文档库 最新最全的文档下载
当前位置:文档库 › matlab积分

matlab积分

matlab积分
matlab积分

有不少人常问带参数的积分问题该如何处理,现举一个例子,希望能起到抛砖引玉的作用.

例如以下问题:

函数为y=sin(k.*x).*x.^2,对x积分,

积分区域为[1,5],目的是要画k 和y 的图形.

作k的一个循环, k作为inline函数的参数即可.

==========================================

clear all

k=linspace(0,5);

for i=1:length(k)

kk=k(i);

fun=strcat('sin(',num2str(kk),'*x).*x.^2');

y(i)=quadl(inline(fun),1,5);

end

plot(k,y)

==========================================

注意: 这个程序的特别意义在于,对于任何复杂的、无显式积分表达式的

带参数积分问题具有通用性,我主要是针对此而写的。

==========================================

clear all

k=linspace(1,5);

for i=1:length(k)

kk=k(i);

fun=['sin(',num2str(kk),'*x).*x.^2'];

y(i)=quadl(inline(fun),1,5);

end

plot(k,y)

==========================================

clear all

k=linspace(1,5);

for i=1:length(k)

kk=k(i);

fun=inline(subs('sin(k*x)*x^2','k',kk));

y(i)=quadl(fun,1,5);

end

hold on;

plot(k,y,'r')

==========================================

我也来两种办法,第一种是利用匿名函数(Anonymous Function),第二种是利用内嵌函数(Nested Function)

方法一:

clear all

kk=linspace(0,5);

y=zeros(size(kk));

ff=@(k) ['sin(',num2str(k),'*x).*x.^2'];

f=@(k) quadl(ff(k),1,5);

for ii=1:length(kk)

y(ii)=f(kk(ii));

end

plot(kk,y)

方法二:

新建m文件

function y=shuzhijifen(k)

function f=f(x)

f=sin(k.*x).*x.^2;

end

y=quadl(@f,1,5);

end

保存之,然后运行

clear all

kk=linspace(0,5);

y=zeros(size(kk));

for ii=1:length(kk)

y(ii)=shuzhijifen(kk(ii));

end

plot(kk,y)

==========================================

f=@(k) quad(@(x) sin(k.*x).*x.^2,0,5)

kk=linspace(0,5);

y=zeros(size(kk));

for ii=1:length(kk)

y(ii)=f(kk(ii));

end

plot(kk,y)

==========================================

plot(linspace(0,5),arrayfun(@(k) quad(@(x) sin(k.*x).*x.^2,0,5),linspace(0,5)))

==========================================

fun=strcat('t.^(',num2str(aa),'-1).*exp(-t)')

==========================================

重积分f(x,y) = x*y,y从sin(x)积分到cos(x),x从1积分到2

==========================================

syms x y

int(int(x*y,y,sin(x),cos(x)),1,2)

=-1/2*cos(1)*sin(1)-1/4*cos(1)^2+cos(2)*sin(2)+1/4*cos(2)^2 = -0.635412702399943 ==========================================

quad2d(@(x,y) x.*y,1,2,@(x)sin(x),@(x)cos(x),'AbsTol',1e-12)

==========================================

function IntDemo

function f1 = myfun1(x)

f1 = zeros(size(x));

for k = 1:length(x)

f1(k) = quadl(@(y) x(k)*y,sin(x(k)),cos(x(k)));

end

end

y = quadl(@myfun1,1,2)

end

==========================================

quadl(@(x) arrayfun(@(xx) quadl(@(y) xx*y,sin(xx),cos(xx)),x),1,2)

==========================================

@(x) arrayfun(@(xx) quadl(@(y) xx*y,sin(xx),cos(xx)),x)

arrayfun(@(xx) quadl(@(y) xx*y,sin(xx),cos(xx)),x)

@(xx) quadl(@(y) xx*y,sin(xx),cos(xx))

@(xx) quadl(@(y) xx*y,sin(xx),cos(xx))

==========================================

tic,y1 = quad2d(@(x,y) exp(sin(x)).*log(y),10,20,@(x)5*x,@(x)x.^2),toc

tic,y2 = quadl(@(x) arrayfun(@(x) quadl(@(y) exp(sin(x)).*log(y),5*x,x.^2),x),10,20),toc

tic,y3 = dblquad(@(x,y) exp(sin(x)).*log(y).*(y>=5*x & y<=x.^2),10,20,50,400),toc

y1 =

9.368671342614414e+003

Elapsed time is 0.021152 seconds.

y2 =

9.368671342161189e+003

Elapsed time is 0.276614 seconds.

y3 =

9.368671498376889e+003

Elapsed time is 1.674544 seconds.

==========================================

f = @(a,b,t)@(x) cos(a*t).*sin(b*(t-x));

quadl(f(1,2,0.5),1,2),%a = 1,b = 2,t = 0.5时x从1到2的积分

==========================================

==================================================

两变量函数,对其中一个积分,另一个带入计算!!!!!!!!!!!!!!

f = @(theta,t) (2.391e-7)./(0.00105+t).^4.83.*exp(-4.*((theta-10.94).^2+3.362e-3)./(0.00105+t));

theta = 10.8:0.001:11.1;

ftheta = arrayfun(@(theta) quadgk(@(t) f(theta,t),0,inf),theta);

figure

plot(theta,ftheta)

