文档库 最新最全的文档下载
当前位置:文档库 › 答案版 第1讲 机械振动

答案版 第1讲 机械振动

答案版   第1讲 机械振动
答案版   第1讲 机械振动

第一讲机械振动

【教学目标】

1.了解什么是机械振动

2.掌握回复力的计算

3.掌握简谐振动的特点

引入

【例1】如图所示,弹簧一端固定,另一端与物体相连接,物体放在光滑水平面上能够自由滑动,静止时物体能静止在O点,现把物体拉到右方的C点后释放,B、C关于O对称,物体将做什么运动?

答案:在BC间的往复运动

【知识点一】机械振动

定义:…物体(或物体的一部分)在某一中心位置两侧来回做往复运动,叫做机械振动。

★回复力:使物体回到某一中心的力叫做回复力,可以是合力也可以是某个力的分力;方向由物体所在位置指向平衡位置

★平衡位置:某一中心位置,平衡位置回复力为零

★位移:平衡位置指向物体所在位置的有向线段

【例】关于回复力的说法,以下正确的是()

A 回复力是振动物体受到的指向平衡位置的力

B 回复力是指物体受到的合外力

C 回复力可以是弹力、重力或摩擦力

D 回复力实质是向心力

答案:C

【例】如图所示在水平方向上振动的弹簧振子,其受力情况是( )

A 重力、支持力和弹簧的弹力

B 重力、支持力、弹簧弹力和回复力

C 重力、支持力和回复力

D 重力、支持力、摩擦力和回复力

答案:A

【例】如图所示是一个单摆振动的情形,O是它的平衡位置,B、C是摆球所能到达的最远位置.其受力情况是()

A 回复力是重力与绳子拉力的合力

B 回复力是重力的分力

C 回复力是绳子拉力

D 小球受到重力、拉力、和回复力三个力的作用

答案:B

通过上面的学习我们明白了什么是机械振动,也知道了回复力和位移,下面我们来分析下,在引入【例1】中回复力的与位移的关系

经分析发现小球的回复力大小与位移大小成正比,方向与位移方向相反,我们把这类机械振动称为简谐振动。 即:回复力大小与位移大小成正比,且与位移方向相反 F k x =-。 ★证明下列运动是简谐振动

【例】如图所示,一轻弹簧竖直放置,一端连接地面,现把一物体轻放在弹簧上端,证明物体的运动为简谐振动。

【例】木块质量为m ,放在水面上静止(平衡),如图9-9-1所示.今用力向下将其压入水中一定深度后(未全部浸入)撤掉外力,木块在水面上振动.试判断木块的振动是否为简谐振动.

【例】如图所示,一底端有挡板的斜面体固定在水平面上,其表面光滑,倾角为θ。一个劲度系数为k 的轻弹簧下端固定在挡板上,上端与物块A 连接在一起,物块B 紧挨着物块A 静止在斜面上。某时刻将B 迅速移开,试证明物体A 的运动为简谐振动

【知识点二】简谐振动

1.定义:在机械振动中最简单的一种理想化的振动。

★ 回复力大小与位移大小成正比,且与位移方向相反 F k x =-。 ★ 位移随随时间按正弦或余弦规律变化)2sin()sin(t T A t A x πω==或)2cos(

)

cos(t T

A t A x πω==

A O B

描述简谐振动的物理量

(1)位移:符号X,是一个矢量:大小:平衡位置到物体所在位置的距离;方向:从平衡位置指向物体所在位置。

=-,大小与位移成正比,方向始终与位移方向相反。

(2)回复力:满足F KX

(3)振幅:符号A,表示物体距离平衡位置的最远距离。

(4)周期和频率:周期T:完成一次全振动所用的时间;频率f:单位时间完成的全振动次数。

简谐振动的规律:

①在平衡位置:速度最大、动能最大;位移最小、回复力最小、加速度最小。

②在离开平衡位置最远时:速度最小、动能最小;位移最大、回复力最大、加速度最大。

③x-t图像的斜率代表速度

④简谐振动的物体具有对称性,时间对称和速度对称(均指大小对称)。

★机械振动与简谐振动的关系

【例】如下图所示,一弹性球被水平抛出,在两个互相竖直的平面之间运动,小球落到地面之前的运动( )

A 是机械振动,但不是简谐振动

B 是简谐振动,但不是机械振动

C 是机械振动,同时又是简谐振动

D 不是机械振动,也不是简谐振动

答案:D

【例】下列几种说法中,正确的是( )

A 只要是机械振动,就一定是简谐振动

B 在简谐振动中,使振子运动的回复力一定是振子在运动方向上所受的合外力

C 在简谐振动中,回复力总是做正功的

D 在简谐振动中,回复力总是做负功的

答案:B

★回复力与位移关系

【例】关于简谐振动,公式中的k和x,以下说法中正确的是()

A k是弹簧的劲度系数,x是弹簧的长度

B k是回复力跟位移的比例常数,x是作简谐振动的物体离开平衡位置的位移

C 对于弹簧振子系统,k是劲度系数,它表征弹簧的性质

D 根据,可以认为k与F成正比

答案:BC

【例】作简谐振动的物体,回复力和位移的关系图是下图所给四个图像中的( )

答案:D

【例】如左下图所示,做简谐振动的质点,表示切线加速度与位移的关系的图线是()

答案:C

★运动规律

【例】简谐振动是下列哪一种运动()

A 匀变速运动

B 匀速直线运动

C 变加速运动

D 匀加速直线运动

答案:C

【例】如右图所示,是一个质点的振动图像,根据图像回答下列各问:

(1)振动的振幅__________.

