文档库 最新最全的文档下载
当前位置:文档库 › 2020高考数学--- 均值不等式

2020高考数学--- 均值不等式

2020高考数学--- 均值不等式
2020高考数学--- 均值不等式

第45炼 利用均值不等式求最值

一、基础知识:

1、高中阶段涉及的几个平均数:设()01,2,,i a i n >=

(1)调和平均数:12

111n n

n

H a a a =

++

+

(2

)几何平均数:n G = (3)代数平均数:12n

n a a a A n

++

+

=

(4)平方平均数:

n Q =

2、均值不等式:n n n n H G A Q ≤≤≤,等号成立的条件均为:12n a a a ===

特别的,当2n

=时,22G A ≤?2

a b

+

即基本不等式 3、基本不等式的几个变形:

(1)),0a b a b +≥>:多用在求和式的最小值且涉及求和的项存在乘积为定值的情况

(2)2

2a b ab +??

≤ ???

:多用在求乘积式的最大值且涉及乘积的项存在和为定值的情况

(3)2

2

2a b ab +≥,本公式虽然可由基本不等式推出,但本身化成完全平方式也可证明,要注意此不等式的适用范围,a b R ∈

4、利用均值不等式求最值遵循的原则:“一正二定三等”

(1)正:使用均值不等式所涉及的项必须为正数,如果有负数则考虑变形或使用其它方法 (2)定:使用均值不等式求最值时,变形后的一侧不能还含有核心变量,例如:当0,x >求

23y x x =+

的最小值。此时若直接使用均值不等式,则2

3y x x

=+≥,右侧依然含有x ,则无法找到最值。

① 求和的式子→乘积为定值。例如:上式中2

4y x x =+

为了乘积消掉x ,则要将3

x

拆为两

2x

,则22422y x x x x x =+=++≥=

② 乘积的式子→和为定值,例如3

02

x <<

,求()()32f x x x =-的最大值。则考虑变积为和后保证x 能够消掉,所以()()()2

112329

322322228

x x f x x x x x +-??=-=?-≤=

???(3)等:若能利用均值不等式求得最值,则要保证等号成立,要注意以下两点: ① 若求最值的过程中多次使用均值不等式,则均值不等式等号成立的条件必须能够同时成立(彼此不冲突)

② 若涉及的变量有初始范围要求,则使用均值不等式后要解出等号成立时变量的值,并验证是否符合初始范围。 5、常见求最值的题目类型

(1)构造乘积与和为定值的情况,如上面所举的两个例子 (2)已知1ax by +=(a 为常数),求

m n

x y

+的最值, 此类问题的特点在于已知条件中变量位于分子(或分母)位置上,所求表达式变量的位置恰好相反,位于分母(或分子)上,则可利用常数“1”将已知与所求进行相乘,从而得到常数项与互为倒数的两项,然后利用均值不等式求解。 例如:已知0,0,231x y x y >>+=,求

32

x y

+的最小值 解:

()3232942366y x x y x y x y x y

??+=++=+++ ???

94121224y x x y =+

+≥+= (3)运用均值不等式将方程转为所求式子的不等式,通过解不等式求解: 例如:已知0,0,24x y x y xy >>++=,求2x y +的最小值

解:()2

2

21

1222

228

x y x y xy x y ++??=??≤

= ?

?? 所以()()

2

224248

x y x y xy x y +++=?++

即()()2

282320x y x y +++-≥,可解得24x y +≥,即()min 24x y +=

注:此类问题还可以通过消元求解:42241

x

x y xy y x -++=?=

+,在代入到所求表达式求出最值即可,但要注意0y >的范围由x 承担,所以()0,2x ∈ 二、典型例题:

例1:设1x >-,求函数(5)(2)

1

x x y x ++=+的最小值为_______________

思路:考虑将分式进行分离常数,(5)(2)4

1511

x x y x x x ++==+++++,使用均值不等式

可得:

59y ≥=,等号成立条件为4

111

x x x +=?=+,所以最小值为9 答案:9

例2:已知0,0x y >>,且11

5x y x y

++

+=,则x y +的最大值是________ 思路:本题观察到所求x y +与

11

x y

+的联系,从而想到调和平均数与算术平均数的关系,即

2114

112x y x y x y

x y

+≤

?+≥++,代入方程中可得: ()()

()()2

45540x y x y x y x y ++

≤?+-++≤+,解得:14x y ≤+≤,所以最大值

为4 答案:4

例3:已知实数,m n ,若0,0m n ≥≥,且1m n +=,则22

21

m n m n +++的最小值为( ) A.

14 B. 415 C. 18 D. 13

思路:本题可以直接代入消元解决,但运算较繁琐。考虑对所求表达式先变形再求值,可用

分离常数法将分式进行简化。2241

212121

m n m n m n m n +=-+-++++++,结合分母可将条件1m n +=,变形为()()214m n +++=,进而利用均值不等式求出最值

解:2222441141

21212121

m n m n m n m n m n m n -+-++=+=-++-+++++++ ()4141

322121

m n m n m n =+-+

+=+-++++ ()()1214m n m n +=?+++= ()()()41414

1112214121214421n m m n m n m n m n +??+??∴

+=+?+++=+++?? ? ???++++++????

19544

?

≥+= ? 229122144m n m n ∴+≥-=++,即2221m n m n +++的最小值为14

答案:A

例4:已知正实数,x y 满足24xy x y ++=,则x y +的最小值为__________

思路:本题所求表达式x y +刚好在条件中有所体现,所以考虑将x y +视为一个整体,将等式中的项往x y +的形式进行构造,()()()21xy x y xy x x y x y x y ++=+++=+++,而()1x y +可以利用均值不等式化积为和,从而将方程变形为关于x y +的不等式,解不等式即可

解:()()()24414xy x y xy x x y x y x y ++=?+++=?+++=

()()2112x y x y ++??+≤???? ∴方程变形为:()()2

142x y x y ++??++≥????

()()2

1416x y x y ∴++++≥????

()()2

6150x y x y ∴+++-

解得:3x y +≥

= 答案:()

x y +的最小值为3 例5:已知20a b >>,则4

(2)

a b a b +

-的最小值为______________

思路一:所求表达式为和式,故考虑构造乘积为定值以便于利用均值不等式,分母为

()2b a b -,所以可将a 构造为()11

2222a a b b ?=?-+???