几种常见窗函数及其MATLAB程序实现

几种常见窗函数及其MATLAB程序实现 2013-12-16 13:58 2296人阅读评论(0) 收藏举报 分类: Matlab(15) 数字信号处理中通常是取其有限的时间片段进行分析,而不是对无限长的信号进行测量和运算。具体做法是从信号中截取一个时间片段,然后对信号进行傅里叶变换、相关分析等数学处理。信号的截断产生了能量泄漏,而用FFT算法计算频谱又产生了栅栏效应,从原理上讲这两种误差都是不能消除的。在FFT分析中为了减少或消除频谱能量泄漏及栅栏效应,可采用不同的截取函数对信号进行截短,截短函数称为窗函数,简称为窗。 泄漏与窗函数频谱的两侧旁瓣有关,对于窗函数的选用总的原则是,要从保持最大信息和消除旁瓣的综合效果出发来考虑问题,尽可能使窗函数频谱中的主瓣宽度应尽量窄,以获得较陡的过渡带;旁瓣衰减应尽量大,以提高阻带的衰减,但通常都不能同时满足这两个要求。 频谱中的如果两侧瓣的高度趋于零,而使能量相对集中在主瓣,就可以较为接近于真实的频谱。不同的窗函数对信号频谱的影响是不一样的,这主要是因为不同的窗函数,产生泄漏的大小不一样,频率分辨能力也不一样。信号的加窗处理,重要的问题是在于根据信号的性质和研究目的来选用窗函数。图1是几种常用的窗函数的时域和频域波形,其中矩形窗主瓣窄,旁瓣大,频率识别精度最高,幅值识别精度最低,如果仅要求精确读出主瓣频率,而不考虑幅值精度,则可选用矩形窗,例如测量物体的自振频率等;布莱克曼窗主瓣宽,旁瓣小,频率识别精度最低,但幅值识别精度最高;如果分析窄带信号,且有较强的干扰噪声,则应选用旁瓣幅度小的窗函数,如汉宁窗、三角窗等;对于随时间按指数衰减的函数,可采用指数窗来提高信噪比。表1 是几种常用的窗函数的比较。 如果被测信号是随机或者未知的,或者是一般使用者对窗函数不大了解,要求也不是特别高时,可以选择汉宁窗,因为它的泄漏、波动都较小,并且选择性也较高。但在用于校准时选用平顶窗较好,因为它的通带波动非常小,幅度误差也较小。

数值积分的matlab实现

实验10 数值积分 实验目的: 1.了解数值积分的基本原理; 2.熟练掌握数值积分的MATLAB 实现; 3.会用数值积分方法解决一些实际问题。 实验内容: 积分是数学中的一个基本概念,在实际问题中也有很广泛的应用。同微分一样,在《微积分》中,它也是通过极限定义的,由于实际问题中遇到的函数一般都以列表形式给出,所以常常不能用来直接进行积分。此外有些函数虽然有解析式,但其原函数不是初等函数,所以仍然得不到积分的精确值,如不定积分?1 0 d sin x x x 。这时我们一般考虑用数值方法计算其 近似值,称为数值积分。 10.1 数值微分简介 设函数()y f x =在* x 可导,则其导数为 h x f h x f x f h ) ()(lim )(**0* -+='→ (10.1) 如果函数()y f x =以列表形式给出(见表10-1),则其精确值无法求得,但可由下式求得其近似值 h x f h x f x f ) ()()(*** -+≈' (10.2) 表 10-1 一般的,步长h 越小,所得结果越精确。(10.2)式右端项的分子称为函数()y f x =在 *x 的差分,分母称为自变量在*x 的差分,所以右端项又称为差商。数值微分即用差商近似 代替微商。常用的差商公式为: 000()() ()2f x h f x h f x h +--'≈ (10.3) h y y y x f 243)(2 100-+-≈ ' (10.4)

h y y y x f n n n n 234)(12+-≈ '-- (10.5) 其误差均为2 ()O h ,称为统称三点公式。 10.2 数值微分的MATLAB 实现 MATLAB 提供了一个指令求解一阶向前差分,其使用格式为: dx=diff(x) 其中x 是n 维数组,dx 为1n -维数组[]21321,, ,n x x x x x x ---,这样基于两点的数值导 数可通过指令diff(x)/h 实现。对于三点公式,读者可参考例1的M 函数文件diff3.m 。 例1 用三点公式计算()y f x =在=x 1.0,1.2,1.4处的导数值,()f x 的值由下表给 解:建立三点公式的M 函数文件diff3.m 如下: function f=diff3(x,y) n=length(x);h=x(2)-x(1); f(1)=(-3*y(1)+4*y(2)-y(3))/(2*h); for j=2:n-1 f(j)=(y(j+1)-y(j-1))/(2*h); end f(n)=(y(n-2)-4*y(n-1)+3*y(n))/(2*h); 在MATLAB 指令窗中输入指令: x=[1.0,1.1,1.2,1.3,1.4];y=[0.2500,0.2268,0.2066,0.1890,0.1736];diff3(x,y) 运行得各点的导数值为:-0.2470,-0.2170,-0.1890,-0.1650,-0.0014。所以()y f x =在=x 1.0,1.2,1.4处的导数值分别为-0.2470,-0.1890和-0.0014。 对于高阶导数,MATLAB 提供了几个指令借助于样条函数进行求导,详细使用步骤如下: step1:对给定数据点(x,y ),利用指令pp=spline(x,y),获得三次样条函数数据pp ,供后面ppval 等指令使用。其中,pp 是一个分段多项式所对应的行向量,它包含此多项式的阶数、段数、节点的横坐标值和各段多项式的系数。 step2:对于上面所求的数据向量pp ,利用指令[breaks,coefs,m,n]=unmkpp(pp)进行处理,生成几个有序的分段多项式pp 。 step3:对各个分段多项式pp 的系数,利用函数ppval 生成其相应导数分段多项式的系数,再利用指令mkpp 生成相应的导数分段多项式 step4:将待求点xx 代入此导数多项式,即得样条导数值。 上述过程可建立M 函数文件ppd.m 实现如下: function dy=ppd(pp) [breaks,coefs,m]=unmkpp(pp);

用递推公式计算定积分(matlab版)