(2)振动的频率____________.

(3)在t = 0.1s、0.3s、0.5s、0.7s时质点的振动方向

(4)质点速度首次具有最大负值的时刻和位置_____________.

(5)质点运动的加速度首次具有最大负值的时刻和位置________.

答案:(1)5cm (2)1.25Hz (3)0.1s –向上0.3s –向下0.5s –向下0.7s –向上

(4)0.4s平衡位置(5)0.2s 正向最大位移处

【例】一质点作简谐振动的振动图像如右图所示,在0.2s到0.3s这段时间内质点的运动情况()

A 沿负方向运动,且速度不断增大

B 沿负方向运动的位移不断增大

C 沿正方向运动,且速度不断增大

D 沿正方向的加速度不断减小

答案:CD

【例】作简谐振动的物体每次向负方向远离平衡位置时( ).

A 位移增大,速度增大

B 位移减小,速度增大

C 位移减小,动能减小

D 位移增大,动能减小

答案:D

【针对训练】作简谐振动的物体每次通过平衡位置时( ).

A 位移为零,动能为零

B 动能最大,势能最小

C 速率最大,振动加速度为零

D 速率最大,回复力不一定为零

答案:BC

【针对训练】一个质点做简谐振动,其位移x与时间t的关系图线如图所示,在t = 4s时,质点的()

A 速度为正的最大值,加速度为零

B 速度为负的最大值,加速度为零

C 速度为零,加速度为正的最大值

D 速度为零,加速度为负的最大值

答案:B

【针对训练】一质点作简谐振动,其位移x与时间t关系曲线如图所示,由图可知3到4秒内质点的运动情况是

()

A 沿负方向运动,且速度不断增大

B 沿负方向运动的位移不断增大

C 沿正方向运动,且速度不断较小

D 沿正方向的加速度不断减小

答案:C ★对称性

【例】某质做简谐振动,其位移随时间变化的关系式为x =Asin 4

t ,则质点( ) A 第1 s 末与第3 s 末的位移相同 B 第1 s 末与第3 s 末的速度相同 C 3 s 末至5 s 末的位移方向都相同

D 3 s 末至5 s 末的速度相同

答案:AD

【例】作简谐振动的物体,当它经过关于平衡位置对称的a 、b 两点时,可能相同的物理量是( ) A 速度 B 位移

C 回复力

D 加速度

答案:A

【例】一个做简谐振动的质点,先后以相同的速度通过a 、b 两点历时0.1s ,再经过0.1s 质点第二次(反向)通过b 点。若质点在这0.2s 内经过的路程是8cm ,则此简谐振动的周期为_______s ,振幅为________ cm 。 答案:0.4,4

【例】一个质点在平衡位置O 点的附近作简谐振动,某时刻过O 点后经3s 时间第一次经过M 点,再经2s 第二次经过M 点.该质点再经______第三次经过M 点.若该质点由O 点出发后在20s 内经过的路程是20cm,则质点振动的振幅为

答案:14或

s 3

10

4或34cm

【针对训练】作简谐振动的物体,当它每次经过同一位置时,一定相同的物理量是( )

A 速度

B 位移

C 回复力

D 加速度

答案:BCD

【针对训练】一个质点在平衡位置O 点的附近作简谐振动,某时刻过O 点后经3s 时间第一次经过M 点,再经4s 第

二次经过M 点.该质点再经______第三次经过M 点,若该质点由O 点出发后在20s 内经过的路程是20cm,则质点振动的振幅为__________ 答案:16 s ,5cm

★ 简谐振动中振动路程(由振动对称性推导出振动路程与时间的关系) 设振动时间为t ,振动周期为T ,振幅为A ,则有:

nT t = n A S ?=4路程 (n=0,1,2,3.......)

2

T

n

t = n A S ?=2路程 (n=0,1,2,3.......) 4

T

n

t = n A S ?=路程 (n=0,1,2,3.......) 只适用于从两端点和平衡位置(特殊位置)开始振动的情况

拓展

【例】已知一质点做简谐振动的振幅为A ,求该质点经过T 4

1经过的最大和最小路程?

