文档库 最新最全的文档下载
当前位置:文档库 › 定压罐计算

定压罐计算

定压罐计算
定压罐计算

暖通空调计算书

空调冷水膨胀、补水、软化设备选择计算

已知条件:建筑面积:90000 m2冷水水温:7.0/12.0℃,

(一)空调系统:风机盘管加新风系统为主,系统最高点70+11.0(地下)=81m,

采用不容纳膨胀水量的隔膜式气压罐定压。

1. 空调系统水容量V c = 0.7~1.30(L/m2)(外线长时取大值):1.30 *90000/1000=117 m3

2. 空调系统膨胀量V p =a*⊿t*V c:0.0005*15*117=0.88 m3 (冷水系统)

3. 补水泵选择计算

系统定压点最低压力:81+0.5=81.5(m)=815(kPa)

(水温≤60℃的系统,应使系统最高点的压力高于大气压力5kPa以上)

补水泵扬程:≥815+50=865(kPa)

(应保证补水压力比系统补水点压力高30-50kPa,补水泵进出水管较长时,应计算管道阻力)

补水泵总流量:≥117*0.05=5.85(m3/h)=1.8 (L/s)

(系统水容的5-10%)

选型:选用2台流量为1.8 L/s,扬程为90m(900 kPa)的水泵,平时一用一备,初期上水和事故补水时2台水泵同时运行。水泵电功率:11Kw。

4. 气压罐选择计算

1)调节容积V t应不小于3min补水泵流量

采用定频泵:V t≥5.8 m3/h *3/60 h=0.29 m3=290 L

2)系统最大膨胀量:V p=0.88 m3此水回收至补水箱

3)气压罐压力的确定:

安全阀打开压力:P4=1600(kPa)(系统最高工作压力1200kPa)

电磁阀打开压力:P3=0.9*P4=1440 (kPa)

启泵压力:(大于系统最高点0.5m)P1= 865kPa

停泵压力(电磁阀关闭压力): P2=0.9*1440=1296 kPa

压力比αt= (P1+100)/( P2+100)=0.69,满足规定。

4)气压罐最小总容积V min=βV t/(1-αt)=1.05*290/(1-0.69)=982 L

5)选择SQL1000*1.6隔膜式立式气压罐,罐直径1000mm,承压1.6Mpa,高2700mm,实际总容积V Z=1440 (L)

4. 空调补水软化设备

自动软化水设备(双阀双罐单盐箱)

软水出水能力:(双柱)0.03V c=0.03*117=3.5m3/h

租户24小时冷却膨胀、补水设备选择计算

已知条件:建筑面积:90000 m2冷却水温:32/37.0℃,

系统最高点70+11.0(地下)=81m,

采用不容纳膨胀水量的隔膜式气压罐定压。

1. 空调系统水容量45m3

(容量为估算:DN200水管,总长度1400米)

2. 空调系统膨胀量V p =a*⊿t*V c:0.0005*35*30=0.53 m3 (冷水系统)

3. 补水泵选择计算

系统定压点最低压力:81+0.5=81.5(m)=815(kPa)

(水温≤60℃的系统,应使系统最高点的压力高于大气压力5kPa以上)

补水泵扬程:≥815+50=865(kPa)

(应保证补水压力比系统补水点压力高30-50kPa,补水泵进出水管较长时,应计算管道阻力)

补水泵总流量:≥45*0.05=2.25(m3/h)=0.62 (L/s)

(系统水容的5-10%)

选型:选用2台流量为0.6 L/s,扬程为90m(900 kPa)的水泵,平时一用一备,初期上水和事故补水时2台水泵同时运行。水泵电功率:11Kw。

4. 气压罐选择计算

6)调节容积V t应不小于3min补水泵流量

采用定频泵:V t≥2.25 m3/h *3/60 h=0.12 m3=120 L

7)系统最大膨胀量:V p=0.53 m3此水回收至补水箱

8)气压罐压力的确定:

安全阀打开压力:P4=1600(kPa)(系统最高工作压力1200kPa)

电磁阀打开压力:P3=0.9*P4=1440 (kPa)

启泵压力:(大于系统最高点0.5m)P1= 865kPa

停泵压力(电磁阀关闭压力): P2=0.9*1440=1296 kPa

压力比αt= (P1+100)/( P2+100)=0.69,满足规定。

9)气压罐最小总容积V min=βV t/(1-αt)=1.05*120/(1-0.69)=410L

10)选择SQL800*1.6隔膜式立式气压罐,罐直径800mm,承压1.6Mpa,高2700mm,实际总容积V Z=0.838 (L)

采暖系统气压罐设备选择计算

风机盘管加新风系统为主,系统最高点70+11.0(地下)=81m,

采用不容纳膨胀水量的隔膜式气压罐定压。

1. 空调系统水容量V c = 0.7~1.30(L/m2)(外线长时取大值):1.30 *90000/1000=117 m3

2. 空调系统膨胀量V p =a*⊿t*V c:0.0005*45*117=2.64m3(热水系统)

3. 补水泵选择计算

系统定压点最低压力:81+0.5=81.5(m)=815(kPa)

(水温≤60℃的系统,应使系统最高点的压力高于大气压力5kPa以上)

补水泵扬程:≥815+50=865(kPa)

(应保证补水压力比系统补水点压力高30-50kPa,补水泵进出水管较长时,应计算管道阻力)

补水泵总流量:≥117*0.05=5.85(m3/h)=1.8 (L/s)

(系统水容的5-10%)

选型:选用2台流量为1.8 L/s,扬程为90m(900 kPa)的水泵,平时一用一备,初期上水和事故补水时2台水泵同时运行。水泵电功率:11Kw。

4. 气压罐选择计算

1)调节容积V t应不小于3min补水泵流量

采用定频泵:V t≥5.8 m3/h *3/60 h=0.29 m3=290 L

2)系统最大膨胀量:V p=2.64 m3此水回收至补水箱

3)气压罐压力的确定:

安全阀打开压力:P4=1600(kPa)(系统最高工作压力1600kPa)

电磁阀打开压力:P3=0.9*P4=1440 (kPa)

启泵压力:(大于系统最高点0.5m)P1= 865kPa

停泵压力(电磁阀关闭压力): P2=0.9*1440=1296 kPa

压力比αt= (P1+100)/( P2+100)=0.69,满足规定。

气压罐最小总容积V min=βV t/(1-αt)=1.05*290/(1-0.69)=982 L

1) 选择SQL1000*1.6隔膜式立式气压罐,罐直径1000mm,承压1.6Mpa,高2750mm,实际

总容积V Z=1440(L)

