文档库 最新最全的文档下载
当前位置:文档库 › 线性回归方程计算器步骤

线性回归方程计算器步骤

线性回归方程计算器步骤

第一:先按2ndf 再按DRE 再按2

第二:比方是 x :1 3 5 7 9

y :2 4 6 8 10

就依次按1 STO 2 M+

3 STO

4 M+

5 STO

6 M+

…………

直至全部按完

第三:按RCL 和上面的左边括号 就是有绿色标记a 的键 得出的就是a 值

再按RCL 和右边括号 有标记b 的键 得出的就是b 值

y=a+bx

代入就OK

按mode 键一次,看到屏幕上有 1 COMP ,2 SD ,3 REG ,按3进入回归计算,输入一个数据,按一次M+确认输入,完成输入后,shift+2(s-var )按左右键,看到1 a ,2 b ,3 r ,分别代表y=a+bx 的系数和相关系数

Mode ,选2(STAT ),里面选A+Bx ,

然后输入x 、f(x)数据,AC 回到主界面,Shift>(STAT )>7>A 或B

A 是截距,

B 是斜率

先输入数值,再选中,再菜单插入中选择插入图表,点击xy 散点图,下一步,选择按照行,然后完成。再在生成的图中的坐标点上右击,选择添加趋势线,然后在出现的对话框中点击选项,选择R2和显示公式。

线性回归方程的求法(需要给每个人发)

耿老师总结的高考统计部分的两个重要公式的具体如何应用 第一公式:线性回归方程为???y bx a =+的求法: (1) 先求变量x 的平均值,既1231()n x x x x x n = +++???+ (2) 求变量y 的平均值,既1231()n y y y y y n =+++???+ (3) 求变量x 的系数?b ,有两个方法 法112 1()()?()n i i i n i i x x y y b x x ==--=-∑∑(题目给出不用记忆)[]112222212()()()()...()()()()...()n n n x x y y x x y y x x y y x x x x x x --+--++--=??-+-++-?? (需理解并会代入数据) 法21 2 1()()?()n i i i n i i x x y y b x x ==--=-∑∑(题目给出不用记忆) []1122222212...,...n n n x y x y x y nx y x x x nx ++-?=??+++-??(这个公式需要自己记忆,稍微简单些) (4) 求常数?a ,既??a y bx =- 最后写出写出回归方程???y bx a =+。可以改写为:??y bx a =-(?y y 与不做区分) 例.已知,x y 之间的一组数据: 求y 与x 的回归方程: 解:(1)先求变量x 的平均值,既1(0123) 1.54x = +++= (2)求变量y 的平均值,既1(1357)44 y =+++= (3)求变量x 的系数?b ,有两个方法

法1?b = []11223344222212342222()()()()()()()()()()()()(0 1.5)(14)(1 1.5)(34)(2 1.5)(54)(3 1.5)(74)57(0 1.5)(1 1.5)(2 1.5)(3 1.5)x x y y x x y y x x y y x x y y x x x x x x x x --+--+--+--=??-+-+-+-??--+--+--+--==??-+-+-+-?? 法2?b =[][]11222222222212...011325374 1.5457 ...0123n n n x y x y x y nx y x x x nx ++-??+?+?+?-??==????+++-+++???? (4)求常数?a ,既525??4 1.577a y bx =-=-?= 最后写出写出回归方程525???77 y bx a x =+=+ 第二公式:独立性检验 两个分类变量的独立性检验: 注意:数据a 具有两个属性1x ,1y 。数 据b 具有两个属性1x ,2y 。数据c 具有两个属性2x ,2y 数据d 具有两个属性2x ,2y 而且列出表格是最重要。解题步骤如下 第一步:提出假设检验问题 (一般假设两个变量不相关) 第二步:列出上述表格 第三步:计算检验的指标 2 2 ()()()()()n ad bc K a b c d a c b d -=++++ 第四步:查表得出结论 例如你计算出2K =9大于表格中7.879,则查表可得结论:两个变量之间不相关概率为0.005,或者可以肯定的说两个变量相关的概率为0.995.或095.50 例如你计算出2K =6大于表格中5.024,则查表可得结论:两个变量之间不相关概率为0.025,或者可以肯定的说两个变量相关的概率为0.995.或097.50 上述结论都是概率性总结。切记事实结论。只是大概行描述。具体发生情况要和实际联系!! !!

