文档库 最新最全的文档下载
当前位置:文档库 › 全球卫星定位系统

全球卫星定位系统

全球卫星定位系统
全球卫星定位系统

全球卫星定位系统GPS

专业:通信工程

班级:1103

姓名:田易坤

学号:311109020322

全球卫星定位系统GPS

摘要:社会是不断发展的,科技是不断进步的,20世纪末,出现了电子计算

器技术、半导体技术、激光技术、航天科学技术,它们的出现,把人类带到了电

子信息时代和航天探索时代。当1957年前苏联发射了人类第一颗人造地球卫星,

人类跟踪无线电信号中发现了卫星无线电信号的多普勒频移现象,这预示着一种

全新的天空定位技术的可行性,由此,人类进入了卫星定位和导航的时代。全球

卫星定位系统GPS的出现与发展为社会和个人提供了便利条件。本文主要介绍全

球卫星定位系统在军事和民用两方面的运用,包括其概念的提出、发展历程和模式。本文还介绍了世界以及我国全球定位系统的现状。简述了全球定位系统(GPS)的基本结构和测量原理,总结了GPS所具有的特点,介绍了GPS的应用实例。

关键词:全球定位系统;GPS;系统组成与应用;发展现状;

绪论:

全球定位系统(Global Positioning System,简称GPS)是以卫星为基础的

无线电卫星导航定位系统,它具有全能性、全球性、全天候、连续性和实时性的

精密三维导航与定位功能,而且具有良好的抗干扰性和保密性。因此,GPS技术率

先在大地测量、工程测量、航空摄影测量、海洋测量、城市测量等测绘领域得到

了应用[1],并在军事、交通、通信、资源、管理等领域展开了研究并得到广泛应用。正文:

1.全球定位系统简介

1.1、什么是全球定位系统

全球定位系统是由一系列卫星组成的,它们24小时提供高精度的世界范围的

定位和导航信息。准确地说,它是由24颗沿距地球12000公里高度的轨道运行的NAVSTAR GPS卫星组成,不停地发送回精确的时间和它们的位置。 GPS接收器同

时收听3~12颗卫星的信号,从而判断地面上或接近地面的物体的位置,还有它

们的移动速度和方向等。全球定位系统属于美国第二代卫星导航系统。是在子午

仪卫星导航系统的基础上发展起来的,它采纳了子午仪系统的成功经验。和子午

仪系统一样,全球定位系统由空间部分、地面监控部分和用户接收机三大部分组成。该系统的空间部分使用 24 颗高度约 2.02 万千米的卫星组成卫星星座。

21+3 颗卫星均为近圆形轨道,运行周期约为 11 小时 58 分,分布在六个轨道面

上(每轨道面四颗),轨道倾角为 55 度。卫星的分布使得在全球的任何地方,任

何时间都可观测到四颗以上的卫星,并能保持良好定位解算精度的几何图形( DOP )。这就提供了在时间上连续的全球导航能力。 GPS 卫星已发展至 Block

II 型式的定位卫星,由 Rockwell International 制造,在轨道上重量约 1,900 磅,太阳能接收板长度约 17尺,于 1994 年完成第 24 颗卫星的发射。因此目

前太空中有 24 颗 GPS 卫星可供定位运用,绕行地球一周需 12 恒星时,每日可绕行地球 2 周,这也就是说,不论任何时间,任何地点,至少有 4 颗以上的卫星出现在我们的上空。全球卫星定位系统(GPS)。卫星导航定位指利用卫星导航定位系统提供的位置、速度、时间等信息来完成对地球各种目标的定位、导航、监测和管理。像美国的全球卫星定位系统(Global Positioning System),它的空间部分是由24颗卫星组成的,每颗卫星都不断发出测距信号和导航电文;地面上的接收机接收到卫星发出的信号,可以测定接收机天线到导航卫星间的距离,并解算导航电文得到卫星空间坐标。一般来说需要同时接收4颗卫星的信号,经过解算便能确定接收者所处的位置、行进速度等。定位卫星发出的信号覆盖全球,而且不易受天气影响,因此能全天候、全天时对地球上任何地方、无论是移动的还是固定的目标进行导航定位。全球定位系统属于美国第二代卫星导航系统。是在子午仪卫星导航系统的基础上发展起来的,它采纳了子午仪系统的成功经验。和子午仪系统一样,全球定位系统由空间部分、地面监控部分和用户接收机三大部分组成。卫星的分布使得在全球的任何地方,任何时间都可观测到四颗以上的卫星,并能保持良好定位解算精度的几何图形( DOP )。这就提供了在时间上连续的全球导航能力。

1.2、全球定位系统地面接收系统

目前全球有五个地面卫星监控站,分布于夏威夷、亚森欣岛、迪亚哥加西亚、瓜加林岛、科罗拉多泉,这些卫星地面控制站,同时监控 GPS 卫星的运作状态及它们在太空中的精确位置,主地面控制站更负责传送卫星瞬时常数(Ephemera's Constant)及时脉偏差(Clock Offsets)的修正量,再由卫星将这些修正量提供给 GPS 接收器做为定位运用。

1.3、全球定位系统发展

GPS系统原是美国国防部为其星球大战计划投资100多亿美元而建立的。其作用是为美军方在全球的舰船、飞机导航并指挥陆军作战。在海湾战争中,涌现了大量高科技装备,而GPS全球定位系统则是使用最广泛的一种。人们普遍认为是GPS技术在整个海湾战争中充分显示了威力,起了至关重要的作用,从而赢得了战争的胜利。

GPS全球定位系统是一项工程浩繁、耗资巨大的工程,被称为继阿波罗飞船登月、航天飞机之后的第三大空间工程。海湾战争期间,GPS系统尚未完全建成,初步使用已显神威。随着1993年GPS 太空卫星网的完全建成,其应用领域不断扩大。而且美国1994年宣布在10年内向全世界免费提供 GPS全球定位系统的使用权。使世界各国都在争相利用这一系统。

前苏联早在1982年就开始建立自己的全球卫星定位系统。后来,俄罗斯继续执行这一系统工程计划,到1995年已完成建成。目前这套全球卫星导航系统只由俄罗斯控制使用,未向全世界提供服务。欧洲联盟考虑到全球卫星定位导航系统的应用前景,也打算建立他们自己的全球卫星定位导航系统。目前德俄已联合生产了可以同时接收美国GPS和俄国Glonass信号的卫星定位接收器。当前世界各国对GPS全球定位系统这一高新技术都非常重视,认为其对导航定位和大地勘测技术是一场革命,其民用潜力相当大,经济效益相当可观。

GPS全球定位系统这一全新的现代定位方法已全面取代常规光学和电子仪器,

与现代通讯和计算机技术相结合,以同时测定三维坐标的方法将测量定位技术扩展到海洋和外层空间,同时从定点扩展到区域,从静态扩展到动态,精度达到毫米级,从而大大拓宽了应用范围,在地球物理学、气象、海洋、交通等领域获得了广泛运用。

1.4、GPS全球定位系统现状

GPS全球定位系统(Global Position System),硬件是由环球通讯卫星和接收装置组成,基于卫星的无线电导航定位系统,为用户提供精密的三维坐标、导航与时间信息。随着地球的数字化进程,微电子技术和GIS技术获得重大进展,卫星导航、定位的理论已趋成熟,同时各个领域都需要掌握对空间资料的处理和利用的基本技术,GPS将作为通用设备越来越多地应用于科研和民用领域。

1.5、GPS系统的应用

1.5.1、在科学研究方面:

利用GPS的观测精度(毫米级)和时空分辨率监测地球的动态变化,从而剖析地球内部和地壳、大气层、海洋等的变化情况;同时利用卫星轨道的测定和影响参数的分析可对地球引力系数,自转、潮汐、大气、电离层等参数进行研究。GPS系统的广泛应用大大推进了地球科学及地震、气象、海洋等各相关科学的发展。目前中国首期地壳运动观测GPS网络工程已经完成。国家地震局、总参测绘局和科学院等部门联合在全国各地建立了25个连续观测基准站、56个定期复测基准站和1000多个不定期复测站,通过对大地板块进行以毫米/年为单位的长期测量,分析地壳运动规律,从而开展地震预报、大地测量和国防等方面的研究工作。

