文档库 最新最全的文档下载
当前位置:文档库 › 食品中总汞检测方法的研究进展

食品中总汞检测方法的研究进展

食品中总汞检测方法的研究进展
食品中总汞检测方法的研究进展

水质检测方法

水质化验分析方法(常规) 1水质pH值的测定玻璃电极法 水质-pH值的测定一玻璃电极法 1.1范围 1.1.1本方法适用于饮用水、地面水及工业废水pH值的测定。 1.1.2水的颜色、浊度、胶体物质、氧化剂、还原剂及较高含盐量均不干扰测定;但在pH小于1的强酸性溶液中,会有所谓酸误差,可按酸度测定;在pH大于1;的碱性溶液中,因有大量钠离子存在,产生误差,使读数偏低,通常称为钠差。消除钠差的方法,除了使用特制的低钠差电极外,还可以选用与被测溶液的pH值相近似的标准缓冲溶液对仪器进行校 正。温度影响电极的电位和水的电离平衡。须注意调节仪器的补偿装置与溶液的温度一致,并使被测样品与校正仪器用的标准缓冲溶液温度误差在土1C之内。 1.2原理 pH是从操作上定义的(此定义引自GB3100-31C2-82 “量和单位))第151页)?对于溶液X,测出伽伐尼电池参比电极IKC1浓溶液11溶液XIH2IPt的电动势Ex。将未知pH(x) 的溶液x换成标准pH溶液S,同样测出电池的电动势E。,则pH(X) =pH(S)+(Es-Ex)F/(RTInl0)因此,所定义的pH是无量纲的量。pH没有理论上的意义,萁定义为一种实用定义。但是在物质的量浓度小于O.lmol/dm3的稀薄水溶液有限范围,既非强 酸性又非强碱性(2

(完整word版)重金属检测方法汇总

重金属检测方法汇总 重金属检测方法及应用 一、重金属的危害特性 从环境污染方面所说的重金属,实际上主要是指汞、镉、铅、铬、砷等金属或类金属,也指具有一定毒性的一般重金属,如铜、锌、镍、钴、锡等。我们从自然性、毒性、活性和持久性、生物可分解性、生物累积性,对生物体作用的加和性等几个方面对重金属的危害稍作论述。 (一)自然性: 长期生活在自然环境中的人类,对于自然物质有较强的适应能力。有人分析了人体中60多种常见元素的分布规律,发现其中绝大多数元素在人体血液中的百分含量与它们在地壳中的百分含量极为相似。但是,人类对人工合成的化学物质,其耐受力则要小得多。所以区别污染物的自然或人工属性,有助于估计它们对人类的危害程度。铅、镉、汞、砷等重金属,是由于工业活动的发展,引起在人类周围环境中的富集,通过大气、水、食品等进入人体,在人体某些器官内积累,造成慢性中毒,危害人体健康。 (二)毒性: 决定污染物毒性强弱的主要因素是其物质性质、含量和存在形态。例如铬有二价、三价和六价三种形式,其中六价铬的毒性很强,而三价铬是人体新陈代谢的重要元素之一。在天然水体中一般重金属产生毒性的范围大约在1~10mg/L之间,而汞,镉等产生毒性的范围在0.01~0.001mg/L之间。 (三)时空分布性: 污染物进入环境后,随着水和空气的流动,被稀释扩散,可能造成点源到面源更大范围的污染,而且在不同空间的位置上,污染物的浓度和强度分布随着时间的变化而不同。(四)活性和持久性: 活性和持久性表明污染物在环境中的稳定程度。活性高的污染物质,在环境中或在处理过程中易发生化学反应,毒性降低,但也可能生成比原来毒性更强的污染物,构成二次污染。如汞可转化成甲基汞,毒性很强。与活性相反,持久性则表示有些污染物质能长期地保持其危害性,如重金属铅、镉等都具有毒性且在自然界难以降解,并可产生生物蓄积,长期威胁人类的健康和生存。 (五)生物可分解性: 有些污染物能被生物所吸收、利用并分解,最后生成无害的稳定物质。大多数有机物都有被生物分解的可能性,而大多数重金属都不易被生物分解,因此重金属污染一但发生,治理更难,危害更大。 (六)生物累积性: 生物累积性包括两个方面:一是污染物在环境中通过食物链和化学物理作用而累积。二是污染物在人体某些器官组织中由于长期摄入的累积。如镉可在人体的肝、肾等器官组织中蓄积,造成各器官组织的损伤。又如1953年至1961年,发生在日本的水俣病事件,无机汞在海水中转化成甲基汞,被鱼类、贝类摄入累积,经过食物链的生物放大作用,当地居民食用后中毒。 (七)对生物体作用的加和性: 多种污染物质同时存在,对生物体相互作用。污染物对生物体的作用加和性有两类:一类是协同作用,混合污染物使其对环境的危害比污染物质的简单相加更为严重;另一类是拮抗作用,污染物共存时使危害互相削弱。 二、重金属的定量检测技术