线性回归方程公式证明

112233^ ^^^2 211(,),(,),(,)(,)1,2,3),()()n n i i i i i i n i i i i i i n x y x y x y x y y bx a x i n y bx a y y y a b Q y y bx a y ===+==+-=-=+-∑L L 设有对观察值,两变量符合线生回归设其回归方程为:,把自变量的某一观测值代(入入回归方程得:,此值与实际观测值存在一个差值,此差值称为剩余或误差。现要决定取何值时,才能够使剩余的平方和有最小值,即求11 2 21122 221 1111 22111:,()[()()()]()()()2()()2()()2()() ()2n n n i i i i n n i i i i i i n n n i i i i i i n n i i i i i n i i x x y y n n Q bx a y a bx y y y b x x n a bx y y y b x x a bx y y y a bx y x x b x x y y b x x =============+-=+---+-=+-+-+--+---+-----=--∑∑∑∑∑∑∑∑∑∑∑的最小值知又22 111 122211()()()()()()()()n n i i i i i n n i i i i i i n n i i i i b x x y y n a bx y y y b x x y y x y nx y b x x x n x a y bx ======--++-+----==--=-∑∑∑∑∑∑此式为关于的一元二次方程,当

线性回归方程高考题

线性回归方程高考题 1、下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据: 3 4 5 6 2.5 3 4 4.5 (1)请画出上表数据的散点图; (2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程; (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:)

2、假设关于某设备的使用年限x和所支出的维修费用y(万元)统计数据如下: 使用年限x 2 3 4 5 6 维修费用y 2.2 3.8 5.5 6.5 7.0 若有数据知y对x呈线性相关关系.求: (1) 填出下图表并求出线性回归方程=bx+a的回归系数,; 序号x y xy x2 1 2 2.2 2 3 3.8 3 4 5.5 4 5 6.5 5 6 7.0 ∑ (2) 估计使用10年时,维修费用是多少.

3、某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四实试验,得到的数据如下: 零件的个数x(个) 2 3 4 5 加工的时间y(小时) 2.5 3 4 4.5 (1)在给定的坐标系中画出表中数据的散点图; (2)求出y关于x的线性回归方程,并在坐标系中画出回归直线; (3)试预测加工10个零件需要多少时间? (注:

4、某服装店经营的某种服装,在某周内获纯利(元)与该周每天销售这种服装件数之间的一组数据关系如下表: 3 4 5 6 7 8 9 66 69 73 81 89 90 91 已知:. (Ⅰ)画出散点图; (1I)求纯利与每天销售件数之间的回归直线方程. 5、某种产品的广告费用支出与销售额之间有如下的对应数据: 2 4 5 6 8 30 40 60 50 70 (1)画出散点图: (2)求回归直线方程; (3)据此估计广告费用为10时,销售收入的值.

线性回归方程题型

线性回归方程 1.【2014高考全国2第19题】某地区2007年至2013年农村居民家庭纯收入y(单位:千元)的数据如下表: (Ⅰ)求y关于t的线性回归方程; (Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入. 附:回归直线的斜率和截距的最小二乘法估计公式分别为: ()() () 1 2 1 n i i i n i i t t y y b t t ∧ = = -- = - ∑ ∑ ,? ?a y bt =- 2.【2016年全国3】下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图. 注:年份代码1–7分别对应年份2008–2014. (Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;

(Ⅱ)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量. 附注: 参考数据: 7 1 9.32i i y ==∑,7 1 40.17i i i t y ==∑ 0.55=,≈2.646. 参考公式:()() n i i t t y y r --= ∑ 回归方程y a bt =+ 中斜率和截距的最小二乘估计公式分别为: 1 2 1 ()() ()n i i i n i i t t y y b t t ==--= -∑∑ ,=.a y bt - 3.【2015全国1】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的宣传费i x 和年销售量()1,2,,8i y i = 数据作了初步处理,得到下面的散点图及一些统计量的值.

多元线性回归模型公式().docx

二、多元线性回归模型 在多要素的地理环境系统中,多个(多于两个)要素之间也存在着相互影响、相互关联的情况。因此,多元地理回归模型更带有普遍性的意义。 (一)多元线性回归模型的建立 假设某一因变量 y 受 k 个自变量 x 1, x 2 ,..., x k 的影响,其 n 组观测值为( y a , x 1 a , x 2 a ,..., x ka ), a 1,2,..., n 。那么,多元线性回归模型的结构形式为: y a 0 1 x 1a 2 x 2 a ... k x ka a () 式中: 0 , 1 ,..., k 为待定参数; a 为随机变量。 如果 b 0 , b 1 ,..., b k 分别为 0 , 1 , 2 ..., k 的拟合值,则回归方程为 ?= b 0 b 1x 1 b 2 x 2 ... b k x k () 式中: b 0 为常数; b 1, b 2 ,..., b k 称为偏回归系数。 偏回归系数 b i ( i 1,2,..., k )的意义是,当其他自变量 x j ( j i )都固定时,自变量 x i 每变 化一个单位而使因变量 y 平均改变的数值。 根据最小二乘法原理, i ( i 0,1,2,..., k )的估计值 b i ( i 0,1,2,..., k )应该使 n 2 n 2 Q y a y a y a b 0 b 1 x 1a b 2 x 2a ... b k x ka min () a 1 a 1 有求极值的必要条件得 Q n 2 y a y a b 0 a 1 () Q n 2 y a y a x ja 0( j 1,2,..., k) b j a 1 将方程组()式展开整理后得:

线性回归方程

线性 回归 方程 统计总课时第18课时分课题线性回归方程分课时第1 课时 教学目标了解变量之间的两种关系,了解最小平方法〔最小二乘法〕的思想,会用公式求解回归系数. 重点难点最小平方法的思想,线性回归方程的求解. 线性回归方程 某小卖部为了了解热茶销量与气温之间的关系,随机统计并制作了某6天卖出热茶的杯数与当天气温的对照表: 气温/C ?26 18 13 10 4 -1 杯数20 24 34 38 50 64假设某天的气温是C? -5,那么你能根据这些数据预测这天小卖部卖出热茶的杯数吗? 新课教学 1.变量之间的两类关系: 〔1〕函数关系: 〔2〕相关关系: 2.线性回归方程: 〔1〕散点图: 〔2〕最小平方法〔最小二乘法〕:〔3〕线性相关关系: 〔4〕线性回归方程、回归直线:3.公式: [来源:https://www.wendangku.net/doc/4011406088.html,] 4.求线性回归方程的一般步骤: x y O

例题剖析 例1 下表为某地近几年机动车辆数与交通事故数的统计资料,请判断机动车辆数与交通事故数之间是否具有线性相关关系,如果具有线性相关关系,求出线性回归方程;如果不具有线性相关关系,说明理由.[来源:学&科&网] 机动车辆数x/千辆95 110 112 120 129 135 150 180 交通事故数y/千件 6.2 7.5 7.7 8.5 8.7 9.8 10.2 13 [来源:1ZXXK]

思考:如图是1991年到2000年北京地区年平均气温〔单位:C 〕与年降雨量〔单位:mm 〕的散点图,根据此图能求出它的回归直线方程吗?如果能,此时求得的回归直线方程有意义吗? 巩固练习 1x /百万元 [来 源:Z+xx+https://www.wendangku.net/doc/4011406088.html,] 2 4 5 6 8 y /百万元 30 40 60 50 70 〔1〕画出散点图; 〔2〕求线性回归方程. 课堂小结 了解变量之间的两种关系,了解最小平方法的思想,会用公式求解回归系数. x y 100 200 300 400 500 600 12.40 12.60 12.80 13.00

多元线性回归的计算方法

多元线性回归的计算方法 摘要 在实际经济问题中,一个变量往往受到多个变量的影响。例如,家庭 消费支出,除了受家庭可支配收入的影响外,还受诸如家庭所有的财富、物价水平、金融机构存款利息等多种因素的影响,表现在线性回归模型中的解释变量有多个。这样的模型被称为多元线性回归模型。 多元线性回归的基本原理和基本计算过程与一元线性回归相同,但由 于自变量个数多,计算相当麻烦,一般在实际中应用时都要借助统计软件。这里只介绍多元线性回归的一些基本问题。 但由于各个自变量的单位可能不一样,比如说一个消费水平的关系式中,工资水平、受教育程度、职业、地区、家庭负担等等因素都会影响到消费水平,而这些影响因素(自变量)的单位显然是不同的,因此自变量前系数的大小并不能说明该因素的重要程度,更简单地来说,同样工资收入,如果用元为单位就比用百元为单位所得的回归系数要小,但是工资水平对消费的影响程度并没有变,所以得想办法将各个自变量化到统一的单位上来。前面学到的标准分就有这个功能,具体到这里来说,就是将所有变量包括因变量都先转化为标准分,再进行线性回归,此时得到的回归系数就能反映对应自变量的重要程度。这时的回归方程称为标准回归方程,回归系数称为标准回归系数,表示如下: Zy=β1Zx1+β2Zx2+…+βkZxk 注意,由于都化成了标准分,所以就不再有常数项a 了,因为各自变量都取平均水平时,因变量也应该取平均水平,而平均水平正好对应标准分0,当等式两端的变量都取0时,常数项也就为0了。 多元线性回归模型的建立 多元线性回归模型的一般形式为 Yi=β0+β1X1i+β2X2i+…+i i i i h x υβ+ =1,2,…,n 其中 k 为解释变量的数目,j β=(j=1,2,…,k)称为回归系数 (regression coefficient)。上式也被称为总体回归函数的随机表达式。它的非随机表达式为 E(Y∣X1i,X2i,…Xki,)=β0+β1X1i+β2X2i+…+βkXki βj 也被称为偏回归系数(partial regression coefficient) 多元线性回归的计算模型

线性回归方程

2.4线性回归方程 重难点:散点图的画法,回归直线方程的求解方法,回归直线方程在现实生活与生产中的应. 考纲要求:①会作两个有关联变量数据的散点图,会利用散点图认识变量间的相关关系. ②了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程. 经典例题:10.有10名同学高一(x)和高二(y)的数学成绩如下: ⑴画出散点图; ⑵求y对x的回归方程。 当堂练习: 1.下表是某小卖部一周卖出热茶的杯数与当天气温的对比表:若热茶杯数y与气温x近似地满足线性关系,则其关系式最接近的是() . .