1.5.2、在政府管理和民用领域:

GPS的导航和动态定位测量等功能得到广泛应用。如在针对各类灾害的预防和快速反应上,如地震、森林火灾、水灾等,可以快速确定发灾地点、受灾范围和灾情的发展趋势。在交通、环保、城市规划、水利和旅游等方面GPS获得了广泛的运用。

1.6、全球定位系统的精度

能尽管拥有高精度的原子钟,定位过程中仍旧潜伏着一些误差。Selective Availability ( SA)是美国国防部为非军方GPS用户提供的程序,出于安全方面的考虑,它把定位精度略微降低了一些。当SA起作用时,你的定位的精度在50m~100m之间。即使没有SA,其他一些误差也是要考虑的。最明显的误差是由于地球电离层的变化引起的,它们对GPS的无线电波的速度有影响。另外一个引起误差的原因是大气中的水蒸汽。不过这些误差都是极小的。GPS的精度可通过DGPS功能来提高,它是指你的接收器可以接收邻近的GPS接收器的信号的功。其中的两颗BLOCK ⅡR型号的GPS卫星正在轨道上正常运行,其中的一颗是1999年10月7日才发射的。

1.7、地面监控系统

对于导航定位来说,GPS卫星是一动态已知点。星的位置是依据卫星发射的星历—描述卫星运动及其轨道的的参数算得的。每颗GPS卫星所播发的星历,是由地面监控系统提供的。卫星上的各种设备是否正常工作,以及卫星是否一直沿着预定轨道运行,都要由地面设备进行监测和控制。地面监控系统另一重要作用是保持各颗卫星处于同一时间标准—GPS时间系统。这就需要地面站监测各颗卫星的时间,求出钟差。然后由地面注入站发给卫星,卫星再由导航电文发给用户设备。GPS工作卫星的地面监控系统包括一个主控站、三个注入站和五个监测站。

全球卫星导航系统拥有军用和民用两种功能。目前,世界上卫星导航定位系统有美国的GPS、俄罗斯的GLONASS、我国的北斗卫星导航定位系统以及欧洲在建的Galileo系统。每个系统都有着各自的应用特点。

上世纪70年代,美国和俄罗斯在开发GPS和GLONASS?时,更在意的是这种存在的军事用途。随着美国GPS在民用方面的出色表现,全球卫星导航系统的商业价值逐渐被重新认识,到2005年,全球GPS市场已经达到310亿美元,其中55%的份额在美国国外。而俄罗斯的GLONASS由于缺少经费,目前在轨星只有6颗可用,不能独立组网,只能与GPS联合使用。

欧盟在2000年初开始建造民用的“伽利略”全球卫星导航系统,并采取开放的国际开发模式。欧盟正在计划建设伽利略系统,它的空间部分将由30颗卫星组成。

目前,世界上大多数国家的卫星导航应用都是建立在美国的GPS之上。如果一旦发生大规模战争,美国关闭卫星,那很多国家也就只能坐等挨打。早在海湾战争时,美国就曾置欧盟各国利益于不顾,一度关闭对欧盟的GPS服务。因此,赵耀升说:“中国这样的大国,必须有自主的卫星导航系统。这就是建立‘北斗’系统的另一个意义。”北斗系统空间部分是由2颗工作星和1颗备用星组成,其定位原理与全球卫星定位系统有所不同。北斗系统能覆盖整个中国及周边地区,不仅投资少,而且拥有通信功能,全球卫星定位系统则没有,更重要的是北斗系统是我国自主的卫星导航系统。把国防应用建立在别国的卫星导航系统上是不可靠的。

卫星导航系统最初是用于军事领域,美国和俄罗斯都是如此,如用于核潜艇远洋定位、导弹导航等。第一次海湾战争,美国用全球卫星定位系统解决了在沙漠中定位的问题,而在这次伊拉克战争中,美国98%的武器都用了全球卫星定位系统。自从1995年全球卫星定位系统向民用开放后,迅速应用到各个领域,其应用大大超出了当初人们的想象。

2、GPS全球定位系统组成:

2.1、空间部分:

主动式工作卫星:26颗卫星分布6个椭圆轨道上,长半轴26600km,高度20200km,时间基准10-12?/FONT>10-13秒

2.2、控制部分:

轨道预报(监测和控制卫星系统),确定系统时间,预报卫星星历、卫星钟状态,更新卫星导航电文。

2.3、用户部分:

不同类型的接收机(由带前置放大器的天线、信号识别和处理的射频仓、微处理器、精密振荡器、电源、显示屏、内存和数据存储器组成)。

3、全球定位系统对比

目前正在运行的全球卫星定位系统有美国的GPS系统和俄罗斯的GLONASS系统。欧盟伽利略系统,以及中国北斗七星导航系统。

3.1、Global Positioning System

Global Positioning System是美国国防部研制的一种全天候的,空间基准的导航系统,可满足位于全球任何地方或近地空间的军事用户连续地精确地确定三位位置和三位运动及时间的需要。它是一个中距离圆型轨道卫星导航系统。它可以为地球表面绝大部分地区(98%)提供准确的定位、测速和高精度的时间标准。该系统的组成包括太空中的24颗GPS卫星;地面上的1个主控站、3个数据注入站和5个监测站及作为用户端的GPS接收机。最少只需其中4颗卫星,就能迅速确定用户端在地球上所处的位置及海拔高度;所能收联接到的卫星数越多,解码出来的位置就越精确。该系统是由美国政府于20世纪70年代开始进行研制于1994年全面建成。使用者只需拥有GPS接收机,无需另外付费。GPS信号分为民用的标准定位服务(sps,standard positioning service)和军规的精密定位服务(pss,precise positioning service)两类。民用讯号中加有误差,其最终定位精确度大概在100米左右;军规的精度在十米以下。2000年以后,克林顿政府决定取消对民用信号所加的误差。因此,现在民用GPS也可以达到十米左右的定位精度。GPS系统拥有如下多种优点:全天候,不受任何天气的影响;全球覆盖(高达98%);三维定速定时高精度;快速、省时、高效率;应用广泛、多功能;可移动定位;不同于双星定位系统,使用过程中接收机不需要发出任何信号增加了隐蔽性,提高了其军事应用效能。

3.2、GLONASS

GLONASS系统由27颗运行卫星和3颗预备卫星组成,可以覆盖全球,位置精度达几米,亦可与美国的GPS系统兼容,总投资为35亿欧元。该计划预计于2010年投入运行。

3.3、北斗导航系统

北斗导航系统—中国还独立研制了一个区域性的卫星定位系统。该系统的覆盖范围限于中国及周边地区,不能在全球范围提供服务,主要用于军事用途。

GPS在导弹的精准引导和掌握船舰飞机的位置是不可或缺的装备,GPS全球定位系统网的建构将很有助于增强军力。

全球卫星定位系统给人类生活带来了很大便利,人类应该合理的利用空间资源,此外还应建立完善的体制,防止不合法人员的使用。中国也应该加强对卫星定位系统的研究,缩小与其它卫星定位系统的差距。

参考文献:

[1]管国斌.对中小城镇GPS控制网中几个问题的探讨[J].浙江测绘,2008,(2):45-46.

[2]刘大杰.全球定位系统(GPS)的原理与数据处理[M].上海:同济大学出版

社,2007.

[3]姜维.北京市测绘设计研究院.CJJ73-97,全球定位系统城市测量技术规程[S].北京:中国建筑工业出版社,2008.

[4]李斌.GPS接收机中几个问题的探讨[I].北京测绘,2008,(2):32-34.

