文档库 最新最全的文档下载
当前位置:文档库 › 高考数学专题复习-三角函数与解三角形

高考数学专题复习-三角函数与解三角形

高考数学专题复习-三角函数与解三角形
高考数学专题复习-三角函数与解三角形

第1讲 三角函数的图象与性质

高考定位 三角函数的图象与性质是高考考查的重点和热点内容,主要从以下两个方面进行考查:1.三角函数的图象,涉及图象变换问题以及由图象确定解析式问题,主要以选择题、填空题的形式考查;2.利用三角函数的性质求解三角函数的值、参数、最值、值域、单调区间等,主要以解答题的形式考查.

真 题 感 悟

1.(全国Ⅰ卷)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A (1,a ),B (2,b ),且cos 2α=2

3,则|a -b |=( ) A.15

B.55

C.25

5

D.1

解析 由题意知cos α>0.因为cos 2α=2cos 2α-1=23,所以cos α=306,sin α=±6

6,得|tan α|=55.由题意知|tan α|=??????a -b 1-2,所以|a -b |=55. 答案 B

2.(全国Ⅲ卷)设函数f (x )=cos ? ????

x +π3,则下列结论错误的是( )

A.f (x )的一个周期为-2π

B.y =f (x )的图象关于直线x =8π

3对称 C.f (x +π)的一个零点为x =π

6 D.f (x )在? ??

??

π2,π单调递减

解析 A 项,因为f (x )的周期为2k π(k ∈Z 且k ≠0),所以f (x )的一个周期为-2π,A 项正确.

B 项,因为f (x )图象的对称轴为直线x =k π-π3(k ∈Z ),当k =3时,直线x =8π

3是其对称轴,B 项正确.

C 项,f (x +π)=cos ? ????x +4π3,将x =π6代入得到f ? ????

7π6=cos 3π2=0,所以x =π6是f (x +π)的

一个零点,C 项正确.

D 项,因为f (x )=cos ? ????x +π3的递减区间为???

?

??2k π-π3,2k π+2π3 (k ∈Z ),递增区间为

??????2k π+2π3,2k π+5π3 (k ∈Z ),所以? ????π2,2π3是减区间,??????

2π3,π是增区间,D 项错误. 答案 D

3.(全国Ⅰ卷)已知函数f (x )=2cos 2x -sin 2x +2,则( ) A.f (x )的最小正周期为π,最大值为3 B.f (x )的最小正周期为π,最大值为4 C.f (x )的最小正周期为2π,最大值为3 D.f (x )的最小正周期为2π,最大值为4

解析 易知f (x )=2cos 2

x -sin 2

x +2=3cos 2

x +1=3cos 2x +12

+1=32cos 2x +52,则

f (x )的最小正周期为π,当2x =2k π,即x =k π(k ∈Z )时,f (x )取得最大值,最大值为4. 答案 B

4.(全国Ⅱ卷)若f (x )=cos x -sin x 在[-a ,a ]是减函数,则a 的最大值是( ) A.π4

B.π2

C.3π4

D.π

解析 f (x )=cos x -sin x =2cos ? ??

??

x +π4,且函数y =cos x 在区间[0,π]上单调递减,

则由0≤x +π4≤π,得-π4≤x ≤3π

4.因为f (x )在[-a ,a ]上是减函数,所以?????-a ≥-π

4,a ≤3π

4,

解得a ≤π4,所以0

4. 答案 A

考 点 整 合

1.常用三种函数的图象与性质(下表中k ∈Z )

图象

递增 区间 ???

???2k π-π2,2k π+π2 [2k π-π,2k π]

? ?

?

??k π-π2,k π+π2 递减 区间 ???

?

??2k π+π2,2k π+3π2 [2k π,2k π+π] 奇偶性 奇函数 偶函数 奇函数 对称 中心 (k π,0) ? ?

???k π+π2,0 ? ??

??

k π2,0 对称轴 x =k π+π

2 x =k π 周期性

π

2.三角函数的常用结论

(1)y =A sin(ωx +φ),当φ=k π(k ∈Z )时为奇函数;

当φ=k π+π2(k ∈Z )时为偶函数;对称轴方程可由ωx +φ=k π+π

2(k ∈Z )求得.

(2)y =A cos(ωx +φ),当φ=k π+π

2(k ∈Z )时为奇函数;

当φ=k π(k ∈Z )时为偶函数;对称轴方程可由ωx +φ=k π(k ∈Z )求得. (3)y =A tan(ωx +φ),当φ=k π(k ∈Z )时为奇函数. 3.三角函数的两种常见变换

热点一 三角函数的定义

【例1】 (1)(北京卷)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若sin α=1

3,则cos(α-β)=________.

(2)如图,以Ox 为始边作角α(0<α<π),终边与单位圆相交于点P ,已知点P 的坐标为? ????-35,45,则sin 2α+cos 2α+11+tan α

=________.

解析 (1)法一 由已知得β=(2k +1)π-α(k ∈Z ). ∵sin α=13,∴sin β=sin[(2k +1)π-α]=sin α=1

3(k ∈Z ). 当cos α=1-sin 2α=223时,cos β=-22

3,

∴cos(α-β)=cos αcos β+sin αsin β=223×

? ????-223+13×13=-7

9. 当cos α=-1-sin 2α=-223时,cos β=22

3,

∴cos(α-β)=cos αcos β+sin αsin β=-7

9.

综上可知,cos(α-β)=-7

9.

法二 由已知得β=(2k +1)π-α(k ∈Z ),

∴sin β=sin[(2k +1)π-α]=sin

α, cos β=cos[(2k +1)π-α]=-cos α,k ∈Z .

当sin α=1

3时,cos(α-β)=cos αcos β+sin αsin β=-cos 2α+sin 2α=-(1-sin 2α)+sin 2α=2sin 2α-1=2×19-1=-

7

9.

(2)由三角函数定义,得cos α=-35,sin α=4

5,

∴原式=2sin αcos α+2cos 2α1+sin αcos α

=2cos α(sin α+cos α)sin α+cos αcos α=2cos 2

α=2×

? ????-352=1825. 答案 (1)-79 (2)18

25

探究提高 1.当角的终边所在的位置不是唯一确定的时候要注意分情况解决,机械地使用三角函数的定义就会出现错误.

2.任意角的三角函数值仅与角α的终边位置有关,而与角α终边上点P 的位置无关.若角α已经给出,则无论点P 选择在α终边上的什么位置,角α的三角函数值都是确定的.

【训练1】 (1)(潍坊三模)在直角坐标系中,若角α的终边经过点P ? ????sin 2

3π,cos 23π,

则sin(π-α)=( ) A.1

2

B.32

C.-12

D.-32

(2)(北京卷)在平面直角坐标系中,AB ︵,CD ︵,EF ︵,GH ︵

是圆x 2+y 2=1上的四段弧(如图),点P 在其中一段上,角α以Ox 为始边,OP 为终边.若tan α

A.AB ︵

B.CD ︵

C.EF ︵

D.GH ︵

解析 (1)∵角α的终边过点P ? ??

??sin 2

3π,cos 23π,且|OP |=1.∴由三角函数定义,知sin

α=cos 2π3=-12.因此sin(π-α)=sin α=-12.

(2)设点P 的坐标为(x ,y ),由三角函数的定义得y

x

. 答案 (1)C (2)C 热点二 三角函数的图象 考法1 三角函数的图象变换

【例2-1】 (1)要想得到函数y =sin 2x +1的图象,只需将函数y =cos 2x 的图象( )

A.向左平移π

4个单位长度,再向上平移1个单位长度 B.向右平移π

4个单位长度,再向上平移1个单位长度 C.向左平移π

2个单位长度,再向下平移1个单位长度

D.向右平移π

2个单位长度,再向下平移1个单位长度

(2)(湖南六校联考)已知函数f (x )=sin(ωx +φ)? ?

?

??ω>0,|φ|<π2,其图象相邻两条对称

轴之间的距离为π2,将函数y =f (x )的图象向左平移π

3个单位长度后,得到的图象关于y 轴对称,那么函数y =f (x )的图象( )

A.关于点? ????π12,0对称

B.关于点? ??

??