?,从而三项使用均值不等式即可

求出最小值:

4181(2)3(2)2(2)2a a b b b a b b a b ??+

=-++≥?=??

--?? 思路二:观察到表达式中分式的分母()2b a b -,可想到作和可以消去b ,可得

()()2

222b a b b a b a +-??-≤=????

,从而244(2)a a b a b a +≥+-,设()2

4f a a a =+,可从函数角度求得最小值(利用导数),也可继续构造成乘积为定值:

()24322a a f a a =

++≥= 答案:3

小炼有话说:(1)和式中含有分式,则在使用均值不等式时要关注分式分母的特点,并在变形的过程中倾向于各项乘积时能消去变量,从而利用均值不等式求解 (2)思路二体现了均值不等式的一个作用,即消元

(3)在思路二中连续使用两次均值不等式,若能取得最值,则需要两次等号成立的条件不冲突。所以多次使用均值不等式时要注意对等号成立条件的检验 例6:设二次函数()()2

4f x ax x c x R =-+∈的值域为[)0,+∞,则

19

19

c a +

++的最大值为__________

思路:由二次函数的值域可判定0a >,且04ac ?=?=,从而利用定值化简所求表达式:

199189185

11999913913

a c a c c a ac a c a c a c +++++====+

+++++++++,则只需确定9a c +的范围即可求出19

19

c a +

++的最值。由均值不等式可得:912a c +≥,进而解出最值 解:

二次函数()()2

4f x ax x c x R =-+∈的值域为[)0,+∞

16404

ac ac a ?=-=?=?∴?

>? ()()()991199189185

1191999913913

a c a c a c c a c a ac a c a c a c ++++++++====+

+++++++++++

912a c +≥=

195611912135

c a ∴

+≤+=+++ 答案:65

例7:已知,,x y z R +

∈,则222

xy yz

x y z μ+=

++的最大值是________

思路:本题变量个数较多且不易消元,考虑利用均值不等式进行化简,要求得最值则需要分子与分母能够将变量消掉,观察分子为,xy yz 均含y ,故考虑将分母中的2

y 拆分与2

2

,x z 搭配,即2222222

1122xy yz xy yz

x y z x y y z μ++=

=++????+++ ? ?

????

,而

222211,22x y z y +

≥=+≥=

,所以2μ≤

=

答案:

2

小炼有话说:本题在拆分2

y 时还有一个细节,因为分子,xy yz 的系数相同,所以要想分子分母消去变量,则分母中,xy yz 也要相同,从而在拆分2

y 的时候要平均地进行拆分(因为

22,x z 系数也相同)。所以利用均值不等式消元要善于调整系数,使之达到消去变量的目的。

例8:已知正实数,x y 满足3x y x y ++=,若对任意满足条件的,x y ,都有

2()()10x y a x y +-++≥恒成立,则实数a 的取值范围为________

思路:首先对恒成立不等式可进行参变分离,()1

a x y x y

≤++

+。进而只需求得()1

x y x y

++

+的最小值。将x y +视为一个整体,将3x y xy ++=中的xy 利用均值不等式换成x y +,然后解出x y +的范围再求最小值即可 解:()2

1

()()10x y a x y a x y x y

+-++≥?≤++

+

,0x y > 2

2x y xy +??

∴≤ ???

2

32x y x y xy +??

∴++=≤ ?

??

()()2412x y x y ∴++≤+ 解得:6x y +≥或2x y +≤-(舍)

()min 1137666x y x y ??∴++=+=??+?? (在6x y +=时取得) 37

6

a ∴≤

例9:已知1,0,0x y y x +=>≠,则

1

21

x x y +

+的最小值是___________ 思路:观察到所求

1

21

x x y +

+的两项中x 部分互为倒数,所以想到利用均值不等式构造乘积为定值,所以结合第二项的分母变形

1

2x

的分子。因为1x y +=,所以()12y x ++=,则

()1111

22244x y x y x x x x

+++=?=+

,所以原式1144144x x y x x

x x y x x

+=

++≥+=++,因为要求得最小值,所以0x <时,min

144x

x

??=- ? ??

?,故1

21x x y ++最小值为34 答案:

34

小炼有话说:本题考验学生对表达式特点的观察能力,其中两项的x 互为倒数为突破口,从而联想到均值不等式,在变形时才会奔着分子分母向消出定值的方向进行构造 例10:已知,,,,25,9,m n

m n s t R m n n m s t

+∈+=+=>,且,m n 是常数,又2s t +的最小值是1,则3m n +=________

思路:条件中有

9m n

s t

+=,且有()min 21s t +=,进而联想到求()2s t +最小值的过程中达到的最值条件与,m n 相关:

()(

)(11212222999m n mt sn s t s t m n m n s t s t ????+=

++=+++≥++ ? ????

?,即2s t +

的最小值为(1

29m n ++

,所以(1

21925

m n m n n m

?++=??+=??>??

,解得12m n =??=?,所以37m n += 答案:7

三、历年好题精选

1、(2016,天津河西一模)如图所示,在ABC ?中,DB AD =,点F 在线段CD 上,设AB a =,

AC b =,AF xa yb =+,则1

4

1

++

y x 的最小值为( ) A.226+ B.36 C.246+ D.223+ 2、(2016,南昌二中四月考)已知,a b 都是负实数,则

2a b

a b a b

+

++的最小值是( ) A. 5

6

B.

)21- C.

1 D.

)

2

1

3、(2016,重庆万州二中)已知,a b 为正实数,且2a b +=,则22

221

a b a b ++-+的最小值为________

4、(扬州市2016届高三上期末)已知1a b >>且2log 3log 7a b b a +=,则21

1

a b +-的最小值为________

5、已知正项等比数列{}n a 满足7652a a a =+,若存在两项,m n a a

14a =,则

14

m n +的最小值为( ) A. 32 B. 53 C. 256

D. 不存在

6、设()()()1,2,,1,,0,0,0O A O B a O C b a b =-=-=->>,O 为坐标原点。若,,A B C 三

点共线,则

12

a b

+的最小值是_________ 7、已知(),0,a b ∈+∞,且21a b +=

,则2

2

4s a b =-的最大值是( )

A

A.

B. 1

C. 1+

D.