[5]刘伟.全球定位系统(GPS)数据处理[N].湖南:大象出版社,2008.

潮汐类型

一、潮汐的类型 潮汐现象非常复杂。仅以海水涨落的高低来说,各地就很不一样。有的地方潮水几乎察觉不出,有的地方却高达几米。在我国台湾省基隆,涨潮时和落潮时的海面只差0.5米,而杭州湾的潮差竟达8.93米。在一个潮汐周期(约24小时50分钟,天文学上称一个太阴日,即月球连续两次经过上中天所需的时间)里,各地潮水涨落的次数、时刻、持续时间也均不相同。潮汐现象尽管很复杂,但大致说来不外三种基本类型。 半日潮型:一个太阴日内出现两次高潮和两次低潮,前一次高潮和低潮的潮差与后一次高潮和低潮的潮差大致相同,涨潮过程和落潮过程的时间也几乎相等(6小时12.5分)。我国渤海、东海、黄海的多数地点为半日潮型,如大沽、青岛、厦门等。 全日潮型:一个太阴日内只有一次高潮和一次低潮。如南海汕头、渤海秦皇岛等。南海的北部湾是世界上典型的全日潮海区。 混合潮型:一月内有些日子出现两次高潮和两次低潮,但两次高潮和低潮的潮差相差较大,涨潮过程和落潮过程的时间也不等;而另一些日子则出现一次高潮和一次低潮。我国南海多数地点属混合潮型。如榆林港,十五天出现全日潮,其余日子为不规则的半日潮,潮差较大。 从各地的潮汐观测曲线可以看出,无论是涨、落潮时,还是潮高、潮差都呈现出周期性的变化,根据潮汐涨落的周期和潮差的情况,可以把潮汐大体分为如下的4种类型: 正规半日潮:在一个太阴日(约24时50分)内,有两次高潮和两次低潮,从高潮到低潮和从低潮到高潮的潮差几乎相等,这类潮汐就叫做正规半日潮。 不正规半日潮:在一个朔望月中的大多数日子里,每个太阴日内一般可有两次高潮和两次低潮;但有少数日子(当月赤纬较大的时候),第二次高潮很小,半日潮特征就不显著,这类潮汐就叫做不正规半日潮。 正规日潮:在一个太阴日内只有一次高潮和一次低潮,像这样的一种潮汐就叫正规日潮,或称正规全日潮。 不正规日潮:这类潮汐在一个朔望月中的大多数日子里具有日潮型的特征,但有少数日子(当月赤纬接近零的时候)则具有半日潮的特征。 凡是一天之中两个潮的潮差不等,涨潮时和落潮时也不等,这种不规则现象称为潮汐的日不等现象。高潮中比较高的一个叫高高潮,比较低的叫低高潮;低潮中比较低的叫低低潮,比较高的叫高低潮。 不论那种潮汐类型,在农历每月初一、十五以后两三天内,各要发生一次潮差最大的大潮,那时潮水涨得最高,落得最低。在农历每月初八、二十三以后两三天内,各有一次潮差最小的小潮,届时潮水涨得不太高,落得也不太低。 二、潮汐要素 涨潮时潮位不断增高,达到一定的高度以后,潮位短时间内不涨也不退,称之为平潮,平潮的中间时刻称为高潮时。 平潮的持续时间各地有所不同,可从几分钟到几十分钟不等。平潮过后,潮位开始下降。 当潮位退到最低的时候,与平潮情况类似,也发生潮位不退不涨的现象,叫做停潮,其中间时刻为低潮时。 停潮过后潮位又开始上涨,如此周而复始地运动着。从低潮时到高潮时的时间间隔叫做涨潮时,从高潮时到低潮时的时间间隔则称为落潮时。

南方连续运行参考站推荐方案(组成部分)

网络参考站卫星定位综合服务系统NRS 技术方案书 (系统组成部分) 二○一○年九月

目录 一、系统设计 (1) 二、参考站子网系统 (2) 2.1室外部分 (2) 2.1.1 GNSS接收天线 (2) 2.1.2 GNSS观测墩 (3) 2.2室内部分 (5) 2.2.1 数据解算单元 (5) 2.2.2 系统集成 (6) 三、控制中心子系统 (8) 3.1控制中心硬件组成 (8) 3.2控制系统软件-NRS (9) 四、数据通讯子系统 (10) 4.1参考站网络传输单元 (10) 4.2控制中心网络传输单元 (10)

一、系统设计 NRS(Network Reference Station,网络参考站)技术,在VRS技术的基础上,结合部分FKP和MAX技术的优点,优化了VRS,采用DEEP-NRS技术,大大提高了网络CORS 的可用性。 NRS 系统由参考站、系统控制中心、数据通信、用户应用四个子系统组成: 图1-1 NRS系统组成 (1)参考站子网系统:NRS网络的数据源,用于提供原始观测数据、星历等数据; (2)控制中心子系统(系统管理数据发布中心):需要可靠的服务器来运行数据处理软件,同时需要借助其它网络(Internet、电信网络等)来向用户发布各类不同的数据; (3)数据通信子系统:包括参考站和控制中心之间,以及控制中心和用户之间的通讯两部分;(4)用户服务子系统:简单分为静态用户、动态用户。静态用户指需要GNSS原始数据进行后处理解算高精度解的用户;动态用户指需要实时得到点位解的用户。

二、参考站子网系统 2.1 室外部分 室外部分主要分为两部分,GNSSS天线和GNSS观测墩,如下图: 图2-1 GNSS观测墩实景图 2.1.1 GNSS接收天线 GNSS天线的外形如下: 图2-2 GPS天线及线缆实图

潮汐简便计算法

潮汐简便计算法 人们通过长期的实践、观察,发现海水有规律的涨落,而涨落的时间和高度又有着周期性的变化,由此人们把这种海水涨落的现象叫潮汐。而随着海水的涨落、水位的升降,出现了海水的水平流动,这种海水流动的现象叫潮流。海水有周期性涨落规律,如在每日里出现两次大潮和两次小潮。通过长期实践、观察、发现每日的高潮大多出现在月亮的上、下中天(即过当地子午线时1前后。低潮时间则在月出月落前后,并且每日的高(低)潮时间逐日后程约48分钟,即每天晚48分钟(0.8小时)。每月的两次大潮是农历初一、十五附近几天,两次小潮是在农历的初七、八和甘二、廿三附近几天。人们还发现,潮汐现象同月亮、太阳、地球的相对运动有密切的关系。地球在一定轨道上绕太阳运转,月亮又在一定轨道上绕地球运转,它们之间有一定的吸引力和离心力,这种力就是产生潮汐现象的基本因素。但实际潮汐涨落的主要成因却是月球对地球(表层)的吸引力,其次是太阳对地球的吸引力,太阳的乍用较小,约为月球的2/5,因月球离 地球较近,故此月球的乍用较大。 据科学推测是:月球绕地球转,每一个月(29.5天多一点)转一圈,当月、日、地三者成一直线时,潮涨落的最大,这时是新月和望月(初一、十五)的时候,当日、月、地三者成直角三角形时潮涨落的最小,这是月上弦(初七、八)和下弦(廿二、廿三)的时候。但在实际上形成大潮和小潮的时间,并不正好是上述时间,因为地球形状很复杂,所以各地发生最大潮和最小潮的时间要比理论上拖后几天。如:山东半岛沿海每月的初三和十八潮的涨落最大,而初十和廿五前后潮的涨落又最小。由于地球本身的自转,使地球上某点与月球的相对位置随时发生变化,这种变化每天(太阳约24时48分)为一周期。每24时48分,发生两次高潮和两次低潮。由高潮到低潮约经过6时12分,由第一个高潮到第 二个高潮约经过12时24分。 潮汐的时间,在理论上应该与月球的上中天或下中天的时刻相符合,但实际上常常推迟。发生高潮和月球上中天相差的时间叫高潮间隙。但各地的高潮间隙又大不相同。如:威海是10时50分,烟台是10时25分,龙口是10时20分,足见地理位置的不同,而导致高潮间隙的差目。高潮时和低潮时的大概计算法:高潮时=(日差)0 8×(阴历日子)7-16(上半月-下半月-1,16)+高潮间隙,低潮时=高潮时-6时12分,如计算威海阴历初五的潮时如下:高潮时=0.8)×(5-1)+10:50′=3:12′+10:50′=14:02′(即为第二个高潮)14:02′-12:24′=1:38′(即为第一个高潮)低潮时=14:02′-6:12′=7:50′(即为第一个低潮)以上这样的算法固然)准确,但很繁琐,很难开口就说出来,我们经过多年的海上实践,验证,摸索出一种很有规律的简易计算法。其方法是阴历日子(上半月-3,下半月-18)x0.8,即为当日的高潮潮时。如计算威海阴历初五的潮时如下:高潮时=(5-3)×0.8=1:36′(即第一个高潮)。低潮时=1:36′+6:12′=7:48′(则则第一个低潮)。如计算威海阴历量五的潮时:高潮时=(25-18)×0.8=5:36′(则是第一个高潮)。低潮时=5:36′+6:12′=11:48′(则是第一个低潮)潮流也叫潮汐流,这是水位升降起伏的潮信现象,是由于海水受到引潮力的作用发生了水平流动后所导致的结果。因此潮流和潮汐一样具有周期性的变化规律,但海水流动受到地形条件的影响,故常呈现两种状态,一种是往复性,