. . A . B . C . D . 2.线性回归方程表示的直线必经过的一个定点是( ) A . B . C . D . 3.设有一个直线回归方程为 ,则变量x 增加一个单位时 ( ) A . y 平均增加 1.5 个单位 B. y 平均增加 2 个单位 C . y 平均减少 1.5 个单位 D. y 平均减少 2 个单位 4.对于给定的两个变量的统计数据,下列说确的是( ) A .都可以分析出两个变量的关系 B .都可以用一条直线近似地表示两者的关系 C .都可以作出散点图 D. 都可以用确定的表达式表示两者的关系 5.对于两个变量之间的相关系数,下列说法中正确的是( ) A .|r|越大,相关程度越大 B .|r|,|r|越大,相关程度越小,|r|越小,相关程度越大 杯 数 24 34 39 51 63

C.|r|1且|r|越接近于1,相关程度越大;|r|越接近于0,相关程度越小D.以上说法都不对 6.“吸烟有害健康”,那么吸烟与健康之间存在什么关系() A.正相关B.负相关C.无相关D.不确定 7.下列两个变量之间的关系不是函数关系的是() A.角度与它的余弦值B.正方形的边长与面积 C.正n边形的边数和顶点角度之和D.人的年龄与身高 8.对于回归分析,下列说法错误的是() A.变量间的关系若是非确定性关系,则因变量不能由自变量唯一确定 B.线性相关系数可正可负 C.如果,则说明x与y之间完全线性相关 D.样本相关系数 9.为了考察两个变量x和y之间的线性相关性,甲、乙两个同学各自独立的做10次和15V次试验,并且利用线性回归方法,求得回归直线分布为和,已知 . .

多元线性回归模型公式

二、多元线性回归模型 在多要素的地理环境系统中,多个(多于两个)要素之间也存在着相互影响、相互关联的情况。因此,多元地理回归模型更带有普遍性的意义。 (一)多元线性回归模型的建立 假设某一因变量 y 受k 个自变量x 1,x 2,...,x k 的影响,其n 组观测值为(y a ,x 1a ,x 2a ,...,x ka ), a 1,.2..,n 。那么,多元线性回归模型的结构形式为: y a 1x 1a 2x 2a ... k x ka a (3.2.11) 式中: 0,1 ,..., k 为待定参数; a 为随机变量。 如果b 0,b 1,...,b k 分别为 0,1, 2 ... , k 的拟合值,则回归方程为 ?=b 0 b 1x 1 b 2x 2 ... b k x k (3.2.12) 式中: b 0为常数; b 1,b 2,...,b k 称为偏回归系数。 偏回归系数b i (i1,2,...,k )的意义是,当其他自变量 x j (j i )都固定时,自变量 x i 每 变化一个单位而使因变 量 y 平均改变的数值。 根据最小二乘法原理, i (i 0,1,2,...,k )的估计值b i (i 0,1,2,...,k )应该使 n 2 n 2 Q y a y a y a b 0 b1x1a b2x2a ... bkxk a min (3.2.13) a 1 a1 有求极值的必要条件得 Q n 2 y a y a 0 b 0 a 1 (3.2.14) Q n 2 y a yaxja 0(j 1,2,...,k) b j a1 将方程组(3.2.14)式展开整理后得:

线性回归方程和卡方的求法

高考统计部分的两个重要公式的具体如何应用 第一公式:线性回归方程为???y bx a =+的求法: (1) 先求变量x 的平均值,既1231()n x x x x x n = +++???+ (2) 求变量y 的平均值,既1231()n y y y y y n =+++???+ (3) 求变量x 的系数?b ,有两个方法 法112 1()()?()n i i i n i i x x y y b x x ==--=-∑∑(题目给出不用记忆)[]112222212()()()()...()()()()...()n n n x x y y x x y y x x y y x x x x x x --+--++--=??-+-++-?? (需理解并会代入数据) 法21 2 1()()?()n i i i n i i x x y y b x x ==--=-∑∑(题目给出不用记忆) []1122222212...,...n n n x y x y x y nx y x x x nx ++-?=??+++-??(这个公式需要自己记忆,稍微简单些) (4) 求常数?a ,既??a y bx =- 最后写出写出回归方程???y bx a =+。可以改写为:??y bx a =-(?y y 与不做区分) 例.已知,x y 之间的一组数据: 求y 与x 的回归方程: 解:(1)先求变量x 的平均值,既1(0123) 1.54x = +++= (2)求变量y 的平均值,既1(1357)44 y =+++= (3)求变量x 的系数?b ,有两个方法