金属检测手段

无损检测中的UT RT MT PT ET 都是什么意思? 射线检测 Radiographic Testing(缩写 RT); 超声检测 Ultrasonic Testing(缩写 UT); 磁粉检测 Magnetic particle Testing(缩写 MT); 渗透检测 Penetrant Testing (缩写 PT); 涡流检测 Eddy Current Testing (缩写 ET); 一、射线照相法(RT) 是指用X射线或g射线穿透试件,以胶片作为记录信息的器材的无损检测方法,该方法是最基本的,应用最广泛的一种非破坏性检验方法。 1、射线照相检验法的原理:射线能穿透肉眼无法穿透的物质使胶片感光,当X射线或r射线照射胶片时,与普通光线一样,能使胶片乳剂层中的卤化银产生潜影,由于不同密度的物质对射线的吸收系数不同,照射到胶片各处的射线能量也就会产生差异,便可根据暗室处理后的底片各处黑度差来判别缺陷。 2、射线照相法的特点:射线照相法的优点和局限性总结如下: a.可以获得缺陷的直观图像,定性准确,对长度、宽度尺寸的定量也比较准确; b.检测结果有直接记录,可长期保存; c. 对体积型缺陷(气孔、夹渣、夹钨、烧穿、咬边、焊瘤、凹坑等)检出率很高,对面积型缺陷(未焊透、未熔合、裂纹等),如果照相角度不适当,容易漏检; d.适宜检验厚度较薄的工件而不宜较厚的工件,因为检验厚工件需要高能量的射线设备,而且随着厚度的增加,其检验灵敏度也会下降; e.适宜检验对接焊缝,不适宜检验角焊缝以及板材、棒材、锻件等; f.对缺陷在工件中厚度方向的位置、尺寸(高度)的确定比较困难; g.检测成本高、速度慢; h.具有辐射生物效应,无损检测超声波探伤仪能够杀伤生物细胞,损害生物组织,危及生物器官的正常功能。 总的来说,RT的特性是——定性更准确,有可供长期保存的直观图像,总体成本相对较高,而且射线对人体有害,检验速度会较慢。无损检测X光机用于工业部门的工业检测X光机通常为工业无损检测X光机(无损耗检测),此类便携式X光机可以检测各类工业元器件、电子元件、电路内部。例如插座插头橡胶内部线路连接,二极管内部焊接等的检测。BJI-XZ、BJI-UC等工业检测X光机是可连接电脑进行图像处理的X光机,此类工业检测便携式X光机为工厂家电维修领域提供了出色的解决方案。 二、超声波检测(UT) 1)、超声波检测的定义:通过超声波与试件相互作用,就反射、透无损检测设备射和散射的波进行研究,对试件进行宏观缺陷检测、几何特性测量、组织结构和力学性能变化的检测和表征,并进而对其特定应用性进行评价的技术。2)、超声波工作的原理:主要是基于超声波在试件中的传播特性。 a.声源产生超声波,采用一定的方式使超声波进入试件; b.超声波在试件中传播并与试件材料以及其中的缺陷相互作用,使其传播方向或特征被改变; c.改变后的超声波通过检测设备被接收,并可对其进行处理和分析; d.根据接收的超声波的特征,评估试件本身及其内部是否存在缺陷及缺陷的特性。

金属硬度检测方法

金属硬度检测方法 作者:张凤林 硬度是评定金属材料力学性能最常用的指标之一。硬度的实质是材料抵抗另一较硬材料压入的能力。硬度检测是评价金属力学性能最迅速、最经济、最简单的一种试验方法。硬度检测的主要目的就是测定材料的适用性,或材料为使用目的所进行的特殊硬化或软化处理的效果。对于被检测材料而言,硬度是代表着在一定压头和试验力作用下所反映出的弹性、塑性、强度、韧性及磨损抗力等多种物理量的综合性能。由于通过硬度试验可以反映金属材料在不同的化学成分、组织结构和热处理工艺条件下性能的差异,因此硬度试验广泛应用于金属性能的检验、监督热处理工艺质量和新材料的研制。 金属硬度检测主要有两类试验方法。一类是静态试验方法,这类方法试验力的施加是缓慢而无冲击的。硬度的测定主要决定于压痕的深度、压痕投影面积或压痕凹印面积的大小。静态试验方法包括布氏、洛氏、维氏、努氏、韦氏、巴氏等。其中布、洛、维三种试验方法是应用最广的,它们是金属硬度检测的主要试验方法。这里的洛氏硬度试验又是应用最多的,它被广泛用于产品的检验,据统计,目前应用中的硬度计70%是洛氏硬度计。另一类试验方法是动态试验法,这类方法试验力的施加是动态的和冲击性的。这里包括肖氏和里氏硬度试验法。动态试验法主要用于大型的,不可移动工件的硬度检测。 各种金属硬度计就是根据上述试验方法设计的。下面分别介绍基于各种试验方法的硬度计的原理、特点与应用。 1.布氏硬度计(GB/T231.1—2002) 1.1布氏硬度计原理 对直径为D的硬质合金球压头施加规定的试验力,使压头压入试样表面,经规定的保持时间后,除去试验力,测量试样表面的压痕直径d,布氏硬度用试验力除以压痕表面积的商来计算。 HB =F / S ……………… (1-1) =F / πDh ……………… (1-2) 式中: F ——试验力,N; S ——压痕表面积,mm; D ——球压头直径,mm; h ——压痕深度, mm; d ——压痕直径,mm。 1、2布氏硬度计的特点: 布氏硬度试验的优点是其硬度代表性好,由于通常采用的是10 mm直径球压头,3000kg试验力,其压痕面积较大,能反映较大范围内金属各组成相综合影响的平均值,而不受个别组成相及微小不均匀度的影响,因此特别适用于测定灰铸铁、轴承合金和具有粗大晶粒的金属材料。它的试验数据稳定,重现性好,精度高于洛氏,低于维氏。此外布氏硬度值与抗拉强度值之间存在较好的对应关系。

水质检测方法

水质化验分析方法(常规) 1水质pH值的测定玻璃电极法 水质-pH值的测定—玻璃电极法 1.l 围 1.1.1 本方法适用于饮用水、地面水及工业废水pH值的测定。 1.1.2水的颜色、浊度、胶体物质、氧化剂、还原剂及较高含盐量均不干扰测定;但在pH小于1的强酸性溶液中,会有所谓酸误差,可按酸度测定;在pH大于1;的碱性溶液中,因有大量钠离子存在,产生误差,使读数偏低,通常称为钠差。消除钠差的方法,除了使用特制的低钠差电极外,还可以选用与被测溶液的pH值相近似的标准缓冲溶液对仪器进行校正。温度影响电极的电位和水的电离平衡。须注意调节仪器的补偿装置与溶液的温度一致,并使被测样品与校正仪器用的标准缓冲溶液温度误差在±1℃之。 1.2 原理 pH是从操作上定义的(此定义引自GB3100-31C2-82“量和单位))第151页).对于溶液X,测出伽伐尼电池参比电极IKC1浓溶液ll溶液XIH2IPt的电动势Ex。将未知pH(x)的溶液x换成标准pH溶液S,同样测出电池的电动势E。,则pH(X) =pH(S)+(Es-Ex)F/(RTlnl0)因此,所定义的pH是无量纲的量。pH没有理论上的意义,萁定义为一种实用定义。但是在物质的量浓度小于O.lmol/dm3的稀薄水溶液有限围,既非强酸性又非强碱性(2