福建省连续运行参考站网络的构建

连续运行参考站系统(Continuously Operating Ref-erence Stations,简称CORS)是在一定范围内建立若干个连续运行的永久性基准站,通过网络互连,构成网络化的GNSS综合服务系统,可以为各级测绘部门提供高精度,连续的空间基准,并可向导航、时间、灾害部门提供各种数据服务,它也是目前国际上主要的地面地理信息采集设施,是现代GPS的发展热点之一。它可以服务于几乎任何需要位置信息的部门或者单位服务,提供准确的位置信息,在众多领域发挥着重要作用,CORS系统具有鲜明的技术特点,它集成了卫星导航定位(GPS、GLONASS、GALILEO等)、数字通讯、网络传输等技术,构成的一个不间断地面信息源采集系统。 1CORS的发展历史及动态 美国的CORS网络始建于上世纪90年代初期,目前国家CORS网络688个站,合作CORS网络140个站,加尼弗尼亚网络有350多个站,超过155个组织参加了CORS的项目;加拿大主动控制网系统拥有14个永久性跟踪站,12个西部变形监测站和20个区域主动控制站;欧洲大陆,由连续观测高精度的GPS/GLO-NASS接收机构成的若干站组成,是欧洲坐标参考框架建立的基础,其中由德国国家测量部门联合德国测量、运输、建筑、房屋等部门协调统一,建立了一个长期连续运行的,覆盖德国全国的多功能差分GPS系统,计划由200个永久性GPS跟踪站组成,平均站间距40km。 亚洲地区比较成熟的网络是日本的GEONET,日本国家地理院GSI从上个世纪90年代开始布设用于地壳应变监测的COSMOS系统,主要用于地震监测和预报、控制测量、建筑及工程测量。该网密度较大,平均密度20km,最密的地区如关东、东京、京都等达到了10~15km,到2005年已经完成了1200个连续运行参考站。 我国的连续运行参考站建设已经经历了2个时期,一期工程主要是以国家层面的需求出发,以建立国家大地基准,开展地球动力学研究和有关大气探测研究为主要任务,建设单位包括国家测绘局、总参测绘局、中国科学院、中国地震局、中国气象局等,国内第一个GPS永久性跟踪站于1992年建立于武汉,用于全球陆地参考框架定义以及GPS卫星轨道确定,而后分别在北京( 1995)、拉萨(1995)、乌鲁木齐(1995)、咸 收稿日期:2010-07-12

地表水环境监测方案

地表水水质监测方案 ——广州大学内水质监测一、监测目的 (1)对校园教学区,主要是实验楼区域的校园景观的用水及水样进行监测,了解学校实验楼区域的水质现状。 (2)学习水质监测的步骤,进一步将课堂所学知识运用到实践中,学会制定水质监测方案并按步实施。 (3)进一步熟练常用的水质监测中的实验操作技术,掌握地表各种指标与污染物的测定方法。 (4)熟悉环境质量标准评价的各项标准,并学会运用其来评价水质,提出改善校园水质的意见和建议。 二、基础资料的收集 本次监测选取了校园网主场至生化实验楼区域水域进行监测。根据相关的文档和网上搜寻的资料可知,该河段属于珠江水系广州段,水域的有关资料如下: 1.地形地貌 广州大学城位于中国东南沿海,紧靠珠江两岸地,地处珠江三角洲腹地,是三角洲平原与低山丘陵区的过渡地带。小岛总体地形是东北高、西南低。东北部是由花岗岩与变质岩组成的低山丘陵区,地形高差250m左右,坡度15°~35°。广州大学位于岛的西部,坐落于河流堆积组成的冲积平原,地势平缓,其中分布零星的残丘和苔地,

有着树枝状般的水系。 2.气象 广州大学城地处南亚热带,属海洋性季风气候,有着温暖多雨、光热充足、雨量充沛的特点。其年平均气温约为21.8℃,一年中7月、8月的温度最高,1月最低,绝对最高气温约38.7℃。平均年降雨量为1699.8毫米,集中在梅雨季、台风季两个季节,占全年的82.1%,在七、八、九月份常遭受六级以上的大风袭击或影响,台风最大风力在9级以上,并带来暴雨,破坏力极大,年评卷蒸发量160315,mm。 3.水文 广州大学城位于珠江、冻僵溪流的交汇区上,该区域河段属于不规则半日潮。冲积平原和三角洲平原,地势低平,地表水体类别有:库唐、涌溪、干流河道,全区水域面积16011k㎡,占广州市区面积的10.8%。据黄埔潮汐站资料,珠江平均高潮水位为0.72m,平均低潮水位为-0.88m,涨潮最大潮差2.56m,落潮最大潮差3.00m。潮汐周期为半个月,即15天。每年的1~3月份平均潮位较低,6~9月份较高。各月均值之间差值一般只有0.2米左右,变化较小。 4.监测河段概况 经实地考察,此河段是珠江至校园图书馆中心湖之间的河段,全长约400m,平均宽约4.5m,平均水深1.5m,流经生化实验楼和工程实验楼,水质主要受到这两处污染源的影响。此河段是人工河段,包括河流的河床、两岸的植被、河流的流水量以及河流的污染等,都是有人