法1?b = []11223344222212342222()()()()()()()()()()()()(0 1.5)(14)(1 1.5)(34)(2 1.5)(54)(3 1.5)(74)57(0 1.5)(1 1.5)(2 1.5)(3 1.5)x x y y x x y y x x y y x x y y x x x x x x x x --+--+--+--=??-+-+-+-??--+--+--+--==??-+-+-+-?? 法2?b =[][]11222222222212...011325374 1.5457 ...0123n n n x y x y x y nx y x x x nx ++-??+?+?+?-??==????+++-+++???? (4)求常数?a ,既525??4 1.577a y bx =-=-?= 最后写出写出回归方程525???77y bx a x =+=+ 第二公式:独立性检验 两个分类变量的独立性检验: 注意:数据a 具有两个属性1x ,1y 。数 据b 具有两个属性1x ,2y 。数据c 具有两个属性2x ,2y 数据d 具有两个属性2x ,2y 而且列出表格是最重要。解题步骤如下 第一步:提出假设检验问题 (一般假设两个变量不相关) 第二步:列出上述表格 第三步:计算检验的指标 22 ()()()()()n ad bc K a b c d a c b d -=++++ 2K =9大于表格中7.879,则查表可得结论:两个变量之间不相关概率为0.005,或者可以肯定的说两个变量相关的概率为0.995.或095.50 例如你计算出2K =6大于表格中5.024,则查表可得结论:两个变量之间不相关概率为0.025,或者可以肯定的说两个变量相关的概率为0.995.或097.50 上述结论都是概率性总结。切记事实结论。只是大概行描述。具体发生情况要和实际联 系!!!!

(完整版)线性回归方程-刷题训练

线性回归方程同步练习题(文科) 1.某化工厂为预测产品的回收率y ,需要研究它和原料有效成分含量x 之间的相关关系,现取8对观测值, 计算,得∑8 i =1 x i =52,∑8 i =1y i =228,∑8 i =1x 2 i =478,∑8 i =1x i y i =1849,则其线性回归方程为( A ) A.y ^ =11.47+2.62x B.y ^ =-11.47+2.62x C.y ^ =2.62+11.47x D.y ^ =11.47-2.62x 解析 利用回归系数公式计算可得a =11.47,b =2.62,故y ^ =11.47+2.62x . 2.已知x 与y 之间的一组数据: x 0 1 2 3 y 1 3 5 7 则y 对x 的线性回归方程y =bx +A. (2,2) B. (1.5,3.5) C. (1,2) D. (1.5,4) 3. 设回归直线方程为y =2-1.5x ,若变量x 增加1个单位,则( C ). A. y 平均增加1.5个单位 B. y 平均增加2个单位 C. y 平均减少1.5个单位 D. y 平均减少2个单位 4.已知回归方程为y ?=0.50x-0.81,则x=25时,y ?的估计值为 .答案 11.69 5.下表是某厂1~4月份用水量月份x 1 2 3 4 用水量y 4.5 4 3 2.5 由散点图可知,用水量y 与月份x 之间有较好的线性相关关系,其线性回归直线方程是y ^ =-0.7x +a ,则a 等于______. 解析 x =2.5,y =3.5,∵回归直线方程过定点(x ,y ),∴3.5=-0.7×2.5+a .∴a =5.25. 6.某服装商场为了了解毛衣的月销售量y (件)与月平均气温x (℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表: 月平均气温x (℃) 17 13 8 2 月销售量y (件) 24 33 40 55 由表中数据算出线性回归方程y ^ =bx +a 中的b ≈-2,气象部门预测下个月的平均气温约为6℃,据此估计, 该商场下个月毛衣的销售量约为________件. 答案 46解析 由所提供数据可计算得出x =10,y =38,又b ≈-2代入公式a =y -b x 可得a =58, 即线性回归方程y ^ =-2x +58,将x =6代入可得. 7.正常情况下,年龄在18岁到38岁的人们,体重y (kg )依身高x (cm )的回归方程为y=0.72x-58.5。 张红红同学不胖不瘦,身高1米78,他的体重应在 69.66 kg 左右。 8.观察下列散点图,则①正相关;②负相关;③不相关.它们的排列顺序与图形对应顺序是 . 答案 a,c,b 9.三点(3,10),(7,20),(11,24)的回归方程是 .答案 y ?=1.75x+5.75 10.使用年限x 2 3 4 5 6 维修费用y 2.2 3.8 5.5 6.5 7.0