养殖水质检测常用的方法有哪些

养殖水质检测常用的方法有哪些? 养殖水质检测常用的方法有哪些?众所周知,养殖生产成功的关键在于水,只有管好水,养殖的成功才有保障。保持良好的水质环境,水质检测是至关重要的。水质检测的方法有很多,从传统的经验法到化学法再到目前正在推广的仪器法,经历了漫长的三个阶段。 一、传统经验法 是指养殖人员凭借多年的工作经验,人为地判断水质的各项指标。如鱼类摄食减少,则可能是pH值偏高或偏低,也有可能是氨氮超标;鱼类集中于水面,可能是水中缺氧等。这些人为的判断只是一个粗略的结果,误差是相当大的,而且随着养殖行业的发展,各企业的养殖规模越来越大,养殖的品种也越来越多,养殖的质量要求在不断提高,那么养殖水质的变化就是多样的,造成水质改变的原因更是多样的,例如投喂饲料、投放药物、自然环境、养殖品种数量的变化等因素,都会造成水质改变,单纯依靠人为经验的判断,已根本无法满足需要,有时甚至会带来巨大的损失。因此,这种依靠经验判断水质的土办法虽然运用了很长时间,但随着科学的进步和人们观念的转变,养殖专家的经验依然是各企业的宝贵财富,但作为检测水质的方法,已经逐渐被淘汰了。 二、化学法 在很多人依靠经验判断水质好坏的时候,采用化学方法检测水质还不被广泛利用,这一方法的最大优势就是检测数据准确可靠,但为什么没有推广应用呢?有几个方面的原因:第一,化学方法的检测过程比较复杂,需要较长的时间,要求检测人员具备相当的专业技能,才能准确的检测,如化学滴定法。有的化学检测试纸,如pH试纸,一般只能进行粗略的测量,如观察试纸颜色判断pH值在7~8之间,而无法得到准确的数字;另一方面,试纸容易受到外界环境(如温度、湿度、光照等)的影响,会导致试纸失效,粗略的测量也无法保证了。第二,化学法检测都需要取样测量,而水样采集到实验室时,各项指标都可能已发生变化,因而最终的检测结

金属检测常规方法

主流金属制品表面缺陷在线检测方法。 一、漏磁检测 漏磁检测技术广泛应用于钢铁产品的无损检测。其检测原理是,利用磁源对被测材料局部磁化,如材料表面存在裂纹或坑点等缺陷,则局部区域的磁导率降低、磁阻增加,磁化场将部分从此区域外泄,从而形成可检验的漏磁信号。在材料内部的磁力线遇到由缺陷产生的铁磁体间断时,磁力线将会发生聚焦或畸变,这一畸变扩散到材料本身之外,即形成可检测的磁场信号。采用磁敏元件检测漏磁场便可得到有关缺陷信息。因此,漏磁检测以磁敏电子装置与磁化设备组成检测传感器,将漏磁场转变为电信号提供给二次仪表。 漏磁检测技术的整个过程为:激磁-缺陷产生漏磁场-传感器获取信号-信号处理-分析判断。在磁性无损检测中,磁化时实现检测的第一步,它决定着被测量对象(如裂纹)能不能产出足够的可测量和可分辨的磁场信号,同时也影响着检测信号的性能,故要求增强被测磁化缺陷的漏磁信号。被测构件的磁化由磁化器来实现,主要包括磁场源和磁回路等部分。因此,针对被测构件特点和测量目的,选择合适的磁源和设计磁回路是磁化器优化的关键。 漏磁检测金属表面缺陷的物理基础使带有缺陷的铁磁件在磁场 中被磁化后,在缺陷处会产生漏磁场,通过检测漏磁场来辩识有无缺陷。因此,研究缺陷漏磁场的特点,确定缺陷的特征,就成为漏磁检测理论和技术的关键。要测量漏磁场,测量装置须具有较高的灵敏度,特别是能测空间点磁场,还应有较大的测量范围和频带;测量装置须

具有二维及三维的精确步进或调整能力,以确定传感器的空间位置;同时,应用先进的信号处理技术去除噪声,确定实际的漏磁场量。Foerster,Athertion 已成功应用霍尔器件检测缺陷,霍尔器件可在z—Y二维空间步进的最小间隔分别为2μm和0.1μm。 漏磁检测不仅能检测表面缺陷,且能检测内部微小缺陷;可检测到5X10mm。的微小缺陷;造价较低廉。其缺点是,只能用于金属材料的检测,无法识别缺陷种类。目前,漏磁检测在低温金属材料缺陷检测方面已进入实用阶段。如日本川崎公司千叶厂于1993年开发出在线非金属夹杂物检测装置;日本NKK公司福冈厂于同年研制出一种超高灵敏度的磁敏传感器,用于检测钢板表面缺陷。 二、红外线检测与技术 红外线检测是通过高频感应线圈使连铸板坯表面产生感应电流,在高频感应的集肤效应作用下,其穿透深度小于1 mm,且在表面缺陷区域的感应电流会导致单位长度的表面上消耗更多电能,引起连铸板坯局部表面的温度上升。该升温取决于缺陷的平均深度、线圈工作频率、特定输入电能,以及被检钢坯电性能、热性能、感应线圈宽度和钢运动速度等因素。当其它各种因素在一定范围内保持恒定时,就可通过检测局部温升值来计算缺陷深度,而局部温升值可通过红外线检测技术加以检定。利用该技术,挪威Elkem公司于1990年研制出Ther—mOMatic连铸钢坯自动检测系统,日本茨城大学工学部的冈本芳三等在检测板坯试件表面裂纹和微小针孔的实验研究中也利用此法得到较满意的结果。

水质检测方法总结(1)