全球卫星导航定位行业分析报告

全球卫星导航定位行业分析报告 一、全球卫星发展概况 卫星导航定位技术指利用全球卫星导航定位系统所提供的位置、速度及时间信息对各种目标进行定位、导航及监管的一项新兴技术。与传统的导航定位技术相比,由于卫星导航定位技术具有全时空、全天候、连续实时地提供导航、定位和定时的特点,已成为人类活动中普遍采用的导航定位技术。因此,全球卫星导航定位系统一经问世,在市场需求的牵动下很快就深入到各国军事、安全、经济领域的方方面面,使航空、航海、测绘、机械控制等传统产业的工作方式发生了根本的改变,开拓了移动位置服务等全新的信息服务领域,并迅速发展成为一个新兴的产业——卫星导航定位产业。 以美国GPS为代表的卫星导航定位产业已经成为当今国际公认的八大无线电产业之一。在人类信息社会中,有80%以上的信息与“位置”和“时间”有关,在卫星导航定位技术出现以后,它可以迅速将位置、时间信息数字化,进入互联网和各行各业的信息应用系统,被人们所使用。 目前世界上投入正式运行的卫星导航定位系统有美国的GPS系统、俄罗斯的Glonass系统和我国的北斗卫星导航定位系统。其中GPS的应用最为广泛,占到全球应用的95%以上。鉴于民用需求的巨大与旺盛,为了摆脱对美国GPS系统的依赖,打破美国对全球卫星导航产业的垄断,欧盟在2002年提出建设Galileo 系统,俄罗斯则计划在2010年全面恢复Glonass系统,我国在2006年对外公布建设我国新一代北斗卫星导航定位系统,卫星导航定位产业步入了一个多系统并存、多技术融合的发展新阶段。 我国的卫星导航定位应用是在全球卫星导航定位系统逐步开放、透明的大环境下,通过学习、引进、消化、吸收再创新的方式发展起来的。美国的GPS系统在20世纪80年代建设初期是一个严加保密的纯军事系统。随着全球政治格局和经济一体化的发展,其已从最初的“军用为主、民用为辅”发展到“强军护民、以民养军”的新阶段。美国GPS政策的每一次开放调整,都有力地推动了本国及全球卫星导航定位产业的市场发展。随着卫星导航定位在我国应用领域的不断拓展和深入以及自主的北斗卫星导航定位系统的建设,使我国在卫星导航定位系统技术和导航信号处理技术、卫星导航定位芯片技术和板卡、高精度接收机产品等方面取得重大突破,积累了应用经验,卫星导航定位技术与产品已呈现自主创新,集成创新,引进、消化、吸收再创新的多元并举发展的格局。 二、全球卫星导航系统发展历程 GPS可以说是最早也是目前最为完善成熟的全球卫星导航定位系统,最为当今最完善、覆盖率最高卫星导航定位,GPS的发展历程就代表了全球卫星导航定位行业的发展。 1、50年代末至60年代末是GPS研发的初级积累阶段 1958年底,美国海军武器实验室委托霍布金斯大学应用物理实验室,研究为美国军用舰艇导航服务的卫星系统,即海军导航卫星系统。60年代末,美国在此基础上着手研制新的卫星导航系统,以满足海陆空三军和民用部门对导航越来越高的要求。

潮汐观测作业指导书

潮汐观测作业指导书 1.观测点的选择 观测点应选择在与外海畅通,水流平稳,不易淤积,波浪影响较小的海域;应避开冲刷严重、易坍塌的海岸;在理论最低潮时,水深应大于1m;尽可能利用防波堤、码头、栈桥等海上建筑物。 2.验潮井的设置 验潮井是为观测潮汐而专门设置的建筑物。它的设计,特别是进水管道必须使井内与井外潮位差小于1cm,并具有良好的消波性能。验潮井的设置应详细记载和归档。 3.水准系统的设置与水准测量 3.1水准点的设置 观测站应在适当位置设置一个基本水准点和一至两个校核水准点。基本水准点是观测站永久性的高程控制点。校核水准点是用于引测和检查水尺零点、读数指针高程的水准点。 基本水准点和校核水准点分别按基本水准标石和普通水准标石的埋设方法埋设,并应采取严格的保护措施,使之不易受到破坏。水准标石埋设的技术设计、选点、埋设方法和要求按GB12898的规定执行,并详细记载和归档。

3.2水准点的水准测量要求 3.2.1基本水准点应按国家三等水准测量要求与国家水准高程系统连测。 3.2.2校核水准点应按国家三等水准测量要求与基本水准点连测。 3.2.3基本水准点与校核水准点启用后每年应复测一次; 两年后若没有发现高程变动,基本水准点每隔四年应复测一次,校核水准点每隔二年应复测一次。 3.2.4水准点的测量按GB 1 2 8 9 8 的有关规定执行,并将各次测量及复测情况详细记载和归档。 3.3潮高基准面的确定 3.3.1测站潮高基准面宜采用当地理论最低潮面,简称测站基面。 3.3.2在未确定潮高基准面的测站,可用开始观测时的第一根水尺零点处的水平面或设定的某一水平面临时作为潮高基准面。在观测一年后,使用所测资料通过推算,确定当地理论最低潮面作为测站潮高基准面 3.3.3测站基面一经确定不应轻易变动,测站基面的高程应记载和归档。 3.3.4 测站基面确定后,测站的潮高资料必须订正到测站基面上。 4.井内、井外水尺的设置

月相变化观察记录簿

月相变化观察记录:学号:班级: 月相农历目视月出 时间 实际月出 时间 与太阳出没比较与太阳位置比较月出位置 夜晚目视 呈现时段 目视效果图实际观测图时间(年月日) 新月初一清晨几乎同升同落接近重合彻夜不见 不可见 蛾眉月初二三日落后太阳升起 后的一个 多小时 跟在太阳后,迟 升后落 日在西月在东西方 太阳落山后 的一两个小 时西边亮 上弦月初七八日落后正午前后迟升后落日在西月在东南偏西近 正南 上半夜西天 西边亮一半 凸月十一二日落后午后两时 左右 迟升后落日在西月在东东南 日落至凌晨 两时左右 西边亮 满月十五六日落黄昏日落黄昏此起彼落地球居中彻夜可见 全亮 残月(凸月) 十八九 夜晚九时 前后 夜晚九时 前后 早升先落日在东月在西 升起后至日 出前可见 东边大半亮 下弦月二二三午夜之后午夜之后早升先落日在东月在西午夜之后至 日出前可见东边亮一半 蛾眉月二六七凌晨三四 点 凌晨三四 点 早升先落日在东月在西 凌晨三四点 至日出前可 见东边亮 口诀:“上上上西西、下下下东东”。上弦月出现在农历月的上半月的上半夜(黄昏至午夜可见),月球亮面朝西,位于西半天空,月相变化由缺到圆;下弦月出现在农历月的下半月的下半夜(午夜至清晨可见),月球亮面朝东,位于东半天空,月相变化由圆到缺。

关于月相变化对学生的粗浅解释 如果不考虑地球围绕太阳的转动,单纯计算月亮绕地球旋转一周的时间,那只是27天7小时43分11秒。(这是由于在月亮绕地球转动过程中,途径28组恒星星座,作为月亮运行位置的记录,每组恒星各有名目,通称28宿(宫)。月亮每天运行一宿,近28天正好实际绕行地球一周)那么,为什么一朔望月时间会是29天多呢?现在,以月的合朔日为起点加以说明:我们知道,月亮的合朔是太阳、月亮、地球三者正处于一条直线上,月亮居于太阳和地球中间,背向地球,人们丝毫看不见月亮的时候。这时假设地球停止绕日公转,那么,月亮绕地球一周后再回到相对地球的这一位置时,就是27天7小时43分11秒。这一长度叫做“恒星月”。但是,在月亮围绕地球转动时,地球也在围绕太阳转动,当月亮行走27天多,又回到上月合朔时相对地球的那一位置时,月亮已不再居于太阳与地球的直线之间了,因地球的向前运动已使原来相对月亮、太阳的位置向前移动,脱离开太阳与地球的连线,形成了一段距离。月亮只能继续向前运动,走过这段距离,再达到太阳与地球新的连线的时候,才能再形成新的合朔,这段距离需要1~2日的时间,也就是所谓的一、二隐日。因而,月亮有28显日,其后,还有1~2日的隐日。 月相变化歌 初一新月不可见,只缘身陷日地中。初七初八上弦月,半轮圆月(半明半暗)面朝西。满月出在十五六,地球一肩挑日月。二十二三下弦月,月面朝东下半夜。 一个口诀:“上上上西西、下下下东东”——意思是:上弦月出现在农历月的上半月的上半夜(黄昏至午夜可见),月球亮面朝西,位于西半天空,月相变化由缺到圆;下弦月出现在农历月的下半月的下半夜(午夜至清晨可见),月球亮面朝东,位于东半天空,月相变化由圆到缺。