-π12,0对称

C.关于直线x =π12对称

D.关于直线x =-π

12对称

解析 (1)因为y =sin 2x +1=cos ? ????2x -π2+1=cos ????

??

2? ????x -π4+1,

故只需将函数y =cos 2x 的图象向右平移π

4个单位长度,再向上平移1个单位长度,即可得到函数y =sin 2x +1的图象. (2)由题意,T =π,ω=2.

又y =f ? ????x +π3=sin ?

?

???2x +φ+2π3的图象关于y 轴对称.∴φ+2π3=k π+π2,k ∈Z . 由|φ|<π2,取φ=-π6,因此f (x )=sin ? ?

?

??2x -π6,

代入检验f ? ??

??

π12=0,A 正确.

答案 (1)B (2)A

探究提高 1.“五点法”作图:设z =ωx +φ,令z =0,π2,π,3π

2,2π,求出x 的值与相应的y 的值,描点、连线可得.

2.在图象变换过程中务必分清是先相位变换,还是先周期变换.变换只是相对于其中的自变量x 而言的,如果x 的系数不是1,就要把这个系数提取后再确定变换的单位长度和方向.

考法2 由函数的图象特征求解析式

【例2-2】 (1)函数f (x )=A sin(ωx +φ)? ?

???A >0,ω>0,|φ|<π2的部分图象如图所示,

则函数f (x )的解析式为( )

A.f (x )=2sin ? ??

??

x -π6

B.f (x )=2sin ? ?

?

??2x -π3

C.f (x )=2sin ? ?

?

??2x +π12

D.f (x )=2sin ? ?

???2x -π6

(2)(济南调研)函数f (x )=A sin(ωx +φ)? ?

?

??A >0,ω>0,|φ|<π2的部分图象如图所示,若

x 1,x 2∈? ??

??

-π6,π3,且f (x 1)=f (x 2),则f (x 1+x 2)=( )

A.1

B.1

2

C.22

D.32

解析 (1)由题意知A =2,T =4? ??

??

5π12-π6=π,ω=2,

因为当x =5π

12时取得最大值2,

所以2=2sin ? ????

2×5π12+φ, 所以2×5π12+φ=2k π+π

2,k ∈Z ,

解得φ=2k π-π

3,k ∈Z , 因为|φ|<π2,得φ=-π

3. 因此函数f (x )=2sin ? ?

?

??2x -π3.

(2)观察图象可知,A =1,T =π,则ω=2. 又点? ??

??

-π6,0是“五点法”中的始点,

∴2×

? ??

??

-π6+φ=0,φ=π3. 则f (x )=sin ? ??

??2x +π3. 函数图象的对称轴为x =-π6+π3

2=π

12.

又x 1,x 2∈? ????

-π6,π3,且f (x 1)=f (x 2),

所以x 1+x 22=π12,则x 1+x 2=π6,

因此f (x 1+x 2)=sin ? ????

2×π6+π3=32. 答案 (1)B (2)D

探究提高 已知函数y =A sin(ωx +φ)(A >0,ω>0)的图象求解析式时,常采用待定系数法,由图中的最高点、最低点或特殊点求A ;由函数的周期确定ω;确定φ常根据“五点法”中的五个点求解,其中一般把第一个零点作为突破口,可以从图象的升降找准第一个零点的位置.

【训练2】 已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π

2)的部分图象如图所示.

(1)求函数f (x )的解析式;

(2)将函数y =f (x )的图象上各点的纵坐标保持不变,横坐标缩短到原来的1

2倍,再把所得的函数图象向左平移π

6个单位长度,得到函数y =g (x )的图象,求函数g (x )在区间???

?

??0,π8上的最小值.

解 (1)设函数f (x )的最小正周期为T ,由题图可知 A =1,T 2=2π3-π6=π2,

即T =π,所以π=2π

ω,解得ω=2,

所以f (x )=sin(2x +φ),又过点? ????

π6,0,

由0=sin ? ??

??

2×π6+φ可得

π3+φ=2k π,k ∈Z , 则φ=2k π-π3,k ∈Z ,因为|φ|<π2,所以φ=-π

3,

故函数f (x )的解析式为f (x )=sin ? ????2x -π3. (2)根据条件得g (x )=sin ? ?

?

??4x +π3,

当x ∈???

???0,π8时,4x +π3∈????

??π3,5π6,

所以当x =π8时,g (x )取得最小值,且g (x )min =1

2. 热点三 三角函数的性质 考法1 三角函数性质

【例3-1】 (合肥质检)已知函数f (x )=sin ωx -cos ωx (ω>0)的最小正周期为π. (1)求函数y =f (x )图象的对称轴方程; (2)讨论函数f (x )在

????

??0,π2上的单调性. 解 (1)∵f (x )=sin ωx -cos ωx =2sin ? ?

?

??ωx -π4,且T =π,

∴ω=2,于是f (x )=2sin ? ?

?

??2x -π4.

令2x -π4=k π+π2(k ∈Z ),得x =k π2+3π

8(k ∈Z ).

即函数f (x )图象的对称轴方程为x =k π2+3π

8(k ∈Z ).

(2)令2k π-π2≤2x -π4≤2k π+π

2(k ∈Z ),

得函数f (x )的单调递增区间为???

?

??k π-π8,k π+3π8(k ∈Z ).

注意到x ∈???

?

??0,π2,所以令k =0,

得函数f (x )在??????0,π2上的单调递增区间为???

?

??0,3π8;

同理,其单调递减区间为????

??

3π8,π2.

探究提高 1.讨论三角函数的单调性,研究函数的周期性、奇偶性与对称性,都必须首先利用辅助角公式,将函数化成一个角的一种三角函数.

2.求函数y =A sin(ωx +φ)(A >0,ω>0)的单调区间,是将ωx +φ作为一个整体代入正弦函数增区间(或减区间),求出的区间即为y =A sin(ωx +φ)的增区间(或减区间),但是当A >0,ω<0时,需先利用诱导公式变形为y =-A sin(-ωx -φ),则y =A sin(-ωx -φ)的增区间即为原函数的减区间,减区间即为原函数的增区间. 考法2 三角函数性质与图象的综合应用

【例3-2】 已知函数f (x )=2sin ωx cos ωx +23sin 2ωx -3(ω>0)的最小正周期为π.

(1)求函数f (x )的单调递增区间.

(2)将函数f (x )的图象向左平移π

6个单位,再向上平移1个单位,得到函数y =g (x )的图象,若y =g (x )在[0,b ](b >0)上至少含有10个零点,求b 的最小值. 解 (1)f (x )=2sin ωx cos ωx +3(2sin 2ωx -1) =sin 2ωx -3cos 2ωx =2sin ? ?

???2ωx -π3.

由最小正周期为π,得ω=1, 所以f (x )=2sin ? ?

???2x -π3,

由2k π-π2≤2x -π3≤2k π+π

2,k ∈Z ,

整理得k π-π12≤x ≤kx +5π

12,k ∈Z ,

所以函数f (x )的单调递增区间是??????k π-π12,k π+5π12,k ∈Z . (2)将函数f (x )的图象向左平移π

6个单位,再向上平移1个单位,得到y =2sin 2x +1的图象;

所以g (x )=2sin 2x +1.

令g (x )=0,得x =k π+7π12或x =k π+11π

12(k ∈Z ),

所以在[0,π]上恰好有两个零点,若y =g (x )在[0,b ]上有10个零点,则b 不小于第10个零点的横坐标即可.

所以b 的最小值为4π+11π12=59π

12.

探究提高 1.研究三角函数的图象与性质,关键是将函数化为y =A sin(ωx +φ)+B (或y =A cos(ωx +φ)+B )的形式,利用正余弦函数与复合函数的性质求解. 2.函数y =A sin(ωx +φ)(或y =A cos(ωx +φ))的最小正周期T =2π

|ω|.应特别注意y =|A sin(ωx +φ)|的最小正周期为T =π

|ω|.

【训练3】 (湖南师大附中质检)已知向量m =(2cos ωx ,-1),n =(sin ωx -cos ωx ,2)(ω>0),函数f (x )=m·n +3,若函数f (x )的图象的两个相邻对称中心的距离为π

2. (1)求函数f (x )的单调增区间;

(2)若将函数f (x )的图象先向左平移π

4个单位,然后纵坐标不变,横坐标缩短为原来的12倍,得到函数g (x )的图象,当x ∈??????

