目的 1. 了解多孔陶瓷的用途 2. 掌握多孔陶瓷的制备方法 3. 了解多孔陶瓷的制备工艺 二、实验原理 多孔陶瓷是一种新型陶瓷材料,也可称为气孔功能陶瓷,它是一种利用物理表面的新型材料。多孔陶瓷具有如下特点:巨大的气孔率;巨大的气孔表面积;可调节的气孔形状、气孔孔径及其分布;气孔在三维空间的分布、连通可调;具有其它陶瓷基体的性能,并具有一般陶瓷所没有的主要利用与其巨大的比表面积相匹配的优良热、电、磁、光、化学等功能。实际上,很早以前人们就使用多孔陶瓷材料,例如,人们使用活性碳吸附水份、吸附有毒气体,用硅胶来做干燥剂,利用泡沫陶瓷来做隔热耐火材料等。现在,多孔陶瓷尤其是新型多孔陶瓷的应用范围广多了。 1. 多孔陶瓷的种类 多孔陶瓷的种类很多,按所用的骨料可以分为以下六种: 按孔径分为以下三种情况: 2. 多孔陶瓷的制备: 陶瓷产品中的孔包括:(1)封闭气孔:与外部不相连通的气孔 (2)开口气孔:与外部相连通的气孔 下面介绍多孔陶瓷中孔的制备方法和制备技术

2.1孔的形成方法: (1)添加造成孔剂工艺:陶瓷粗粒粘结、堆积可形成多孔结构,颗粒靠粘结剂或自身粘合成型。这种多孔材料的气孔率一般较低,20~30%左右,为了提高气孔率,可在原料中加入成孔剂(porous former),即能在坯体内占有一定体积,烧成、加工后又能够除去,使其占据的体积成为气孔的物质。如碳粒、碳粉、纤维、木屑等烧成时可以烧去的物质。也有用难熔化易溶解的无机盐类作为成孔剂,它们能在烧结后的溶剂侵蚀作用下除去。此外,可以通过粉体粒度配比和成孔剂等控制孔径及其它性能。这样制得的多孔陶瓷气孔率可达75%左右,孔径可在μm~mm之间。虽然在普通的陶瓷工艺中,采用调整烧结温度和时间的方法,可以控制烧结制品的气孔率和强度,但对于多孔陶瓷,烧结温度太高会使部分气孔封闭或消失,烧结温度太低,则制品的强度低,无法兼顾气孔率和强度,而采用添加成孔剂的方法则可以避免这种缺点,使烧结制品既具有高的气孔率,又具有很好的强度。 (2)有机泡沫浸渍工艺:有机泡沫浸渍法是用有机泡沫浸渍陶瓷浆料,干燥后烧掉有机泡沫,获得多孔陶瓷的一种方法。该法适于制备高气孔率、开口气孔的多孔陶瓷。这种方法制备的泡沫陶瓷是目前最主要的多孔陶瓷之一。 (3)发泡工艺:可以在制备好的料浆中加入发泡剂,如碳酸盐和酸等,发泡剂通过化学反应等能够产生大量细小气泡,烧结时通过在熔融体内产生放气反应能得到多孔结构,这种发泡气体率可达95%以上。与泡沫浸渍工艺相比,更容易控制制品的形状、成分和密度,并且可制备各种孔径大小和形状的多孔陶瓷,特别适于生产闭气孔的陶瓷制品,多年来一直引起研究者的浓厚兴趣。 (4)溶胶-凝胶工艺:主要利用凝胶化过程中胶体粒子的堆积以及凝胶(热等)处理过程中留下小气孔,形成可控多孔结构。这种方法大多数产生纳米级气孔,属于中孔或微孔范围内,这是前述方法难以做到的,实际上这是现在最受科学家重视的一个领域。溶胶-凝胶法主要用来制备微孔陶瓷材料,特别是微孔陶瓷薄膜。 (5)利用纤维制得多孔结构:主要利用纤维的纺织特性与纤细形态等形成气孔,形成的气孔包括:a 有序编织、排列形成的;b 无序堆积或填充形成的。 通常将纤维随意堆放,由于纤维的弹性和细长结构,会互相架桥形成气孔率很高的三维网络结构,将纤维填充在一定形状的模具内,可形成相对均匀,具有一定形状的气孔结构,施以粘结剂,高温烧结固化就得到了气孔率很高的多孔陶瓷,这种孔较大的多孔陶瓷的气孔率可达80%以上;在有序纺织制备方法中,有一种是将纤维织布(或成纸),,再将布(或纸)折叠成多孔结构,常用来制备“哈尔克尔”,这种多孔陶瓷通常孔径较大,结构类似于前面提到的以挤压成型的蜂窝陶瓷;另外是三维编织,这种三维编织为制备气孔率、孔径、气孔排列、形状高度可控的多孔陶瓷提供了可能。 (6)腐蚀法产生微孔、中孔:例如对石纤维的活化处理,许多无机非金属半透膜也曾以这种方法制备。 (7)利用分子键构成气孔:如分子筛,这是微孔材料也是中孔材料。象沸石、柱状磷