水质 化学需氧量的测定(GB 11914--89) 1 应用范围 本标准适用于各种类型的含COD 值大于30mg/L 的水样,对未经稀释的水样的测定上限为700mg/L 。 本标准不适用于含氯化物浓度大于1000mg/L 的水样。 2 试剂配制 2.1 蒸馏水或同等纯度的水 2.2 硫酸银(Ag 2SO 4),分析纯 2.3 硫酸汞(HgSO 4),分析纯 2.4 硫酸(H 2SO 4),密度为1.84g/cm 3 2.5 硫酸银—硫酸:向500mL 硫酸中加入5g 硫酸银,放置1-2天使之溶解,并混匀,使用 前小心摇动。 2.6 重铬酸钾标准溶液C (6 1K 2Cr 2O 7)= 0.250mol/L :将12.258g 在105℃干燥2h 后的重铬酸钾溶于水中,稀释至1000mL 。 2.7 硫酸亚铁铵标准滴定溶液C[(NH 4)2Fe(SO 4)2·6H 2O] ≈ 0.10mol/L :溶解39g 硫酸亚铁 铵[(NH 4)2Fe(SO 4)2·6H 2O]于水中,加入20mL 硫酸,待其溶液冷却后稀释至1000mL 。 2.8 邻苯二甲酸氢钾标准溶液500mg/L :称取105℃时干燥2h 的邻苯二甲酸氢钾0.4251g 溶于水,并稀释至1000mL ,混匀。 2.9 1,10—菲啰啉指示剂溶液:溶解0.7g 七水合硫酸亚铁(FeSO 4·7H 2O )于50mL 水中, 加入1.5g 1,10—菲啰啉,搅动至溶解,加水稀释至100mL 。 3 试剂标定 3.1 硫酸亚铁铵标准滴定溶液C[(NH 4)2Fe(SO 4)2·6H 2O] ≈ 0.10mol/L 标定:每日临用前, 必须用重铬酸钾标准溶液准确标定此溶液的浓度。取10mL 重铬酸钾标准溶液置于 250mL 三角烧瓶中,用水稀释至约100mL ,加入30mL 硫酸,混匀,冷却后,加3滴1,10— 菲啰啉指示剂溶液,用硫酸亚铁铵标准滴定溶液滴定至溶液的颜色由黄色经蓝绿色变 为红褐色,即为终点。记录下硫酸亚铁铵的消耗量。 C[(NH 4)2Fe(SO 4)2·6H 2O] = V 50.2 式中:V ------ 滴定时消耗硫酸亚铁铵的毫升数。 3.2 重铬酸钾标准溶液C (6 1K 2Cr 2O 7)= 0.250mol/L 纯度及操作步骤检验:按操作步骤分

常用水质检测方法

总氮 1.方法:碱性过硫酸钾消解紫外分光光度法 总磷 1.方法:钼酸铵分光光度法 化学需氧量(COD) 1.方法: 1.1.重铬酸盐法(重铬酸钾法):---国标 本方法适用于各种类型的含COD 值大于30mg/L 的水样,对未经稀释的水样的测定上限为700mg/L。 本方法不适用于含氯化物浓度大于1000mg/L(稀释后)的含盐水。 1.2. 密封催化消解法: 本方法可以测定地表水生活污水工业废水(包括高盐废水)的化学需氧量水样。因其 化学需氧量值有高有低,因此在消解时应选择不同浓度的重铬酸钾消解液进行消解。请参考下表选择消解液: 1.3. 催化快速法: 本方法适用于焦化,造纸,石化,化工,印染,皮毛,制革,酿造,试剂,冶金,木材,加工,日化,助剂,制药,化肥及食品加工等多种工业废水中化学需氧量的测定。 当使用30mm光程比色皿时不经稀释的废水COD值测定范围为60~1000 mg/L。 氯离子浓度高于900mg/L干扰测定。故在消化水样前加入硫酸汞,使其与氯形成络合物以消除干扰。氯离子高于900mg/L的水样,应先做定量稀释,使Cl-含量降至900mg/L以下再行测定。 五日生化需氧量(BOD5) 1.方法:稀释与接种法: 本方法适用于BOD5 大于或等于2mg/L 并且不超过6000mg/L 的水样。BOD5大于 6000mg/L 的水样仍可用本方法,但由于稀释会造成误差,有必要要求对测定结果做慎重的说明。 溶解氧(DO) 1.方法: 1.1.碘量法: 碘量法是测定水中溶解氧的基准方法。在没有干扰的情况下,此方法适用于各种溶解氧浓度大于0.2mg/L 和小于氧的饱和浓度两倍(约20mg/L)的水样。易氧化的有机物,如丹宁酸,腐植酸和木质素等会对测定产生干扰。可氧化的硫的化合物,如硫化物硫脲,也如同易于消耗氧的呼吸系统那样产生干扰。当含有这类物质时宜采用电化学探头法。

金属间相的标准测试方法A923 C法

标识A923-06 检测二相奥氏体/铁素体不锈钢里有害的金属间相的标准测试方法 此标准是在标识A923-06下发布的;仅随着此标识号的是最初版本的年份,如果有修订版的,即为最后版本的年份。括号中的数表示最后重新审定通过的年份。上标(ε)表示自从上次版本或者重新审定通过的之后的编辑的修改。 1.范围 1.1 这些测试方法的目的是能够检验明显地影响到韧性或者抗腐蚀性的二相奥氏体/铁素体不锈钢里有害的金属间相的存在。这些测试方法将不必要能够测试由于其他的原因导致的韧性和耐腐蚀性的丧失。 1.2 二相(奥氏体/铁素体)不锈钢容易受到在暴露在温度范围大概600到1750℉(320到955℃)时的金属间化合物形成的影响。这些沉淀反应的速度是每一片的合成、热的或者热机械历史的作用。这些相的存在对韧性和耐腐蚀性有害。 1.3 对二相不锈钢的正确的热处理能够消除这些有害的相。这些产品的快速冷却提供了通过紧随的热暴露产生的有害相形成的最大的抵抗力。 1.4 与适用的产品规范的化学和机械要求一致并不表示在产品中没有有害相的存在。 1.5 这些测试方法包括如下: 1.5.1 测试方法A-氢氧化钠腐蚀测试来鉴别二相不锈钢的腐蚀结构(段3-7)。 1.5.2 测试方法B-摆锤冲击测试来鉴别二相不锈钢的结构(段8-13) 1.5.3 测试方法C-氯化铁腐蚀测试来鉴别二相不锈钢的结构。(段14-20) 1.6 通过以上三种测试方法都可以容易地测试出有害的金属间相,只要选择了合适的位置和取向的样品。因为金属间相的存在是温度和冷却速率的作用,测试必须在经受最像产生这种金属间相条件的材料的区域进行。在通常的热处理情况下,这个区域是冷却最缓慢的区域。除非对于快速冷却的材料,就有必要从最缓慢冷却地材料区域取样。 1.7 测试并不能确定有害相的精确性质,而能确定影响到韧性或者抗腐蚀性的有害的金属间相的存在。 1.8 热暴露的相关性的例子,金属间相的存在和韧性及耐腐蚀的降级在附录X1和附录X2里给出。 1.9 在用或者英寸-英镑或者SI单位的给出的数值被认为是标准的。在括号中给出的数值仅做参考。 1.10 此标准的只要目的不是强调所有的安全考虑,如果有的话,是跟使用相关的。建立合适的安全和健康操作规程和决定在使用前规定性限制的适用性是此标准的使用者的责任。 2.参考的文件 2.1 ASTM标准 A370钢产品的机械测试的测试方法和定义 G48 使用氯化铁溶液对不锈钢和相关合金的点腐蚀和间隙腐蚀的测试方法。 测试方法A-氢氧化钠腐蚀测试来鉴别二相不锈钢的腐蚀结构 3.范围