用递推公式计算定积分 实验目的: 1.充分理解不稳定的计算方法会造成误差的积累,在计算过程中会导致误差的迅速增加,从而使结果产生较大的误差。 2.在选择数值计算公式来进行近似计算时,应学会选用那些在计算过程中不会导致误差迅速增长的计算公式。 3.理解不稳定的计算公式造成误差积累的来源及具体过程; 4.掌握简单的matlab语言进行数值计算的方法。 实验题目: 对n=0,1,2,…,20,计算定积分: 实验原理: 由于y(n)= = – 在计算时有两种迭代方法,如下: 方法一: y(n)=– 5*y(n-1),n=1,2,3, (20) 取y(0)= = ln6-ln5 ≈ 0.182322 方法二: 利用递推公式:y(n-1)=-*y(n),n=20,19, (1) 而且,由 = * ≤≤* =

可取:y(20)≈*()≈0.008730. 实验容: 对算法一,程序代码如下: function [y,n]=funa() syms k n t; t=0.182322; n=0; y=zeros(1,20); y(1)=t; for k=2:20 y(k)=1/k-5*y(k-1); n=n+1; end y(1:6) y(7:11) 对算法二,程序代码如下: %计算定积分; %n--表示迭代次数; %y用来存储结果; function [y,n]=f(); syms k y_20;

y=zeros(21,1); n=1; y_20=(1/105+1/126)/2; y(21)=y_20; for k=21:-1:2 y(k-1)=1/(5*(k-1))-y(k)/5; n=n+1; end 实验结果: 由于计算过程中,前11个数字太小,后9个数字比较大,造成前面几个数字只显示0.0000的现象,所以先输出前6个,再输出7—11个,这样就能全部显示出来了。 算法一结果: [y,n]=funa %先显示一y(1)—y(6) ans = 0.1823 -0.4116 2.3914 -11.7069 58.7346

一个简单的Matlab_GUI编程实例

Matlab GUI编程教程(适用于初学者) 1.首先我们新建一个GUI文件:如下图所示; 选择Blank GUI(Default) 2.进入GUI开发环境以后添加两个编辑文本框,6个静态文本框,和一个按钮,布置如下

图所示; 布置好各控件以后,我们就可以来为这些控件编写程序来实现两数相加的功能了。3.我们先为数据1文本框添加代码; 点击上图所示红色方框,选择edit1_Callback,光标便立刻移到下面这段代码的位置。 1. 2. 3.function edit1_Callback(hObject, eventdata, handles) 4.% hObject handle to edit1 (see GCBO) 5.% eventdata reserved - to be defined in a future version of MATLAB

6.% handles structure with handles and user data (see GUIDATA) 7.% Hints: get(hObject,'String') returns contents of edit1 as text 8.% str2double(get(hObject,'String')) returns contents of edit1 as a double 复制代码 然后在上面这段代码的下面插入如下代码: 1. 2.%以字符串的形式来存储数据文本框1的内容. 如果字符串不是数字,则现实空白内容input = str2num(get(hObject,'String')); %检查输入是否为空. 如果为空,则默认显示为0if (isempty(input)) set(hObject,'String','0')endguidata(hObject, handles); 复制代码 这段代码使得输入被严格限制,我们不能试图输入一个非数字。 4.为edit2_Callback添加同样一段代码 5 现在我们为计算按钮添加代码来实现把数据1和数据2相加的目的。 用3中同样的方法在m文件中找到pushbutton1_Callback代码段 如下; 1.function pushbutton1_Callback(hObject, eventdata, handles) 2.% hObject handle to pushbutton1 (see GCBO) 3.% eventdata reserved - to be defined in a future version of MATLAB 4.% handles structure with handles and user data (see GUIDATA) 复制代码

matlab编程实现求解最优解

《现代设计方法》课程 关于黄金分割法和二次插值法的Matlab语言实现在《现代设计方法》的第二章优化设计方法中有关一维搜索的最优化方法的 一节里,我们学习了黄金非分割法和二次插值法。它们都是建立在搜索区间的优先确定基础上实现的。 为了便于方便执行和比较,我将两种方法都写进了一个程序之内,以选择的方式实现执行其中一个。下面以《现代设计方法》课后习题为例。见课本70页,第2—7题。原题如下: 求函数f(x)=3*x^2+6*x+4的最优点,已知单谷区间为[-3,4],一维搜索精度为0.4。 1、先建立函数f(x),f(x)=3*x^2+6*x+4。函数文件保存为:lee.m 源代码为:function y=lee(x) y=3*x^2+6*x+4; 2、程序主代码如下,该函数文件保存为:ll.m clear; a=input('请输入初始点'); b=input('请输入初始步长'); Y1=lee(a);Y2=lee(a+b); if Y1>Y2 %Y1>Y2的情况 k=2; Y3=lee(a+2*b); while Y2>=Y3 %直到满足“大,小,大”为止 k=k+1; Y3=lee(a+k*b); end A=a+b;B=a+k*b; elseif Y1=Y3 %直到满足“大,小,大”为止 k=k+1; Y3=lee(a-k*b); end A=a-k*b;B=a; else A=a;B=a+b; %Y1=Y2的情况 end disp(['初始搜索区间为',num2str([A,B])])%输出符合的区间 xuanze=input('二次插值法输入0,黄金分割法输入1');%选择搜索方式 T=input('选定一维搜索精度'); if xuanze==1 while B-A>T %一维搜索法使精度符合要求 C=A+0.382*(B-A);D=A+0.618*(B-A); %黄金分割法选点

数字信号处理Matlab实现实例(推荐给学生)