定压罐的选型

热力系统中(锅炉、空调、热泵、热水器等)AQUASYSTEM 膨胀罐的选型 V = 21111P P e C ++- ? C = 系统中水总容量(包括锅炉、管道、散热器等) e = 水的热膨胀系数(系统冷却时水温和锅炉运行时的最高水温的水膨胀率之差,见下表),标准设备中e=0.0359(90℃) P1=膨胀罐的预充压力 P2=系统运行的最高压力(即系统中安全阀的起跳压力) V = 膨胀罐的体积 例如: 系统水总容积为400L 的锅炉,安全阀起跳压力为3bar.应该选用多大体积的膨胀罐 V = 2 11 11P P e C ++- ? = 315.1110359.0400++-? = 38.3L 按选大不选小原则,最接近的是50L 的膨胀罐,即该系统需选用V A V50 经验公式: 空调、热泵系统: 5P 以下机用2L ,即VR2 5-10P 机用5L ,即VR5 10-18P 机用8L ,即VR8 1P (匹)= 2.5KW 锅炉、热水器系统: 功率为1000Kcal/h 的锅炉或热水器,其系统水总容积为10-20L 1Kcal/h (大卡/小时)= 1.163W

定压系统中(变频供水、恒压供水等)AQUASYSTEM 膨胀罐的选型 为避免水泵频繁启动,膨胀罐的调节容积应满足一定时间的水泵流量(L/min ),计算公式如下:V = K ×Amax × ) 1(min)max () 1min ()1max (+?-+?+Ppre P P P P K = 水泵的工作系数,随水泵功率不同而变化,具体见下表: Amax = 水泵的最大流量(L/min ) Pmax = 水泵的最高工作压力(水泵停机时系统的压力) Pmin = 水泵的最低工作压力(水泵启动时系统的压力) Ppre = 气压罐的预充压力 V = 气压罐的体积 其中1HP (马力)= 0.735KW 例如: 一恒压供水设备水泵功率为4HP ,水泵最大流量为120L/min,系统压力低于2.2bar 时水泵自动启动,系统压力达到7bar 时,水泵自动停机,气压罐预充压力为2bar ,该系统要选用多大的气压罐? 由上表可知:水泵功率为4HP 时,K=0.375 V = K ×Amax × ) 1(min)max () 1min ()1max (+?-+?+Ppre P P P P = 0.375×120× ) 12()2.27() 12.2()17(+?-+?+= 80L 正好气压罐型号里面有80L 的,所以直接选用V A V80即可。 以上是定压罐的计算与选型! 定压罐的性质与结构:主要由罐体、法兰盘、气囊、针阀以及罐体与气囊之间预充的氮气组成。罐体一般为碳钢材质,外面是防锈烤漆层;气囊为EPDM 环保橡胶;气囊与罐体之间的预充气体出厂时已充好,无须自己加气。 罐体为密闭装置,气水不相接触,能保证水质不被外界污染。 P (HP ) 1-2 2-4 5-8 9-12 >12 K 0.25 0.375 0.625 0.875 1

定压补水系统的设计计算含实例说明

定压补水系统的设计计算<含实例说明> 空调冷水膨胀、补水、软化设备选择计算: 已知条件:建筑面积:90000 m2,冷水水温:7.0/12.0℃, (一)空调系统: 风机盘管加新风系统为主,系统最高点70+11.0(地下)=81m, 采用不容纳膨胀水量的隔膜式气压罐定压。 1. 空调系统水容量Vc = 0.7~1.30(L/m2)(外线长时取大值):1.30 *90000/1000=117 m3 2. 空调系统膨胀量Vp =a*⊿t*Vc:0.0005*15*117=0.88 m3 (冷水系统) 3. 补水泵选择计算 系统定压点最低压力:81+0.5=81.5(m)=815(kPa) (水温≤60℃的系统,应使系统最高点的压力高于大气压力5kPa以上) 补水泵扬程:≥815+50=865(kPa) (应保证补水压力比系统补水点压力高30-50kPa,补水泵进出水管较长时,应计算管道阻力) 补水泵总流量:≥117*0.05=5.85(m3/h)=1.8(L/s) (系统水容的5-10%) 选型:选用2台流量为1.8 L/s,扬程为90m(900 kPa)的水泵,平时一用一备,初期上水和事故补水时2台水泵同时运行。水泵电功率:11Kw。 4. 气压罐选择计算 1)调节容积Vt应不小于3min补水泵流量采用定频泵Vt≥5.8m3/h*3/60h=0.29m3=290 L 2)系统最大膨胀量:Vp=0.88 m3 此水回收至补水箱 3)气压罐压力的确定: 安全阀打开压力:P4=1600(kPa)(系统最高工作压力1200kPa) 电磁阀打开压力:P3=0.9*P4=1440(kPa) 启泵压力:(大于系统最高点0.5m)P1= 865kPa 停泵压力(电磁阀关闭压力): P2=0.9*1440=1296kPa 压力比αt= (P1+100)/( P2+100)=0.69,满足规定。 4)气压罐最小总容积Vmin=βVt/(1-αt)=1.05*290/(1-0.69)=982 L 5)选择SQL1000*1.6隔膜式立式气压罐,罐直径1000mm,承压1.6Mpa,高 2700mm,实际总容积VZ=1440 (L) 5.空调补水软化设备 自动软化水设备(双阀双罐单盐箱)软水出水能力:(双柱)0.03Vc=0.03*117=3.5m3/h 租户24小时冷却膨胀、补水设备选择计算: 已知条件:建筑面积:90000 m2,冷却水温:32/37.0℃, 系统最高点70+11.0(地下)=81m, 采用不容纳膨胀水量的隔膜式气压罐定压。 1. 空调系统水容量45m3

生活给水定压罐容积的计算方法

生活给水定压罐容积的计算方法

稳压罐各种容积计算 默认分类2009-12-29 08:16:52 阅读164 评论0 字号:大中小订阅 气压给水设备的设计: 1. 气压罐总容积: VZ=βVω/(1-α)=1.1×045/(1-0.75)=1.98m3 式中:VZ——气压罐总容积(m3); α——压缩空气充装比,取α=0.75;

β——容积附加系数,取β=1.1 2. 气压水罐非调节水容积: △Vω=(1-1/β)VZ =(1-1/1.1)×1.98=0.18m3 3. 气压水罐空气部分容积: Vk=αVZ/β =0.75×1.98/1.1=1.35m3 4. 立式气压水罐设计水位的计算 设计最高水位: hmax=(1-α/β)H=(1-0.75/1.1)×1.75=0.557m 式中:H——立式气压罐总高度(m); 设计最低水位: hmin=(1-1/β)H =(1-1/1.1)×1.75=0.159m;