先进陶瓷材料研究现状及发展趋势

先进陶瓷材料研究现状及发展趋势 概述:结构陶瓷和功能陶瓷,结构陶瓷是指能作为工程结构材料使用的陶瓷,它具有高强度、高硬度、高弹性模量、耐高温、耐磨损、抗热震等特性;结构陶瓷大致分为氧化物系、非氧化物系和结构用陶瓷基复合材料。功能陶瓷是指具有电、磁、光、声、超导、化学、生物等特性,且具有相互转化功能的一类陶瓷。功能陶瓷在先进陶瓷中约占70%的市场份额,其余为 结构陶瓷。 粉体特性: 粉体的特性对先进陶瓷后续成型和烧结有着显著的影响,特别是显著影响陶瓷的显微结构和机械性能。通常情况下,活性高、纯度高、粒径小的粉体有利于制备结构均匀、性能优良的陶瓷材料。同时,粉体的高效分散技术也存在较大差距。 粉体制备方法:陶瓷粉体的制备主要包含固相反应法、液相反应法和气相反应法3大类, 固相反应法:其中固相反应法特点是成本较低、便于批量化生产,但杂质较多, 主要包括碳热还原法〔碳化硅(Si C)粉体、氧氮化铝(Al ON)粉体)〕、高温 固相合成法(镁铝尖晶石粉体、钛酸钡粉体等)、自蔓延合成法氮化硅〔(Si3N4) 粉体等300余种〕和盐类分解法〔三氧化二铝(Al2O3)粉体〕等。 液相法:液相反应法生产的粉料粒径小、活性高、化学组成便于控制,化学掺杂 方便,能够合成复合粉体,主要包括化学沉淀法、溶胶——凝胶法、醇盐水解法、 水热法、溶剂蒸发法。 气相法:气相反应法包括物理气相沉积和化学气相沉积2种。与液相反应法相 比,气相反应制备的粉体纯度高、粉料分散性好、粒度均匀,但是投资较大、成 本高 先进陶瓷的成型技术:(4种) 干法压制成型:干压成型、冷等静压成型; 塑性成型:挤压成型、注射成型、热蜡铸成型、扎膜成型; 浆料成型:注浆成型、流延成型、凝胶注模成型和原位凝固成型; 固体无模成型:熔融沉积成型、

多孔陶瓷材料的制备工艺

成绩______ 多孔陶瓷材料的制备工艺 材料化学专业 2011级罗庆芬 指导教师:周芸 摘要: 概述了多孔陶瓷的形成机理, 并详细介绍了多孔陶瓷的制备工艺, 具体阐述了各种方法的特点。 关键词:多孔陶瓷;形成机理;制备工艺 Abstract: this paper summarizes the formation mechanism of porous ceramics, and introduces in detail the preparation technology of porous ceramics, detailed elaborated the characteristics of various methods. Key words: porous ceramics; The formation mechanism; The preparation process 1 引言 陶瓷材料是用天然或合成化合物经过成形和高温烧结制成的一类无机非金属材料。而多孔陶瓷材料是以刚玉砂、碳化硅、堇青石等优质原料为主料、经过成型和特殊高温烧结工艺制备的一种具有开孔孔径、高开口气孔率的一种多孔性陶瓷材料、具有耐高温,高压、抗酸、碱和有机介质腐蚀,良好的生物惰性、可控的孔结构及高的开口孔隙率、使用寿命长、产品再生性能好等优点,可以适用于各种介质的精密过滤与分离、高压气体排气消音、气体分布及电解隔膜等。 2 多孔陶瓷的空隙形成机理[1] 多孔陶瓷就微孔结构形式可分为2 种:闭气孔结构和开口气孔结构。闭气孔结构是指陶瓷材料内部微孔分布在连续的陶瓷基体中, 孔与孔之间相互分离, 而开口气孔结构又包括陶瓷材料内部孔与孔之间相互连通和一边开口, 另一边闭口形成不连通气孔2 种。多孔陶瓷的孔隙结构通常是由颗粒堆积形成的空腔、坯体中加入的大量的可燃物或者可分解物形成的空隙、坯体形成过程中机械发泡形成的空隙以及由于坯体成型过程中引入的有机前躯体燃烧形成的孔隙等。一般将采用骨料颗粒堆积法和前躯体燃尽法均可以制得较高的开口气孔的多孔陶瓷制品, 而采用可燃物或分解物在坯体内部形成的气孔会有较大部分形成闭口气孔或半开口气孔, 采用机械发泡法形成的气孔基本上都是闭口气孔。作为用作过滤、布气等使用的多孔陶瓷材料来讲, 一般都希望具有较高的开口气孔率, 围绕