数字信号处理Matlab 实现实例 第1章离散时间信号与系统 例1-1 用MATLAB计算序列{-2 0 1 –1 3}和序列{1 2 0 -1}的离散卷积。 解 MATLAB程序如下: a=[-2 0 1 -1 3]; b=[1 2 0 -1]; c=conv(a,b); M=length(c)-1; n=0:1:M; stem(n,c); xlabel('n'); ylabel('幅度'); 图1.1给出了卷积结果的图形,求得的结果存放在数组c中为:{-2 -4 1 3 1 5 1 -3}。 例1-2 用MATLAB计算差分方程 当输入序列为时的输出结果。 解 MATLAB程序如下: N=41; a=[0.8 -0.44 0.36 0.22]; b=[1 0.7 -0.45 -0.6]; x=[1 zeros(1,N-1)];

k=0:1:N-1; y=filter(a,b,x); stem(k,y) xlabel('n');ylabel('幅度') 图 1.2 给出了该差分方程的前41个样点的输出,即该系统的单位脉冲响应。 例1-3 用MATLAB 计算例1-2差分方程 所对应的系统函数的DTFT 。 解 例1-2差分方程所对应的系统函数为: 123 123 0.80.440.360.02()10.70.450.6z z z H z z z z -------++= +-- 其DTFT 为 23230.80.440.360.02()10.70.450.6j j j j j j j e e e H e e e e ωωωω ωωω--------++= +-- 用MATLAB 计算的程序如下: k=256; num=[0.8 -0.44 0.36 0.02]; den=[1 0.7 -0.45 -0.6]; w=0:pi/k:pi; h=freqz(num,den,w); subplot(2,2,1); plot(w/pi,real(h));grid title('实部') xlabel('\omega/\pi');ylabel('幅度')

CA码生成原理及matlab程序实现

作业:用Matlab写C/A码生成器程序,并画生成码的方波图。 C/A码生成原理 C/A 码是用m 序列优选对组合形成的Gold 码。Gold码是由两个长度相同而互相关极大值为最小的m 序列逐位模2 相加所得到的码序列。它是由两个10 级反馈移位寄存器组合产生的,其产生原理如图1 所示。 图1 C/A码生成原理 发生器的抽头号为3和10,发生器的抽头号为2、3、6、8、9、10;发生器的第10位输出的数字即为码,而码是由的两个抽头的输出结果进行模2相加得到。 卫星的PRN码与延时的量是相关联的,对C/A码来说,每颗卫星都有特别的延时,如第1颗GPS卫星的G2 抽为2、6,第2颗为3、7,第3 颗为4、8,第4 颗为5、9 等,如图2所示。通过G2 相位选择可以产生结构不同的伪随机码,从而可以实现不同卫星之间的码分多址技术与卫星识别。

图2 prn序号与G2抽头、时延对应关系 基于MATLAB的GPS信号实现 编写成“codegen”程序,输入[ca_used]=codegen(svnum),其中svnum为卫星号,ca_used 为得到的C/A码序列。程序具体实现流程如下: 在程序中定义一个数组,使得卫星号与G2的码片延时一一对应。 gs2=[5;6;7;8;17;18;139;140;141;251;252;254;255;256;257;258;469;470;471;472;473;474;509;512 ;513;514;515;516;859;860;861;862]; 定义两个1×1 023 的数组g1、g2 用来存放生成的Gold 码。定义一个全1 的10 位数组,作为移位寄存器,相当于G1、G2 生成模块的初值均置为全“1”。按原理式

数值积分算法与MATLAB实现陈悦5133201讲解

东北大学秦皇岛分校 数值计算课程设计报告 数值积分算法及MATLAB实现 学院数学与统计学院 专业信息与计算科学 学号5133201 姓名陈悦 指导教师姜玉山张建波 成绩 教师评语: 指导教师签字: 2015年07月14日

1 绪论 数值分析是计算数学的一个主要部分,计算数学是数学科学的一个分支,它研究用计算机求解各种数学问题的数值检索方其理论与软件的实现.而数值分析主要研究数值计算. 现科学技术的发展与进步提出了越来越多的复杂的数值计算问题,这些问题的圆满解决已远人工手算所能胜任,必须依靠电子计算机快速准确的数据处理能力.这种用计算机处理数值问题的方法,成为科学计算.今天,科学计算的应用范围非常广泛,天气预报、工程设计、流体计算、经济规划和预测以及国防尖端的一些科研项目,如核武器的研制、导弹和火箭的发射等,始终是科学计算最为活跃的领域. 1.1 数值积分介绍 数值积分是数值分析的重要环节,实际问题当中常常需要计算积分,有些数值方法,如微分方程和积分方程的求解,也都和积分计算相联系. 求某函数的定积分时,在多数情况下,被积函数的原函数很难用初等函数表达出来,因此能够借助微积分学的牛顿-莱布尼兹公式计算定积分的机会是不多的.另外,许多实际问题中的被积函数往往是列表函数或其他形式的非连续函数,对这类函数的定积分,也不能用不定积分方法求解.由于以上原因,数值积分的理论与方法一直是计算数学研究的基本课题.对微积分学做出杰出贡献的数学大师,如I.牛顿、L.欧拉、C.F.高斯、拉格朗日等人都在数值积分这个领域作出了各自的贡献,并奠定了这个分支的理论基础. 构造数值积分公式最通常的方法是用积分区间上的n 次插值多项式代替被积函数,由此导出的求积公式称为插值型求积公式.特别在节点分布等距的情形称为牛顿-科特斯公式,例如梯形公式(Trapezoidal Approximations)与抛物线公式(Approximations Using Parabolas)就是最基本的近似公式.但它们的精度较差.龙贝格算法是在区间逐次分半过程中,对梯形公式的近似值进行加权平均获得准确程度较高的积分近似值的一种方法,它具有公式简练、计算结果准确、使用方便、稳定性好等优点,因此在等距情形宜采用龙贝格求积公式(Rhomberg Integration).当用不等距节点进行计算时,常用高斯型求积公式计算,它在节点数目相同情况下,准确程度较高,稳定性好,而且还可以计算无穷积分.数值积分还是微分方程数值解法的重要依据.许多重要公式都可以用数值积分方程导出.现探讨数值积分算法以及运用MATLAB软件的具体实现