5. 设计最小工作压力和设计最大工作压力的计算: 为保证消防供水安全可靠,气压罐设计最小工作压力,应满足最不利点灭火设备或用水设备的水压要求: Pmin=HC+∑hω+HZ 式中:Pmin——气压罐设计最小工作压力(MPa); HC——最不利点灭火设备或用水设备所需的水压(MPa); ∑hω——最不利管路的沿程和局部水头损失(MPa); HZ——最不利点灭火设备或用水设备与气压给水设备最低水位间的静水压(MPa); (1)消火栓系统: Pmin=HC+∑hω+HZ=0.50MPa P max=Pmin/α=0.50/0.75=0.667MPa (2)自动喷洒系统:

过盈量与装配力计算公式

过盈联接 1.确定压力p; 1)传递轴向力F 2)传递转矩T 3)承受轴向力F和转矩T的联合作用 2.确定最小有效过盈量,选定配合种类; 3.计算过盈联接的强度; 4.计算所需压入力;(采用压入法装配时) 5.计算包容件加热及被包容件冷却温度;(采用胀缩法装配时) 6.包容见外径胀大量及被包容件内径缩小量。 1. 配合面间所需的径向压力p 过盈联接的配合面间应具有的径向压力是随着所传递的载荷不同而异的。 1)传递轴向力F当联接传递轴向力F时(图7-20),应保证联接在此载荷作用下,不产生轴向滑动。亦即当径向压力为P时,在外载荷F的作用下,配合面上所能产生的轴向摩擦阻力F,应大于或等于外载荷F。 图: 变轴向力的过盈联接图: 受转矩的过盈联接 设配合的公称直径为人配合面间的摩擦系数为人配合长度为l,则

F f=πdlpf

因需保证F f ≥F,故 [7-8] 2)传递转矩T当联接传递转矩T时,则应保证在此转矩作用下不产生 周向滑移。亦即当径向压力为P时,在转矩T的作用下,配合面间所能产生的摩 擦阻力矩M f 应大于或等于转矩T。 设配合面上的摩擦系数为f①,配合尺寸同前,则 M f=πdlpf·d/2 因需保证M f ≥T.故得 [7-9] ① 实际上,周向摩擦系数系与轴向摩擦系数有差异,现为简化.取两者近似相等.均以f表示。 配合面间摩擦系数的大小与配合面的状态、材料及润滑情况等因素有关,应由实验测定。表7-5给出了几种情况下摩擦系数值,以供计算时参考。 表: 摩擦系数f值 压入法胀缩法 联接零件材料无润滑时f 有润滑时f 联接零件 材料 结合方式,润滑 f 钢—铸钢0.11 0.08 钢—钢油压扩孔,压力 油为矿物油 0.125 钢—结构钢0.10 0.07 油压扩孔,压力 油为甘油,结合 面排油干净 0.18 钢—优质结构钢0.11 0.08 在电炉中加热包 容件至300℃ 0.14 钢—青铜0.150.20 0.030.06 在电炉中加热包 容件至300℃以 后,结合面脱脂 0.2 钢—铸铁0.120.15 0.050.10 钢—铸铁油压扩孔,压力 油为矿物油 0.1 铸铁—铸钢0.150..25 0.150.10 钢—铝镁无润滑0.100.15

储罐池火灾计算法

可燃性液体泄漏后流到地面形成液池,或流到水面并覆盖水面,遇到引火源燃烧形成池火。 该厂储罐区的10000m 3乙二醇、1000m 3甲醇储罐为重大危险源,本章假设储罐发生泄漏起火事故,利用池火灾计算模型对事故的后果进行计算分析。 5.3.1燃烧速度的确定 当液池的可燃物的沸点高于周围环境温度时,液池表面上单位面积燃烧速 度 dt dm 为: H T T C H dt dm b p c +-=)(001.00――――――――① 式中: dt dm ——单位表面积燃烧速度,kg/m 2?s ; c H ——液体燃烧热,J/kg ; p C ——液体的比定压热容,J/kg ·K ; b T ——液体沸点,K ; 0T ——环境温度,K ; H ——液体蒸发热,J/kg 。 当液池中液体的沸点低于环境温度时,如加压液化或冷冻液化气,液池表面 上单位面积的燃烧速度dt dm 为 H H dt dm c 001.0= ―――――――――② 式中符号意义同前。 乙二醇液池的沸点高于周围环境温度,故使用式①进行计算。 查得各个数据c H =281.9 kJ/mol =4.54×106 J/kg p C =2.35×103J/kg ·K b T =470.65K 0T =279.15K H =799.14×103 J/kg

燃烧速度可算得 dt dm =0.00363kg ·m 2 /s 同时,燃烧速度也可手册查得,下表5-8列出了一些可燃液体的燃烧速度。 表5-8 查表1-1可知甲醇的燃烧速度 dt =0.0576kg ·m 2/s 5.3.2火焰高度的计算 设池火为一半径为r 的圆池子,其火焰高度可按下式计算: 6 .02/10)2(/84? ? ????=gr dt dm r h ρ―――――――③ 式中:h ——火焰高度,m ; r ——液池半径,m ; 0ρ——周围空气密度,0ρ=2.93 kg/m 3; g ——重力加速度,g =9.8m/s 2 ; dt dm ——燃烧速度,kg/m 2 .s 。 乙二醇池面积=4850 m 2,折算半径=39.3 m 甲醇池面积=2150 m 2,折算半径=26.2 m 将已知数据代入公式得: 乙二醇火焰高度h =8.0879m 甲醇火焰高度 h =32.029m 。 5.3.3热辐射通量 当液池燃烧时放出得总热辐射通量为: ]172 [)2(61 .02 ++=dt dm H dt dm rh r Q c ηππ――――④ Q ——总热辐射通量。W ; η——效率因子,可取0.13~0.35。其它符号意义同前。 η取决于物质的饱和蒸汽压,

过盈配合压入力计算

轴与轴套过盈配合压入力计算公式:?prlf P=2 应为“—”i2?1?p i2222??r2r?rr?r2231122??? 2222EE)(ErrE(r?r?)211321225?10?Mpa, u1=u2=0.3, l=150mm, =0.075mm, r1=70mm, r2=100mm, r3=135mm, E1=E2=2.1f=0.15 带入公式得: Pi= 12.3954Mpa 510?(17.524t) P=1.7524=17874.48kgf N5?10?Mpa, u1=u2=0.3, l=190mm=0.075mm, r1=70mm, r2=100mm, r3=135mm, E1=E2=2.1, f=0.15 带入公式得: Pi= 12.3954Mpa 510?(22.196t) N=22639.92kgf P= 2.2196 B87C机头衬套压入力: δ=0.078,r1=14.415,r2=25.38,r3=44.5,L=115,f=0.15 代入公式得:22.6T/26.7T——大值是按u1起作用算得 FT160A架体横臂压入力: δ=0.05,r1=0,r2=17,r3=25,L=37,f=0.15 代入公式得:4.9T/5.8T——大值是按u1起作用算得