8、设,,1,1x y R a b ∈>>,若3,x y

a b a b ==+=,则

11

x y

+的最大值为 9、已知a b >,且1ab =,则22

a b a b

+-的最小值是

习题答案: 1、答案:D

解析:2AF x AB y AC x AD y AC =+=+,因为,,C F D 三点共线,所以21x y +=,根据所求表达式构造等式为

()212x y ++=,所以有:

()14114118212412121y x

x y x y x y x y ????++=+++=+++?? ? ???+++????

,由均值不等式可

得:

181y x x y ++≥=+

,所以(

1416312x y +

≥+=++2、答案:B

解析:222222

221

112232323a b a ab b ab a b a b a b a ab b a ab b b a

+++==-=-++++++++

,0a b < ,a b

b a

∴是正实数

2a b b a ∴+≥=

(

11322a b a b a b +≥-=--=++

3

、答案:

3

解析:2222121211a b a b a b a b ++-=++-+-++()21

31

a b a b =++++-+ 21

11

a b =-+

+

+ 2a b += ()13a b ∴++=

()2222112121111131a b a b a b a b a b +??∴+-=-++=-++++?? ???+++??

()()2121111213131b b a a a b a b ++????

=-++++=+ ? ?++????

133

≥?=

4、答案:3 解析:()2

32log 72log 7log 30log a a a a b b b b

+

=?-+= ()()2log 1log 30a a b b ∴--=

1

log 2a b ∴=

或log 3a b = 1a b >>

1

log log 2

a a

b ∴== 2b a =

2

111

1113111

a a a

b a a ∴+

=+=-++≥=--- 5、答案:A

解析:22

765555222a a a q a qa a q q =+?=+?=+

解得:2q =或1q

=-(舍)

1144a a =?=

22166m n m n +-∴=?+=(),m n N *∈

()14114141466n m m n m n m n m n ????

+=++=+++ ? ?????

而44n m m n +

≥= 1493

62

m n ∴

+≥= 下面验证等号成立条件:224426

n m

n m n m m n m n ?=

?=?=???+=?解得:24m n =??

=? 所以等号成立,14

m n

+的最小值为32

注:本题要注意到,m n N *

∈,在利用均值不等式求最小值的过程中有可能等号成立的条件不满足。所以在变量范围比较特殊时,要注意验证等号成立条件 6、答案:8 解析:

,,A B C 三点共线

AB AC ∴∥

()()1,1,1,2

A B a A C b =-=-- ()21121a b a b ∴-=--?+=

()121242228b a

a b a b a b a b

??∴+=++=+++≥ ??? 7、答案:A

解析:22a b +?

=

≤=?

?

()2

2

2222142222a b a b a b +??+=+≥= ??? ()22

142a b ∴-+≤-

1

2

s ∴≤

8、答案:1 解析:

3x y a b == l o g 3,l o g a

b x y ∴==

3331111

log log log log 3log 3

a b a b ab x y ∴+=+=+= 2

2

32a b ab +??≤=

= ???

311

log 31x y

∴+≤=

9、答案:

解析:

2222222

a b a ab b a b a b a b a b

+-++==-+≥---

高考数学真题分类汇编专题不等式理科及答案

专题七 不等式 1.【2015高考四川,理9】如果函数()()()()21 281002 f x m x n x m n = -+-+≥≥, 在区间122?????? ,上单调递减,则mn 的最大值为( ) (A )16 (B )18 (C )25 (D )812 【答案】B 【解析】 2m ≠时,抛物线的对称轴为82n x m -=--.据题意,当2m >时,8 22 n m --≥-即212m n +≤ .26,182 m n mn +≤ ≤∴≤Q .由2m n =且212m n +=得3,6m n ==.当2m <时,抛物线开口向下,据题意得,81 22 n m -- ≤-即218m n +≤ .281 9,22 n m mn +≤ ≤∴≤Q .由2n m =且218m n +=得92m =>,故应舍去.要使得mn 取得最大值,应有218m n +=(2,8)m n <>.所以 (182)(1828)816mn n n =-<-??=,所以最大值为18.选B.. 【考点定位】函数与不等式的综合应用. 【名师点睛】首先弄清抛物线的开口方向和对称轴,结合所给单调区间找到m 、n 满足的条件,然后利用基本不等式求解.本题将函数的单调性与基本不等式结合考查,检测了学生综合运用知识解题的能力.在知识的交汇点命题,这是高考的一个方向,这类题往往以中高档题的形式出现. 2.【2015高考北京,理2】若x ,y 满足010x y x y x -?? +??? ≤, ≤,≥,则2z x y =+的最大值为( ) A .0 B .1 C . 3 2 D .2 【答案】D 【解析】如图,先画出可行域,由于2z x y = +,则11 22 y x z =- +,令0Z =,作直线1 2 y x =- ,在可行域中作平行线,得最优解(0,1),此时直线的截距最大,Z 取

(完整版)高考数学-基本不等式(知识点归纳)

高中数学基本不等式的巧用 一.基本不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2 +12x 2 (2)y =x +1x 解:(1)y =3x 2 +12x 2 ≥2 3x 2 ·12x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x --g 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->Q ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。

高考数学真题分类汇编专题不等式理科及答案

高考数学真题分类汇编专题不等式理科及答案 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

专题七 不等式 1.【2015高考四川,理9】如果函数()()()()21 281002 f x m x n x m n = -+-+≥≥, 在区间122?? ???? ,上单调递减,则mn 的最大值为( ) (A )16 (B )18 (C )25 (D )812 【答案】B 【解析】 2m ≠时,抛物线的对称轴为82n x m -=- -.据题意,当2m >时,8 22 n m --≥-即212m n +≤.226,182 m n m n mn +?≤ ≤∴≤.由2m n =且212m n +=得3,6m n ==.当2m <时,抛物线开口向下,据题意得,81 22 n m -- ≤-即218m n +≤.281 29,22 n m n m mn +?≤ ≤∴≤.由2n m =且218m n +=得92m =>,故应舍去.要使得mn 取得最大值,应有218m n +=(2,8)m n <>.所以 (182)(1828)816mn n n =-<-??=,所以最大值为18.选B.. 【考点定位】函数与不等式的综合应用. 【名师点睛】首先弄清抛物线的开口方向和对称轴,结合所给单调区间找到m 、n 满足的条件,然后利用基本不等式求解.本题将函数的单调性与基本不等式结合考查,检测了学生综合运用知识解题的能力.在知识的交汇点命题,这是高考的一个方向,这类题往往以中高档题的形式出现. 2.【2015高考北京,理2】若x ,y 满足010x y x y x -?? +??? ≤, ≤,≥,则2z x y =+的最大值为 ( ) A .0 B .1 C .32 D .2 【答案】D