连续运行参考站系统在城市水文测绘中的应用

连续运行参考站系统在城市水文测绘中的应用 发表时间:2016-10-08T11:05:55.823Z 来源:《基层建设》2015年30期作者:林楠 [导读] 摘要:苏州市连续运行卫星定位综合服务系统(SZCORS)的建立,为苏州市的测绘领域增添了一种强有力的技术手段。文章结合SZCORS的技术原理及其优势,阐述了SZCORS在城市水文水资源测绘中的应用,并结合实际工作经验得出了一些有益的结论。 浙江省河海测绘院 摘要:苏州市连续运行卫星定位综合服务系统(SZCORS)的建立,为苏州市的测绘领域增添了一种强有力的技术手段。文章结合SZCORS的技术原理及其优势,阐述了SZCORS在城市水文水资源测绘中的应用,并结合实际工作经验得出了一些有益的结论。 关键词:SZCORS;CORS;RTK;水文测绘 1引言 GPS实时动态定位(RTK)技术作为一项成熟的技术在测绘领域已得到了普遍的应用,使用RTK技术可以方便、高效、快捷地实现高精度的测量工作。常规RTK技术主要指基准站利用无线电波建立数传信号,移动站在有效的半径范围内通过卫星信号和基准站数据链可以快速获得待定点的精确坐标,但常规RTK技术存在着一定的局限性,如用户需要架设基准站、移动站与基准站间的距离受到限制、数据通信链路的可靠性和稳定性等随着距离的增加而降低等因素。 2连续运行参考站系统的产生及背景 连续运行参考站系统(CORS)是利用全球导航卫星系统(GNSS)、计算机、数据通信和互联网络等技术,在某一范围内,根据要求按一定距离间隔,建立长年连续运行的若干个固定GNSS参考站组成的网络系统。CORS构建了新一代的网络化大地测量系统,不仅可以向各级测绘用户提供高精度、连续的时间和空间基准,还可以向导航、时间、灾害预报等部门提供各种数据服务。高精度实时动态定位是目前GNSS定位技术研究的热点。高精度实时差分定位又是高精度动态定位的主要手段之一。常规RTK是一种基于单参考站、高精度载波相位观测值的实时动态差分定位技术。在这些需求和条件下,网络RTK技术应用而生,成为了目前GNSS高精度动态定位技术的一个典型代表。网络RTK是一种集成了GNSS数据处理、计算机网络、通讯技术等的实时动态定位新技术,已经得到非常广泛的应用。目前连云港市所使用的CORS是江苏省连续运行参考站网络(JSCORS),是由基准站网络、控制中心、数据中心、用户应用系统、数字通信系统组成。连云港市勘察测绘院有限公司早在2007年就引入使用了该系统的网络RTK技术。 3网络RTK相对于常规RTK的优点 3.1 常规RTK的工作原理及作业模式 图1 常规RTK的作业模式图2 VRS作业流程图 常规RTK除需配备参考站接收机和流动站接收机外,还需要数据通讯设备,参考站需要将自己所获得的载波相位观测值及站点坐标通过数据信链,实时播发给在其周围工作的动态用户.流动站数据处理模块使用动态差分定位的方式确定出流动站相应参考站的位置,然后根据参考站的坐标求得自己的瞬时绝对位置,其作业模式如图1所示。常规RTK定位技术虽然可以满足很多应用的要求,但是还是有不少局限,比如连线麻烦,电瓶较重,不利于移动,且距离有一定的限制,距离一长,就很难接收到信号。 3.2 网络RTK的作业模式及优点 网络RTK也称多参考站RTK,是近年来在常规RTK、计算机技术、通讯网络技术的基础上发展起来的一种实时动态定位新技术。CORS 是网络RTK技术的基础设施,它由参考站网、数据处理中心、数据通信链路和用户部分组成。一个参考站网可以包括若干个参考站,每个参考站上配有GNSS接收机、数据通讯设备等。JSCORS服务技术主要是使用虚拟参考站技术(VRS),其作业流程如图2所示网络RTK无需架设基站,提高了生产效率,也不要求测区内必须有控制点,避免了常规RTK随作业距离增大精度衰减的缺点,网络覆盖范围内能够得到均匀的精度。能够实现测绘系统和定位精度的统一,便于测量成果的系统转换和多用途处理。 4 网络RTK应用 4.2 网络RTK在连云港市城市测量中的应用 4.2.1 控制测量中的应用 网络RTK测量的坐标是WGS-84 坐标,因此必须求解WGS-84 坐标系的转换参数,然后才能将RTK采集的数据转换为地方城建坐标,方便城市建设的各种需要。控制测量是城市测绘工作中十分重要的一项内容,城市地区居民地密集,高大建筑物多,常规RTK的限制性比较大,导线网更是困难重重,通视极差,网络RTK比较客观的解决了这些难题。首先,网络RTK在城市里可以建立一个或多个控制网,网络RTK建网比较方便,如果范围较大还可以分区域建网。 4.2.2 建筑施工放样中的应用 绘院基本上承担了市区所有建筑物的定线放样工作。无论是新楼盘的开发还是旧城区的改造,测量控制点都不能即时到达在测区内,使得常规仪器的使用受到很大的限制。使用网络RTK对建筑物的位置放样,不需要做图根控制,也不需要架设仪器,确定建筑物所在的控制区域,就可以直接放样。以南方测绘的网络RTK 设备为例,在手簿的放样点坐标库中输入需要放样的坐标,在测量点放样中进入放样屏

高精度卫星导航定位行业研究报告分析

高精度卫星导航定位行业研究报告 目录 一、全球卫星发展概况 (3) 二、全球卫星导航系统发展历程 (4) 1、50年代末至60年代末是GPS研发的初级积累阶段 (4) 2、70年代初至80年代末GPS研发正式开始 (5) 3、1989年至1994年是GPS实用组网阶段 (5) 4、994年至2000年是GPS军转民的过渡阶段 (5) 5、2000年GPS正式放开在全球广泛推广应用 (5) 三、全球卫星导航定位行业市场规模 (6) 四、中国卫星导航定位行业发展历程 (6) 1、90年代中期以前为起步阶段 (6) 2、1996—1997年是市场发展期 (7) 3、1998—2001年是市场逐渐成熟的时期 (7) 4、2002年进入产业化发展阶段 (7) 5、2005年民用市场规模化发展开始 (7) 五、中国市场规模 (9) 六、中国卫星导航定位行业基本特点 (10) (一)高精度卫星导航定位行业 (10) 1、专业市场正在成长,国厂商加速赶超国外厂商 (10)

2、国企业竞争力提升,从进口主导格局走向国产替代进口 (10) 3、行业毛利随着技术进步、成本回落以及规模影响的共同驱动下稳步提升 (11) 4、GNSS产业已经形成专业的上下游产业链结构,中国高精度GNSS 产业链已经初步形成,国产品牌在GNSS产业价值链上取得重要位置 (11) (二)消费类卫星导航定位行业 (12) 1、市场形成一定规模,数百家终端企业参与竞争,盗版与山寨泛滥成灾 (12) 2、以北上广为中心的三大区域是消费类应用市场的发动机 (13) 七、高精度卫星导航定位应用市场概况 (14) (一) 应用市场规模 (14) 1、全球卫星导航定位专业应用市场 (14) (二) 行业应用市场发展 (15) 1、测绘仪器市场 (15) 2、GIS地理信息市场 (19) 3、系统工程 (22) 八、高精度卫星导航行业市场竞争结构分析 (25) (一) 高精度GNSS产品 (25) 1、市场竞争结构 (25) (二) 水声探测设备 (28) 1、市场竞争结构 (28) 九、高精度卫星导航定位行业市场发展趋势 (30) (一)高精度GNSS产品市场发展趋势 (30) (二)水声探测设备市场发展趋势 (32) 十、高精度卫星导航定位行业技术发展趋势 (33) (一)高精度GNSS产品技术发展趋势 (33)