π4,π2时,求函数g (x )的值域.

解 (1)f (x )=m·n +3=2cos ωx (sin ωx -cos ωx )-2+3 =sin 2ωx -cos 2ωx =2sin ? ?

???2ωx -π4.

依题意知,最小正周期T =π.

∴ω=1,因此f (x )=2sin ? ?

?

??2x -π4.

令-π2+2k π≤2x -π4≤π

2+2k π,k ∈Z ,

求得f (x )的增区间为????

??

-π8+k π,3π8+k π,k ∈Z .

(2)将函数f (x )的图象先向左平移π

4个单位,

得y =2sin ????

??2?

????x +π4-π4=2sin ? ?

???2x +π4的图象. 然后纵坐标不变,横坐标缩短为原来的12倍,得到函数g (x )=2sin ? ?

?

??4x +π4的图象.

故g (x )=2sin ? ?

?

??4x +π4,

由π4≤x ≤π2,知5π4≤4x +π4≤9π4.

∴-1≤sin ? ?

???4x +π4≤22.

故函数g (x )的值域是[-2,1].

1.已知函数y=A sin(ωx+φ)+B(A>0,ω>0)的图象求解析式

(1)A=

y max-y min

2,B=

y max+y min

2.

(2)由函数的周期T求ω,ω=

T.

(3)利用“五点法”中相对应的特殊点求φ.

2.运用整体换元法求解单调区间与对称性

类比y=sin x的性质,只需将y=A sin(ωx+φ)中的“ωx+φ”看成y=sin x中的“x”,采用整体代入求解.

(1)令ωx+φ=kπ+

π

2(k∈Z),可求得对称轴方程;

(2)令ωx+φ=kπ(k∈Z),可求得对称中心的横坐标;

(3)将ωx+φ看作整体,可求得y=A sin(ωx+φ)的单调区间,注意ω的符号.

3.函数y=A sin(ωx+φ)+B的性质及应用的求解思路

第一步:先借助三角恒等变换及相应三角函数公式把待求函数化成y=A sin(ωx +φ)+B(一角一函数)的形式;

第二步:把“ωx+φ”视为一个整体,借助复合函数性质求y=A sin(ωx+φ)+B的单调性及奇偶性、最值、对称性等问题.

一、选择题

1.(全国Ⅲ卷)函数f(x)=

tan x

1+tan2x

的最小正周期为()

A.

π

4 B.

π

2 C.π D.2π

解析f(x)=

tan x

1+tan2x

sin x

cos x

1+

sin2x

cos2x

sin x cos x

cos2x+sin2x

=sin x cos x=

1

2sin 2x,所以f(x)的最小正周期T=

2=π.

答案 C

2.(全国Ⅲ卷)函数f(x)=

1

5sin?

?

?

?

?

x+

π

3+cos?

?

?

?

?

x-

π

6的最大值为()

A.

6

5 B.1 C.

3

5 D.

1

5

解析 cos ? ????x -π6=cos ??????π2-? ????x +π3=sin ? ????x +π3,则f (x )=15sin ? ????x +π3+sin ? ????x +π3=6

5sin ? ????

x +π3,函数的最大值为65. 答案 A

3.(湖南六校联考)定义一种运算??

????

a b c d =ad -bc ,将函数f (x )=??????2 2sin x 3 cos x 的图象向左平移φ(φ>0)个单位,所得图象对应的函数为偶函数,则φ的最小值是( ) A.π

6

B.π3

C.2π3

D.5π6

解析 f (x )=2cos x -23sin x =4cos ? ??

??

x +π3,

依题意g (x )=f (x +φ)=4cos ? ??

??

x +π3+φ是偶函数(其中φ>0).

∴π3+φ=k π,k ∈Z ,则φmin =23π. 答案 C

4.偶函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,其中△EFG 是斜边为4的等腰直角三角形(E ,F 是函数与x 轴的交点,点G 在图象上),则f (1)的值为( )

A.22

B.62

C. 2

D.2 2

解析 依题设,T 2=|EF |=4,T =8,ω=π

4. ∵函数f (x )=A sin(ωx +φ)为偶函数,且0<φ<π. ∴φ=π

2,在等腰直角△EGF 中,易求A =2. 所以f (x )=2sin ? ????

π4x +π2=2cos π4x ,则f (1)= 2.

答案 C

5.(天津卷)将函数y =sin ? ?

???2x +π5的图象向右平移π10个单位长度,所得图象对应的函

数( )

A.在区间??????

3π4,5π4上单调递增

B.在区间??????

3π4,π上单调递减

C.在区间??????

5π4,3π2上单调递增

D.在区间????

??

3π2,2π上单调递减

解析 把函数y =sin ? ?

?

??2x +π5的图象向右平移π10个单位长度得函数g (x )=

sin ??????2?

?

???x -π10+π5=sin 2x 的图象,由-π2+2k π≤2x ≤π2+2k π(k ∈Z )得-π4+k π≤x ≤π4+k π(k ∈Z ),令k =1,得3π4≤x ≤5π

4,即函数g (x )=sin 2x 的一个单调递增区

间为??????3π4,5π4.

答案 A 二、填空题

6.(江苏卷)已知函数y =sin(2x +φ)? ????-π

2<φ<π2的图象关于直线x =π3对称,则φ的值

是________.

解析 由函数y =sin(2x +φ)? ????-π2<φ<π2的图象关于直线x =π3对称,得sin ? ??

??

2π3+φ=

±1.因为-π2<φ<π2,所以π6<2π3+φ<7π6,则2π3+φ=π2,φ=-π

6.

答案 -π

6

7.已知函数f (x )=A sin(ωx +φ)? ?

???A >0,ω>0,|φ|<π2的部分图象如图所示,其中|PQ |

=2 5.则f (x )的解析式为________.

解析 由题图可知A =2,P (x 1,-2),Q (x 2,2),所以|PQ |=(x 1-x 2)2+(-2-2)2=(x 1-x 2)2+42=2 5.整理得|x 1-x 2|=2,所以函数f (x )的最小正周期T =2|x 1

-x 2|=4,即2πω=4,解得ω=π

2.又函数图象过点(0,

-3),所以2sin φ=-3,即sin φ=-32.又|φ|<π2,所以φ=-π

3,所以f (x )=

2sin ? ??

??π2x -π3.

答案 f (x )=2sin ? ??

??

π2x -π3

8.(北京卷)设函数f (x )=cos ? ????ωx -π6(ω>0).若f (x )≤f ? ????

π4对任意的实数x 都成立,则

ω的最小值为________.

解析 由于对任意的实数都有f (x )≤f ? ??

??

π4成立,故当x =π4时,函数f (x )有最大值,故f ? ??

??

π4=1,πω4-π6=2k π(k ∈Z ),∴ω=8k +23(k ∈Z ).又ω>0,∴ωmin =23.

答案 23 三、解答题

9.已知函数f (x )=4tan x sin ? ????π2-x ·cos ? ????x -π3- 3. (1)求f (x )的定义域与最小正周期; (2)讨论f (x )在区间????

??

-π4,π4上的单调性.

解 (1)f (x )的定义域为{x |x ≠π

2+k π,k ∈Z },

f (x )=4tan x cos x cos ? ??

??

x -π3- 3

=4sin x cos ? ????

x -π3- 3

=4sin x ? ????12cos x +3

2sin x - 3

=2sin x cos x +23sin 2x - 3 =sin 2x -3cos 2x =2sin ? ?

?

??2x -π3.

所以f (x )的最小正周期T =2π2=π. (2)由-π2+2k π≤2x -π3≤π

2+2k π,k ∈Z , 得-π12+k π≤x ≤5π

12+k π,k ∈Z .

设A =??????-π4,π4,B =????

??x ???-π12+k π≤x ≤5π12+k π,k ∈Z ,易知A ∩B =??????

-π12,π4.

所以当x ∈??????-π4,π4时,f (x )在区间??????-π12,π4上单调递增,在区间????

??-π

4,-π12上单

调递减.