过盈联接p1;.确定压力F)传递轴向力12)传递转矩T 3)承受轴向力F和转矩T的联合作用 2.确定最小有效过盈量,选定配合种类; 3.计算过盈联接的强度; 4.计算所需压入力;(采用压入法装配时) 5.计算包容件加热及被包容件冷却温度;(采用胀缩法装配时) 6.包容见外径胀大量及被包容件内径缩小量。 1. 配合面间所需的径向压力p 过盈联接的配合面间应具有的径向压力是随着所传递的载荷不同而异的。1)传递轴向力F当联接传递轴向力F时(图7-20),应保证联接在此载荷作用下,不产生轴向滑动。亦即当径向压力为P时,在外载荷F的作用下,配合面上所能产生的轴向摩擦阻力F,应大于或等于外载荷F。 受 : 图图: 变轴向力的过盈联接 转矩的过盈联接,则设配合的公称直径为人配合面间的摩擦系数为人配合长度为l=πdlpf F f≥F,故因需保证F f [7-8] 时,则应保证在此转矩作用下不产生T 当联接传递转矩2)传递转矩T 配合面间所能产生的摩的作用下,在转矩T周向滑移。亦即当径向压力为P时,。应大于或等于转矩T擦阻力矩M f①设配合面上的摩擦系数为f,配合尺寸同前,则 =πdlpf·d/2M f M≥T.故得因需保证f

定压罐计算经验公式

暖通空调计算书 系统水容量Vc =建筑面积X 0.7?1.30 (L/m2 )(建筑面积大选小值,建筑面积小选大值) 补水泵的选择:扬程比系统补水点压力高30-50kPa,补水泵进出水管较长时,应计算管道阻力, 流量是系统水容量的5%?10% (建筑面积大选小值,建筑面积小选大值) 气压罐的选择:调节容积Vt应不小于3min补水泵流量 气压罐最小总容积Vmin= 3 Vt/(1 - a t) Vt----调节容积 3----取值1.05 at--取值0.69-0.85 (建筑面积大选小值,建筑面积小选大值) 50 直接公式:Vmi n= 空调冷水膨胀、补水、软化设备选择计算 已知条件:建筑面积:90000 m 2冷水水温:7.0/12.0 C, (一)空调系统:风机盘管加新风系统为主,系统最高点70+11.0(地下)=81m , 采用不容纳膨胀水量的隔膜式气压罐定压。 1. 空调系统水容量V c = 0.7?1.30 (L/m2)(外线长时取大值):1.30 *90000/1000=117 m 2. 空调系统膨胀量V p =a* " t*V c: 0.0005*15*117=0.88 m 3(冷水系统) 3. 补水泵选择计算 系统定压点最低压力:81 +0.5=81.5(m)=815(kPa) (水温W60C的系统,应使系统最高点的压力高于大气压力5kPa以上) 补水泵扬程:为15+50=865 (kPa) (应保证补水压力比系统补水点压力高30-50kPa,补水泵进出水管较长时,应计算管道阻力)补水泵总流量:羽17*0.05=5.85(m 3/h)=1.6 (L/s)

暖通空调系统定压补水装置的选用

暖通空调系统定压补水装置的选用 引言 暖通空调系统补水装置的作用,是保证采暖或中央空调水系统冷热介质(水),在系统内不倒空、不汽化、不超压,并保持有一定供系统循环的压力,保证系统冷热交换稳定正常。 目前,暖通空调系统常用的有以下几种定压补水装置:①、膨胀水箱定压补水装置;②、定压罐定压补水装置;③、变频泵定压补水装置; 其他如连续补水泵补水、水射器补水、自来水直接补水等装置,因为其适用范围小或缺陷明显使用少,这里不做介绍。 膨胀水箱: 膨胀水箱定压原理: 膨胀水箱定压原理是通过水箱容积的缓冲调节作用,通过水箱高低水位的控制,实现补水(溢流)的作用,以调节由于系统水温变化或泄露引起的系统介质(水)的容积变化,保持其系统冷热媒介(水)压力的相对恒定。它是中小型系统和空调水系统常用的定压装置之一。 膨胀水箱位置:膨胀水箱位置应该根据系统型式、作用半径、建筑物的高度、供水温度等具体因素来选择。其安装位置及高度不同,给系统产生的工况也不同。可靠的系统,其工况必须满足不汽化、不超压、不倒空,并有足够循环动力的要求。 开式膨胀水箱将水箱设在系统的最高点,通常接在循环水泵吸水

口的回水干管上。 膨胀水箱型式的分类:分开式(高位)和闭式(落地) 闭式膨胀水箱容积计算: Vt=Vs(v2/v1-1-3αΔt)/(1-P1/P2) Vt—膨胀水箱容积:m3Vs—系统水总容量:m3 v1—低温时水的比容,m3/Kg;v2—高温时水的比容,m3/Kg; α—线性膨胀系数,钢为×10-6℃-1,铜为×10-6℃-1 Δt—水系统中最大温差,℃(一般为5) P1—低温时水压力,KpaP2—高温时水压力,Kpa P1、P2的确定: P1,箱体静压头+系统顶部的最小压力值P2,运行时最高压力 开式膨胀水箱容积计算方法: Vp=αΔtVs Vp---膨胀水箱有效容积,m3α---水的体积膨胀系数,α=,1/℃Δt---系统内最大水温变化值,℃Vs---系统内的总水容量,m3 说明:当水箱同时用于采暖和采冷时分别计算,取大值 特点:(1)优点:它具有装置简单、安全、少维护、运行费用低、压力稳定、不用电等;可以有效消除系统非正常工况下的超压。(2)缺点:对最高点有空间位置要求;系统有氧化腐蚀缺陷;不适应大面积以及高层、超高层建筑物需要。 定压罐: 定压罐工作原理:定压罐定压,是在膨胀水箱基础上发展起来的