高中数学线性回归方程讲解练习题

教学步骤及教学内容 线性回归方程 (参考公式:b= ∑ i=1 n x i y i-n x y ∑ i=1 n x2i-n x2 ,a=y-b x) 1.实验测得四组(x,y)的值为(1,2),(2,3),(3,4),(4,5),则y与x之间的回归直线方程为() A.y ^ =x+1 B.y ^ =x+2 C.y ^ =2x+1 D.y ^ =x-1 2.在比较两个模型的拟合效果时,甲、乙两个模型的相关指数R2的值分别约为0.96和0.85,则拟合效果好的模型是() A.甲B.乙C.甲、乙相同D.不确定 3.某化工厂为预测产品的回收率y,需要研究它和原料有效成分含量x之间的相关关系,现取8对观测值,计算,得∑ 8 i=1 x i=52,∑ 8 i=1 y i=228,∑ 8 i=1 x2i=478,∑ 8 i=1 x i y i=1849,则其线性回归方程为() A.y ^ =11.47+2.62x B.y ^ =-11.47+2.62x C.y ^ =2.62+11.47x D.y ^ =11.47-2.62x 4.下表是某厂1~4月份用水量(单位:百吨)的一组数据: 月份x 123 4 用水量y 4.543 2.5 由散点图可知,用水量y与月份x之间有较好的线性相关关系,其线性回归直线方程是y ^ =-0.7x+a,则a等于______. 5.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:

零件的个数x (个) 2 3 4 5 加工的时间y (小时) 2.5 3 4 4.5 (1)在给定的坐标系中画出表中数据的散点图; (2)求出y 关于x 的线性回归方程y ^ =bx +a ,并在坐标系中画出回归直线; (3)试预测加工10个零件需要多少小时? 作业 布置 家长 意见 家长签名: 2013 年_月 _日 (第_ 次) 审阅人:

用最小二乘法求线性回归方程

最小二乘法主要用来求解两个具有线性相关关系的变量的回归方程,该方法适用于求解与线性回归方程相关的问题,如求解回归直线方程,并应用其分析预报变量的取值等.破解此类问题的关键点如下: ①析数据,分析相关数据,求得相关系数r,或利用散点图判断两变量之间是否存在线性相关关系,若呈非线性相关关系,则需要通过变量的变换转化构造线性相关关系. ②建模型.根据题意确定两个变量,结合数据分析的结果建立回归模型. ③求参数.利用回归直线y=bx+a的斜率和截距的最小二乘估计公式,求出b,a,的值.从而确定线性回归方程. ④求估值.将已知的解释变量的值代入线性回归方程y=bx+a中,即可求得y的预测值. 注意:回归直线方程的求解与应用中要注意两个方面:一是求解回归直线方程时,利用样本点的中心(x,y)必在回归直线上求解相关参数的值;二是回归直线方程的应用,利用回归直线方程求出的数值应是一个估计值,不是真实值. 经典例题: 下图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.

为了预测该地区2018年的环境基础设施投资额,建立了与时间变量的两个线性回归模型.根据2000年至2016年的数据(时间变量的值依次为1,2.,……,17)建立模型①:y=+;根据2010年至2016年的数据(时间变量的值依次为)建立模型②:y=99+. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠并说明理由. 思路分析:(1)两个回归直线方程中无参数,所以分别求自变量为2018时所对应的函数值,就得结果,(2)根据折线图知2000到2009,与2010到2016是两个有明显区别的直线,且2010到2016的增幅明显高于2000到2009,也高于模型1的增幅,因此所以用模型2更能较好得到2018的预测. 解析:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为 =–+×19=(亿元). 利用模型②,该地区2018年的环境基础设施投资额的预测值为 =99+×9=(亿元). (2)利用模型②得到的预测值更可靠.理由如下: (i)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y=–+上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利

线性回归方程

线 性回归方程(1) 一.教学任务分析: (1)通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系. (2) 了解最小二乘法的含义,知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程. (3)在两个变量具有线性相关关系时,会在散点图中作出线性回归直线,会用线性回归方程进行预测. 二.教学重点与难点: 教学重点:回归直线方程的求解方法. ↓ 四.教学情境设计: 1.创设情景,揭示课题 6个数对所表示的点在坐标系内标出,得到散点图. 从散点图可以看出.这些点大致分布在通过散点图中心 的一条直线的附近. 如果散点图中点的分布从整体看大致分布在一条直线的附近,我们称这两个变量之间具有线性相关关系,这条直线叫回归直线. 如果能够求出这条回归直线的方程,我们就可以比较清楚的了解热茶销量与气温之间的关系. 2.最小二乘法 选择怎样的直线近似地表示热茶销量与气温之间的关系? 我们有多种思考方案: (1)选择能反映直线变化的两个点,例如取(4,50),(18,24)这两点的直线; (2)取一条直线,使得位于该直线一侧和另一侧的点的个数基本相同; (3)多取几组点,确定几条直线方程,再分别算出各条直线斜率、截距的平均值,作为所求直线的斜率、截距; ………………