2020年高考数学复习题:基本不等式及其应用

基本不等式及其应用 [基础训练] 1.下列结论中正确的个数是( ) ①若a >0,则a 2 +1 a 的最小值是2a ; ②函数f (x )=sin 2x 3+cos 2x 的最大值是2; ③函数f (x )=x +1 x 的值域是[2,+∞); ④对任意的实数a ,b 均有a 2+b 2≥-2ab ,其中等号成立的条件是a =-b . A .0 B .1 C .2 D .3 : 答案:B 解析:①错误:设f (a )=a 2 +1 a ,其中a 是自变量,2a 也是变化的,不能说2a 是f (a )的最小值; ②错误:f (x )=sin 2x 3+cos 2 x ≤sin 2x +3+cos 2x 2 =2, 当且仅当sin 2x =3+cos 2x 时等号成立,此方程无解, ∴等号取不到,2不是f (x )的最大值; ③错误:当x >0时,x +1 x ≥2 x ·1x =2, 当且仅当x =1 x ,即x =1时等号成立; 当x <0时,-x >0,x +1 x =-? ?? ??-x +1-x ≤-2 -x ·1 -x =-2, ¥ 当且仅当-x =-1 x ,即x =-1时等号成立. ∴f (x )=x +1 x 的值域是(-∞,-2]∪[2,+∞); ④正确:利用作差法进行判断.

∵a 2+b 2+2ab =(a +b )2≥0,∴a 2+b 2≥-2ab , 其中等号成立的条件是a +b =0,即a =-b . 2.[2019河北张家口模拟]已知a +2b =2,且a >1,b >0,则 2 a -1+1 b 的最小值为( ) A .4 B .5 C .6 D .8 答案:D 解析:因为a >1,b >0,且a +2b =2, \ 所以a -1>0,(a -1)+2b =1, 所以2a -1+1b =? ????2 a -1+1 b ·[(a -1)+2b ] =4+4b a -1 +a -1b ≥4+2 4b a -1·a -1 b =8, 当且仅当4b a -1=a -1 b 时等号成立, 所以2a -1 +1b 的最小值是8,故选D. 3.若2x +2y =1,则x +y 的取值范围是( ) A .[0,2] B .[-2,0] C .[-2,+∞) D .(-∞,-2] ! 答案:D 解析:∵2x +2y ≥22x ·2y =22x +y (当且仅当2x =2y 时等号成立), ∴2 x +y ≤12,∴2x +y ≤14, 得x +y ≤-2.故选D. 4.已知x >0,y >0,且4xy -x -2y =4,则xy 的最小值为( ) B .2 2 D .2 答案:D 解析:∵x >0,y >0,x +2y ≥22xy , ∴4xy -(x +2y )≤4xy -22xy , ∴4≤4xy -22xy ,

2017-18全国卷高考真题 数学 不等式选修专题

2017-2018全国卷I -Ⅲ高考真题 数学 不等式选修专题 1.(2017全国卷I,文/理.23)(10分) [选修4—5:不等式选讲](10分) 已知函数f (x )=–x 2+ax +4,g (x )=│x +1│+│x –1│. (1)当a =1时,求不等式f (x )≥g (x )的解集; (2)若不等式f (x )≥g (x )的解集包含[–1,1],求a 的取值范围. 【答案解析】 解:(1)当1a =时,()24f x x x =-++,是开口向下,对称轴12 x = 的二次函数. ()211121121x x g x x x x x >??=++-=-??-<-?,,≤x ≤,, 当(1,)x ∈+∞时,令242x x x -++= ,解得x =()g x 在()1+∞, 上单调递增,()f x 在()1+∞,上单调递减 ∴此时()()f x g x ≥ 解集为1? ?? . 当[]11x ∈-, 时,()2g x =,()()12f x f -=≥. 当()1x ∈-∞-, 时,()g x 单调递减,()f x 单调递增,且()()112g f -=-=. 综上所述,()()f x g x ≥ 解集1?-??? . (2)依题意得:242x ax -++≥在[]11-, 恒成立. 即220x ax --≤在[]11-, 恒成立. 则只须()()2211201120 a a ?-?-??----??≤≤,解出:11a -≤≤. 故a 取值范围是[]11-, .

2.(2017全国卷Ⅱ,文/理.23)(10分) [选修4-5:不等式选讲](10分) 已知0a >,222ba b +==2.证明: (1)()22()4a b a b ++≥; (2)2a b +≤. 【答案解析】 3.(2017全国卷Ⅱ,文/理.23)(10分) [选修4—5:不等式选讲](10分) 已知函数f (x )=│x +1│–│x –2│. (1)求不等式f (x )≥1的解集; (2)若不等式f (x )≥x 2–x +m 的解集非空,求m 的取值范围. 【答案解析】 解:(1)()|1||2|f x x x =+--可等价为()3,121,123,2--??=--<

高考数学不等式专题

基本不等式专题 一、知识点总结 1、基本不等式原始形式 (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ 2、基本不等式一般形式(均值不等式) 若*,R b a ∈,则ab b a 2≥+ 3、基本不等式的两个重要变形 (1)若* ,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则2 2? ? ? ??+≤b a ab 总结:当两个正数的积为定植时,它们的和有最小值; 5、常用结论 (1)若0x >,则1 2x x +≥ (当且仅当1x =时取“=”) (2)若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) (4)若R b a ∈,,则2 )2(222b a b a ab +≤ +≤ (5)若*,R b a ∈,则22111 22b a b a ab b a +≤+≤≤+ (6),、、)(3 33 333 3 3 +∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立; (7))(333 3+ ∈?? ? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时, “ =”号成立. (1)若,,,a b c d R ∈,则22222()()()a b c d ac bd ++≥+ (2)若123123,,,,,a a a b b b R ∈,则有: 22222221231123112233()()()a a a b b b a b a b a b ++++≥++