10.(西安模拟)已知函数f (x )=sin ? ????

π2-x sin x -3cos 2x +32.

(1)求f (x )的最大值及取得最大值时x 的值;

(2)若方程f (x )=2

3在(0,π)上的解为x 1,x 2,求cos(x 1-x 2)的值.

解 (1)f (x )=cos x sin x -3

2

(2cos 2x -1) =12sin 2x -32cos 2x =sin ? ??

??2x -π3. 当2x -π3=π2+2k π(k ∈Z ),即x =5

12π+k π(k ∈Z )时,函数f (x )取最大值,且最大值为1.

(2)由(1)知,函数f (x )图象的对称轴为x =5

12π+k π,k ∈Z ,

∴当x ∈(0,π)时,对称轴为x =5

12π.

又方程f (x )=2

3在(0,π)上的解为x 1,x 2.

∴x 1+x 2=56π,则x 1=5

6π-x 2,

∴cos(x 1-x 2)=cos ? ????56π-2x 2=sin ? ?

?

??2x 2

-π3, 又f (x 2)=sin ? ?

?

??2x 2-π3=23,

故cos(x 1-x 2)=2

3.

11.设函数f (x )=sin ? ????ωx -π6+sin ? ????ωx -π2,其中0<ω<3,已知f ? ????

π6=0.

(1)求ω;

(2)将函数y =f (x )的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位,得到函数y =g (x )的图象,求g (x )在??????

-π4,3π4上的最小

值.

解 (1)因为f (x )=sin ? ????ωx -π6+sin ? ?

?

??ωx -π2,

所以f (x )=32sin ωx -1

2cos ωx -cos ωx

=32sin ωx -32cos ωx =3? ????12sin ωx -3

2cos ωx

=3sin ? ?

?

??ωx -π3.

由题设知f ? ??

??

π6=0,

所以ωπ6-π

3=k π,k ∈Z ,故ω=6k +2,k ∈Z . 又0<ω<3,所以ω=2.

(2)由(1)得f (x )=3sin ? ?

?

??2x -π3,

所以g (x )=3sin ? ????x +π4-π3=3sin ? ?

?

??x -π12. 因为x ∈??????

-π4,3π4,所以x -π12∈??????-π3,2π3,

当x -π12=-π3,即x =-π4时,g (x )取得最小值-32.

高考数学压轴专题2020-2021备战高考《三角函数与解三角形》技巧及练习题附答案

【高中数学】数学《三角函数与解三角形》复习资料 一、选择题 1.函数()1sin cos 1sin cos 1tan 01sin cos 1sin cos 32x x x x f x x x x x x x π+-++? ?=++<< ?+++-? ?的最小值为 ( ) A B C D 【答案】B 【解析】 【分析】 利用二倍角公式化简函数()f x ,求导数,利用导数求函数的最小值即可. 【详解】 2 2222sin 2sin cos 2cos 2sin cos 1sin cos 1sin cos 2222221sin cos 1sin cos 2cos 2sin cos 2sin 2sin cos 222222 x x x x x x x x x x x x x x x x x x x x +++-+++= ++++-++ 2sin sin cos 2cos sin cos sin cos 222222222sin cos sin 2cos sin cos 2sin sin cos 22222222x x x x x x x x x x x x x x x x x ???? ++ ? ?????=+= +=???? ++ ? ? ???? , 则()21tan 0sin 32f x x x x π? ?= +<< ?? ?, 322222 21sin 2cos 16cos cos 1()sin 3cos sin 3cos 3sin cos x x x x f x x x x x x x ' ' ' --+????=+=-+= ? ????? . 令()cos 0,1t x =∈,() 32 61g t t t =--+为减函数,且102g ??= ??? , 所以当03 x π <<时, ()1 1,02 t g t <<<,从而()'0f x <; 当 3 2 x π π << 时,()1 0,02 t g t << >,从而()'0f x >. 故( )min 33f x f π??== ??? . 故选:A 【点睛】 本题主要考查了三角函数的恒等变换,利用导数求函数的最小值,换元法,属于中档题. 2.在ABC ?中,角,,A B C 所对的边分别为,,a b c 满足,222b c a bc +-=,

三角函数与解三角形练习题

三角函数及解三角形练习题 一.解答题(共16小题) 1.在△ABC中,3sinA+4cosB=6,4sinB+3cosA=1,求C的大小. 2.已知3sinθtanθ=8,且0<θ<π. (Ⅰ)求cosθ; (Ⅱ)求函数f(x)=6cosxcos(x﹣θ)在[0,]上的值域. 3.已知是函数f(x)=2cos2x+asin2x+1的一个零点. (Ⅰ)数a的值; (Ⅱ)求f(x)的单调递增区间. 4.已知函数f(x)=sin(2x+)+sin2x. (1)求函数f(x)的最小正周期; (2)若函数g(x)对任意x∈R,有g(x)=f(x+),求函数g(x)在[﹣,]上的值域. 5.已知函数f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值; (2)求f(x)的单调递增区间. 6.已知函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)的图象关于直线x=对称,且图象上相邻两个最高点的距离为π. (Ⅰ)求ω和φ的值; (Ⅱ)若f()=(<α<),求cos(α+)的值. 7.已知向量=(cosx,sinx),=(3,﹣),x∈[0,π]. (1)若∥,求x的值; (2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值. 8.已知函数的部分图象如图所示.

(1)求函数f(x)的解析式; (2)在△ABC中,角A,B,C的对边分别是a,b,c,若(2a﹣c)cosB=bcosC,求的取值围. 9.函数f(x)=2sin(ωx+φ)(ω>0,0<φ<)的部分图象如图所示,M 为最高点,该图象与y轴交于点F(0,),与x轴交于点B,C,且△MBC的面积为π. (Ⅰ)求函数f(x)的解析式; (Ⅱ)若f(α﹣)=,求cos2α的值. 10.已知函数. (Ⅰ)求f(x)的最大值及相应的x值; (Ⅱ)设函数,如图,点P,M,N分别是函数y=g(x)图象的零值点、最高点和最低点,求cos∠MPN的值. 11.设函数f(x)=sin(ωx﹣)+sin(ωx﹣),其中0<ω<3,已知f ()=0.

高中数学三角函数公式大全全解

三角函数公式 1.正弦定理: A a sin = B b sin =C c sin = 2R (R 为三角形外接圆半径) 2.余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2=a 2+b 2-2ab C cos bc a c b A 2cos 2 22-+= 3.S ⊿= 21a a h ?=21ab C sin =21bc A sin =21ac B sin =R abc 4=2R 2A sin B sin C sin =A C B a sin 2sin sin 2=B C A b sin 2sin sin 2=C B A c sin 2sin sin 2=pr=))()((c p b p a p p --- (其中)(2 1 c b a p ++=, r 为三角形内切圆半径) 4.诱导公试 注:奇变偶不变,符号看象限。 注:三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限 注:三角函数值等于α的 异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:

函数名改变,符号看象限 5.和差角公式 ①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =± ③β αβ αβαtg tg tg tg tg ?±= ± 1)( ④)1)((βαβαβαtg tg tg tg tg ?±=± 6.二倍角公式:(含万能公式) ①θ θ θθθ2 12cos sin 22sin tg tg += = ②θ θ θθθθθ2 22 2 2 2 11sin 211cos 2sin cos 2cos tg tg +-=-=-=-= ③θθθ2122tg tg tg -= ④22cos 11sin 222θθθθ-=+=tg tg ⑤22cos 1cos 2 θθ+= 7.半角公式:(符号的选择由 2 θ 所在的象限确定) ①2cos 12 sin θθ -± = ②2 cos 12sin 2θ θ-= ③2cos 12cos θθ+±= ④2cos 12 cos 2 θθ += ⑤2sin 2cos 12θθ=- ⑥2 cos 2cos 12θθ=+ ⑦2 sin 2 cos )2 sin 2 (cos sin 12θ θθθθ±=±=± ⑧θ θ θθθθθ sin cos 1cos 1sin cos 1cos 12 -=+=+-± =tg 8.积化和差公式: [])sin()sin(21cos sin βαβαβα-++=[] )sin()sin(21 sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++= ()[]βαβαβα--+-=cos )cos(2 1 sin sin 9.和差化积公式:

高考数学压轴专题专题备战高考《三角函数与解三角形》难题汇编及答案解析

数学《三角函数与解三角形》复习知识要点(1) 一、选择题 1.已知sin α,sin()10 αβ-=-,,αβ均为锐角,则β=( ) A . 512 π B . 3 π C . 4 π D . 6 π 【答案】C 【解析】 【分析】 由题意,可得22 π π αβ- <-< ,利用三角函数的基本关系式,分别求得 cos ,cos()ααβ-的值,利用sin[(]sin )ααββ=--,化简运算,即可求解. 【详解】 由题意,可得α,β均为锐角,∴-2π <α-β<2 π. 又sin(α-β),∴cos(α-β). 又sin α= 5,∴cos α=5 , ∴sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β) =5×10 -5×10??- ? ??? =2.∴β=4π. 【点睛】 本题主要考查了三角函数的化简、求值问题,其中熟记三角函数的基本关系式和三角恒等变换的公式,合理构造sin[(]sin )ααββ=--,及化简与运算是解答的关键,着重考查了推理与运算能力,属于基础题. 2.将函数()()sin 0,π2f x x ?ω?ω? ?=+>< ?? ?的图象向右平移6π个单位长度后,所得图象关 于y 轴对称,且1π2f ω?? =- ??? ,则当ω取最小值时,函数()f x 的解析式为( ) A .()sin 26f x x π? ? =+ ?? ? B .()sin 2π6f x x ? ?=- ??? C .()sin 4π6f x x ? ?=+ ?? ? D .()sin 4π6f x x ? ?=- ?? ? 【答案】C 【解析】

高考数学三角函数与解三角形练习题

三角函数与解三角形 一、选择题 (2016·7)若将函数y =2sin 2x 的图像向左平移 12 π个单位长度,则平移后图象的对称轴为( ) A .()26k x k Z ππ =-∈ B .()26k x k Z ππ =+∈ C .()212 k x k Z ππ =-∈ D .()212 k x k Z ππ =+∈ (2016·9)若3 cos( )45 π α-=,则sin 2α =( ) A . 725 B .15 C .1 5 - D .7 25 - (2014·4)钝角三角形ABC 的面积是12 ,AB =1,BC ,则AC =( ) A .5 B C .2 D .1 (2012·9)已知0>ω,函数)4sin()(π ω+ =x x f 在),2(ππ 单调递减,则ω的取值范围是() A. 15 [,]24 B. 13[,]24 C. 1(0,]2 D. (0,2] (2011·5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos2θ =( ) A .45 - B .35 - C .35 D .45 (2011·11)设函数()sin()cos()(0,||)2 f x x x π ω?ω?ω?=+++>< 的最小正周期为π,且()()f x f x -=, 则( ) A .()f x 在(0,)2π 单调递减 B .()f x 在3(,)44 ππ 单调递减 C .()f x 在(0,)2π 单调递增 D .()f x 在3(,)44 ππ 单调递增 二、填空题 (2017·14)函数()23sin 4f x x x =- (0,2x π?? ∈???? )的最大值是 . (2016·13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos 4 5 A = ,1cos 53C =,a = 1,则b = . (2014·14)函数()sin(2)2sin cos()f x x x ???=+-+的最大值为_________. (2013·15)设θ为第二象限角,若1 tan()42 πθ+=,则sin cos θθ+=_________. (2011·16)在△ABC 中,60,B AC ==o 2AB BC +的最大值为 . 三、解答题

(完整版)高中数学三角函数历年高考题汇编(附答案)

三角函数历年高考题汇编 一.选择题1、(2009)函数 22cos 14y x π? ?=-- ?? ?是 A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为 2π的奇函数 D .最小正周期为2 π 的偶函数 2、(2008)已知函数 2()(1cos 2)sin ,f x x x x R =+∈,则()f x 是( ) A 、最小正周期为π的奇函数 B 、最小正周期为2π 的奇函数 C 、最小正周期为π的偶函数 D 、最小正周期为2 π 的偶函数 3.(2009浙江文)已知a 是实数,则函数()1sin f x a ax =+的图象不可能... 是( ) 4.(2009山东卷文)将函数 sin 2y x =的图象向左平移 4 π 个单位, 再向上平移1个单位,所得图象的函数解析式是 A. 22cos y x = B. 2 2sin y x = C.)4 2sin(1π++=x y D. cos 2y x = 5.(2009江西卷文)函数()(13)cos f x x x =的最小正周期为 A .2π B . 32π C .π D . 2 π 6.(2009全国卷Ⅰ文)如果函数3cos(2)y x φ=+的图像关于点4( ,0)3 π 中心对称,那么φ的最小值为 A. 6π B.4π C. 3π D. 2π 7.(2008海南、宁夏文科卷)函数 ()cos 22sin f x x x =+的最小值和最大值分别为( ) A. -3,1 B. -2,2 C. -3, 3 2 D. -2, 32 8.(2007海南、宁夏)函数 πsin 23y x ??=- ???在区间ππ2?? -???? ,的简图是( )

(新高考地区使用)专题01 三角函数与解三角形

三角函数与解三角形专项练习 1.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos 2c A b a =-. (1)求角C ; (2)若D 是边BC 的中点,11cos 14 B =,21AD =,求AB C 的面积S . 2.如图,四边形OACB 中,,,a b c 为ABC ?的内角,,A B C 的对边,且满足sin sin tan 2cos cos A B C B C =--+ (1)证明:2b c a +=;

(2)若22OA OB ==,且b c =,设()0AOB θθπ∠=<<,当θ变化时,求四边形OACB 面积的最大值. 3.一个玩具盘由一个直径为2米的半圆O 和一个矩形ABCD 构成,1AB =米,如图所示.小球从A 点出发以8v 的速度沿半圆O 轨道滚到某点E 处后,以3v 的速度沿与点E 切线垂直的方向弹射到落袋区BC 内,落点记为F .记AOE θ∠=, (1)用θ表示小球从A 到F 所用的时间()f θ; (2)当小球从A 到F 所用的时间最短时,求cos θ的值. 4.在ABC 中,,,a b c 分别为角,,A B C 所对的边.在①(2)cos cos a c B b C -=;①3=2ABC BA BC S →→?△;①sin sin 33B B π? ?++= ??? 这三个条件中任选一个,作出解答.

(1)求角B 的值; (2)若ABC 为锐角三角形,且1b =,求ABC 的面积的取值范围. 5.已知ABC 的面积为 (Ⅰ)b 和c 的值; (Ⅱ)sin()A B -的值. 条件①:6a =,1cos 3 =- C ;条件②:A C =,7cos 9B =-.注:如果选择条件①和条件②分别解答,按第一个解答计分. 6.在ABC 中,7cos 8 A =,3c =,且b c ≠,再从条件①、条件②中选择一个作为已知,求: (1)b 的值;

2019年三角函数和解三角形大题

2018-2019学年高三一模理分类---三角函数和解三角形 海淀(理) (15)(本小题满分13分) 已知函数()cos()cos 4 f x x x a π =-+ (Ⅱ)求a 的值; (Ⅱ)求函数()f x 的单调递增区间. 文)已知函数()cos()cos 4 f x x x a π =-+的图象经过点(O,l),部分图象如图所示. (I)求a 的值; (Ⅱ)求图中0x 的值,并直接写出函数()f x 的单调递增区间. 朝阳 (理)15.(本小题满分13分) 在ABC △中,a ,120A ∠=?,ABC △b c <. (Ⅰ)求b 的值; (Ⅱ)求cos 2B 的值. (文)15.(本小题满分13分) 已知函数2 ()cos cos f x x x x =. (Ⅰ)求( )3 f π 的值及()f x 的最小正周期; (Ⅱ)若函数()f x 在区间[0,]m 上单调递增,求实数m 的最大值. 石景山