基于matlab程序实现人脸识别

基于m a t l a b程序实现 人脸识别 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

基于m a t l a b程序实现人脸识别 1.人脸识别流程 基于YCbCr颜色空间的肤色模型进行肤色分割。在YCbCr色彩空间内对肤色进行了建模发现,肤色聚类区域在Cb—Cr子平面上的投影将缩减,与中心区域显着不同。采用这种方法的图像分割已经能够较为精确的将人脸和非人脸分割开来。 人脸识别流程图 2.人脸识别程序 (1)人脸和非人脸区域分割程序 function result = skin(Y,Cb,Cr) %SKIN Summary of this function goes here % Detailed explanation goes here a=; b=; ecx=; ecy=; sita=; cx=; cy=; xishu=[cos(sita) sin(sita);-sin(sita) cos(sita)]; %如果亮度大于230,则将长短轴同时扩大为原来的倍 if(Y>230) a=*a; b=*b; end %根据公式进行计算 Cb=double(Cb); Cr=double(Cr);

t=[(Cb-cx);(Cr-cy)]; temp=xishu*t; value=(temp(1)-ecx)^2/a^2+(temp(2)-ecy)^2/b^2; %大于1则不是肤色,返回0;否则为肤色,返回1 if value>1 result=0; else result=1; end end (2)人脸的确认程序 function eye = findeye(bImage,x,y,w,h) %FINDEYE Summary of this function goes here % Detailed explanation goes here part=zeros(h,w); %二值化 for i=y:(y+h) for j=x:(x+w) if bImage(i,j)==0 part(i-y+1,j-x+1)=255; else part(i-y+1,j-x+1)=0; end end end [L,num]=bwlabel(part,8); %如果区域中有两个以上的矩形则认为有眼睛 if num<2 eye=0;

数值积分用matlab实现

数值积分用m a t l a b实 现

东北大学秦皇岛分校 数值计算课程设计报告 数值积分及Matlab实现 学院数学与统计学院 专业信息与计算科学 学号5133117 姓名楚文玉 指导教师张建波姜玉山 成绩 教师评语: 指导教师签字: 2015年07月14日

1 绪论 在科研计算中,经常会碰到一些很难用公式定理直接求出精确解的积分问题,对于这类问题,我们一般转化为数值积分问题,用计算机来实现求解问题. 1.1 课题的背景 对于定积分()b a f x dx ?在求某函数的定积分时,在一定条件下,虽然有牛顿-莱布里 茨公式()()()b a I f x dx F b F a ==-?可以计算定积分的值,但在很多情况下的原函数() f x 不易求出或非常复杂.被积函数的原函数很难用初等函数表达出来,例如 2 sin (),x x f x e x -= 等;有的函数()f x 的原函数()F x 存在,但其表达式太复杂,计算量太大,有的甚至无法有解析表达式.因此能够借助牛顿-莱布尼兹公式计算定积分的情形是不多的.另外,许多实际问题中的被积函数()f x 往往是列表函数或其他形式的非连续函数,对这类函数的定积分,也不能用不定积分方法求解,只能设法求其近似值.因此,探讨近似计算的数值积分方法是有明显的实际意义的,即有必要研究定积分的数值计算方法,以解决定积分的近似计算.而数值积分就是解决此类问题的一种有效的方法,它的特点是利用被积函数在一些节点上的信息求出定积分的近似值.微积分的发明是人类科学史上一项伟大的成就,在科学技术中,积分是经常遇到的一个重要计算环节数值积分是数学上重要的课题之一,是数值分析中重要的内容之一.随着计算机的出现,近几十年来,对于数值积分问题的研究已经成为一个很活跃的研究领域.现在,数值积分在计算机图形学,积分方程,工程计算,金融数学等应用科学领域都有着相当重要的应用,所以研究数值积分问题有着很重要的意义.国内外众多学者在数值积分应用领域也提出了许多新方法.在很多实际应用中,只能知道积分函数在某些特定点的取值,比如天气测量中的气温、湿度、气压等,医学测量中的血压、浓度等等.通过这个课题的研究,我们将会更好地掌握运用数值积分算法求出特殊积分函数的定积分的一些基本方法、理论基础;并且通过Matlab 软件编程的实现,应用于实际生活中. 1.2 课题的主要内容框架

matlab源代码实例

1.硬币模拟试验 源代码: clear; clc; head_count=0; p1_hist= [0]; p2_hist= [0]; n = 1000; p1 = 0.3; p2=0.03; head = figure(1); rand('seed',sum(100*clock)); fori = 1:n tmp = rand(1); if(tmp<= p1) head_count = head_count + 1; end p1_hist (i) = head_count /i; end figure(head); subplot(2,1,1); plot(p1_hist); grid on; hold on; xlabel('重复试验次数'); ylabel('正面向上的比率'); title('p=0.3试验次数N与正面向上比率的函数图'); head_count=0; fori = 1:n tmp = rand(1); if(tmp<= p2) head_count = head_count + 1; end p2_hist (i) = head_count /i; end figure(head); subplot(2,1,2); plot(p2_hist); grid on; hold on; xlabel('重复试验次数'); ylabel('正面向上的比率'); title('p=0.03试验次数N与正面向上比率的函数图'); 实验结果:

2.不同次数的随机试验均值方差比较 源代码: clear ; clc; close; rand('seed',sum(100*clock)); Titles = ['n=5时' 'n=20时' 'n=25时' 'n=50时' 'n=100时']; Titlestr = cellstr(Titles); X_n_bar=[0]; %the samples of the X_n_bar X_n=[0]; %the samples of X_n N=[5,10,25,50,100]; j=1; num_X_n = 100; num_X_n_bar = 100; h_X_n_bar = figure(1);

遗传算法的原理及MATLAB程序实现

遗传算法的原理及MATLAB程序实现 1 遗传算法的原理 1.1 遗传算法的基本思想 遗传算法(genetic algorithms,GA)是一种基于自然选择和基因遗传学原理,借鉴了生物进化优胜劣汰的自然选择机理和生物界繁衍进化的基因重组、突变的遗传机制的全局自适应概率搜索算法。 遗传算法是从一组随机产生的初始解(种群)开始,这个种群由经过基因编码的一定数量的个体组成,每个个体实际上是染色体带有特征的实体。染色体作为遗传物质的主要载体,其内部表现(即基因型)是某种基因组合,它决定了个体的外部表现。因此,从一开始就需要实现从表现型到基因型的映射,即编码工作。初始种群产生后,按照优胜劣汰的原理,逐代演化产生出越来越好的近似解。在每一代,根据问题域中个体的适应度大小选择个体,并借助于自然遗传学的遗传算子进行组合交叉和变异,产生出代表新的解集的种群。这个过程将导致种群像自然进化一样,后代种群比前代更加适应环境,末代种群中的最优个体经过解码,可以作为问题近似最优解。 计算开始时,将实际问题的变量进行编码形成染色体,随机产生一定数目的个体,即种群,并计算每个个体的适应度值,然后通过终止条件判断该初始解是否是最优解,若是则停止计算输出结果,若不是则通过遗传算子操作产生新的一代种群,回到计算群体中每个个体的适应度值的部分,然后转到终止条件判断。这一过程循环执行,直到满足优化准则,最终产生问题的最优解。图1-1给出了遗传算法的基本过程。 1.2 遗传算法的特点 1.2.1 遗传算法的优点

遗传算法具有十分强的鲁棒性,比起传统优化方法,遗传算法有如下优点: 1. 遗传算法以控制变量的编码作为运算对象。传统的优化算法往往直接利用控制变量的实际值的本身来进行优化运算,但遗传算法不是直接以控制变量的值,而是以控制变量的特定形式的编码为运算对象。这种对控制变量的编码处理方式,可以模仿自然界中生物的遗传和进化等机理,也使得我们可以方便地处理各种变量和应用遗传操作算子。 2. 遗传算法具有内在的本质并行性。它的并行性表现在两个方面,一是遗传 开始 初始化,输入原始参 数及给定参数,gen=1 染色体编码,产生初始群体 计算种群中每个个体的适应值 终止条件的判断, N gen=gen+1 选择 交叉 Y 变异 新种群 输出结果 结束 图1-1 简单遗传算法的基本过程

数值积分算法与MATLAB实现

数值积分算法与MATLAB实现 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 摘要:在求一些函数的定积分时,由于原函数十分复杂难以求出或用初等函数表达,导致积分很难精确求出,只能设法求其近似值,因此能够直接借助牛顿-莱布尼兹公式计算定积分的情形是不多的。数值积分就是解决此类问题的一种行之有效的方法。积分的数值计算是数值分析的一个重要分支;因此,探讨近似计算的数值积分方法是有着明显的实际意义的。本文从数值积分问题的产生出发,详细介绍了一些数值积分的重要方法。 本文较详细地介绍了牛顿-科特斯求积公式,以及为了提高积分计算精度的高精度数值积分公式,即龙贝格求积公式和高斯-勒让德求积公式。除了研究这些数值积分算法的理论外,本文还将这些数值积分算法在计算机上通过MATLAB软件编程实现,并通过实例用各种求积公式进行运算,分析比较了各种求积公式的计算误差。 【关键词】数值积分牛顿-科特斯求积公式高精度求积公式MATLAB软件

前言 对于定积分,在求某函数的定积分时,在一定条件下,虽然有牛顿-莱布里茨公式可以计算定积分的值,但在很多情况下的原函数不易求出或非常复杂。被积函数的原函数很难用初等函数表达出来,例如等;有的函数的原函数存在,但其表达式太复杂,计算量太大,有的甚至无法有解析表达式。因此能够借助牛顿-莱布尼兹公式计算定积分的情形是不多的。另外,许多实际问题中的被积函数往往是列表函数或其他形式的非连续函数,对这类函数的定积分,也不能用不定积分方法求解,只能设法求其近似值。因此,探讨近似计算的数值积分方法是有明显的实际意义的,即有必要研究定积分的数值计算方法,以解决定积分的近似计算。而数值积分就是解决此类问题的一种有效的方法,它的特点是利用被积函数在一些节点上的信息求出定积分的近似值。 微积分的发明是人类科学史上一项伟大的成就,在科学技术中,积分是经常遇到的一个重要计算环节。数值积分是数学上重要的课题之一,是数值分析中重要的内容之一,也是应用数学研究的重点。随着计算机的出现,近几十年来,对于数值积分问题的研究已经成为一个很活跃的研究领域。现在,数值积分在计算