答案:A 2 A )22(-

【例】 一质点在A 、B 两点间做简谐振动,O 点为其平衡位置,M 为OB 的中点,从O 点运动到M 的时间与从M 点运动到B 的时间之比是( ) A 1:1

B 2:1

C 1:2

D 1:3

答案:C

例】一弹簧振子沿x 轴振动,平衡位置在坐标原点。t =0时刻振子的位移x =-0.1m ;t =4

3

s 时刻x =0.1m ;t =4s 时刻x =0.1m 。该振子的振幅和周期可能为( ) A 0.1m ,83s B 0.1m ,8s C 0.2m ,8

3

s D 0.2m ,8s 答案:A

机械振动和机械波知识点+例题分析

机械振动和机械波 一、知识结构 二、重点知识回顾 1机械振动 (一)机械振动 物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。 产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。b、阻力足够小。 (二)简谐振动 1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。简谐振动是最简单,最基本的振动。研究简谐振动物体的位置,常常建立以中心位置(平衡位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-k x,其中“-”号表示力方向跟位移方向相反。 2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用。 3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化。 (三)描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量。

1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒。 2. 周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数。振动的周期T跟频率f之间是倒数关系,即T=1/f。振动的周期和频率都是描述振动快慢的物理量,简谐振动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固有周期和固有频率。 (四)单摆:摆角小于5°的单摆是典型的简谐振动。 细线的一端固定在悬点,另一端拴一个小球,忽略线的伸缩和质量,球的直径远小于悬线长度的装置叫单摆。单摆做简谐振动的条件是:最大摆角小于5°,单摆的回复力F是重力在 圆弧切线方向的分力。单摆的周期公式是T=。由公式可知单摆做简谐振动的固有周期与振幅,摆球质量无关,只与L和g有关,其中L是摆长,是悬点到摆球球心的距离。g是单摆所在处的重力加速度,在有加速度的系统中(如悬挂在升降机中的单摆)其g应为等效加速度。 (五)振动图象。 简谐振动的图象是振子振动的位移随时间变化的函数图象。所建坐标系中横轴表示时间,纵轴表示位移。图象是正弦或余弦函数图象,它直观地反映出简谐振动的位移随时间作周期性变化的规律。要把质点的振动过程和振动图象联系起来,从图象可以得到振子在不同时刻或不同位置时位移、速度、加速度,回复力等的变化情况。 (六)机械振动的应用——受迫振动和共振现象的分析 (1)物体在周期性的外力(策动力)作用下的振动叫做受迫振动,受迫振动的频率在振动稳定后总是等于外界策动力的频率,与物体的固有频率无关。 (2)在受迫振动中,策动力的频率与物体的固有频率相等时,振幅最大,这种现象叫共振,声音的共振现象叫做共鸣。 2机械波中的应用问题 1. 理解机械波的形成及其概念。 (1)机械波产生的必要条件是:<1>有振动的波源;<2>有传播振动的媒质。 (2)机械波的特点:后一质点重复前一质点的运动,各质点的周期、频率及起振方向都与波源相同。 (3)机械波运动的特点:机械波是一种运动形式的传播,振动的能量被传递,但参与振动的质点仍在原平衡位置附近振动并没有随波迁移。 (4)描述机械波的物理量关系: 注:各质点的振动与波源相同,波的频率和周期就是振源的频率和周期,与传播波的介质无关,波速取决于质点被带动的“难易”,由媒质的性质决定。 横坐标表示介质中各质点的平衡位置

(完整版)物理选修3-4第十一章机械振动试题及答案详解(可编辑修改word版)

N M P 单元过关测试 ----- 机械振动 本试卷分第 I 卷(选择题)和第 II 卷(非选择题)两部分,第 I 卷 1 至 4 页,第 II 卷 4 至 8 页, 共计 100 分,考试时间 90 分钟 第 I 卷(选择题 共 40 分) 一、本题共 10 小题;每小题 4 分,共计 40 分。在每小题给出的四个选项中,有一个或多个选项正确,全 部选对得 4 分,选对但不全得 2 分,有错选得 0 分. 1. 弹簧振子作简谐运动,t 1 时刻速度为 v ,t 2 时刻也为 v ,且方向相同。已知(t 2-t 1)小于周期 T , 则(t 2-t 1) ( ) A .可能大于四分之一周期 B .可能小于四分之一周期 C .一定小于二分之一周期 D .可能等于二分之一周期 2. 有一摆长为L 的单摆,悬点正下方某处有一小钉,当摆球经过平衡位置向左摆动时,摆线的上部将 被小钉挡住,使摆长发生变化,现使摆球做小幅度摆动,摆球从右边最高点M 至左边最高点N 运动过程的闪 光照片,如右图所示,(悬点和小钉未被摄入),P 为摆动中的最低点。已知每相邻两次闪光的时间间隔相等, 由此可知,小钉与悬点的距离为 ( )A .L /4 B .L /2 C .3L /4 D .无法确定 3. A 、B 两个完全一样的弹簧振子,把 A 振子移到 A 的平衡位置右边 10cm ,把 B 振子移到 B 的平衡位 置右边 5cm ,然后同时放手,那么:( ) A .A 、 B 运动的方向总是相同的. B .A 、B 运动的方向总是相反的. C .A 、B 运动的方向有时相同、有时相反. D .无法判断 A 、B 运动的方向的关系. 4. 铺设铁轨时,每两根钢轨接缝处都必须留有一定的间隙,匀速运行列车经过轨端接缝处时,车轮就 会受到一次冲击。由于每一根钢轨长度相等,所以这个冲击力是周期性的,列车受到周期性的冲击做受迫振动。普通钢轨长为 12.6m ,列车固有振动周期为 0.315s 。下列说法正确的是 ( ) A. 列车的危险速率为40m / s B. 列车过桥需要减速,是为了防止列车发生共振现象 C. 列车运行的振动频率和列车的固有频率总是相等 D .增加钢轨的长度有利于列车高速运行 5.把一个筛子用四根弹簧支起来,筛子上装一个电动偏心轮,它每转一周,给筛子一个驱动力,这 就做成了一个共振筛,筛子做自由振动时,完成 20 次全振动用 15 s ,在某电压下,电动偏心轮转速是 88 r /min.已知增大电动偏心轮的电压,可以使其转速提高,增加筛子的质量,可以增大筛子的固有周期,要 使筛子的振幅增大,下列做法中,正确的是(r /min 读作“转每分”) ( ) A.降低输入电压 B.提高输入电压 C.增加筛子的质量 D.减小筛子的质量 6.一质点作简谐运动的图象如图所示,则该质点 ( ) A. 在 0.015s 时,速度和加速度都为-x 方向 B. 在 0.01 至 0.03s 内,速度与加速度先反方向后同方向,且速度是先减小后 增大,加速度是先增大后减小。