水质常规指标检测方法

所谓水质指标是用以评价一般淡水水域、海水水域特性的重要参数。可以根据这些参数对水质的类型进行分类,对水体质量进行判断和综合评价。水质指标已形成比较完整的指标体系。 许多水质指标是表示水中某一种或一类物质的含量,常直接用其浓度表示,有些水质指标则是利用某一类物质的共同特性来间接反映其含量。例如水中有机物质具有易被氧化的共同特性,可用其耗氧量作为有机物含量的综合性指标;还有一些水质指标是同测定方法直接联系的,例如混浊度,色度等用人为规定的并配制某种人工标准溶液作为衡量的尺度。水质指标按其性质不同,可分为物理的,生物的和化学的指标。关于生物指标,根据水生生物的组成(种类与数量)以及它们的生态学特征而提出的各项指标已在有关课程中介绍。本节概要讨论一下几项常用的水质物理指标的含义。对于化学指标的含义将在本书的其他有关部门章节中作有关深入的讨论,这里按测定所使用的不同方法作粗略的分类。 (一)水质的物理指标 水体环境的物理指标项目颇多,包括水温、渗透压、混浊度(透明度)、色度、悬浮固体、蒸发残渣以及其它感官指标如味觉、嗅觉属性等等。 1、温度温度是最常用的物理指标之一。由于水的许多物理特性、水中进行的化学过程和生物过程都同温度有关,所以它经常是必须加以测定的。天然水的温度因水源的不同而异,地表水的温度与季节气候条件有关,其变化范围大约在0.1--30℃;地下水的温度则比较稳定,一般变化于8--12℃左右,而海水的温度变化范围为-2--30℃。 2、嗅与味被污染的水体往往具有不正常的气味,用鼻闻到的称为嗅,口尝到的称为味。有时嗅与味不能截然分开。常常根据水的气味,可以推测水中所含杂质和有害成分。水中的嗅与味的来源可能有:水生植物或微生物的繁殖和衰亡;有机物的腐败分解;溶解气体H2S等;溶解的矿物盐或混入的泥土;工业废水中的各种杂质,如石油、酚等;饮用水消毒过程的余氯等。不同的物质有着不同的气味,例如湖沼水因藻类繁生或有机物产生的鱼腥及霉烂气味;浑浊河水常含有泥土的涩味;温泉水常有硫酸味;有些地下水的H2S气味;含溶

重金属测定方法

重金属总量的测定采用消化→原子吸收光谱仪测定; 重金属有效态的测定采用震荡提取→原子吸收光谱仪测定 1 土壤消化(王水+HClO4法) 称取风干土壤(过100目筛)0.1 g(精确到0.0001 g)于消化管中,加数滴水湿润,再加入3 ml HCl和1 ml HNO3(或加入配好的王水4~5mL),盖上小漏斗置于通风橱中浸泡过夜。第二天放入消化炉中,80~90℃消解30 min、100~110℃消解30 min、120~130℃消解1 h,取下置于通风处冷却。加入1 ml HClO4于100~110℃条件下继续消解30 min,120~130℃消解1 h。冷却,转移至20mL容量瓶中,定容,过滤至样品存储瓶中待测。 注:最高温度不可超过130℃。消化管底部只残留少许浅黄色或白色固体残渣时,说明消化已完全。如果还有较多土壤色固体存在,说明消化未完全,应继续120~130℃消化直至完全。 2植物消化(HNO3+H2O2法) 称取待测植物1~2g(具体根据该植物对重金属吸收能力的强弱而定)于消化管中,加入5ml HNO3,盖上小漏斗置于通风橱中浸泡过夜。第二天放入消化炉中,80~90℃消解30 min、100~110℃消解30 min、120~130℃消解1 h,取下置于通风处冷却。加入 1 ml H2O2,于100~110℃条件下继续消解30 min,120~130℃消解1 h。冷却,转移至20mL容量瓶中,定容,过滤至样品存储瓶中待测。 注:植物消化完全为透明液体,无残留。植物消化前是否需要干燥根据实验要求而定。 3土壤中重金属有效态的提取 铅、锌、铜、镉有效态的提取:提取液为0.1mol/L的HCl 砷有效态的提取:提取液为0.5mol/L的NaH2PO4 水土比:10:1~20:1 提取步骤:称取1g(精确的0.0001g)土壤样品于100mL锥形瓶中,加入15mL提取液(以