用MATLAB算多元函数积分

用MATLAB 计算多元函数的积分 三重积分的计算最终是化成累次积分来完成的,因此只要能正确的得出各累次积分的积分限,便可在MA TLAB 中通过多次使用int 命令来求得计算结果。但三重积分的积分域Ω是一个三维空间区域,当其形状较复杂时,要确定各累次积分的积分限会遇到一定困难,此时,可以借助MATLAB 的三维绘图命令,先在屏幕上绘出Ω的三维立体图,然后执行命令 rotate3d on ↙ 便可拖动鼠标使Ω的图形在屏幕上作任意的三维旋转,并且可用下述命令将Ω的图形向三个坐标平面进行投影: view(0,0),向XOZ 平面投影; view(90,0),向YOZ 平面投影; view(0,90),向XOY 平面投影. 综合运用上述方法,一般应能正确得出各累次积分的积分限。 例11.6.1计算zdv Ω ???,其中Ω是由圆锥曲面222z x y =+与平面z=1围成的闭区域 解 首先用MA TLAB 来绘制Ω的三维图形,画圆锥曲面的命令可以是: syms x y z ↙ z=sqrt(x^2+y^2); ↙ ezsurf(z,[-1.5,1.5]) ↙ 画第二个曲面之前,为保持先画的图形不会被清除,需要执行命令 hold on ↙ 然后用下述命令就可以将平面z=1与圆锥面的图形画在一个图形窗口内: [x1,y1]=meshgrid(-1.5:1/4:1.5); ↙ z1=ones(size(x1)); ↙ surf(x1,y1,z1) ↙ 于是得到Ω的三维图形如图:

由该图很容易将原三重积分化成累次积分: 111zdv dy -Ω=???? 于是可用下述命令求解此三重积分: clear all ↙ syms x y z ↙ f=z; ↙ f1=int(f,z.,sqrt(x^2+ y^2),1); ↙ f2=int(f1,x,-sqrt(1- y^2), sqrt(1- y^2)); ↙ int(f2,y,-1,1) ↙ ans= 1/4*pi 计算结果为4 π 对于第一类曲线积分和第一类曲面积分,其计算都归结为求解特定形式的定积分和二重积分,因此可完全类似的使用int 命令进行计算,并可用diff 命令求解中间所需的各偏导数。 例11.6.2用MATLAB 求解教材例11.3.1 解 求解过程如下 syms a b t ↙ x=a*cos(t); ↙ y=a*sin(t); ↙ z=b*t; ↙ f=x^2 +y^2+z^2; ↙ xt=diff(x,t); ↙ yt=diff(y,t); ↙ zt=diff(z,t); ↙ int(f*sqrt(xt^2 +yt^2+zt^2),t,0,2*pi) ↙ ans= 2/3*( a^2 +b^2)^1/2*a^2*pi+8/3*( a^2 +b^2)^1/2*b^2*pi^3 对此结果可用factor 命令进行合并化简: factor (ans ) ans= 2/3*( a^2 +b^2)^1/2*pi*(3* a^2 +4*b^2*pi^2) 例11.6.3用MATLAB 求解教材例11.4.1 解 求解过程如下 syms x y z1 z2↙ f= x^2 +y^2; ↙ z1=sqrt(x^2 +y^2); ↙ z2=1; ↙ z1x=diff(z1,x); ↙ z1y=diff(z1,y); ↙ z2x=diff(z2,x); ↙ z2y=diff(z2,y); ↙

基于Matlab的动态规划程序实现

动态规划方法的Matlab 实现与应用 动态规划(Dynamic Programming)是求解决策过程最优化的有效数学方法,它是根据“最优决策的任何截断仍是最优的”这最优性原理,通过将多阶段决策过程转化为一系列单段决策问题,然后从最后一段状态开始逆向递推到初始状态为止的一套最优化求解方法。 1.动态规划基本组成 (1) 阶段 整个问题的解决可分为若干个阶段依次进行,描述阶段的变量称为阶段变量,记为k (2) 状态 状态表示每个阶段开始所处的自然状况或客观条件,它描述了研究问题过程的状况。各阶段状态通常用状态变量描述,用k x 表示第k 阶段状态变量,n 个阶段决策过程有n+ 1个状态。 (3) 决策 从一确定的状态作出各种选择从而演变到下一阶段某一状态,这种选择手段称为决策。描述决策的变量称为决策变量,决策变量限制的取值范围称为允许决策集合。用()k k u x 表示第k 阶段处于状态k x 时的决策变量,它是k x 的函数。用()k k D x Dk(xk)表示k x 的允许决策的集合。 (4) 策略 每个阶段的决策按顺序组成的集合称为策略。由第k 阶段的状态k x 开始到终止状态的后部子过程的策略记为{}11(),(),,()k k k k n n u x u x u x ++ 。可供选择的策略的范围称为允许策略集合,允许策略集合中达到最优效果的策略称为最优策略。从初始状态* 11()x x =出发,过程按照最优策略和状态转移方程演变所经历的状态序列{ } **** 121,,,,n n x x x x + 称为最优轨线。 (5) 状态转移方程 如果第k 个阶段状态变量为k x ,作出的决策为k u ,那么第k+ 1阶段的状态变量1k x +也被完全确定。用状态转移方程表示这种演变规律,记为1(,)k k k x T x u +=。 (6) 指标函数 指标函数是系统执行某一策略所产生结果的数量表示,是衡量策略优劣的数量指标,它定义在全过程和所有后部子过程上,用()k k f x 表示。过程在某阶段j 的阶段指标函数是衡量该阶段决策优劣数量指标,取决于状态j x 和决策j u ,用(,)j j j v x u 表示。 2.动态规划基本方程 (){} 11()min ,,(),()k k k k k k k k k k f x g v x u f x u D x ++=∈???? Matlab 实现 (dynprog.m 文件) function [p_opt,fval]=dynprog (x,DecisFun,SubObjFun,TransFun,ObjFun) % x 是状态变量,一列代表一个阶段的所有状态; % M-函数DecisFun(k,x) 由阶段k 的状态变量x 求出相应的允许决策变量; % M-函数SubObjFun(k,x,u) 是阶段指标函数, % M-函数ObjFun(v,f) 是第k 阶段至最后阶段的总指标函数 % M-函数TransFun(k,x,u) 是状态转移函数, 其中x 是阶段k 的某状态变量, u 是相应的决策变量; %输出 p_opt 由4列构成,p_opt=[序号组;最优策略组;最优轨线组;指标函数值组]; %输出 fval 是一个列向量,各元素分别表示p_opt 各最优策略组对应始端状态x 的最优函数值。