怎样的直线最好呢? ------从整体上看,各点与此直线的距离最小. 即: 用方程为?y bx a =+的直线拟合散点图中的点,应使得该直线与散点图中的点最接近.那么,怎样衡量直线?y bx a =+与图中六个点的接近程度呢? 我们将表中给出的自变量x 的六个值带入直线方程,得到相应的六个?y 的值: 26,18,13,10,4,b a b a b a b a b a b a +++++-+.这六个值与表中相应的实际值应该越接近 越好.所以,我们用类似于估计平均数时的思想,考虑离差的平方和: 222222 22(,)(2620)(1824)(1334)(1038)(450)(64)12866140382046010172 Q a b b a b a b a b a b a b a b a ab b a =+-++-++-++-+ +-+-+-=++--+ (,)Q a b 是直线?y bx a =+与各散点在垂直方向(纵轴方向)上的距离的平方和,可以用来衡量直线?y bx a =+与图中六个点的接近程度,所以,设法取,a b 的值,使(,)Q a b 达到最小值.这种方法叫做最小平方法(又称最小二乘法) . 先把a 看作常数,那么Q 是关于b 的二次函数.易知,当1403820 21286a b -=- ?时, Q 取得最小 值.同理, 把b 看作常数,那么Q 是关于a 的二次函数.当140460 12 b a -=-时, Q 取得最小 值.因此,当14038202128614046012 a b b a -? =-???? -?=-??时,Q 取得最小值,由此解得 1.6477,57.5568b a ≈-≈.所求直线方程为? 1.647757.5568y x =-+.当5x =-时,?66y ≈,故当气温为5-0 C 时,热茶销量约为66杯. 3.线性回归方程的求解方法 一般地,设有n 个观察数据如下: 当,a b 使1122()()...()n n Q y bx a y bx a y bx a =--+--++--取得最小值时,就 称?y bx a =+为拟合这n 对数据的线性回归方程,该方程所表示的直线称为回归直线. 上述式子展开后,是一个关于,a b 的二次多项式,应用配方法,可求出使Q 为最小值时的,a b 的值.即 ???? ????? -=--=---=---=--==-=--∑∑∑∑x b y a x n x y x n y x x x y y x x b n i i n i i i n i i n i i i 2 1 21 11)())((,(*) ∑==n i i x n x 11, ∑==n i i y n y 11 线性回归方程是 ?y bx a =+,其中b 是回归方程的斜率,a 是截距.系数 4.求线性回归方程的步骤: (1)计算平均数y x ,;

高中数学必修三教案-线性回归方程

教学目标: 1.通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系; 2.在两个变量具有线性相关关系时,会在散点图中作出线性直线,会用线性回归方程进行预测; 3.知道最小二乘法的含义,知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程,了解(线性)相关系数的定义. 教学重点: 散点图的画法,回归直线方程的求解方法. 教学难点: 回归直线方程的求解方法. 教学方法: 引导发现、合作探究. 教学过程: 一、创设情景,揭示课题 客观事物是相互联系的.过去研究的大多数是因果关系,但实际上更多存在的是一种非因果关系.比如说:某某同学的数学成绩与物理成绩,彼此是互相联系的,但不能认为数学是“因”,物理是“果”,或者反过来说事实上数学和物理成绩都是“果”,而真正的“因”是学生的理科学习能力和努力程度.所以说,函数关系存在着一种确定性关系,但还存在着另一种非确定性关系——相关关系. 二、学生活动 提出问题:两个变量之间的常见关系有几种? (1)确定性的函数关系,变量之间的关系可以用函数表示; (2)相关关系,变量之间有一定的联系,但不能完全用函数来表示. 说明:不要认为两个变量间除了函数关系,就是相关关系,事实是,两个变量间可能毫无关系.比如地球运行的速度与某个人的行走速度就可认为没有关系.某小卖部为了了解热茶销售量与气温之间的关系,随机统计并制作了某6天卖出热茶的杯数与当天气温的对照表:

气温/0C 26 18 13 10 4 1- 杯数 20 24 34 38 50 64 如果某天的气温是5-0C ,你能根据这些数据预测这天小卖部卖出热茶的杯数吗? 从下图可以看出,这些点散布在一条直线的附近,故可用一个线性函数近似地表示热茶销量与气温之间的关系. 选择怎样的直线近似地表示热茶销量与气温之间的关系? 我们有多种思考方案: (1)选择能反映直线变化的两个点,例如取(4,50),(18,24)这两点的直线; (2)取一条直线,使得位于该直线一侧和另一侧的点的个数基本相同; (3)多取几组点,确定几条直线方程,再分别算出各条直线斜率、截距的平均值,作为所求直线的斜率、截距; …… 怎样的直线最好呢? 三、建构数学 1.最小平方法: 用方程为?y bx a =+的直线拟合散点图中的点,应使得该直线 与散点图中的点最接近.那么,怎样衡量直线?y bx a =+与图中六 个点的接近程度呢? 我们将表中给出的自变量x 的六个值带入直线方程,得到相 应的六个?y 的值: 26,18,13,10,4,b a b a b a b a b a b a +++++-+.这六个值与表中相应 的实际值应该越 接近越好.所以,我们用类似于估计平均数时的思想,考虑离差的 平方和 222222 (,)(2620)(1824)(1334)(1038)(450)(64) Q a b b a b a b a b a b a b a =+-++-++-++-+ +-+-+- 21286b =26140382046010172a ab b a ++--+ 说明: (,)Q a b 是直线?y bx a =+与各散点在垂直方向(纵轴方向)上的距离的平

MATLAB一元线性回归方程的计算和检验

一、实验名称 一元线性回归方程的计算和检验 二、实验目的 (1) 掌握多种方法求解一元线性回归方程并检验; (2) 掌握曲线拟合的最小二乘法; (3) 培养编程与上机调试能力; (4) 熟悉Matlab6.5.1软件环境. 三、实验要求 (1) 从键盘输入一组数据(x i ,y i ),i=1,2,…n 。 (2) 计算一元线性回归方程y=ax+b 的系数a 和b ,用两种方法计算: 一是公式:x a y b x x y y x x a i i i -=---=∑∑,)())((2 ; 二是用最小二乘法的公式求出最小值点(a,b ),使 ∑--=2)(min },(b ax y b a Q i i . (3) 检验回归方程是否有效(用F 分布检验)。 (4) 把散列点(x i ,y i )和回归曲线y=ax+b 画在一个图上。 (5) 每种计算法都要有计算框图,且每种计算法都要编成一个自定义函数。 五、程序及其运行结果 程序: function yiyuanhuigui clc; disp('从键盘输入一组数据:'); x=input('X 的数(以向量形式输入):'); y=input('Y 的数(以向量形式输入):'); disp('一元线性回归方程的计算和检验:'); disp('1、公式法'); disp('2、最小二乘法'); disp('3、检验并画图');

disp('0、退出'); global a0 b0; while 3 num=input('选择求解一元回归方程的方法:'); switch num case 1 [a0,b0]=huigui(x,y) case 2 [a0,b0]=zxec(x,y) case 3 break; case 0 return; otherwise disp('输入错误,请重新输入!'); end end X=x';Y=y'; X=[ones(size(X)),X];alpha=0.5; %输出向量b,bint为回归系数估计值和它们的置信区间; %r1,rint为残差及其置信区间,stats是用于检验回归模型的统计量,第一个是R^2,其中R %是相关系数,第二个是F统计量值,第三个是与统计量F对应的概率P,第四个是估计误差方差 [b,bint,e,rint,stats]=regress(Y,X) if stats(3)

线性回归方程——非线性方程转化为线性方程

线性回归方程——非线性方程转化为线性方程 例1.(2015·高考全国卷Ⅰ)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的宣传费和年销售量数据作了初步处理,得到下面的散点图及一些统计量的值. 5631469 表中=,=. (I)根据散点图判断,与,哪一个适宜作为年销售量y关于年宣传费x的回归方程类型(给出判断即可,不必说明理由); (II)根据(I)的判断结果及表中数据,建立y关于x的回归方程; (III)已知这种产品的年利润z与x,y的关系为,根据(II)的结果回答下列问题: (i)年宣传费时,年销售量及年利润的预报值是多少? (ii)年宣传费为何值时,年利润的预报值最大? 附:对于一组数据,,…,,其回归直线的斜率和截距的最小二乘估计分别为:,. 【答案】(Ⅰ)适宜作为年销售量关于年宣传费的回归方程类型;(Ⅱ);(Ⅲ)(i)答案见解析;(ii)千元. 【解析】(I)由散点图可以判断,适宜作为年销售量关于年宣传费的回归方程类型. (II)令,先建立关于的线性回归方程,由于=68, ∴=563?68×=,∴关于的线性回归方程为, 因此关于的回归方程为. (III)(ⅰ)由(II)知,当=49时,年销售量的预报值=, 年利润z的预报值为. (ⅱ)根据(II)的结果知,年利润z的预报值, 所以当,即时,取得最大值. 故年宣传费为千元时,年利润的预报值最大. 例2.某地级市共有200000中小学生,其中有7%学生在2017年享受了“国家精准扶贫”政策,在享受“国家精准扶贫”政策的学生中困难程度分为三个等次:一般困难、很困难、特别困难,且人数之比为5:3:2,为进一步帮助

相关文档
相关文档 最新文档