金属流线检查方法

? 重庆荆江汽车半轴有限公司 查看金属流线方法 1.金属流线的定义: .金属流线又叫——锻造流线。是热模锻件在型腔中流动情况的一种检查方法,如果流线是不正常的、乱流、回流、窝流等未按设计者的要求进行流动,就属于不正常。 2.金属流线查看前准备: “使用1:1盐酸水溶液加热到60~80度之间煮15分钟分钟”是热酸蚀,还可以用冷酸蚀的办法硝酸1份,盐酸3份或硫酸铜100g,盐酸和水各500ml; .想取得明显的金属流线主要在锻造过程中取得,让金属沿着一个方向变形就是了,跟锻造温度,含碳量,杂质量的关系不大.不过锻造温度,含碳量,杂质量对产品的最终产品性能影响较大; .看锻造零件的金属流线,把零件切开后进行腐蚀,然后看纹路是否有金属流线了;没有相应的国家标准,因为流线与锻件的外形有关,只要和外形一致就好了。模锻件检查金属的流线,一般用热酸洗; 。 金属的流线是金属在变形加工中较软的杂质被拉长形成的线,可已经热酸洗后观察。 流线是金属中的低熔点成分和带状组织偏析在轧制或挤压时伸展而形成的。同时,铸锭的晶粒在轧制过程中也被拉长成条状。经过再结晶加热过程能使长条形晶粒恢复成等轴晶粒,但是由于低熔点成分和

带状组织伸长所形成的条纹分布仍然存在。在钢材的纵向截面上经抛光和酸浸后,用肉眼可以看到这种条纹状的线条。这种宏观组织称为纤维组织,又称为流线。 不能认为合理分布的流线是一种缺陷。因为几乎所有经过轧制、挤压或锻造的金属型材、制件中都存在着流线。但是应认识到由于这种流线的分布,会引起在性能上各向异性反映。试验也表明:在钢中顺纤维方向切取的试样机械性能要比横纤维方向试样的高。因此,控制流线的合理分布;了解应力与流线分布及机械性能间的关系是至为重要的。 3.塑性成形金属在加热时组织和性能的变化 .加热时的组织和性能变化 要消除形变强化而产生的残余应力,必须对冷态下的塑性变形金属加热,因为金属塑性变形后晶体的晶格畸变,处于不稳定状态,它虽有自发地恢复到原来稳定状态的趋势,但在室温下,原子活动能量小,不可能自行恢复到未变形前的稳定状态。当加热后,原子活动能力增加,就能恢复到原来的稳定状态,消除晶格畸变和降低残余应力。随着加热温度的升高,再结晶过程可分为回复、再结晶和晶粒长大三个阶段。 再结晶温度可用经验关系式表示如下: T再(k)=熔 (k) <

水质分析结果检验方法

一、基本概念 1 标准差 (1)标准差的意义: 分析一组数据时,不仅要计算平均数反应其平均水平,还要用一些指标反应其变异程度的大小。例如有二组数据: 甲组 98 99 100 101 102 乙组 80 90 100 110 120 两组的均数都是100,但分布情况却不同。甲组比较集中,即变异较小,而乙组比较分散,即变异较大。所以对一组结果的描述,除说明其平均水平外,还要说明变异程度的大小。最常用的变异指标是用标准差表示,它的优点是比较精确和稳定。 (2) 标准差的计算:是将每个离均差平方后加起来除以自由度得方差,方差开方后即得标准差。 S2 =∑(X-X)2/n-1 S =√(X-X)2/n-1 例如同一水样测定5次氯化物含量(mg/l)如下,求其标准差。 20.20、20.50、20.65、20.30、20.55 X=20.44 X - 0.24 0.06 0.21 - 0.14 0.11 X2 0.058 0.004 0.044 0.020 0.012 ∑X2=0.138∑X2/n-1=0.138/4=0.034 S=√0.034 = 0.18 (3) 标准差的应用: a. 表示测定结果的离散程度,两组测定值在单位相同、均数相近的条件下,标准差越大,说明测定值的变异程度就越大,即测定值围绕均数的分布较离散,如标准差较小,表明测定值的变异较小,即测定值围绕均数的分布较密集,均数的代表性好。 b. 用标准差计算变异系数(相对标准偏差),当两均数相差较大时,不能直接用标准差比较其变异程度的大小,可用相对标准偏差比较,其算式为: RSD%=S/ X×100%

同标准差一样,相对标准偏差越小,说明测定结果的变异就小,反之就大。卫化学检验方法的精密度就是用相对标准偏差表示的。 2 标准误:描述样本均数的抽样误差,即样本均数与总均数的接近程度,称为样均数的标准误。样本数量越多,标准误就小。标准误小表示样本均数与总体均数较接近,总体的可靠性就大。要保证样本的可靠性,就得增加样本数。其算式为:Sx = S/√n 例如:已求得水中氯化物含量 X= 143.10mg/L,S=5.67mg/L, n =120,故标准误为:Sx=5.76/√120 =0.52mg/L 3. 精密度 (1) 精密度的定义: 指用一特定的分方法重复分析同一样品所得结果的一致程度。 (2)精密度的三个专用术语: a. 平行性:是指在同一实验室,当分析人员、分析设备和分析时间都相同时,用同一分析方法对同一样品进行两次或两次以上测定结果之间的符合程度。 b. 重复性:是指在同一实验室,当分析人员、分析时间有一项不同时,通常情况下是指分析时间的不同。用同一分析方法对同一样品进行多次以上测定结果之间的符合程度。一般情况下仪器法是5次,光度法和容量法是6次。 c. 再现性:是指在不同实验室,当分析人员、分析设备、甚至分析时间都不同,用同一分析方法对同一样品进行多次以上测定结果之间的符合程度。一般情况下仪器法是5次,光度法和容量法是6次。 (3) 日间精密度和日内精密度: a. 日间精密度:同一人用同一方法对同一样品在不同天测定结果的符合程度。 b. 日内精密度:同一人用同一方法对同一样品在一天内测定结果的符合程度。例如:用氟试剂分光光度法测定饮用水中氟化物含量。对低、高2种不同浓度的试样测定结果如下,求其重现性。 例如:用气相色谱法测定室内空气中苯系物,对质量浓度为2.5~20μg/mL的标准溶液重复进样5次,以确定日内重复性;对该溶液连续测定5天,每天测定1次,以确定日间重复性。