气压罐定压计算

附录C 设置隔膜式气压罐定压的采暖空调系统设备选择和补水泵工作压力计算例题 C. 1 例题一 某两管制空调系统冬季采用60/50℃热水,系统水容量约75m3;定压补水点设在循环水入口,根据空调设备和管网允许工作压力,确定循环水泵入口最高允许工作压力为 1.OMPa(1000kPa);采用不容纳膨胀水量的隔膜式气压罐定压;补水箱与系统最高点高差为45m;试进行定压补水设备的选择计算。 C. 1. 1 根据本措施6. 9节的有关规定和公式进行计算,各公式和图示中容积和压力名称如下: V P——系统的最大膨胀水量(L); V t——气压罐计算调节容积(L); V min—气压罐最小总容积(L); V Z——气压罐实际总容积(L); P1——补水泵启动压力(表压kPa); P2——补水泵停泵压力(电磁阀的关闭压力)(表压kPa); P3——膨胀水量开始流回补水箱时电磁阀的开启压力(表压kPa) P4--安全阀开启压力(表压kPa); ——补水泵启动压力P1和停泵压力P2的设计压力比; ——容积附加系数,隔膜式气压罐取1.05。 C.1. 2 补水泵选择计算 1 系统定压点最低压力为P1=45+0.5+1=46.5(m)=465(kPa)。 2 考虑到补水泵的停泵压力P2,确定补水泵扬程为(P1十P2)/2=(465十810)/ 2=638(kPa)(P2数值见C. 1.3条3款),高于P1压力173kPa,满足6. 9.3条1款要求。 3 补水泵设计总流量应不小于75×5%=3.75(m3/h)。 4 选用2台流量为2.Om3/h,扬程为640kPa(扬程变化范围为465~810kPa)的水泵,平时使用1台,初期上水或事故补水时2台水泵同时运行。 C. 1.3 气压罐选择计算 1 调节容积不宜小于3min补水泵设计流量。 1)当采用定速泵时V t≥2.0(m3/h)×3/60(h)=0.1(m.3)=100(L)。 2)当采用变频泵时V t≥2.0(m3/h)×1/3×3/60(h)=0.033(m3)=33(L)。 2 系统最大膨胀量为:V P=14.51(L/m3)×75(m3)=1088(L)(单位容积膨胀量见6.9.6条注释),此水量回收至补水箱。 3 气压罐最低和最高压力确定: 1)安全阀开启压力取P4=1000(kPa)(补水点处允许工作压力); 2)膨胀水量开始流回补水箱时电磁阀的开启压力P3=0.9Pa=0.9×1000=900(kPa); 3)补水泵启动压力P1=465(kPa); 4)补水泵停泵压力(电磁阀的关闭压力)P2=0.9P3=0.9×900=810(kPa);

暖通空调系统定压补水装置的选用

暖通空调系统定压补水装置的选用引言 暖通空调系统补水装置的作用,是保证采暖或中央空调水系统冷热介质(水),在系统内不倒空、不汽化、不超压,并保持有一定供系统循环的压力,保证系统冷热交换稳定正常。 目前,暖通空调系统常用的有以下几种定压补水装置:①、膨胀水箱定压补水装置;②、定压罐定压补水装置;③、变频泵定压补水装置; 其他如连续补水泵补水、水射器补水、自来水直接补水等装置,因为其适用范围小或缺陷明显使用少,这里不做介绍。 膨胀水箱: 膨胀水箱定压原理: 膨胀水箱定压原理是通过水箱容积的缓冲调节作用,通过水箱高

低水位的控制,实现补水(溢流)的作用,以调节由于系统水温变化或泄露引起的系统介质(水)的容积变化,保持其系统冷热媒介(水)压力的相对恒定。它是中小型系统和空调水系统常用的定压装置之一。 膨胀水箱位置:膨胀水箱位置应该根据系统型式、作用半径、建筑物的高度、供水温度等具体因素来选择。其安装位置及高度不同,给系统产生的工况也不同。可靠的系统,其工况必须满足不汽化、不超压、不倒空,并有足够循环动力的要求。 开式膨胀水箱将水箱设在系统的最高点,通常接在循环水泵吸水口的回水干管上。 膨胀水箱型式的分类:分开式(高位)和闭式(落地) 闭式膨胀水箱容积计算: Vt=Vs(v2/v1-1-3αΔt)/(1-p1/p2) Vt—膨胀水箱容积:m3Vs—系统水总容量:m3 v1—低温时水的比容,m3/Kg;v2—高温时水的比容,m3/Kg;

α—线性膨胀系数,钢为11.7×10-6℃-1,铜为11.7×10-6℃-1 Δt—水系统中最大温差,℃(一般为5) p1—低温时水压力,Kpap2—高温时水压力,Kpa p1、p2的确定: p1,箱体静压头+系统顶部的最小压力值p2,运行时最高压力 开式膨胀水箱容积计算方法: Vp=αΔtVs Vp---膨胀水箱有效容积,m3α---水的体积膨胀系数,α=0.0006,1/℃ Δt---系统内最大水温变化值,℃Vs---系统内的总水容量,m3

过盈配合压入力计算

轴与轴套过盈配合压入力计算公式: P=2i p lf r 2π 应为“—” 2 2 112122221 22 2223122 23 2 )()(1 2E E r r E r r r r E r r r p i μμδ - +-++-+= δ=0.075mm, r1=70mm, r2=100mm, r3=135mm, E1=E2=2.1?510Mpa, u1=u2=0.3, l=150mm , f=0.15 带入公式得: Pi= 12.3954Mpa P=1.75245 10?N =17874.48kgf (17.524t) δ=0.075mm, r1=70mm, r2=100mm, r3=135mm, E1=E2=2.1?510Mpa, u1=u2=0.3, l=190mm , f=0.15 带入公式得: Pi= 12.3954Mpa P= 2.21965 10?N =22639.92kgf (22.196t) B87C 机头衬套压入力: δ=0.078,r1=14.415,r2=25.38,r3=44.5,L=115,f=0.15 代入公式得:22.6T/26.7T ——大值是按u1起作用算得 FT160A 架体横臂压入力: δ=0.05,r1=0,r2=17,r3=25,L=37,f=0.15 代入公式得:4.9T/5.8T ——大值是按u1起作用算得

过盈联接 1.确定压力p; 1)传递轴向力F 2)传递转矩T 3)承受轴向力F和转矩T的联合作用 2.确定最小有效过盈量,选定配合种类; 3.计算过盈联接的强度; 4.计算所需压入力;(采用压入法装配时) 5.计算包容件加热及被包容件冷却温度;(采用胀缩法装配时) 6.包容见外径胀大量及被包容件内径缩小量。 1. 配合面间所需的径向压力p 过盈联接的配合面间应具有的径向压力是随着所传递的载荷不同而异的。 1)传递轴向力F当联接传递轴向力F时(图7-20),应保证联接在此载荷作用下,不产生轴向滑动。亦即当径向压力为P时,在外载荷F的作用下,配合面上所能产生的轴向摩擦阻力F,应大于或等于外载荷F。