2016年广东省3+证书高职高考数学试卷(真题)和详细答案

2016年广东省高等职业院校招收中等职业学校毕业生考试 数 学 班级 学号 姓名 本试卷共4页,24小题,满分150分,考试用时120分钟 一、选择题:(本大题共15小题,每小题5分,满分75分。在每小题给出的四个选项中, 只有一项是符合题目要求的。) 1. 若集合{}2,3,A a =,{}1,4B =,且{}=4A B ,则a = ( ). A.1 B. 2 C. 3 D. 4 2. 函数()f x = ( ). A. (,)-∞+∞ B. 3,2 ??-+∞???? C. 3,2? ?-∞- ?? ? D. ()0,+∞ 3. 设,a b 为实数,则 “3b =”是“(3)0a b -=”的 ( ). A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分不必要条件 4. 不等式2560x x --≤的解集是 ( ). A. {}23x x -≤≤ B. {}16x x -≤≤ C. {}61x x -≤≤ D. {}16x x x ≤-≥或 5.下列函数在其定义域内单调递增的是 ( ) . A. 2 y x = B. 13x y ??= ??? C. 32x x y = D. 3log y x =- 6.函数cos()2 y x π=-在区间5, 3 6ππ?? ???? 上的最大值是 ( ).

A. 1 2 B. 2 C. D. 1 7. 设向量(3,1)a =-,(0,5)b =,则a b -= ( ). A. 1 B. 3 C. 4 D. 5 8. 在等比数列{}n a 中,已知37a =,656a =,则该等比数列的公比是 ( ). A. 2 B. 3 C. 4 D. 8 9. 函数()2 sin 2cos2y x x =-的最小正周期是 ( ). A. 2 π B. π C. 2π D. 4π 10. 已知()f x 为偶函数,且()y f x =的图像经过点()2,5-,则下列等式恒成立的是 ( ). A. (5)2f -= B. (5)2f -=- C. (2)5f -= D. (2)5f -=- 11. 抛物线24x y =的准线方程是 ( ). A. 1y =- B. 1y = C. 1x =- D. 1x = 12. 设三点()1,2A ,()1,3B -和()1,5C x -,若AB 与BC 共线,则x = ( ). A. 4- B. 1- C. 1 D. 4 13. 已知直线l 的倾斜角为4 π ,在y 轴上的截距为2,则l 的方程是 ( ). A. 20y x +-= B. 20y x ++= C. 20y x --= D. 20y x -+= 14.若样本数据3,2,,5x 的均值为3.则该样本的方差是 ( ). A. 1 B. 1.5 C. 2.5 D. 6 15.同时抛三枚硬币,恰有两枚硬币正面朝上的概率是 ( ). A. 18 B.14 C. 38 D. 58 二、填空题:(本大题共5个小题,每小题5分,满分25分。)

2019高考数学不等式:基本不等式

基本不等式 【考点梳理】 1.基本不等式ab ≤ a +b 2 (1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b . 2.几个重要的不等式 (1)a 2 +b 2 ≥2ab (a ,b ∈R ); (2)b a +a b ≥2(a ,b 同号且不为零); (3)ab ≤? ?? ??a +b 22(a ,b ∈R ); (4)? ?? ??a +b 22≤a 2 +b 2 2(a ,b ∈R ). 3.算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为 a +b 2 ,几何平均数为ab ,基本不等式可叙述为: 两个正数的算术平均数不小于它们的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则 (1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小). (2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 2 4(简记:和定积最大). 【考点突破】 考点一、配凑法求最值 【例1】(1)若x < 54,则f (x )=4x -2+145 x -的最大值为________. (2)函数y = x -1 x +3+x -1 的最大值为________. [答案] (1) 1 (2) 1 5 [解析] (1)因为x <5 4 ,所以5-4x >0,

=-2+3=1. 当且仅当5-4x =1 5-4x ,即x =1时,等号成立. 故f (x )=4x -2+1 4x -5的最大值为1. (2)令t =x -1≥0,则x =t 2 +1, 所以y = t t 2 +1+3+t = t t 2 +t +4 . 当t =0,即x =1时,y =0; 当t >0,即x >1时,y = 1 t +4t +1 , 因为t +4 t ≥24=4(当且仅当t =2时取等号), 所以y = 1t +4t +1 ≤1 5, 即y 的最大值为1 5(当t =2,即x =5时y 取得最大值). 【类题通法】 1.应用基本不等式解题一定要注意应用的前提:“一正”“二定”“三相等”.所谓“一正”是指正数,“二定”是指应用基本不等式求最值时,和或积为定值,“三相等”是指满足等号成立的条件. 2.在利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式. 【对点训练】 1.若函数f (x )=x + 1 x -2 (x >2)在x =a 处取最小值,则a 等于( ) A .1+2 B .1+3 C .3 D .4 [答案] C [解析] 当x >2时,x -2>0,f (x )=(x -2)+ 1 x -2 +2≥2(x -2)× 1 x -2 +2=4,当

2016年高考新课标1卷文科数学试题(解析版)

2016年高考数学新课标1(文)试题及答案解析 (使用地区山西、河南、河北、湖南、湖北、江西、安徽、福建、广东) -、选择题,本大题共 12小题,每小题5分,共60分?在每小题给出的四个选项中,只有 一项是符合题目要求的. 【2016 新课标1(文)】1.设集合 A={1,3,5,7} , B={x|2 ? 5},贝U A AB=( ) A . {1,3} B . {3,5} C . {5,7} D . {1,7} 【答案】B 【解析】取A , B 中共有的元素是{3,5},故选B 【2016新课标1(文)】2?设(1+2i )(a+i )的实部与虚部相等,其中 a 为实数,则a=( ) A . -3 B . -2 C . 2 D . 3 【答案】A 【解析】(1+2i )(a+i )= a-2+(1+2 a )i ,依题 a-2=1+2a ,解得 a=-3,故选 A 【2016新课标1(文)】3.为美化环境,从红、黄、白、紫 4种颜色的花中任选 2种花种 在一个花坛中,余下的 2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概 率是( ) 1 1 2 A .- B .- C . 3 2 3 【答案】C 【解析】设红、黄、白、紫4种颜色的花分别用 (13,24), (14,23), (23,14), (24,13), (34,12),共 4 2 个,其概率为P= ,故选C 6 3 【2016新课标I (文)】4 . a . 5,c 2,cosA -,贝U b=( ) 3 A . 、、2 B . 3 C . 2 【答案】D 2 【解析】由余弦定理得: 5=4+b 2-4b X-,则3b 2-8b-3=0,解得b=3,故选D 3 【2016新课标1(文)】5.直线I 经过椭圆的一个顶点和一个焦点,若椭圆中心到 I 的距离 为其短轴长的 1 ,则该椭圆的离心率为( ) 4 1 1 2 3 A .- B .— C . D .— 3 2 3 4 【答 案】 B bc=」 【解析】 由直角三角形的面积关系得 2bsb 2 c 2,解得 e c 1,故选 B 4 a 2 1,2,3,4来表示,则所有基本事件有 (12,34 ), A ABC 的内角 A,B,C 的对边分别为 a,b,c.已知