(文 理)15. (本小题13分) 在ABC △中,角A B C , ,的对边分别为a b c ,, ,b=3c =,1 cos 3 B=-. (Ⅰ)求sin C 的值; (Ⅱ)求ABC △的面积. 丰台 (理)15.(本小题13分) 已知函数2()cos(2)2sin ()3f x x x a a π =--+∈R ,且()03 f π=. (Ⅰ)求a 的值; (Ⅱ)若()f x 在区间[0,]m 上是单调函数,求m 的最大值. 延庆 (理)15.(本小题满分13分) 如图,在ABC ?中,点D 在BC 边上,cos ADB ∠=,3cos =5 C ∠,7AC =. sin CA D ∠(求Ⅰ)的值; (Ⅱ)若10BD =, 求AD 的长及ABD ?的面积. 怀柔 15.(本小题满分13分) 在 中,角,,所的对边分别是a ,b ,c , , . (Ⅰ)求边c 的值; (Ⅱ)若,求 的面积. 门头沟 A D B C

2020高考数学专项复习《三角函数大题压轴题练习》

3 三角函数大题压轴题练习 1. 已知函数 f (x ) = cos(2x - ) + 2 s in(x - ) sin(x + ) 3 4 4 (Ⅰ)求函数 f (x ) 的最小正周期和图象的对称轴方程 (Ⅱ)求函数 f (x ) 在区间[- , ] 上的值域 12 2 解:(1)Q f (x ) = cos(2x - ) + 2 s in(x - ) sin(x + ) 3 4 4 = 1 cos 2x + 3 sin 2x + (sin x - cos x )(sin x + cos x ) 2 2 = 1 cos 2x + 3 sin 2x + sin 2 x - cos 2 x 2 2 = 1 cos 2x + 3 sin 2x - cos 2x 2 2 = sin(2x - ∴周 周 6 T = 2 = 2 k 由2x - = k + (k ∈ Z ), 周 x = + (k ∈ Z ) 6 2 2 3 ∴函数图象的对称轴方程为 x = k + ∈ Z ) 3 5 (2)Q x ∈[- , ],∴ 2x - ∈[- , ] 12 2 6 3 6 因为 f (x ) = sin(2x - ) 在区间[- , ] 上单调递增,在区间[ , ] 上单调 递减, 6 12 3 3 2 所以 当 x = 时, f (x ) 取最大值 1 3 1 又 Q f (- ) = - < f ( ) = ,当 x = - 时, f (x ) 取最小值- 12 2 2 2 12 2 所以 函数 f (x ) 在区间[- , ] 上的值域为[- 12 2 ,1] 2 2. 已知函数 f (x ) = sin 2 x + 3 sin x sin ?x + π ? (> 0 )的最小正周期为π . 2 ? ? ? (Ⅰ)求的值; 3 3 ) (k

高中数学专题练习-三角函数及解三角形

高中数学专题练习-三角函数及解三角形 1.【高考全国Ⅰ卷理数】函数f(x)=在的图像大致为 A.B. C.D. 【答案】D 【解析】由,得是奇函数,其图象关于原点对称,排除A.又,排除B,C,故选D. 【名师点睛】本题考查函数的性质与图象,渗透了逻辑推理、直观想象和数学运算素养,采取性质法或赋值法,利用数形结合思想解题.解答本题时,先判断函数的奇偶性,得是奇函数,排除A,再注意到选项的区别,利用特殊值得正确答案. 2.【高考全国Ⅰ卷理数】关于函数有下述四个结论: ①f(x)是偶函数②f(x)在区间(,)单调递增 ③f(x)在有4个零点④f(x)的最大值为2 其中所有正确结论的编号是 A.①②④B.②④ C.①④D.①③ 【答案】C 【解析】为偶函数,故①正确.当时,,它在区间单调递减,故②错误. 当时,,它有两个零点:;当时,

,它有一个零点:,故在有个零点:,故③错误.当时,;当时, ,又为偶函数,的最大值为,故④正确.综上所述,①④正确,故选C. 【名师点睛】本题也可画出函数的图象(如下图),由图象可得①④正确. 3.【高考全国Ⅱ卷理数】下列函数中,以为周期且在区间(,)单调递增的是A.f(x)=|cos2x| B.f(x)=|sin2x| C.f(x)=cos|x| D.f(x)=sin|x| 【答案】A 【解析】作出因为的图象如下图1,知其不是周期函数,排除D; 因为,周期为,排除C; 作出图象如图2,由图象知,其周期为,在区间(,)单调递增,A正确; 作出的图象如图3,由图象知,其周期为,在区间(,)单调递减,排除B,故选A. 图1

图2 图3 【名师点睛】本题主要考查三角函数的图象与性质,渗透直观想象、逻辑推理等数学素养,画出各函数图象,即可作出选择.本题也可利用二级结论:①函数的周期是函数周期的一半; ②不是周期函数. 4.【高考全国Ⅱ卷理数】已知α∈(0,),2sin2α=cos2α+1,则sinα= A. B. C.D. 【答案】B 【解析】,, ,又,,又,,故选B. 【名师点睛】本题是对三角函数中二倍角公式、同角三角函数基本关系式的考查,中等难度,判断正余弦的正负,运算准确性是关键,题目不难,需细心,解决三角函数问题,研究角的范围后得出三角函数值的正负很关键,切记不能凭感觉.解答本题时,先利用二倍角公式得到正余弦关系,再利用角范围及正余弦平方和为1关系得出答案. 5.【高考全国Ⅲ卷理数】设函数=sin()(>0),已知在有且仅有5个零点,下述四个结论: ①在()有且仅有3个极大值点 ②在()有且仅有2个极小值点

高考数学三角函数公式

高考数学三角函数公式 同角三角函数的基本关系式 倒数关系: 商的关系:平方关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α (六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。”) 诱导公式(口诀:奇变偶不变,符号看象限。) sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sin(2kπ+α)=sinα

高考全国卷三角函数大题训练

三角函数及数列大题训练 1.设数列{}n a 满足21112,32n n n a a a -+=-= (1) 求数列{}n a 的通项公式;令n n b na =,求数列的前n 项和n S 2.等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +== (1)求数列{}n a 的通项公式.(2)设 31323log log ......log ,n n b a a a =+++ 求数列1n b ?? ???? 的前项和. 3.已知,,a b c 分别为ABC ?三个内角,,A B C 的对边,cos 3sin 0a C a C b c +--= (1)求A (2)若2a =,ABC ?的面积为3;求,b c 。 4.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a =b cos C +c sin B . (1)求B ;(2)若b =2,求△ABC 面积的最大值. 5.已知数列{}n a 满足11a =,131n n a a +=+. ⑴证明1{}2 n a +是等比数列,并求{}n a 的通项公式;(2)证明:1231112 n a a a ++<…+. 6.ABC ?的内角A 、B 、C 的对边分别为a 、b 、c ,已知cos()cos 1A C B -+=,2a c =,求C 。

7.ABC ?的内角A 、B 、C 的对边分别为,,a b c 。已知90,2A C a c b -=+= ,求C 8.如图,在△ABC 中,∠ABC =90°,AB= 3 ,BC=1,P 为△ABC 内一点,∠BPC =90° (1)若PB=1 2,求PA ;(2)若∠APB =150°,求tan ∠PBA 9.在△ABC 中,a, b, c 分别为内角A, B, C 的对边, 且2sin (2)sin (2)sin .a A a c B c b C =+++ (Ⅰ)求A 的大小;(Ⅱ)求sin sin B C +的最大值. 10.已知等差数列{a n }满足a 2=0,a 6+a 8= -10 (I )求数列{a n }的通项公式;(II )求数列? ? ????-1 2 n n a 的前n 项和。 11. 在ABC ?中,角A 、B 、C 的对边分别为a ,b ,c 。角A ,B ,C 成等差数列。 (Ⅰ)求cos B 的值;(Ⅱ)边a ,b ,c 成等比数列,求sin sin A C 的值。 12.设向量a =(3sin x ,sin x ),b =(cos x ,sin x ),x ∈π0,2 ?? ???? . (1)若|a |=|b |,求x 的值;(2)设函数f (x )=a ·b ,求f (x )的最大值. 13.在△ABC 中,内角A 、B 、C 的对边分别为a ,b ,c ,且a >c ,已知? =2,cosB=, b=3,求:(Ⅰ)a 和c 的值;(Ⅱ)cos (B ﹣C )的值. A B C P