第一单元机械振动1

第一单元机械振动 高考要求:1、理解简谐运动的概念,并能利用其特点分析力学问题; 2、理解单摆的摆动特点,会应用周期分工测量重力加速度; 3、理解简谐运动的振动图象; 4、知道什么是自由振动和受迫振动; 5、知道什么是共振及共振的条件;知道如何应用共振和防止共振; 6、知道振动中的能量转化关系。 知识要点: 一、机械振动 1、定义:物体(或物体的一部分)在某一中心位置(平衡位置)两侧所做的往复运动,叫 机械振动。 2、条件:物体受到回复力作用,阻尼足够小。 3、回复力:使振动物体返回平衡位置的力叫做回复力。是效果力。回复力可以是振动物体 所受的合外力——如弹簧振子的回复力。也可以是某个力的分力——如单摆振动中,回复力为重力在圆弧切线方向上的分力。 4、特点:往复性的变速运动。 二、简谐运动 1、定义:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用 下的振动,叫做简谐运动。 2、特点: 1)受力特征:F=-kx。x为偏离平衡位置的位移。 2)运动特征:加速度a=-kx/m,方向与位移方向相反,总指向平衡位置。简谐运动

是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度 为零,加速度最大。在简谐运动中位移、速度、加速度、动量很有成效都随时间按 正弦(或余弦)规律作周期性变化,且各量的变化周期相同。 判断一个振动是否为简谐运动,依据就是看它是否满足上述受力特征或运动特征。 3)振动能量:对于两种典型的简谐运动——单摆和弹簧振子,其振动能量与振幅有关,振幅越大,能量越大。 3、描述简谐运动的物理量 1)位移x:由平衡位置指向振子所在处的有向线段。其最大值等于振幅。单位是m。 平衡位置:是指振动方向上合力为零的位置,不是泛指合力为零的位置。如单摆振动,是找不到合力为零的位置的在摆球以过最低点时,沿水平方向的合 力为零,这是单摆在该方向上振动的平衡位置,但在竖直方向有秘上的 向上的向心力,合力不为零。 2)振幅A:振动物体离开平衡位置的最大距离,它反应振动的强弱和振动的空间范围。 是标量。单位是m。 3)周期T:做简谐运动的物体完成一次全振动所需要的时间,单位是s。 4)频率f:单位时间内完成的全振动次数,单位是Hz, 周期和频率是反映振动快慢的物理量,与振幅无关,由振动系统本身的性质所决定,从而对应出固有周期或固有频率。 4、在简谐运动中各量的变化情况: 1)凡离开平衡位置的过程中,v、E k均减小,x、F、a、E P均增大;凡向玩意儿位置移动时,v、E k均增大,x、F、a、E P均减小。 2)在平衡位置时,x、F、a为零,E P最小,v、E k最大;当x=A时,F、a、E P最大,

最新第十一章 机械振动单元检测(答案详解)

单元检测 (时间:90分钟 满分:100分) 一、选择题(本题共10个小题,每小题4分,共40分) 图1 1.如图1所示,劲度系数为k 的轻弹簧一端挂在天花板上,O 点为弹簧自然伸长时下端点的位置.当在弹簧下端挂钩上挂一质量为m 的砝码后,砝码开始由O 位置起做简谐运 动,它振动到下面最低点位置A 距O 点的距离为l 0,则( ) A .振动的振幅为l 0 B .振幅为l 0 2 C .平衡位置在O 点 D .平衡位置在OA 中点B 的上方某一点 2.质点沿x 轴做简谐运动,平衡位置为坐标原点O ,质点经过a 点和b 点时速度相同, 所花时间t ab =0.2 s ;质点由b 点再次回到a 点花的最短时间t ba =0.4 s ;则该质点做简谐运动的频率为( ) A .1 Hz B .1.25 Hz C .2 Hz D .2.5 Hz 3.关于简谐运动的周期,以下说法正确的是( ) A .间隔一个周期的两个时刻,物体的振动情况完全相同 B .间隔半个周期奇数倍的两个时刻,物体的速度和加速度可能同时相同 C .半个周期内物体动能的变化一定为零 D .一个周期内物体势能的变化一定为零 4. 图2 如图2所示,三根细线于O 点处打结,A 、B 两端固定在同一水平面上相距为L 的两点 上,使AOB 成直角三角形,∠BAO = 30°.已知OC 线长是L ,下端C 点系着一个小球(忽 略小球半径),下面说法正确的是( ) A .让小球在纸面内摆动,周期T =2π L /g B .让小球在垂直纸面方向摆动,周期T =2π 3L /2g C .让小球在纸面内摆动,周期T =2π 3L /2g D .让小球在垂直纸面内摆动,周期T =2π L /g 5.如图3所示,