定压补水装置详细原理及调节方法

定压补水装置详细原理及调节方法 基本功能 本定压装置完全具备常用高位设置的膨胀箱水的三项基本功能: ( 1)调节系统水体由于温度波动而引起的膨胀及收缩──胀缩; ( 2)使系统某点压力恒定──定压; ( 3)当系统发生泄漏时向系统补水──补水; 本装置尚具备的另一持殊功能 ( 4)周期性的排析溶于水体的气体── 排气。 适用范围 ( 1 )定压补水装置t ≤ 120 ℃的热水采暧系统 ( 2 ) 定压补水装置t ≤ 130 ℃的热水供热系统 ( 3 ) 定压补水装置冬夏共用的双管、三管制空调水系统 ( 4 ) 定压补水装置未设开式贮热水箱的生活热水供应系统 装置特点 ( 1 ) 定压补水装置配有微处理机,控制功能多。精度高,定压点控制精度可达Δ P =± 。 ( 2 ) 定压补水装置设定值可根据工程需要调整:

定压值Pd ──如建筑加层 6m ,只要将 Pd 调高即可 ; 定压精度Δ P ──可调到± 或± 或± …; 冬季主要解决水升温膨胀,可将隔膜腔水位设定在低位。反之夏季设定在高位; ( 3 ) 定压补水装置罐本体不承压属常压容器──隔膜与钢罐夹层有一通气管,故隔膜腔内水亦处于常压,便于补水及排气。 ( 4 ) 定压补水装置罐体有效容积率高达 90 %──隔膜外表与钢罐内壁可紧贴故有效容积率高,致使外形小,而充氮隔膜罐一般有效容积率仅30 %,即外形要大三倍。 ( 5 ) 定压补水装置隔膜柔性极佳,挠曲疲劳试验达 45 万次,允许持续温度 70 ℃以下,短时间允许达 120 ℃。 ( 6 ) 定压补水装置水泵起动有延迟功能──为防止由于非正常原因频繁起动水泵、水泵设有延迟功能,当压力下降,稳定几秒(可设定)后水泵再予开动。 ( 7 ) 定压补水装置水泵还设有强制起动──如 24 小时内水泵不运转,就会自动强制短时运转,亦可手动强制运转。 ( 8 ) 定压补水装置补水配管中设有隔离阀──可确保补水不致逆流污染水源。比常用的止回阀更为有效 ( 9 ) 定压补水装置连续不断的排气功能──使系统循环水中含气不断析出,确保系统正常运行。

过盈量与装配力计算公式

过盈量与装配力计算公式 过盈联接 1.确定压力p; 1)传递轴向力F 2)传递转矩T 3)承受轴向力F和转矩T的联合作用 2.确定最小有效过盈量,选定配合种类; 3.计算过盈联接的强度; 4.计算所需压入力;(采用压入法装配时) 5.计算包容件加热及被包容件冷却温度;(采用胀缩法装配时)6.包容见外径胀大量及被包容件内径缩小量。

1. 配合面间所需的径向压力p 过盈联接的配合面间应具有的径向压力是随着所传递的载荷不同而异的。1)传递轴向力F 当联接传递轴向力F时(图7-20),应保证联接在此载荷作用下,不产生轴向滑动。亦即当径向压力为P时,在外载荷F的作用下,配合面上所能产生的轴向摩擦阻力Ff,应大于或等于外载荷F。 图: 变轴向力的过盈联接图: 受转矩的过盈联接. 设配合的公称直径为人配合面间的摩擦系数为人配合长度为l,则 F =πdlpf f因需保证F≥F,故f [7-8] 2)传递转矩T 当联接传递转矩T时,则应保证在此转矩作用下不产生周向滑移。亦即当径向压力为P时,在转矩T的作用下,配合面间所能产生的摩擦阻力矩M应大于或等于转矩T。f①,配合尺寸同前,则设配合面上的摩擦系 数为f M =πdlpf·d/2f因需保证M ≥T.故得f [7-9] ①实际上,周向摩擦系数系与轴向摩擦系数有差异,现为简化.取两者近似相等.均以f表示。 配合面间摩擦系数的大小与配合面的状态、材料及润滑情况等因素有关,应由实验测定。表7-5给出了几种情况下摩擦系数值,以供计算时参考。 表: 摩擦系数f值 压入法胀缩法 联接零件材有润滑时联接零件材无润滑时f 结合方式,润滑 f 料 f 料 油压扩孔,压力油钢—铸钢 0.11 0.08 0.125 为矿物油 油压扩孔,压力油钢—结构钢 0.10 0.07 为甘油,结合面排0.18 油干净钢—钢钢—优质结在电炉中加热包0.11 0.08 0.14 构钢 容件至300℃ 在电炉中加热包钢—青铜 0.15?0.20 0.03?0.06 容件至300℃以0.2 后,结合面脱脂 油压扩孔,压力油钢—铸铁 0.12?0.15 0.05?0.10 钢—铸铁 0.1 为矿物油 钢—铝镁合铸铁—铸钢 0.15?0..25 0.15?0.10 无润滑 0.10?0.15 金 3)承受轴向力F和转矩T的联合作用 此时所需的径向压力为

定压罐计算

定压罐的计算 定压系统中(变频供水、恒压供水等)膨胀罐(气压罐、压力罐)的选型 为避免水泵频繁启动,膨胀罐的调节容积应满足一定时间的水泵流量(L/min),计算公式如下: Amax = 水泵的最大流量(L/min) Pmax = 水泵的最高工作压力(水泵停机时系统的压力,此处压力为绝对压力)Pmin = 水泵的最低工作压力(水泵启动时系统的压力,此处压力为绝对压力)Ppre = 气压罐的预充压力(此处压力为绝对压力) V = 气压罐的体积 其中1HP(马力)= 0.75KW 例如: 一恒压供水设备水泵功率为4HP,水泵最大流量为120L/min,系统压力低于 2.2bar时水泵自动启动,系统压力达到7bar时,水泵自动停机,气压罐预充压力为2bar,该系统要选用多大的气压罐? 由上表可知:水泵功率为4HP时,K=0.375 气压罐型号里面没有72L的,所以直接选用最接近的型号80L的膨胀罐即可。热力系统中(锅炉、空调、热泵、热水器等)膨胀罐的选型

C = 系统中水总容量(包括锅炉、管道、散热器等) e = 水的热膨胀系数(系统冷却时水温和锅炉运行时的最高水温的水膨胀率之差,见下表),标准设备中e=0.0359(90℃) P1=膨胀罐的预充压力(绝对压力) P2=系统运行的最高压力(绝对压力) 例如: 系统水总容积为400L的锅炉,安全阀起跳压力为3bar.应该选用多大体积的膨胀罐 按选大不选小原则,最接近的是36L的膨胀罐,即该系统需选用36L的膨胀罐 经验公式: 空调、热泵系统: 结合我们在空调中的为客户选型的应用,我跟大家分享一下我们常用的一个经验公式,也是一个速算公式吧,可能没有算系统膨胀水体积那个方法准确,但一般情况下不会有什么问题的,具体如下: 5-10P 选用的5L膨胀罐VR5 10-18P选用的8L膨胀罐VR8 18-30P选用的12L膨胀罐VR12 30-45P选用的18L膨胀罐VR18 45-60P选用的24L膨胀罐VR24 其中制冷量KW和P的换算关系为1 P ≈ 2.5KW