金属检测方法

重金属检测方法汇总重金属检测方法及应用一、重金属的危害特性从环境污染方面所说的重金属,实际上主要是指汞、镉、铅、铬、砷等金属或类金属,也指具有一定毒性的一般重金属,如铜、锌、镍、钴、锡等。我们从自然性、毒性、活性和持久性、生物可分解性、生物累积性,对生物体作用的加和性等几个方面对重金属的危害稍作论述。(一)自然性:长期生活在自然环境中的人类,对于自然物质有较强的适应能力。有人分析了人体中60多种常见元素的分布规律,发现其中绝大多数元素在人体血液中的百分含量与它们在地壳中的百分含量极为相似。但是,人类对人工合成的化学物质,其耐受力则要小得多。所以区别污染物的自然或人工属性,有助于估计它们对人类的危害程度。铅、镉、汞、砷等重金属,是由于工业活动的发展,引起在人类周围环境中的富集,通过大气、水、食品等进入人体,在人体某些器官内积累,造成慢性中毒,危害人体健康。(二)毒性:决定污染物毒性强弱的主要因素是其物质性质、含量和存在形态。例如铬有二价、三价和六价三种形式,其中六价铬的毒性很强,而三价铬是人体新陈代谢的重要元素之一。在天然水体中一般重金属产生毒性的范围大约在1~10mg/L之间,而汞,镉等产生毒性的范围在0.01~0.001mg/L之间。(三)时空分布性:污染物进入环境后,随着水和空气的流动,被稀释扩散,可能造成点源到面源更大范围的污染,而且在不同空间的位置上,污染物的浓度和强度分布随着时间的变化而不同。(四)活性和持久性:活性和持久性表明污染物在环境中的稳定程度。活性高的污染物质,在环境中或在处理过程中易发生化学反应,毒性降低,但也可能生成比原来毒性更强的污染物,构成二次污染。如汞可转化成甲基汞,毒性很强。与活性相反,持久性则表示有些污染物质能长期地保持其危害性,如重金属铅、镉等都具有毒性且在自然界难以降解,并可产生生物蓄积,长期威胁人类的健康和生存。(五)生物可分解性:有些污染物能被生物所吸收、利用并分解,最后生成无害的稳定物质。大多数有机物都有被生物分解的可能性,而大多数重金属都不易被生物分解,因此重金属污染一但发生,治理更难,危害更大。(六)生物累积性:生物累积性包括两个方面:一是污染物在环境中通过食物链和化学物理作用而累积。二是污染物在人体某些器官组织中由于长期摄入的累积。如镉可在人体的肝、肾等器官组织中蓄积,造成各器官组织的损伤。又如1953年至1961年,发生在日本的水俣病事件,无机汞在海水中转化成甲基汞,被鱼类、贝类摄入累积,经过食物链的生物放大作用,当地居民食用后中毒。(七)对生物体作用的加和性:多种污染物质同时存在,对生物体相互作用。污染物对生物体的作用加和性有两类:一类是协同作用,混合污染物使其对环境的危害比污染物质的简单相加更为严重;另一类是拮抗作用,污染物共存时使危害互相削弱。二、重金属的定量检测技术 通常认可的重金属分析方法有:紫外可分光光度法(UV)、原子吸收法(AAS)、原子荧光法(AFS)、电感耦合等离子体法(ICP)、X荧光光谱(XRF)、电感耦合等离子质谱法(ICP-MS)。日本和欧盟国家有的采用电感耦合等离子质谱法(ICP-MS)分析,但对国内用户而言,仪器成本高。也有的采用X荧光光谱(XRF)分析,优点是无损检测,可直接分析成品,但检测精度和重复性不如光谱法。最新流行的检测方法--阳极溶出法,检测速度快,数值准确,可用于现场等环境应急检测。(一)原子吸收光谱法(AAS)原子吸收光谱法是20世纪50年代创立的一种新型仪器分析方法,它与主要用于无机元素定性分析的原子发射光谱法相辅相成,已成为对无机化合物进行元素定量分析的主要手段。原子吸收分析过程如下:1、将样品制成溶液(空白);2、制备一系列已知浓度的分析元素的校正溶液(标样);3、依次测出空白及标样的相应值;4、依据上述相应值绘出校正曲线;5、测出未知样品的相应值;6、依据校正曲线及未知样品的相应值得出样品的浓度值。现在由于计算机技术、化学计量学的发展和多种新型元器件的出现,使原子吸收光谱仪的精密度、准确度和自动化程度大大提高。用微处理机控制的原子吸收光谱仪,简化了操作程序,节约了分析时间。现在已研制出气相色谱—原子吸收光谱(GC-AAS)的联用仪器,进一步拓展了原子吸收光谱法的应用领

水质中常规项目的检测方法

色度 ——铂—钴标准比色法 1、取50ml透明的水样于比色管中(如水样色度过高,可少取水样,加纯水稀释后比色)。 2、另量比色管11支,分别加入铂—钴标准溶液0,,,,,,,,,及,加纯水至刻度,摇匀,即配制成色度为0,5,10,15,20,25,30,35,40,45及50度的标准色列,可长期使用。 3、将水样与铂—钴标准色列比较。 4、计算:C=M/V×500 C—水样的色度 M—相当于铂—钴标准溶液用量,ml V—水样体积,ml 浑浊度 ——目视比浊法1、吸取浑浊度为400NTU的标准混悬液0ml,,,,,,,和分别置于成套的50ml比色管内,加纯水至刻度,摇匀后即得浑浊度为0NTU,2NTU,4NTU,8NTU,10NTU,20NTU,30NTU,及40NTU的标准混悬液。 2、取50ml摇匀的水样,置于同样规格的比色管内,与浑浊度标准混悬液系列同时振摇均匀后,由管的侧面观察,进行比较,水样的浑浊度超过40NTU时,可用纯水稀释后测定。