NO1机械振动答案

· Word 资料 《大学物理AII 》作业 No.01 机械振动 一、选择题: 1.假设一电梯室正在自由下落,电梯室天花板下悬一单摆(摆球质量为m ,摆长为l ) 。若使单摆摆球带正电荷,电梯室地板上均匀分布负电荷,那么摆球受到方向向下的恒定电场力F 。则此单摆在该电梯室作小角度摆动的周期为: [ C ] (A) Fm l π2 (B) Fl m π2 (C) F ml π 2 (D) ml F π 2 解: 2.图(a)、(b)、(c)为三个不同的简谐振动系统。组成各系统的各弹簧的原长、各弹簧的劲度系数及重物质量均相同。(a)、(b)、(c)三个振动系统的ω2(ω为固有角频率)值之比为 [ B ] (A) 2∶1∶ 2 1 (B) 1∶2∶4 (C) 2∶2∶1 (D) 1 ∶1∶2 解:由弹簧的串、并联特征有三个简谐振动系统的等效弹性系数分别为:2 k ,k ,k 2 则由m k = 2 ω可得三个振动系统的ω2(ω为固有角频率)值之比为: m k 2 :m k :m k 2,即1∶2∶4 3.两个同周期简谐振动曲线如图所示。则x [ A ] (A) 超前π/2 (C) 落后π 解:由振动曲线画出旋转矢量图可知 x 1的相位比x 2的相位超前π/2 4.一物体作简谐振动,振动方程为)2 1 cos(π+=t A x ω。则该物体在t = T /8(T 为振动周期)时刻的动能与t = 0时刻的动能之比为: (b) (c)

[ B ] (A) 1:4 (B) 1:2 (C) 1:1 (D) 2:1 (E) 4:1 解:由简谐振动系统的动能公式:)2 1(sin 2122πω+= t kA E k 有t = 0时刻的动能为:22221)2102(sin 21kA T kA =+?ππ t = T /8时刻的动能为:2224 1 )2182(sin 21kA T T kA =+?ππ, 则在t = T /8时刻的动能与t = 0时刻的动能之比为:1:2

15机械振动习题解答

第十五章 机械振动 一 选择题 1. 对一个作简谐振动的物体,下面哪种说法是正确的?( ) A. 物体在运动正方向的端点时,速度和加速度都达到最大值; B. 物体位于平衡位置且向负方向运动时,速度和加速度都为零; C. 物体位于平衡位置且向正方向运动时,速度最大,加速度为零; D. 物体处负方向的端点时,速度最大,加速度为零。 解:根据简谐振动的速度和加速度公式分析。 答案选C 。 2.下列四种运动(忽略阻力)中哪一种不是简谐振动?( ) A. 小球在地面上作完全弹性的上下跳动; B. 竖直悬挂的弹簧振子的运动; C. 放在光滑斜面上弹簧振子的运动; D. 浮在水里的一均匀球形木块,将它部分按入水中,然后松开,使木块上下浮动。 解:A 中小球没有受到回复力的作用。 答案选A 。 3. 一个轻质弹簧竖直悬挂,当一物体系于弹簧的下端时,弹簧伸长了l 而平衡。则此系统作简谐振动时振动的角频率为( ) A. l g B. l g C. g l D. g l 解 由kl =mg 可得k =mg /l ,系统作简谐振动时振动的固有角频率为l g m k == ω。 故本题答案为B 。 4. 一质点作简谐振动(用余弦函数表达),若将振动速度处于正最大值的某时刻取作t =0,则振动初相?为( ) A. 2π- B. 0 C. 2 π D. π 解 由 ) cos(?ω+=t A x 可得振动速度为 ) sin(d d ?ωω+-== t A t x v 。速度正最大时有0) cos(=+?ωt ,1) sin(-=+?ωt ,若t =0,则 2 π -=?。 故本题答案为A 。 5. 如图所示,质量为m 的物体,由劲度系数为k 1和k 2的两个轻弹簧连接,在光滑导轨上作微小振动,其振动频率为 ( )