CORS单基参考站设计方案

技术设计方案 一、前言 随着国家信息化程度的提高及计算机网络和通信技术的飞速发展,电子政务、电子商务、数字城市、数字省区和数字地球的工程化和现实化,需要采集多种实时地理空间数据,因此,中国发展CORS系统的紧迫性和必要性越来越突出。几年来,国内不同行业已经陆续建立了一些专业性的卫星定位连续运行网络,目前,为满足国民经济建设信息化的需要,一大批城市、省区和行业正在筹划建立类似的连续运行网络系统,一个新的建网高潮正在到来。 当前国内不同行业建设的网站系统基本上还是独立运行的,很多单位的数据只在本单位甚至是本部门内共享和利用。目前国内市场上的连续运行参考站的建站方案动则百万甚至上千万的资金投入相对于这些小规模的应用对连续运行参考站的需求而言就显得投入与产出太过于失衡,导致许多行业与单位只能对连续运行参考站系统望而怯步。 针对这种情况,我们提出了“服务现在、面向未来的可拓展的SOUTH-CORS GPS独立连续运行参考站解决方案”。 本方案立足于当前的具体实际应用,单参考站在满足现势应用的前提下可拓展成为未来的多基站应用。

二、系统设计 1、系统概述 本方案设计是根据独立运行参考站的特点而专门设计的,方案设计遵循如下的原则。 ●先进性——在保证系统可靠性和稳定性的前提下,采用当前世界上先进的 GPS技术、通讯技术、软件设计和开发技术,以保证系统的性能在较长的时间内不落后,并随着技术的不断发展得到相应的更新。 ●可靠性——系统设计就是为了更有效的提高RTK在区域内作业的效率,更合 理的应用和利用RTK。系统设计以可靠性为前提,否则,不但不能起到应该起到的作用,有可能还带来反面的影响。 ●可拓展性——系统在设计上考虑到产品的可扩展性,独立的连续运行参考站 只需要通过软件升级就能接入多基站的连续运行参考站系统。系统可以进行整体升级,因此系统在升级时对终端用户来说是透明的。 ●高性价比——为了极大的降低客户的运行成本,在同样的价格下,尽量让客 户享受做好的服务和高性能的系统。 ●易用性——在设计系统时,尽量使用户操作界面友好、简单、易用,充分体 现人性化。 2、方案目标与内容 连续运行单参考站系统为一个独立的连续运行的GPS参考站,利用现代计算机、数据通信和互联网(LAN/WAN)技术组成的网络,实时地向不同类型、不同需求的用户自动地提供经过检验的不同类型的GPS观测值(载波相位,伪距),各种改正数、状态信息,以及其他有关GPS服务项目的系统。 连续运行单参考站系统方案目标为:建立和维护测量区域内的GPS基准站支持,为该系统提供一套完整的GPS工程技术标准,其具体项目为:(1)建设一个永久连续观测的GPS定位基准站观测墩。 (2)建立若干个可提供基准站网络服务的网络系统。 (3)建立基准站与系统管理中心的内部局域网的数据传输 2

上海潮汐表

上海潮汐表 农历涨潮落潮涨潮落潮 初九、二十四07:12 13:24 19:36 01:48 初十、二十五08:00 14:12 20:24 02:36 初十一、二十六08:48 15:00 21:12 03:24 初十二、二十七09:36 15:48 22:00 04:12 初十三、二十八10:24 16:36 22:48 05:00 初十四、二十九11:12 17:24 23:36 05:48 初十五、三十12:00 18:12 00:24 06:36 初一、十六00:48 07:00 13:12 19:24 初二、十七01:36 07:48 14:00 20:12 初三、十八02:24 08:36 14:48 21:00 初四、十九03:12 09:24 15:36 21:48 初五、二十04:00 10:12 16:24 22:36 初六、二十一04:48 11:00 17:12 23:24 初七、二十二05:36 11:48 18:00 00:12 初八、二十三06:24 12:36 18:48 01:00 以上数据会有些许误差,但基本准确,红色为最大潮时间(鱼进来机率最大),紫色为小潮时间(鱼进来机率最小) 潮汐时间计算解析:

1.地球各点地方时与太阳的关系:由于地球一刻不停地自西向东自转,一般来说,东边比西边先看到日出,也就是东边的时刻比西边时刻早。古时候,各地都把当地太阳高度最大时刻定为12 点,因此各地的地方是不同的。如右图,在此光照图上我们可以确定此图中任一点的地方时。 2.潮汐与太阳和月球的关系:海洋的潮汐现象是因月球和太阳的引力在地球上分布不均造成的。引潮力是在地球朝向月球(或太阳)的一面和背向月球(或太阳)的一面同时发生的。朝向月球和太阳一面形成的潮汐称顺潮,背向月球和太阳一面形成的潮汐称对潮。据科学推测是:当月、日、地三者成一直线时引力最大,潮涨落的最大,形成大潮,这时是新月和望月(初一、十五)的时候;当日、月、地三者成直角三角形时引力最小,潮涨落的最小,形成小潮,这时是月上弦(初七、八)和下弦(廿二、廿三)的时候。 根据万有引力定律,月球的引潮力是太阳的 2.17 倍,可见,海洋潮汐主要是由月球引潮力引起的。如右图所示:(在一个周期的时间内,最常见到的是两涨两落)但在实际上形成大潮和小潮的时间,并不正好是上述时间,为方便起见,本文只从理论上探讨形成大潮和小潮的时间以及一日内潮汐涨落(高潮和低潮)时间。 3.从上可以看出,地球上各个地方的地方时当地与由太阳的相互位置所决定,而一个地方海水的涨落(潮汐)主要由此地与月球的相互位置决定。潮汐高潮的时间,在理论上应该在月亮的上、下中天

CORS连续运行参考站的建立

CORS连续运行参考站的建立 摘要:连续运行参考站系统(CORS)在测量方面其应用越来越广泛。本文简述了GPS与CORS的基本原理;介绍了网络CORS的建站过程,并且基于单基站CORS,进行了阐述与分析。同时求解阜新地区转换参数,建立阜新地区单基站CORS。最后提出了对于小范围测区如何建立单基站CORS的方法,得出的结论是对于小测区平面图的测绘可以不用做点校正,也能完全符合测图要求。 关键词:连续运行参考站;单基站;虚拟参考站 前言 随着国家信息化程度的提高及计算机网络和通信技术的飞速发展,数字地球的工程化和现实化,需要采集多种实时地理空间数据。国内不同行业已经陆续建立了一些专业性的卫星定位连续运行网络,一个连续运行参考站网络系统的建设高潮正在到来。 1常规RTK介绍 1.1常规RTK原理 动态用户进行定位时,参考站载波相位同步观测值以及坐标通过可靠的数据通信链路实时播发给用户。动态用户根据当前载波相位观测值和广播星历进行实时相对定位。根据己知的参考站精确坐标,可以计算用户瞬时位置。 1.2 常规RTK系统组成 基准站:流动站:软件系统。 2CORS的基本原理 网络RTK技术就是利用地面布设的一个或多个基准站组成GPS连续运行参考站(CORS),综合利用基站的观测信息,建立精确的误差修正模型,实时发送RTCM差分改正数来修正用户的观测值精度。网络RTK技术集Internet、无线通讯、计算机网络管理和GPS定位技术于一体,是参考站网络式GPS多功能服务系统的核心支持技术,其理论研究与系统开发均是GPS技术科研和应用领域最热门的前沿。 2.1网络CORS的主要技术 1)虚拟参考站技术(VRS)