高考数学专题练习:不等式与线性规划

高考数学专题练习:不等式与线性规划 1。若不等式(-2)n a -3n -1-(-2)n <0对任意正整数n 恒成立,则实数a 的取值范围是( ) A 。? ? ???1,43 B 。? ???? 12,43 C 。? ? ???1,74 D 。? ?? ??12,74 答案 D 解析 当n 为奇数时,要满足2n (1-a )<3n -1恒成立, 即1-a <13× ? ????32n 恒成立,只需1-a <13×? ????321,解得a >1 2; 当n 为偶数时,要满足2n (a -1)<3n -1恒成立, 即a -1<13× ? ????32n 恒成立,只需a -1<13×? ????322,解得a <7 4。 综上,12<a <7 4,故选D 。 2。已知a >0,b >0,且a ≠1,b ≠1,若log a b >1,则( ) A 。(a -1)(b -1)<0 B 。(a -1)(a -b )>0 C 。(b -1)(b -a )<0 D 。(b -1)(b -a )>0 答案 D 解析 取a =2,b =4,则(a -1)(b -1)=3>0,排除A ;则(a -1)(a -b )=-2<0,排除B ;(b -1)(b -a )=6>0,排除C,故选D 。 3。设函数f (x )=??? x 2-4x +6,x ≥0, x +6,x <0,则不等式f (x )>f (1)的解集是( ) A 。(-3,1)∪(3,+∞) B 。(-3,1)∪(2,+∞) C 。(-1,1)∪(3,+∞) D 。(-∞,-3)∪(1,3) 答案 A 解析 f (1)=3。由题意得??? x ≥0,x 2-4x +6>3或??? x <0, x +6>3, 解得-33。 4。 若a ,b ,c 为实数,则下列命题为真命题的是( ) A 。若a >b ,则ac 2>bc 2 B 。若a <b <0,则a 2>ab >b 2

高考数学之基本不等式

基本不等式 基础梳理 1.基本不等式:ab ≤a +b 2 (1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ); (2)b a +a b ≥2(a ,b 同号); (3)ab ≤????a +b 22(a ,b ∈R ); (4)a 2+b 22≥????a +b 22(a ,b ∈R ). 3.算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为 a + b 2,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数大于或等于它的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则 (1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大) 一个技巧 22 ab ≤????a +b 22(a ,b >0)等.还要注意“添、拆项”技巧和公式等号成立的条件等. 两个变形 (1)a 2+b 22≥????a +b 22≥ab (a ,b ∈R ,当且仅当a =b 时取等号); a +b 这两个不等式链用处很大,注意掌握它们.

三个注意 (1)使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可. (2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件. (3)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致. 双基自测 1.(人教A 版教材习题改编)函数y =x +1x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞) D .(2,+∞) 解析 ∵x >0,∴y =x +1x ≥2, 当且仅当x =1时取等号. 答案 C 2.下列不等式:①a 2+1>2a ;②a +b ab ≤2;③x 2+1x 2+1≥1,其中正确的个数是( ). A .0 B .1 C .2 D .3 解析 ①②不正确,③正确,x 2+1x 2+1=(x 2+1)+1x 2+1 -1≥2-1=1. 答案 B 3.若a >0,b >0,且a +2b -2=0,则ab 的最大值为( ). A.12 B .1 C .2 D .4 解析 ∵a >0,b >0,a +2b =2, ∴a +2b =2≥22ab ,即ab ≤12 . 答案 A 4.(2011·重庆)若函数f (x )=x +1x -2 (x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+ 3 C .3 D .4 解析 当x >2时,x -2>0,f (x )=(x -2)+1x -2 +2≥2 (x -2)×1x -2+2=4,当且仅当x -2=1x -2 (x >2),即x =3时取等号,即当f (x )取得最小值时,x =3,即a =3. 答案 C 5.已知t >0,则函数y =t 2-4t +1t 的最小值为________. 解析 ∵t >0,∴y =t 2-4t +1t =t +1t -4≥2-4=-2,当且仅当t =1时取等号. 答案 -2

2019高考数学不等式真题汇总

(2019?上海7)若x ,y R +∈,且 123y x +=,则y x 的最大值为 . 【解答】 解:132y x = +… ∴298 y x =?; 故答案为:98 (2019?上海5)已知x ,y 满足002x y x y ????+? ……?,则23z x y =-的最小值为 . 【解答】解:作出不等式组002x y x y ????+? ……?表示的平面区域,由23z x y =-即23x z y -=,表示直线在y 轴上的截距的相反数的13 倍,平移直线230x y -=,当经过点(0,2)时,23z x y =-取得最小值6-,故答案为:6-. (2019?浙江3)若实数x ,y 满足约束条件340,340,0,x y x y x y -+??--??+? …?…则32z x y =+的最大值是( ) A .1- B .1 C .10 D .12 【解答】解:由实数x ,y 满足约束条件3403400x y x y x y -+??--??+? …?…作出可行域如图,联立340340x y x y -+=??--=?,解得(2,2)A ,化目标函数32z x y =+为3122y x z =-+,由图可知,当直线3122 y x z =-+过(2,2)A 时,直线在y 轴上的截距最大,z 有最大值:10. 故选:C .