高中物理机械振动知识点总结

一. 教案内容: 第十一章机械振动 本章知识复习归纳 二. 重点、难点解读 (一)机械振动 物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。 产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。b、阻力足够小。 (二)简谐振动 1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。简谐振动是最简单,最基本的振动。研究简谐振动物体的位置,常常建立以中心位置(平衡位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-kx,其中“-”号表示力方向跟位移方向相反。 2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用。 3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化。 (三)描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量。 1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒。 2. 周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数。振动的周期T跟频率f之间是倒数关系,即T=1/f。振动的周期和频率都是描述振动快慢的物理量,简谐振动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固有周期和固有频率。 (四)单摆:摆角小于5°的单摆是典型的简谐振动。 细线的一端固定在悬点,另一端拴一个小球,忽略线的伸缩和质量,球的直径远小于悬线长度的装置叫单摆。单摆做简谐振动的条件是:最大摆角小于5°,单摆的回复力F是重力在圆弧切线 方向的分力。单摆的周期公式是T=。由公式可知单摆做简谐振动的固有周期与振幅,摆球质量无关,只与L和g有关,其中L是摆长,是悬点到摆球球心的距离。g是单摆所在处的重力加速度,在有加速度的系统中(如悬挂在升降机中的单摆)其g应为等效加速度。 (五)振动图象。 简谐振动的图象是振子振动的位移随时间变化的函数图象。所建坐标系中横轴表示时间,纵轴表

第十三章 机械振动作业答案(1)

一. 选择题: [ C ] 1. (基础训练4) 一质点作简谐振动,周期为T .当它由平衡位置向x 轴 正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为 (A) T /12. (B) T /8. (C) T /6. (D) T /4. 【提示】如图,在旋转矢量图上,从二分之一最大位移处到最大位移处矢量转过的角位移为3π,即 3t π ω=,所以对应的时间为 ()332/6 T t T ππωπ= == . [ B ] 2. (基础训练8) 图中所画的是两个简谐 振动的振动曲线.若这两个简谐振动可叠加,则合成的余弦振动的初相为 (A) π2 3. (B) π. (C) π2 1. (D) 0. 【提示】如图,用旋转矢量进行合成,可得合振动的振幅为 2 A ,初相位为π. [ B ]3、(自测提高2)两个质点各自作简谐振动,它们的振幅相同、周期相同.第 一个质点的振动方程为x 1 = A cos(ωt + α).当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处.则第二个质点的振动方程为 (A) )π21cos(2+ +=αωt A x . (B) )π21 cos(2-+=αωt A x . (C) )π2 3 cos(2-+=αωt A x . (D) )cos(2π++=αωt A x . 【提示】由旋转矢量图可见,x 2的相位比x 1落后π/2。 [ B ] 4、(自测提高3)轻弹簧上端固定,下系一质量为m 1的物体,稳定后在m 1 下边又系一质量为m 2的物体,于是弹簧又伸长了?x .若将m 2移去,并令其振动,则振动周期为 A/ -· O 1 A 2 A A 合

机械振动的概念 (1)

第一章绪论 1-1 机械振动的概念 振动是一种特殊形式的运动,它是指物体在其平衡位置附近所做的往复运动。如果振动物体是机械零件、部件、整个机器或机械结构,这种运动称为机械振动。 振动在大多数情况下是有害的。由于振动,影响了仪器设备的工作性能;降低了机械加工的精度和粗糙度;机器在使用中承受交变载荷而导致构件的疲劳和磨损,以至破坏。此外,由于振动而产生的环境噪声形成令人厌恶的公害,交通运载工具的振动恶化了乘载条件,这些都直接影响了人体的健康等等。但机械振动也有可利用的一面,在很多工艺过程中,随着不同的工艺要求,出现了各种类型利用振动原理工作的机械设备,被用来完成各种工艺过程,如振动输送、振动筛选、振动研磨、振动抛光、振动沉桩等等。这些都在生产实践中为改善劳动条件、提高劳动生产率等方面发挥了积极作用。研究机械振动的目的就是要研究产生振动的原因和它的运动规律,振动对机器及人体的影响,进而防止与限制其危害,同时发挥其有益作用。 任何机器或结构物,由于具有弹性与质量,都可能发生振动。研究振动问题时,通常把振动的机械或结构称为振动系统(简称振系)。实际的振系往往是复杂的,影响振动的因素较多。为了便于分析研究,根据问题的实际情况抓住主要因素,略去次要因素,将复杂的振系简化为一个力学模型,针对力学模型来处理问题。振系的模型可分为两大类:离散系统(或称集中参数系统)与连续系统(或称分布参数系统),离散系统是由集中参数元件组成的,基本的集中参数元件有三种:质量、弹簧与阻尼器。其中质量(包括转动惯量)只具有惯性;弹簧只具有弹性,其本身质量略去不计,弹性力只与变形的一次方成正比的弹簧称为线性弹簧;在振动问题中,各种阻力统称阻尼,阻尼器既不具有惯性,也不具有弹性,它是耗能元件,在有相对运动时产生阻力,其阻力与相对速度的一次方成正比的阻尼器称为线性阻尼器。连续系统是由弹性元件组成的,典型的弹性元件有杆、梁、轴、板、壳等,弹性体的惯性、弹性与阻尼是连续分布的。严格的说,实际系统都是连续系统,所谓离散系统仅是实际连续系统经简化而得的力学模型。例如将质量较大、弹性较小的构件简化为不计弹性的集中质量;将振动过程中产生较大弹性变形而质量较小的构件,简化为不计质量的弹性元件;将构件中阻尼较大而惯性、弹性小的弹性体也可看成刚体。这样就把分布参数的连续系统简化为集中参数的离散系统。 例如图1-1(a)所示的安装在混凝土基 础上的机器,为了隔振的目的,在基础下面一 般还有弹性衬垫,如果仅研究这一系统在铅垂 方向的振动,在振动过程中弹性衬垫起着弹簧 作用,机器与基础可看作一个刚体,起着质量 的作用,衬垫本身的内摩擦以及基础与周围约 束之间的摩擦起着阻尼的作用(阻尼用阻尼器 表示,阻尼器由一个油缸和活塞、油液组成。 活塞上下运动时,油液从间隙中挤过,从而造 成一定的阻尼)。这样图1-1(a)所示的系统 可简化为1-1(b)所示的力学模型。又如图1-2中假想线表示的是一辆汽车,若研究的问题是汽车沿道路行驶时车体的上下运动与俯仰运动,则可简化为图中实线所示的刚性杆的平面运动这样一个力学模型。其中弹簧代表轮胎及其悬挂系统的弹性,车体的惯性简化为平移质量及绕质心的转动惯量,轮胎及其悬挂系统的内摩擦以及地面的摩擦等起着阻尼作用,用阻尼器表示。