高中数学解题思维提升专题05三角函数与解三角形大题部分训练手册

专题05 三角函数与解三角形大题部分 【训练目标】 1、掌握三角函数的定义,角的推广及三角函数的符号判断; 2、熟记同角三角函数的基本关系,诱导公式,两角和差公式,二倍角公式,降幂公式,辅助角公式,并能熟练的进行恒等变形; 3、掌握正弦函数和余弦函数的图像与性质,并能正确的迁移到正弦型函数和余弦型函数; 4、掌握三角函数的图像变换的规律,并能根据图像求函数解析式; 5、熟记正弦定理,余弦定理及三角形的面积公式; 6、能熟练,灵活的使用正弦定理与余弦定理来解三角形。 【温馨小提示】 此类问题在高考中属于必考题,难度中等,要想拿下,只能有一条路,多做多总结,熟能生巧。 【名校试题荟萃】 1、(浙江省诸暨中学2019届高三期中考试题文) 已知函数. (1).求 )(x f 的最小正周期和单调递增区间; (2).当 时,求函数)(x f 的最小值和最大值 【答案】(1)π, (2) 【解析】 (1) ,π=T , 单调递增区间为; (2) ∴当 时, ,∴ . 当时, ,∴ . 2、(河北省衡水中学2019届高三上学期三调考试数学文)试卷)已知 中,角 所对的边分别是 ,

且,其中是的面积,. (1)求的值; (2)若,求的值. 【答案】 (1);(2). (2),所以,得①, 由(1)得,所以. 在中,由正弦定理,得,即②, 联立①②,解得,,则,所以. 3、(湖北省武汉市部分市级示范高中2019届高三十月联考文科数学试题)已知函数f(x)=sin(ωx+)- b(ω>0,0<<π的图象的两相邻对称轴之间的距离,若将f(x)的图象先向右平移个单位,再向上平移个单位,所得图象对应的函数为奇函数. (1)求f(x)的解析式并写出单增区间; (2)当x∈,f(x)+m-2<0恒成立,求m取值范围. 【答案】 (1),单调递增区间为; (2).

2020年高考数学三角函数与解三角形大题精做

2020年高考数学三角函数与解三角形大题精做例题一:在△ ABC中,内角A , B , C所对的边分别为a , b , c,已知m n cosC,cos A,且m n . (1)求角A的大小; (2 )若b c 5 , △ ABC的面积为3,求a . n,AB 4 , BC .17,点D 在AC 边上,且cos (1 )求BD的长; (2)求△ BCD的面积. 例题三:△ ABC的内角A , B , C的对边分别为a , b , c,已知a 2c cosB bcosA 0 .a,c 2b , 例题二:如图,在厶ABC中,

(1 )求B ; (2)若b 3 , △ ABC的周长为3 2 3,求△ ABC的面积. 例题四:已知函数f x cos2 x 2 3 sin xcosx sin2 x . (1)求函数y f x的最小正周期以及单调递增区间; (2)已知△ ABC的内角A、B、C所对的边分别为a、b、c,若fC 1,c 2,sinC sin B A 2sin 2A,求△ ABC 的面积.

例题一:【答案】(1) A -; (2) a .13 . 3 【解析】(1)由m n ,可得 m n 0 ,艮卩2b cos A acosC ccosA , 即 2sin B cos A sin AcosC sin C cosA ,即 2sin BcosA sin A C , ?/ sin A C sin n B sin B , / ? 2sin B cosA sin B ,即 sin B 2cos A 1 0 , ?/ 0 B n, ? sin B 0 , ? cosA 1 2 ?/ 0 A n, ? A n . 3 (2) 由S A ABC J /3,可得 S A ABC 1 - bcsin A 3 , ? bc 4 , 2 又b c 5 , 由余弦定理得 2 .2 a b 2 2 c 2bccosA b c 3bc 13 ? a 13 . 例题二:【答案】(1) 3; ( 2) 4 2 . 【解析】(1)在△ ABD 中, ■/ cos ADB 1 ,? sin ADB 3 22 3 , BD AB ABsi n BAD 4 2 -Z 3 由正弦疋理一 ,? BD sin BAD sin ADB ' sin ADB 2 2 3 (2) ?/ ADB CDB n, 1 cos ADB -. 3 2 1 得 17 9 CD 2 2 3CD -,解得 CD 4或 CD 2 (舍). 3 2 例题三:【答案】(1) B 2 n; (2) S\ABC ??? △ BCD 的面积S -BD CD sin CDB 2 22 3 3.3 4 二 cos CDB cos n ADB 二 sin CDB sin n ADB sin ADB CDB 在厶BCD 中,由余弦定理 BC 2 3 2 BD 2 2 CD 2 2BD CD cos CDB ,

高中数学三角函数公式大全

高中数学三角函数公式大全 三角函数看似很多,很复杂,而掌握三角函数的内部规律及本质也是学好三角函数的关键所在,下面是三角函数公式大全:操作方法 01 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B) = (tanA-tanB)/(1+tanAtanB) cot(A+B) = (cotAcotB-1)/(cotB+cotA) cot(A-B) = (cotAcotB+1)/(cotB-cotA)

02 倍角公式 tan2A = 2tanA/(1-tan^2 A) Sin2A=2SinA?CosA Cos2A = Cos^2 A--Sin^2 A =2Cos^2 A—1 =1—2sin^2 A 三倍角公式 sin3A = 3sinA-4(sinA)^3; cos3A = 4(cosA)^3 -3cosA -a) tan3a = tan a ? tan(π/3+a)? tan(π/3 半角公式 --cosA)/2} sin(A/2) = √{(1 cos(A/2) = √{(1+cosA)/2} --cosA)/(1+cosA)} tan(A/2) = √{(1 cot(A/2) = √{(1+cosA)/(1 -cosA)} tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA)

(完整)2019-2020年高考数学大题专题练习——三角函数(一)(含解析).doc

2019-2020 年高考数学大题专题练习 —— 三角函数(一) 1. 【山东肥城】 已知函数 f ( x) 2sin 2 x 2sin 2 ( x) , x R . ( 1)求函数 y f ( x) 的对称中心; 6 ( 2)已知在 △ABC 中,角 A 、B 、C 所对的边分别为 a , b , c ,且 f ( B 6 ) b c , ABC 的外接圆半径为 3 ,求 △ABC 周长的最大值 . 2 2a 【解析】 f ( x) 1 cos2 x 1 cos2( x ) cos(2 x ) cos2 x 6 3 1 3 sin 2x cos 2x cos2x 2 2 3 sin 2x 1 cos2x sin(2 x 6 ) . 2 2 (1)令 2x k ( k Z ),则 x k ( k Z ), 6 2 12 所以函数 y f ( x) 的对称中心为 ( k ,0) k Z ; 2 12 (2)由 f ( B ) b c ,得 sin( B ) b c ,即 3 sin B 1 cos B b c , 2 6 2a 6 2a 2 2 2a 整理得 3a sin B a cos B b c , 由正弦定理得: 3 sin A sin B sin A cos B sin B sin C , 化简得 3 sin A sin B sin B cos Asin B , 又因为 sin B 0 , 所以 3 sin A cos A 1 ,即 sin( A 1 , 6 ) 2 由 0 A ,得 A 5 , 6 6 6 所以 A ,即 A 3 , 6 6 又 ABC 的外接圆的半径为 3 , 所以 a 2 3 sin A 3 ,由余弦定理得

专题四 三角函数与解三角形第十二讲 解三角形答案

专题四 三角函数与解三角形 第十二讲 解三角形 答案部分 1.A 【解析】因为2 13 cos 2cos 121255 =-=?-=-C C ,所以由余弦定理, 得222 32cos 251251()325 =+-?=+-???-=AB AC BC AC BC C , 所以=AB A . 2.C 【解析】根据题意及三角形的面积公式知222 1sin 24 a b c ab C +-=, 所以222sin cos 2a b c C C ab +-= =,所以在ABC ?中,4 C π =.故选C . 3.A 【解析】由sin (12cos )2sin cos cos sin B C A C A C +=+, 得sin 2sin cos sin cos sin B B C A C B +=+, 即2sin cos sin cos B C A C =,所以2sin sin B A =,即2b a =,选A . 4.A 【解析】由余弦定理得213931AC AC AC =++?=,选A. 5.C 【解析】设△ABC 中角A ,B ,C 的对边分别是a ,b ,c ,由题意可得 1sin 342a c π== ,则2 a c =.在△ABC 中,由余弦定理可得 222222295 322 b a c c c c c =+-= +-= ,则b =. 由余弦定理,可得22 22 2 2 59cos 2c c c b c a A bc +-+-===C . 6.B 【解析】 11 sin 22 AB BC B ??= ,∴sin 2B =,所以45B =或135B =. 当45B = 时,1AC = =, 此时1,AB AC BC ===90A =与“钝角三角形”矛盾; 当135B = 时,AC = =.