生物陶瓷材料的研究进展

摘要:生物陶瓷是一种具有与生物体或生物化学有关的区别于传统材料的新型材料,生物陶瓷有着传统陶瓷所不具备的优异性能。生物陶瓷在医学上的应用将极大的促进生物陶瓷的发展。与有机高分子材料相比生物体陶瓷耐热性好,便于进行高压灭菌等。本文通过大量的文献阅读介绍了生物陶瓷的分类,生物陶瓷的物理化学性质以及生物陶瓷的应用前景。此外本文还对一些生物陶瓷生产工艺做了简单介绍,并对生物陶瓷未来的发展做了合理展望。 关键词:特殊功能,纳米生物医用,生产工艺 1.生物陶瓷的分类及应用 生物陶瓷材料根据其在生物体内的活性可分为惰性生物陶瓷材料和活性生物陶瓷材料。 1.1惰性生物用瓷 生物惰性陶瓷主要是指化学性能稳定, 生物相溶性好的陶瓷材料。这类陶瓷材料的结构都比较稳定, 分子中的键力较强, 而且都具有较高的机械强度, 耐磨性以及化学稳定性, 它主要有氧化铝陶瓷、单晶陶瓷、氧化锆陶瓷、玻璃陶瓷等, 又分为以下几种: 1.1.1单晶、多晶和多孔氧化铝 单晶氧化铝:具有相当高的抗弯强度,耐磨性能好, 耐热性好, 可以直接与骨固定。已被用作人工骨、牙根、关节、螺栓。并且该螺栓不生锈, 也不会溶解出有害离子, 与金属螺栓不同, 勿需取出体外。60 年代后期, 广泛用作硬组织修复。多晶化学性能十分稳定, 几乎不与组织液发生任何化学反应, 硬度高,机械强度高。总之氧化铝陶瓷具有良好的组织亲和性, 这是因为其表面具有亲水性, 即氧化铝结晶表面氧原子能捕获水分子而产生极化现象, 结果在其表面覆盖一层羟基, 它能吸附水分子, 在表面形成亲水层, 使表面呈强极性, 易被组织液浸润。在极性层外间构成水——金属离子——蛋白质的“三明治”式结构, 形成周期的氧化铝生物相容性。 氧化铝陶瓷和单晶氧化铝。氧化铝陶瓷由氧化铝粉料烧结制成, 单晶氧化铝可用引上法或火焰熔融法制取。氧化铝陶瓷表面为亲水性, 与生物体组织有良好的生物亲合性。目前, 在临床实用中除做人造骨、人造关节外, 还可制接骨用螺钉。 1.1.2氧化锆陶瓷 部分稳定的氧化锆和氧化铝一样, 生物相容性良好, 在人体内稳定性高, 且比氧化铝断裂韧性、耐磨性更高, 有利减少植入物尺寸和实现低摩擦、磨损, 用以制造牙根、骨、股关节、复合陶瓷人工骨、瓣膜等。 1.1.3碳素类陶瓷 包括碳素、玻璃碳、碳纤维及热解石墨等, 其成分是碳元素, 玻璃碳的强度差, 在1300~ 1500℃加热分解碳氢化合物得到的热解石墨微粒, 质地致密 坚硬; 碳纤维强度大, 挠性好。在20 世纪60 年代人们发现它们具有血液相容

相关文档