机械振动知识点

简谐运动及其图象 知识点一:弹簧振子 (一)弹簧振子 如图,把连在一起的弹簧和小球穿在水平杆上,弹簧左端固定在支架上,小球可以在杆上滑动。小球滑动时的摩擦力可以,弹簧的质量比小球的质量得多,也可忽略。这样就成了一个弹簧振子。 注意: (1)小球原来的位置就是平衡位置。小球在平衡位置附近所做的往复运动,是一种机械振动。 (2)小球的运动是平动,可以看作质点。 (3)弹簧振子是一个不考虑阻力,不考虑弹簧的,不考虑振子(金属小球)的的化的物理模型。 (二)弹簧振子的位移——时间图象 (1)振动物体的位移是指由位置指向_的有向线段,可以说某时刻的位移。 说明:振动物体的位移与运动学中位移的含义不同,振子的位移总是相对于位置而言的,即初位置是位置,末位置是振子所在的位置。 (2)振子位移的变化规律 曲线。 知识点二:简谐运动 (一)简谐运动 如果质点的位移与时间的关系遵从函数的规律,即它的振动图象(x-t图象)是一条正弦曲线,这样的振动,叫做简谐运动。 简谐运动是机械振动中最简单、最基本的振动。弹簧振子的运动就是简谐运动。 (二)描述简谐运动的物理量 (1)振幅(A) 振幅是指振动物体离开位置的距离,是表征振动强弱的物理量。 一定要将振幅跟位移相区别,在简谐运动的振动过程中,振幅是变的,而位移是时刻在变的。 (2)周期(T)和频率(f) 振动物体完成一次所需的时间称为周期,单位是秒(s);单位时间内完成的次数称为频率,单位是赫兹(H Z)。 周期和频率都是描述振动快慢的物理量。周期越小,频率越大,表示振动得越快。 周期和频率的关系是: (3)相位(φ) 相位是表示物体振动步调的物理量,用相位来描述简谐运动在一个全振动中所处的阶段。

作业5 机械振动答案

一. 选择题: 【 D 】1 (基础训练2) 一劲度系数为k 的轻弹簧截成三等份,取出其中的两根,将它们并联,下面挂一质量为m 的物体,如图13-15所示。则振动系统的频率为 : (A) m k 32π1. (B) m k 2π1 . (C) m k 32π1. (D) m k 62π1. 提示:劲度系数为k 的轻弹簧截成三等份,每份的劲度系数为变为3k ,取出其中2份并联,系统的劲度系数为6k. 【 C 】2、(基础训练3)一长为l 的均匀细棒悬于通过其一端的光滑水平固定轴上,(如图13-16所示),作成一复摆.已知细棒绕通过其一端的轴的转动惯量2 3 1ml J = ,此摆作微小振动的周期为 (A) g l π 2. (B) g l 22π. (C) g l 322π. (D) g l 3π. 提示:均匀的细棒一段悬挂,构成一个复摆,可根据复摆的振动方程求解办法,求出复摆的振动周期。 【 C 】 3 (基础训练4) 一质点作简谐振动,周期为T .当它由平衡位置向x 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为 (A) T /12. (B) T /8. (C) T /6. (D) T /4. 提示:从从二分之一最大位移处到最大位移处这段路程在旋转矢量图上,矢量转过的角 位移为π31 ,对应的时间为T/6. 【 B 】 4、(基础训练7)当质点以频率ν 作简谐振动时,它的动能的变化频率为 (A) 4 ν. (B) 2 ν . (C) ν. (D) ν2 1 . 提示:当质点作频率ν 作简谐振动时,振动方程可以表示为)2cos(0φπ+=vt A x ,质点的运动速度为 )2s i n (20φππ+-== vt vA dt dx v x ,动能可以表示为2 )2(2cos 121 )2(sin 21)]2sin(2[212102 022202φπφπφππ+-=+=+-==vt kA vt kA vt vA m mv E x k 图13-15 图13-16