高考数学-三角函数大题综合训练

三角函数大题综合训练 1.(2016?白山一模)在△ABC中,角A,B,C所对的边分别为a,b,c,已知= (1)求角C的大小, (2)若c=2,求使△ABC面积最大时a,b的值. 2.(2016?广州模拟)在△ABC中,角A、B、C对应的边分别是a、b、c,已知3cosBcosC+2=3sinBsinC+2cos2A.(I)求角A的大小; (Ⅱ)若△ABC的面积S=5,b=5,求sinBsinC的值. 3.(2016?成都模拟)已知函数f(x)=cos2x﹣sinxcosx﹣sin2x. (Ⅰ)求函数f(x)取得最大值时x的集合; (Ⅱ)设A、B、C为锐角三角形ABC的三个内角,若cosB=,f(C)=﹣,求sinA的值. 4.(2016?台州模拟)已知a,b,c分别是△ABC的三个内角A,B,C所对的边,且c2=a2+b2﹣ab. (1)求角C的值; (2)若b=2,△ABC的面积,求a的值. 5.(2016?惠州模拟)如图所示,在四边形ABCD中,∠D=2∠B,且AD=1,CD=3,cosB=. (Ⅰ)求△ACD的面积; (Ⅱ)若BC=2,求AB的长. 6.(2015?山东)△ABC中,角A,B,C所对的边分别为a,b,c,已知cosB=,sin (A+B)=,ac=2,求sinA和c的值. 7.(2015?新课标I)已知a,b,c分别是△ABC内角A,B,C的对边,sin2B=2sinAsinC. (Ⅰ)若a=b,求cosB; (Ⅱ)设B=90°,且a=,求△ABC的面积. 8.(2015?湖南)设△ABC的内角A,B,C的对边分别为a,b,c,a=btanA. (Ⅰ)证明:sinB=cosA; (Ⅱ)若sinC﹣sinAcosB=,且B为钝角,求A,B,C. 10.(2015?湖南)设△ABC的内角A、B、C的对边分别为a、b、c,a=btanA,且B为钝角. (Ⅰ)证明:B﹣A=; (Ⅱ)求sinA+sinC的取值范围. 11.(2015?四川)已知A、B、C为△ABC的内角,tanA,tanB是关于方程x2+px﹣p+1=0(p∈R)两个实根.(Ⅰ)求C的大小 (Ⅱ)若AB=3,AC=,求p的值.

三角函数与解三角形-专题复习

专题一 三角函数与解三角形 一、任意角、弧度制及任意角的三角函数 1、弧度制的定义与公式: 定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角. 弧度记作rad. 公式 角的弧度数公式 r =α 角度与弧度的换算 ①rad 180 1π=? ② 弧长公式 扇形面积公式 2、任意角三角函数(正弦、余弦、正切)的定义 第一定义:设是任意角,它的终边与单位圆交于点P(x,y),则 第二定义:设 是任意角,它的终边上的任意一点 P(x,y),则 . 考点1 三角函数定义的应用 例1 .已知角α的终边在直线043=+y x 上,则=++αααtan 4cos 5sin 5 . 变式:(1)已知角α的终边过点)30sin 6,8(? --m P ,且5 4 cos - =α,则m 的值为 . (2)在直角坐标系中,O 是原点,A (3,1),将点A 绕O 逆时针旋转90°到B 点,则B 点坐标为__________. (3)4tan 3cos 2sin 的值( ) A .小于0 B .大于0 C .等于0 D .不存在 考点2 扇形弧长、面积公式的应用 例 2.已知扇形的半径为10cm,圆心角为? 120,则扇形的弧长为 面积为 . 变式:已知在半径为10的圆O 中,弦AB 的长为10,则弦AB 所对的圆心角α的大小 为 ,α所在的扇形弧长 为 ,弧所在的弓形的面积S 为 .

二、同角三角函数的基本关系及诱导公式 1、1cos sin 2 2=+αα α αcos tan = 2、三角函数的诱导公式 例1.已知α是三角形的内角,且.5 cos sin =+αα (1)求αtan 的值; (2)把α α22sin cos 1 +用αtan 表示出来,并求其值. 变式:1、已知α是三角函数的内角,且3 1 tan -=α,求ααcos sin +的值. 2、已知.34tan -=α(1)求α αααcos 2sin 5cos 4sin +-的值;(2)求αααcos sin 2sin 2 +的值. 3.若cos α+2sin α=-5,则tan α=________.

2020高考数学专项复习《三角函数10道大题》(带答案)

4 2 ) 三角函数 1.已知函数 f (x ) = 4 c os x s in(x + (Ⅰ)求 f (x ) 的最小正周期; ) -1. 6 (Ⅱ)求 f (x ) 在区间[- , ] 上的最大值和最小值. 6 4 2、已知函数 f (x ) = sin(2x + ) 3 + sin(2x - 3 + 2 cos 2 x - 1, x ∈ R . (Ⅰ)求函数 f (x ) 的最小正周期; (Ⅱ)求函数 f (x ) 在区间[- , ] 上的最大值和最小值. 4 4 3、已知函数 f (x ) = tan(2x + ), 4 (Ⅰ)求 f (x ) 的定义域与最小正周期; ? ? (II )设∈ 0, ? ,若 f ( ) = 2 cos 2, 求的大小 ? ? 4、已知函数 f (x ) = (sin x - cos x ) sin 2x . sin x (1) 求 f (x ) 的定义域及最小正周期; (2) 求 f (x ) 的单调递减区间. 5、 设函数 f (x ) = cos(2x + + sin 2 x . 2 4 (I )求函数 f (x ) 的最小正周期; ( II ) 设 函 数 1 g (x ) 对 任 意 x ∈ R , 有 g (x + 2 = g (x ) , 且 当 x ∈[0, ] 时 , 2 g (x ) = - f (x ) ,求函数 g (x ) 在[-, 0] 上的解析式. 2 2 ) )

3 + = 6、函数 f (x ) = A sin(x - 称轴之间的距离为 , 2 ) +1( A > 0,> 0 )的最大值为 3, 其图像相邻两条对 6 (1)求函数 f (x ) 的解析式; (2)设∈(0, ) ,则 f ( ) = 2 ,求的值. 2 2 7、设 f ( x ) = 4cos( ωx - π )sin ωx + cos 2ωx ,其中> 0. 6 (Ⅰ)求函数 y = f ( x ) 的值域 (Ⅱ)若 y = f ( x ) 在区间?- 3π , π? 上为增函数,求 的最大值. ?? 2 2 ?? 8、函数 f (x ) = 6 cos 2 x + 2 3 cos x - 3(> 0) 在一个周期内的图象如图所示, A 为 图象的最高点, B 、C 为图象与 x 轴的交点,且?ABC 为正三角形. (Ⅰ)求的值及函数 f (x ) 的值域; 8 3 (Ⅱ)若 f (x 0 ) 5 ,且 x 0 ∈(- 10 2 , ) ,求 f (x 0 1) 的值. 3 3 9、已知 a , b , c 分别为?ABC 三个内角 A , B , C 的对边, a cos C + 3a sin C - b - c = 0 (1)求 A ; (2)若 a = 2 , ?ABC 的面积为 ;求b , c . 10、在 ? ABC 中,内角 A ,B ,C 的对边分别为 a ,b ,c .已知 cos A cos C . = 2 ,sin B = 5 3 (Ⅰ)求 tan C 的值; (Ⅱ)若 a = 2 ,求? ABC 的面积.

相关文档
相关文档 最新文档