定压补水装置选型方法1

定压补水装置膨胀罐和补水泵 详细的选型方法 施工说明 一、产品介绍:

定压补水装置是一种稳压补水装置,广泛应用于空调、采暖系统,给水管网系统等,它可替代传统膨胀的水箱水罐,能减少泵的启动次数,可吸纳系统的部分水膨胀量,易于实现自动补水、自动排气、自动泄压和自动过压保护等。 二、产品工作原理: 定压补水装置利用气体的可膨胀性进行工作。它主要由囊式定压罐、水泵、压力开关、控制箱、安全阀、底座,以及连接管路等组成。当系统内温度升高时水的体积增大时,系统压力增大,这时会有部分水进入囊式定压罐的胶囊中,胶囊膨胀会压缩罐内的气体,直到系统的压力和罐内的压力达到平衡为止。当系统中水的体积减小,系统压力降低时,罐内的气体膨胀将囊中的水压回系统。如果这些补水量仍不能满足系统需要水量,水泵启动补水。水泵的启动与停止动作由系统的电接点压力表及控制箱进行控制。电接点有两个设定压力点,一个是水泵启动压力P1,一个是水泵停止压力P2,P1、P2分别是系统最低定压点及最高工作压力。当通过囊式定压罐补水后系统压力仍达不到P1时,控制箱控制水泵开启向系统补水,当补到系统压力和罐内压力大于P2时,水泵停止。 三、产品主要特点: 1、一次充氮气,可保持长期使用。

2、罐体为密闭装置,气水不相接触,能保证水质不被外界污染。 3、占地面积少,投资省,安装快,操作管理和维修简便。 4、省去建筑物内的高位水箱,节约结构投资。 5、水罐起缓冲作用,可消除对管网的水锤影响。 6、自动控制、运行可靠。 7、调节系统水体由于温度波动而引起的膨胀及收缩──胀缩。 8、使系统某点压力恒定──定压。 9、当系统发生泄漏时向系统补水──补水。 10、周期性的排析溶于水体的气体──排气。 三、产品主要特点:选购定压补水装置的膨胀罐,首先要会计算膨胀罐的膨胀容积,不同型号的定压补水装置所能承受的膨胀容积并不是一样的。但是所计算的膨胀面积的方法是一样的。有一个通用的计算公式,里面有不同的参数,也就是不同的因素对定压补水装置膨胀的影响。计算公式如下。 最大膨胀容积的计算 ΔV=α·Δt·VS·K(L) 式中:α—水的体积膨胀系数,取0.06 (L∕m3·℃) Δt—最大水温变换值,取10~20(℃)

补水定压原理

目前国内供热、空调水系统为了解决水的膨胀问题,大部分是设高位水箱来补水。也有个别系统用定压罐来容纳或补偿系统中水的膨胀量。上述两种方法遇到有些工程难以应用,例如某供热小区,一期工程8万米2建筑,二期工程6万米2建筑。工程是分期分批设计施工的,建筑所有屋面均为斜坡屋顶,高位处均不能设置膨胀水箱,同时发展商又要根据市场销售情况决定下一幢建筑盖多高,因此该供热系统中难以采用膨胀水箱来解决水的膨胀问题,而用定压罐方法带来的罐体体积大,受锅炉房的高度限制。按8万米2供热面积的建筑来选用定压罐的容积需要15米3,如果直径为2米,高度则为3.5米,需要定压罐2~3个,占地面积大,投资又大,对房地产商来说是不合适的。 鉴于目前有很多厂家将给水定压装置不加任何改造地挪用至供 热系统中,而在有的工程中确实造成系统定压不稳,使系统无法正常运行,我们介绍一种新型的供热系统定压补水装置。 1.1 补水泵定压系统恒压点的确定 所谓系统中的恒压点就是在系统运行和停止运行时,该点处的压力始终保持不变,该点的压力值等于静压线的压力值。静水压曲线是系统停止工作时,系统上各点测压管水头的连接线,它是一条水平的直线。静水压曲线的高度必须满足两个技术要求:(1)与供热系统直接连接的供暖用户系统内,底层散热器所承受的静水压力应不超过

散热器的承压能力;(2)与供热系统直接连接的供暖用户系统内,不会出现汽化或倒空。 补水泵定压方式与膨胀水箱定压方式有很大的区别,膨胀水箱定压方式是属于开式系统,补水泵定压方式是属于闭式系统。如果将膨胀水箱的膨胀管和循环管同时与循环水泵的入口处相连接,则循环水泵的入口处即为恒压点。如果将膨胀管与循环水泵的入口处相连接,循环管没有与循环水泵的入口处相连接,则恒压点并不在循环水泵的入口处,而是在系统中的某一点。 在补水泵定压系统中,常常发现循环水泵的入口处并不是真正的恒压点。供热系统停止运行时,循环水泵的入口处的压力等于静水压线值,但是循环水泵运行时,此压力值又发生了明显的变化,压力值一般都是在下降,这时如果还往系统中补水,其后果不堪设想。这表明循环水泵的入口处并不是真正的恒压点,补水泵定压方式的恒压点在系统中的某一点。因此,应采用旁通定压的方式。 1.2 旁通定压系统原理图 如下图一所示为旁通定压系统原理图和水压图。变频调速定压控制系统由控制柜(变频器、调节器、控制面板)、压力传感器、补水泵、调节阀及泄水阀等仪表、设备组成。 该系统基本工作原理:由压力传感器测试待调压力值,经调节器进行压力实测值与设定值的比较,并按照设计的调节规律,指令变频

定压罐技术要求

三、定压装置技术规格书 本工程中央空调系统定压补水设备采用自动补水、排气、定压成套设备(简称定压补水装置)。 本工程定压补水装置设置于中央空调冷冻机房或通风空调机房内。 本工程共设置定压补水装置_1_套。 本规格书并末充分引述有关标准和规范的条文,提出的是最低限度的技术要求,卖方应提供符合本规格书和工业制造标准的优质产品。 (一)、提供的资料 (1)设备说明: a.设备及部件说明,包括:设备的供货范围;结构、原理、详细性能、特性及参数等。 b.设备的安装说明 c.设备制造质量资料及质量保证书。 (2)最终图纸: a.设备总图,应包括下列内容: ●定压装置外型图及外型尺寸 ●设备与系统联接的各接口 ●设备检修所需的空间 b.电气原理图. (3)中文设备操作维修手册: a.该手册在试运行前一个月提交 b.所有设备的规格 c.所有设备的调试手册 d.操作方法及程序,包括: ●总的要求及重要措施 ●启动程序 ●正常运行 ●停机程序 ●故障排除 e.维护保养,包括: ●总的要求及安全措施 ●投标人建议的定期保养时间及项目