CORS参考站建设

GNSS连续运行参考站系统的建设 2014-10-23 10:24:36 来源: 测绘论坛作者: 摘要:SOUTH CORS GNSS连续运行参考站系统是一个高度集成化的测量系统,将尖端的GNSS测量技术和传统的常规测量技术结合在一起,提供了一整套数据采集、数据处理、数据分发、数据管理的先进解决方案。本文着重论述了CORS的概念、优缺点、分类、用途及原理,为建立城市GNSS连续运行参考站系统提供帮助。 关键词:GNSS 连续运行参考站卫星定位GPS RTK 单基站多基站 一、CORS的概念 连续运行参考站系统(Continuous Operational Reference System,简称CORS系统)可以定义为一个或若干个固定的、连续运行的GNSS参考站,利用现代计算机、数据通信和互联网(LAN/WAN)技术组成的网络,实时地向不同的类型、不同需求、不同层次的用户自动地提供经过检验的不同类型的GNSS 观测值(载波相位,伪距),各种改正数、状态信息、以及其他有关的GNSS 服务项目的系统。 二、CORS的优点 与传统的GNSS作业相比连续运应参考站具有作用范围大、精度高、野外单机作业等众多优点,目前国内一大批城市、省区和行业正经历着一个连续运行参考站网络系统的建设高潮。其优点如下: 1.具有跨行业特性,可面向不同类型的用户,不再局限于测绘领域及设站的单位和部门。 2.可同时满足不同需求的用户在实时性方面的差异,能同时提供RTK、DGPS、静态或动态后处理及现场高精度准实时定位的数据服务。 3.能兼顾不同层次的用户对定位精度指标的要求,提供覆盖米级、分米级、厘米级的数据。 4.覆盖范围广、作业效率高、一次投资长期收益的特点,成为城市基础设施

海洋水文气象调查与观测实习

海洋水文气象调查与观测实习 一、实习时间和具体安排 2015年7月6号:召开实习动员大会 2015年7月9号:校内实验 2015年7月10:号芦潮港海洋监测站观测实习 2015年7月14号:海上实习 二、实习目的 理论和实践相结合,掌握各海洋要素观测前的准备、观测操作以及样品(数据)处理等阶段的具体要求和注意事项;培养吃苦耐劳的精神,增强动手能力和知识运用能力;培养海上安全意识;认识海洋调查与观测的重要意义。海洋调查与观测实习有助于培养自我分析、概括、欣赏的能力;培养语言表达能力及公众场合发言的能力;培养同学之间相互沟通相互交流,团结合作的能力;培养学生具有扎实的对试验资料进行统计分析处理的能力和初步的生物学试验设计的能力。 三、实习项目: 2.1、芦潮港海洋检测站观测实习 1、观测内容 在专业人员的带领和讲解下,参观了用于监测海洋水文气象要素的仪器(浮标、CTD、ADCP、潮位仪等)和监测自动化系统(海洋水文气象自动监测系统、卫星接收系统等),了解监测站的工作内容,并去码头参观,实地参观码头上设置观测取样点(验潮井、温盐井、水尺)。了解和学习监测站的基本监测要素所用的仪器、设备。 2、观测仪器简介 浮标:海洋浮标是一种投放在海洋中的现代化的海洋观测设施。有锚定类型浮标和漂流类型浮标。它具有全天候、全天时稳定可靠地收集海洋环境资料的能力,并能实现数据的自动采集、自动标示和自动发送。海洋浮标与卫星、飞机、调查船、潜水器及声波探测设备一起,组成了现代海洋环境立体监测系统。海洋浮标,一般分为水上和水下两部分,水上部分装有多种气象要素传感器,分别测量风速、风向、气温、气压和温度等气象要素;水下部分有多种水文要素传感器,分别测量波浪、海流、潮位、海温和盐度等海洋水文要素。 CTD:它是特指一种用于探测海水温度,盐度,深度等信息的探测仪器,名为:温盐深仪ADCP:超声多普勒流速仪是应用声学多普勒效应原理制成的测流仪,采用超声换能器,用超声波探测流速。测量点在探头的前方,不破坏流场,具有测量精度高,量程宽;可测弱流也可测强流;分辨率高,响应速度快;可测瞬时流速也可测平均流速;测量线性,流速检定曲线不易变化;无机械转动部件,不存在泥沙堵塞和水草缠绕问题;探头坚固耐用,不易损坏,操作简便等优点。 潮位仪:潮位仪(验潮仪,水位计,波潮仪)可测潮位、水位、波浪环境要素 加拿大RBR公司的有4款小巧的潮位仪: 1,TGR-2050 自记式潮位仪,适合近岸海洋工程勘察,深度精度精度0.05%。 2,TGR-1050 HT 实时遥报潮位仪,自动去除大气压影响,适合港口实时潮位监测,深度精度0.1%。 3,XR-420 SBR 深海水位计,适合深海水位测量,深度精度0.01%。 4, TWR-2050 波潮仪,即可测潮位,又可测波浪,深度精度精度0.05%。 验潮井:验潮井是为安装验潮仪而专设的建筑物。验潮井按其建筑结构形式可分为岛式和岸式两种。 温盐井:为获取温、盐实时连续数据而建立的观测设施,并安装温、盐自动监测设备。

卫星定位连续运行参考站

卫星定位连续运行参考站(CORS)CORS 随着GPS技术的飞速进步和应用普及,它在城市测量中的作用已越来越重要。当前,利用多基站网络RTK技术建立的连续运行卫星定位服务综合系统(Continuous Operational Reference System,缩写为CORS)已成为城市GPS应用的发展热点之一。CORS 系统是卫星定位技术、计算机网络技术、数字通讯技术等高新科技多方位、深度结晶的产物。 CORS系统由基准站网、数据处理中心、数据传输系统、定位导航数据播发系统、用户应用系统五个部分组成,各基准站与监控分析中心间通过数据传输系统连接成一体,形成专用网络。 基准站网:基准站网由范围内均匀分布的基准站组成。负责采集GPS卫星观测数据并输送至数据处理中心,同时提供系统完好性监测服务。 数据处理中心:系统的控制中心,用于接收各基准站数据,进行数据处理,形成多基准站差分定位用户数据,组成一定格式的数据文件,分发给用户。数据处理中心是CORS的核心单元,也是高精度实时动态定位得以实现的关键所在。中心24小时连续不断地根据各基准站所采集的实时观测数据在区域内进行整体建模解算,自动生成一个对应于流动站点位的虚拟参考站(包括基准站坐标和GPS观测值信息)并通过现有的数据通信网络和无线数据播发网,向各类需要测量和导航的用户以国际通用格式提供码相位/载波相位差分修正信息,以便实时解算出流动站的精确点位。

数据传输系统:各基准站数据通过光纤专线传输至监控分析中心,该系统包括数据传输硬件设备及软件控制模块。 数据播发系统:系统通过移动网络、UHF电台、Internet等形式向用户播发定位导航数据。 用户应用系统:包括用户信息接收系统、网络型RTK定位系统、事后和快速精密定位系统以及自主式导航系统和监控定位系统等。按照应用的精度不同,用户服务子系统可以分为毫米级用户系统,厘米级用户系统,分米级用户系统,米级用户系统等;而按照用户的应用不同,可以分为测绘与工程用户(厘米、分米级),车辆导航与定位用户(米级),高精度用户(事后处理)、气象用户等几类。 CORS系统彻底改变了传统RTK测量作业方式,其主要优势体现在:1)改进了初始化时间、扩大了有效工作的范围;2)采用连续基站,用户随时可以观测,使用方便,提高了工作效率;3)拥有完善的数据监控系统,可以有效地消除系统误差和周跳,增强差分作业的可靠性;4)用户不需架设参考站,真正实现单机作业,减少了费用;5)使用固定可靠的数据链通讯方式,减少了噪声干扰;6)提供远程INTERNET服务,实现了数据的共享;7)扩大了GPS 在动态领域的应用范围,更有利于车辆、飞机和船舶的精密导航;8)为建设数字化城市提供了新的契机。 CORS系统仅是一个动态的、连续的定位框架基准,同时也是快速、高精度获取空间数据和地理特征的重要的城市基础设施,CORS 可在城市区域内向大量用户同时提供高精度、高可靠性、实时的定位信息,并实现城市测绘数据的完整统一,这将对现代城市基础地

相关文档
相关文档 最新文档