利用Matlab实现Romberg数值积分算法----系统建模与仿真结课作业

利用Matlab 实现Romberg 数值积分算法 一、内容摘要 针对于某些多项式积分,利用Newton —Leibniz 积分公式求解时有困难,可以采用数值积分的方法,求解指定精度的近似解,本文利用Matlab 中的.m 文件编写了复化梯形公式与Romberg 的数值积分算法的程序,求解多项式的数值积分,比较两者的收敛速度。 二、数值积分公式 1.复化梯形公式求解数值积分的基础是将区间一等分时的Newton —Cotes 求积公式: I =(x)[f(a)f(b)]2 b a b a f dx -≈ +? 其几何意义是,利用区间端点的函数值、与端点构成的梯形面积来近似(x)f 在区间[a,b]上的积分值,截断误差为: 3" (b a)()12 f η-- (a,b)η∈ 具有一次的代数精度,很明显,这样的近似求解精度很难满足计算的要求,因而,可以采用将积分区间不停地对分,当区间足够小的时候,利用梯形公式求解每一个小区间的积分近似值,然后将所有的区间加起来,作为被求函数的积分,可以根据计算精度的要求,划分对分的区间个数,得到复化梯形公式: I =1 1 (b a)(b a) (x)dx [f(a)f(b)2(a )]2n b a k k f f n n -=--≈+++∑? 其截断误差为:

2" (b a)h ()12 R f η--= (a,b)η∈ 2.Romberg 数值积分算法 使用复化的梯形公式计算的数值积分,其收敛速度比减慢,为此,采用Romberg 数值积分。其思想主要是,根据I 的近似值2n T 加上I 与2n T 的近似误差,作为新的I 的近视,反复迭代,求出满足计算精度的近似解。 用2n T 近似I 所产生的误差可用下式进行估算: 12221 ()3 n n n I T T T -?=-=- 新的I 的近似值: 122 n n j T T -=?+ j =(0 1 2 ….) Romberg 数值积分算法计算顺序 i=0 (1) 002T i=1 (2) 102T (3) 012T i=2 (4) 202T (5) 112T (6) 022T i=3 (7) 302T (8) 212T (9) 122T (10) 032T i=4 (11) 402T (12) 312T (13) 222T (14) 132T … … … … 其中,第一列是二阶收敛的,第二列是四阶收敛的,第三列是六阶收敛的,第四列是八阶收敛的,即Romberg 序列。

如何编写MATLAB程序才能实现对

关闭文件用fclose函数,调用格式为:sta=fclose(fid)说明:该函数关闭fid所表示的文件。其调用格式为:[A,COUNT]=fscanf(fid,format,size)说明:其中A用来存放读取的数据,COUNT返回所读取的数据元素个数,fid为文件句柄,format用来控制读取的数据格式,由%加上格式符组成,常见的格式符有:d(整型)、f(浮点型)、s(字符串型)、c(字符型)等,在%与格式符之间还可以插入附加格式说明符,如数据宽度说明等。 matlab fprintf.数据的格式化输出:fprintf(fid, format, variables)fprintf(fid,format,A)说明:fid为文件句柄,指定要写入数据的文件,format是用来控制所写数据格式的格式符,与fscanf函数相同,A是用来存放数据的矩阵。>> fid=fopen(""d:\char1.txt"",""w"");>> fid1=fopen(""d:\char1.txt"",""rt"");matlab读txt文件fid=fopen(""fx.txt"",""r"");%得到文件号[f,count]=fscanf(fid,""%f %f"",[12,90]);%把文件号1的数据读到f中。 matlab函数fgetl和fgets:按行读取格式文本函数Matlab提供了两个函数fgetl和fgets来从格式文本文件读取行,并存储到字符串向量中。这两个函数集几乎相同;不同之处是,fgets拷贝新行字符到字符向量,而fgetl则不。下面的M-file函数说明了fgetl的一个可能用法。此函数使用fgetl一次读取一整行。while f eof(fid) == 0 tline = fgetl(fid); %用Fourier变换求取信号的功率谱---周期图法 clf; Fs=1000; N=256;Nfft=256;%数据的长度和FFT所用的数据长度 n=0:N-1;t=n/Fs;%采用的时间序列 xn=sin(2*pi*50*t)+2*sin(2*pi*120*t)+randn(1,N); Pxx=10*log10(abs(fft(xn,Nfft).^2)/N);%Fourier振幅谱平方的平均值,并转化为dB f=(0:length(Pxx)-1)*Fs/length(Pxx);%给出频率序列 subplot(2,1,1),plot(f,Pxx);%绘制功率谱曲线 xlabel('频率/Hz');ylabel('功率谱/dB'); title('周期图N=256');grid on; Fs=1000; N=1024;Nfft=1024;%数据的长度和FFT所用的数据长度 n=0:N-1;t=n/Fs;%采用的时间序列 xn=sin(2*pi*50*t)+2*sin(2*pi*120*t)+randn(1,N); Pxx=10*log10(abs(fft(xn,Nfft).^2)/N);%Fourier振幅谱平方的平均值,并转化为dB f=(0:length(Pxx)-1)*Fs/length(Pxx);%给出频率序列 subplot(2,1,2),plot(f,Pxx);%绘制功率谱曲线 xlabel('频率/Hz');ylabel('功率谱/dB'); title('周期图N=256');grid on; %用Fourier变换求取信号的功率谱---分段周期图法 %思想:把信号分为重叠或不重叠的小段,对每小段信号序列进行功率谱估计,然后取平均值作为整个序列的功率谱 clf;

相关文档
相关文档 最新文档