●投标人的设备系列号、地址及负责人的联系电话。 f.维修,包括: ●设备和部件常见故障说明。 ●建议的紧急安全程序 ●河北紧急维修中心的电话、地址及与负责人的联系方式 ●维修项目及方法 ●特殊工具和备品备件清单 ●维修图册及有关资料 (4)技术人员培训手册及培训所需的所有资料 (5)设备交货装箱清单。 (6)本标书要求的其它资料。 (二)、技术参数与条件 1.对投标人的资质要求: (2)、投标设备的鉴定证书。 (3)、进口货物须是有合法的进口手续和途径并能通过中华人民共和国商检部门检验的货物及产品的原产地证明和报关单。 (4)、所提供的技术数据经实测证实是真实的。 2.工程装备运行条件 安装场所:户内 地处亚热带,为季风性气候,温和湿润,四季分明,年平均温度22.7℃,极端最高温度39.5℃,极端最低温度0.0℃ 安装场所户内安装 海拔高度≤1000m 环境温度5oC ~40oC 日温差25oC 相对湿度日平均不大于95%(+25 oC时),月平均不大于90%(+25 oC时)3.技术要求 a)功能:自动定压、补水、排气功能。 b)罐体为常压罐,隔膜为丁基橡胶材料。 c)罐体有效容积:根据设计要求计算相应膨胀量 d)定压值:根据设计图纸要求。 e)控制系统要求采用PLC控制 f)可直接通过RS485和RS232与控制中心进行实时通信和监控 g)控制面板:带液晶屏幕,操作语言为中文。用户可以对系统的压力,排气等 参数进行设定。同时应具备故障、水位等报警功能,可将运行状态、故障报警信号反馈给控制中心。 h)采用双重安全保护,即安全阀保护和泄水保护。 i)防护等级IP54。 j)最大操作压力:10 bar。 k)允许瞬间温度:120℃。 l)定压精度:±0. 1bar。 m)电压:380V/50Hz或220V/50Hz

定压补水装置介绍与设计计算

定压补水装置介绍与设计计算 01 补水泵设计计算 补水泵扬程应保证补水压力比系统补水点压力高30~50kpa,也可按下式确定: Hp = 1.15(PA + H1 + H2 - ρgh) 式中 PA —系统补水点压力,pa H1—补水泵吸入管路总阻力损失,pa H2 —补水泵压出管路总阻力损失,pa h—补水箱最低水位高出系统补水点的高度,m 补水泵流量:补水泵总小时流量宜为系统水容量的5%,不得超过10%。循环水系统的小时泄漏量:宜按系统水容量的1%计算。 供冷和采用空调器供热的空调水系统可按表一估算,室外管线较长时应取较大值。 表一空调水系统的单位水容量 循环水系统的补水点:

宜设在循环水泵的吸入侧母管上;当补水压力低于补水点压力时,应设置补水泵。 补水泵的选型: a、扬程比系统补水点压力高30~50kpa; b、总小时流量宜为系统水容量的5%; c、系统较大时宜设置2台泵,平时用一台,初期上水或事故补水时2台水泵同时运行(一般设置2台补水泵) 定压点最低压力要求: 定压点宜设在循环水泵的吸入侧。 1)循环水温度60℃

02 高位膨胀水箱的定压补水系统 膨胀水箱定压原理是通过水箱容积的缓冲调节作用,通过水箱高低水位的控制,实现补水(溢流)的作用,以调节由于系统水温变化或泄漏引起的系统介质(水)的容积变化,保持其系统冷热媒介(水)压力的相对恒定。它是中小型系统和空调水系统常用的定压装置之一。 膨胀水箱位置应该根据系统型式、作用半径、建筑物的高度、供水温度等具体因素来选择。其安装位置及高度不同,给系统产生的工况也不同。可靠的系统,其工况必须满足不汽化、不超压、不倒空,并有足够循环动力的要求。 其中开式膨胀水箱将水箱设在系统的最高点,通常接在循环水泵吸水口的回水干管上。

压入力计算

8 计算与校核 [21] 8.1过盈配合装配压入力的计算 在立式轴承压装机邀标文件的技术要求中明确指出锥轴承外圈与轴承孔配合为过渡配合,故采用过盈配合装配压入力的计算方法。方法如下: 过盈配合装配压入力的计算方法 μπf f f L d p P max = 其中:P —压入力,N max f p —结合表面承受的最大单位压力,2/mm N f d —结合直径,mm f L —结合长度,mm μ—摩擦系数 结合表面最大单位压力计算公式: ) (max max i i a a f f E C E C d p += δ 其中: max δ —最大过盈量,mm a C 、i C —系数; a E 、i E —包容件和被包容件的材料弹性模量,2/mm N 系数a C 、i C 计算方法如下: ν+-+= 2222f a f a a d d d d C ν--+= 2222i f i f i d d d d C a d 、i d 分别为包容件外径和被包容件内径(实心轴i d =0),mm

ν—泊松系数 压装机所需的压力一般为压入力的3~3.5倍 表8.1常用材料的摩擦系数表 摩擦系数μ 材料 无润滑有润滑 钢-钢0.07~0.16 0.05~0.13 钢-铸钢0.11 0.07 钢-结构钢0.10 0.08 钢-优质结构钢0.11 0.07 钢-青铜0.15~0.20 0.03~0.06 钢-铸铁0.12~0.15 0.05~0.10 铸铁-铸铁0.15~0.25 0.05~0.10 表8.2常用材料弹性模量、泊松系数 材料弹性模量E 泊松系数ν碳钢196~216 0.24~0.28 低合金钢、合金结构钢186~206 0.25~0.30 灰铸铁78.5~157 0.23~0.27 铜及其合金72.6~128 0.31~0.42 铝合金70 0.33 轴承为标准件,采用轴承钢GCr15;压头的材料选用高级优质碳素工具钢T10A,其密度是7.85g/cm3,特点是容易锻造、加工性能良好、价格便宜,能够承受冲击、硬度高,应用于不受剧烈冲击的高硬度耐磨工具,如车刀、刨刀、冲头、丝锥、钻头、手锯条。 依据公式分别计算八、九档箱中壳的中间轴、二轴轴承外圈的压入力。

相关文档