(2019?天津文10)设x R ∈,使不等式2320x x +-<成立的x 的取值范围为 . 【解答】解:2320x x +-<,将232x x +-分解因式即有: (1)(32)0x x +-<;2(1)()03 x x +-<; 由一元二次不等式的解法“小于取中间,大于取两边” 可得:213 x -<<; 即:2{|1}3x x -<<;或2(1,)3 -; 故答案为:2(1,)3 -; (2019?天津文理13)设0x >,0y >,25x y += 的最小值为 . 【解答】解:0x >,0 y >,25x y +=, 则===; 由基本不等式有: = 当且仅当=时,即:3xy =,25x y +=时,即:31x y =??=?或232x y =???=??时;等号成立, 故答案为:

2018年高考数学—不等式专题

不等式 (必修5P80A3改编)若关于x 的一元二次方程x 2-(m +1)x -m =0有两个不相等的实数根,则m 的取值范围是________. 解析 由题意知Δ=[(m +1)]2+4m >0.即m 2+6m +1>0, 解得m >-3+22或m <-3-2 2. 答案 (-∞,-3-22)∪(-3+22,+∞) (2016·全国Ⅱ卷)若x ,y 满足约束条件???x -y +1≥0, x +y -3≥0,x -3≤0, 则 z =x -2y 的最小值为 ________. 解析 画出可行域,数形结合可知目标函数的最小值在直线x =3与直线x -y +1=0的交点(3,4)处取得,代入目标函数z =x -2y 得到-5. 答案 -5 (2016·全国Ⅲ卷)设x ,y 满足约束条件???2x -y +1≥0, x -2y -1≤0,x ≤1, 则z =2x +3y -5的最小值为_____. 解析 画出不等式组表示的平面区域如图中阴影部分所示.由题意可知, 当直线y =-23x +53+z 3过点A (-1,-1)时,z 取得最小值,即z min =2×(-1)+3×(-1)-5=-10.

(2017·西安检测)已知变量x ,y 满足???2x -y ≤0, x -2y +3≥0,x ≥0, 则z =(2)2x +y 的最大值为________. 解析 作出不等式组所表示的平面区域,如图阴影部分所示.令m =2x +y ,由图象可知当直线y =-2x +m 经过点A 时,直线y =-2x +m 的纵截距最大,此时m 最大,故z 最大.由?????2x -y =0,x -2y +3=0,解得?????x =1,y =2, 即A (1,2).代入目标函数z =(2)2x +y 得,z =(2)2×1+2=4. 答案 4 (2016·北京卷)若x ,y 满足???2x -y ≤0,x +y ≤3,x ≥0, 则2x +y 的最大值为( ) A.0 B.3 C.4 D.5 解析 画出可行域,如图中阴影部分所示, 令z =2x +y ,则y =-2x +z ,当直线y =-2x +z 过点A (1,2)时,z 最大,z max =4. 答案 C (2016·山东卷)若变量x ,y 满足???x +y ≤2, 2x -3y ≤9,x ≥0, 则x 2+y 2的最大值是( )

广东省广州市2016届高三普通高中毕业班综合测试(一)数学(理)试题

绝密 ★ 启用前 2016年广州市普通高中毕业班综合测试(一) 理科数学 注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答卷前,考生务必将自己的姓名和考生号、试室号、座位号填写在答题卡上,并用铅笔在答题卡上的相应位置填涂考生号。 2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。写在本试卷上无效。 3.回答第Ⅱ卷时,将答案写在答题卡上。写在本试卷上无效。 4.考试结束后,将本试卷和答题卡一并交回。 第Ⅰ卷 一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符 合题目要求的. (1)已知集合{}1A x x =<,{}20B x x x =-≤,则A B = (A ){}11x x -≤≤ (B ){}01x x ≤≤ (C ){}01x x <≤ (D ){}01x x ≤< (2)已知复数3i 1i z +=-,其中i 为虚数单位,则复数z 的共轭复数z 所对应的点在 (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 (3)执行如图所示的程序框图,如果输入3x =,则输出k 的值为 (A )6 (B )8 (C )10 (D )12 (4)如果函数()sin 6f x x ωπ??=+ ??? ()0ω>的相邻两个零点之间的距离为6π,则ω的值为 (A )3 (B )6 (C )12 (D )24 (5)设等差数列{}n a 的前n 项和为n S ,且271224a a a ++=,则13S = (A )52 (B )78 (C )104 (D )208 (6)如果1P ,2P ,…,n P 是抛物线C :2 4y x =上的点,它们的横坐标依次为1x ,2x ,…,n x ,F 是抛物线C 的焦点,若1210n x x x +++=,则12n PF P F P F +++= (A )10n + (B )20n + (C )210n + ( D )

不等式-高考数学解题方法归纳总结专题训练

专题20 不等式训练 【训练目标】 1、掌握不等式的性质,能利用不等式的性质,特殊值法等判断不等式的正误; 2、熟练的解一元二次不等式,分式不等式,绝对值不等式,对数不等式,指数不等式,含根式的不等式; 3、掌握分类讨论的思想解含参数的不等式; 4、掌握恒成立问题,存在性问题; 5、掌握利用基本不等式求最值的方法; 6、掌握线性规划解决最优化问题; 7、掌握利用线性规划,基本不等式解决实际问题。 【温馨小提示】 在高考中,不等式无处不在,不论是不等式解法还是线性规划,基本不等式,一般单独出现的是线性规划或基本不等式,而不等式的解法则与集合、函数、数列相结合。 【名校试题荟萃】 1、若实数且,则下列不等式恒成立的是() A. B. C. D. 【答案】C 【解析】根据函数的图象与不等式的性质可知:当时,为正确选项,故选C. 2、已知,,则() A. B. C. D. 【答案】A 3、,设,则下列判断中正确的是() A. B. C. D. 【答案】B 【解析】令,则,故选B

4、若,且,则下列不等式成立的是() A. B. C. D. 【答案】B 【解析】 . 5、袋子里有大小、形状相同的红球个,黑球个().从中任取个球是红球的概率记为.若将红球、黑球个数各增加个,此时从中任取个球是红球的概率记为;若将红球、黑球个数各减少个,此时从中任取个球是红球的概率记为,则() A. B. C. D. 【答案】D 6、若,,则下列不等式错误的是() A. B. C. D. 【答案】C 【解析】 因为,,所以,,故A、B正确;由已知得, ,所以,所以C错误;由,得,,所以 成立,所以D正确.故选C.