水中PH值测定 ——玻璃电极法 1、玻璃电极在使用前应放入纯水中浸泡24小时以上。 2、用PH标准缓冲溶液(PH=)检查仪器和电极必须正常。 3、测定时用接近于水样PH的标准缓冲溶液校准仪器刻度。 4、用洗瓶以纯水缓缓淋洗两电极数次,再以水样淋洗6~8次,然后插入水样中,1分钟后直接从仪器上读出PH值。 水中总硬度的测定 ——乙二胺四乙酸二钠滴定法 1、吸取50ml水样置150ml三角瓶中。 2、加2ml缓冲溶液再加一小勺铬黑T指示剂。 3、立即用EDTA-2N a L)标液滴定,当溶液由紫红色刚 变为纯兰色时即为滴定终点。同时做空白对照。 4、计算 C(CaCO3)—水样 总硬度mg/L V0—空白消耗EDTA-2N a 标准溶液的量ml V1—样品消耗EDTA-2N a标准溶液的量ml C—EDTA-2N a 标准溶液的浓度mol/L V—水样体积ml C(CaCO3)= (V1-V0)×C××1000 V

金属流线检查方法概述

重庆荆江汽车半轴有限公司 查看金属流线方法 1.金属流线的定义: 1.1.金属流线又叫——锻造流线。是热模锻件在型腔中流动情况的一种检查方法,如果流线是不正常的、乱流、回流、窝流等未按设计者的要求进行流动,就属于不正常。 2.金属流线查看前准备: 1.1 “使用1:1盐酸水溶液加热到60~80度之间煮15分钟分钟”是热酸蚀,还可以用冷酸蚀的办法硝酸1份,盐酸3份或硫酸铜100g,盐酸和水各500ml; 1.2.想取得明显的金属流线主要在锻造过程中取得,让金属沿着一个方向变形就是了,跟锻造温度,含碳量,杂质量的关系不大.不过锻造温度,含碳量,杂质量对产品的最终产品性能影响较大; 1.3.看锻造零件的金属流线,把零件切开后进行腐蚀,然后看纹路是否有金属流线了;没有相应的国家标准,因为流线与锻件的外形有关,只要和外形一致就好了。模锻件检查金属的流线,一般用热酸洗; 金属的流线是金属在变形加工中较软的杂质被拉长形成的线,可已经热酸洗后观察。 流线是金属中的低熔点成分和带状组织偏析在轧制或挤压时伸展而形成的。同时,铸锭的晶粒在轧制过程中也被拉长成条状。经过再结晶加热过程能使长条形晶粒恢复成等轴晶粒,但是由于低熔点成分和

带状组织伸长所形成的条纹分布仍然存在。在钢材的纵向截面上经抛光和酸浸后,用肉眼可以看到这种条纹状的线条。这种宏观组织称为纤维组织,又称为流线。 不能认为合理分布的流线是一种缺陷。因为几乎所有经过轧制、挤压或锻造的金属型材、制件中都存在着流线。但是应认识到由于这种流线的分布,会引起在性能上各向异性反映。试验也表明:在钢中顺纤维方向切取的试样机械性能要比横纤维方向试样的高。因此,控制流线的合理分布;了解应力与流线分布及机械性能间的关系是至为重要的。 3.塑性成形金属在加热时组织和性能的变化 3.1.加热时的组织和性能变化 要消除形变强化而产生的残余应力,必须对冷态下的塑性变形金属加热,因为金属塑性变形后晶体的晶格畸变,处于不稳定状态,它虽有自发地恢复到原来稳定状态的趋势,但在室温下,原子活动能量小,不可能自行恢复到未变形前的稳定状态。当加热后,原子活动能力增加,就能恢复到原来的稳定状态,消除晶格畸变和降低残余应力。随着加热温度的升高,再结晶过程可分为回复、再结晶和晶粒长大三个阶段。 再结晶温度可用经验关系式表示如下: T再(k)=0.4T熔 (k) 式中 T再为最低的再结晶温度,T熔为金属熔点的温度。

水质色度检测方法汇总

仪器社区?环境检测? 水质检测?水质色度检测方法汇总 水质色度检测方法汇总 色度 所谓色度是指含在水中的溶解性的物质或胶状物质所呈现的类黄色乃至黄褐色的程度。溶液状态的物质所产生的颜色称为“真色”;由悬浮物质产生的颜色称为“假色”。测定前必须将水样中的悬浮物除去。 通常测定清洁的天然水是用铂钴比色法。此法操作简便,色度稳定,标准色列如保存适宜,可长期使用。但其中氯铂酸钾太贵,大量使用很不经济。铬钴比色法,试剂便宜易得。方法精密度和准确度与铂钴比色法相同,只是标准色列保存时间较短。 3.1 铂钴标准比色法 3.1.1 测定范围 本法最低检测色度为5度,测定范围5~50度。 即使轻微的浑浊度也干扰测定,故浑浊水样需先离心使之清澈,然后取上清液测定。 3.1.2 方法提要 用氯铂酸钾和氯化钴配成与天然水黄色色调相同的标准比色列,用于水样目视比色测定。规定每升水含有1mg铂和0.5mg钴所具有的颜色作为一个色度单位,称为1度。 3.1.3 试剂 3.1.3.1 铂钴标准溶液:称取1.246g氯铂酸钾(K2PtCl6)t 1.000g氯化钴(CoCl2·6H2O),溶于100mL纯水中,加入100mL盐酸,用纯水定容至1000mL。此标准溶液的色度为500度。 3.1.4 仪器、设备 3.1. 4.1 50mL成套高型具塞比色管。 3.1. 4.2 离心机。 3.1.5 分析步骤 3.1.5.1 取50mL透明水样于比色管中。如水样浑浊应先进行离心,取上清液测定。如水样色度过高,可少取水样,加纯水稀释后比色,将结果乘以稀释倍数。 3.1.5.2 另取比色管11支,分别加入铂钴标准溶液0,0.50,1.00,1.50,2.00,2.50,3.00,3.50, 4.00,4.50和 5.00mL,加纯水至刻度,摇匀。配成的标准色列依次为0,5,10,15,20,25,30,35,40,45和50度。此标准色列可长期使用,但应防止此溶液蒸发及被玷污。 3.1.5.3 在光线充足处,将水样与标准色列并列,依白纸为衬底,使光线从底部向上透过比色管,自管口向下垂直观察比色。 3.1.5.4 记录相当标准管色度的度数。 3.1.6 计算 C=(m/V)×500 (1) 式中: C──水样的色度,度; m──铂钴标准溶液的用量,mL; V──水样体积,mL。 3.2 铬钴标准比色法 3.2.1 测定范围

相关文档