高中数学高考题详解-基本不等式

考点29 基本不等式 一、选择题 1.(2013·重庆高考理科·T3 )63)a -≤≤的最大值为 ( ) A.9 B.2 9 C.3 D. 2 2 3 【解题指南】直接利用基本不等式求解. 【解析】选B. 当6-=a 或3=a 时, 0)6)(3(=+-a a ,当36<<-a 时, 2 9263)6)(3(=++-≤ +-a a a a ,当且仅当,63+=-a a 即23 =a 时取等号. 2. (2013·山东高考理科·T12)设正实数x,y,z 满足x 2-3xy+4y 2-z =0.则当 xy z 取得最大值时,212x y z +-的最大值为( ) A.0 B.1 C. 94 D.3 【解题指南】此题可先利用已知条件用x,y 来表示z ,再经过变形,转化为基本不等式的问题,取等号的条件可直接代入212x y z +-,进而再利用基本不等式求出2 12x y z +-的最值. 【解析】选B. 由22340x xy y z -+-=,得2234z x xy y =-+. 所以 22 14343xy xy x y z x xy y y x ==-++ -1≤=,当且仅当4x y y x =,即2x y =时取等号此时22y z =, 1)(max =z xy . xy y y z y x 2122212-+=-+)211(2)11(2y y x y -=-=2 11122412y y ??+- ? ?≤= ? ??? . 3. (2013·山东高考文科·T12)设正实数z y x ,,满足04322=-+-z y xy x ,

则当 z xy 取得最大值时,2x y z +-的最大值为( ) A.0 B.9 8 C.2 D.94 【解题指南】此题可先利用已知条件用x,y 来表示z ,再经过变形,转化为基本不等式的问题,取等号的条件可直接代入2x y z +-,进而再利用基本不等式求出2x y z +-的最值. 【解析】 选C. 由22340x xy y z -+-=,得2234z x xy y =-+. 所以1342344322=-?≥-+=+-=x y y x x y y x xy y xy x xy z ,当且仅当4x y y x = , 即2x y =时取等号此时22y z =, 所以()2222222422222 22=?? ? ??-+≤-=-=-+=-+y y y y y y y y y z y x , 当且仅当y=2-y 时取等号. 4.(2013·福建高考文科·T7)若2x +2y =1,则x+y 的取值范围是 ( ) A .[]0,2 B .[]2,0- C .[)2,-+∞ D .(],2-∞- 【解题指南】“一正二定三相等”,当题目出现正数,出现两变量,一般而言,这种题就是在考查基本不等式. 【解析】选D. ≤2x +2y =1,所以2x+y ≤14 ,即2x+y ≤2-2,所以x+y ≤-2. 二、填空题 5. (2013·四川高考文科·T13)已知函数()4(0,0)a f x x x a x =+>>在3x =时取得最小值,则a =____________。 【解题指南】本题考查的是基本不等式的等号成立的条件,在求解时需要找到等号成立的条件,将3x =代入即可. 【解析】由题()4(0,0)a f x x x a x =+>>,根据基本不等式4a x x +≥

高考数学不等式解题方法技巧

不等式应试技巧总结 1、不等式的性质: (1)同向不等式可以相加;异向不等式可以相减:若,a b c d >>,则a c b d +>+(若,a b c d ><,则 a c b d ->-),但异向不等式不可以相加;同向不等式不可以相减; (2)左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若 0,0a b c d >>>>,则ac bd >(若0,0a b c d >><<,则 a b c d >); (3)左右同正不等式:两边可以同时乘方或开方:若0a b >>,则n n a b > >(4)若0ab >,a b >,则11a b <;若0ab <,a b >,则11a b >。 【例】(1)对于实数c b a ,,中,给出下列命题:①22,bc ac b a >>则若;②b a bc ac >>则若,22; ③22,0b ab a b a >><<则若;④b a b a 11,0< <<则若;⑤b a a b b a ><<则若,0; ⑥b a b a ><<则若,0;⑦b c b a c a b a c ->->>>则若,0;⑧11 ,a b a b >>若,则0,0a b ><。其中正确的命题是______(答:②③⑥⑦⑧); (2)已知11x y -≤+≤,13x y ≤-≤,则3x y -的取值范围是______(答:137x y ≤-≤); (3)已知c b a >>,且,0=++c b a 则 a c 的取值范围是______(答:12,2? ?-- ?? ?) 2. 不等式大小比较的常用方法: (1)作差:作差后通过分解因式、配方等手段判断差的符号得出结果;(2)作商(常用于分数指数幂的代数式);(3)分析法;(4)平方法;(5)分子(或分母)有理化;(6)利用函数的单调性;(7)寻找中间量或放缩法 ;(8)图象法。其中比较法(作差、作商)是最基本的方法。 【例】(1)设0,10>≠>t a a 且,比较 21log log 21+t t a a 和的大小(答:当1a >时,11log log 22 a a t t +≤(1t =时取等号);当01a <<时,11 log log 22 a a t t +≥(1t =时取等号)); (2)设2a >,1 2 p a a =+-,2422-+-=a a q ,试比较q p ,的大小(答:p q >); (3)比较1+3log x 与)10(2log 2≠>x x x 且的大小(答:当01x <<或4 3 x >时,1+3log x >2log 2x ;当 413x <<时,1+3log x <2log 2x ;当4 3 x =时,1+3log x =2log 2x ) 3. 利用重要不等式求函数最值时,你是否注意到:“一正二定三相等,和定积最大,积定和最小”这17字方 针。 【例】(1)下列命题中正确的是A 、1y x x =+的最小值是 2 B 、2y =的最小值是 2 C 、 423(0)y x x x =--> 的最大值是2- D 、4 23(0)y x x x =--> 的最小值是2-(答:C ); (2)若21x y +=,则24x y +的最小值是______ (答:; (3)正数,x y 满足21x y +=,则y x 1 1+的最小值为______ (答:3+; 4.常用不等式有:(1 2211 a b a b +≥≥+(根据目标不等式左右的运算结构选用) ; (2)a 、b 、c ∈R ,222 a b c ab bc ca ++≥++(当且仅当a b c ==时,取等号); (3)若0,0a b m >>>,则b b m a a m +<+(糖水的浓度问题)。 【例】如果正数a 、b 满足3++=b a ab ,则ab 的取值范围是_________(答:[)9,+∞)

相关文档
相关文档 最新文档