第1章 机械运动

科学之旅 教学目标 知识技能 1.初步了解一些物理现象 2.对教师讲解的内容有所理解 过程与方法 通过讲解和实验,让学生初步了解学习物理知识和研究物理问题的方法。 情感、态度和价值观: 1.在教学中渗透人文主义教育 2.通过实验教学,激发学生的学习兴趣 教学重点 激发学生学习兴趣,了解学习物理知识和研究物理问题的方法。 教学方法 演示法、讨论法。 课时安排 1课时 教学过程 一、引入新课 同学们,今天我们开始学习一门新的学科—物理,你听别人说过物理吗?你心中的物理是怎样的呢?谁起来说一下?(让学生起来说说自己的看法) 二、新课教学 1. 演示几个实验,说明物理是十分有趣的。 (让学生先猜测现象,再演示) (1)器材:一大一小两只试管(尺寸十分接近),水,红墨水。 做法:大试管装入过半的水,管口朝上,放入小试管,倒过来,水流下,管上升。 现象:试管自动上升。 (2)器材:漏斗,乒乓球。 做法:一个乒乓球放在一个倒扣的漏斗中,通过漏斗嘴用力吹下面的乒乓球。 现象:乒乓球悬在空中不下落。 拓展:让学生撕下两张纸,用力吹两张纸的中央,发现纸靠近。 (3)器材:两只大烧杯,鸡蛋,清水,盐水。 做法:把一只鸡蛋分别放入两个大烧杯中。 现象:鸡蛋有浮有沉。 (4)器材:导线,开关,电池组,小灯泡,变阻器。 做法:连好电路,闭和开关,移动滑片,观察小灯泡的发光情况。 现象:灯变亮。 2. 物理不仅有趣,而且是十分有用的,它能帮助我们解释生活中的许多现象。 (让学生先说说自己的看法,教师再解析) 提问1:人听到子弹声再躲来的及吗?为什么? 解析:子弹出膛飞行时的速度比声音快,所以来不及。 提问2:我们对着水中看到的鱼用手去抓,能抓到吗? 解析:抓不到,我们看到的是像,真正的鱼在像的下边。 提问3:黄浦江边的路灯,水中的像为什么是一道光柱? 解析:古诗云“月黑见渔灯,孤光一点荧。微微风簇浪,散做满河星”,起伏的水面相当于许多平面镜,每盏灯在水里有好多像,连在一起就成了一道光柱。

机械振动 知识点总结

机械振动 1、判断简谐振动的方法 简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动。特征是:F=-kx,a=-kx/m. 要判定一个物体的运动是简谐运动,首先要判定这个物体的运动是机械振动,即看这个物体是不是做的往复运动;看这个物体在运动过程中有没有平衡位置;看当物体离开平衡位置时,会不会受到指向平衡位置的回复力作用,物体在运动中受到的阻力是不是足够小。 然后再找出平衡位置并以平衡位置为原点建立坐标系,再让物体沿着x 轴的正方向偏离平衡位置,求出物体所受回复力的大小,若回复力为F=-kx,则该物体的运动是简谐运动。 2、简谐运动中各物理量的变化特点 简谐运动涉及到的物理量较多,但都与简谐运动物体相对平衡位置的位移x 存在直接或间接关系: 如果弄清了上述关系,就很容易判断各物理量的变化情况 3、简谐运动的对称性 简谐运动的对称性是指振子经过关于平衡位置对称的两位置时,振子的位移、回复力、加速度、动能、势能、速度、动量等均是等大的(位移、回复力、加速度的方向相反,速度动量的方向不确定)。运动时间也具有对称性,即在平衡位置对称两段位移间运动的时间相等。 理解好对称性这一点对解决有关问题很有帮助。 4、简谐运动的周期性 5、简谐运动图象 简谐运动图象能够反映简谐运动的运动规律,因此将简谐运动图象跟具体运动过程联系起来是讨论简谐运动的一种好方法。 6、受迫振动与共振 (1)、受迫振动:物体在周期性驱动力作用下的振动,其振动频率和固有频率无关,等于驱动力的频率;受迫振动是等幅振动,振动物体因克服摩擦或其它阻力做功而消耗振动能量刚好由周期性的驱动力做功给予补充,维持其做等幅振动。 位移x 回复力F=-Kx 加速度a=-Kx/m 位移x 势能E p =Kx 2/2 动能E k =E-Kx 2/2 速度m E V K 2

2021教科版高中物理选修第一章《机械振动》word学案

2021教科版高中物理选修第一章《机械振动》word 学案 一、简谐运动的图像及应用 由简谐运动的图像能够获得的信息: (1)确定振动质点在任一时刻的位移;(2)确定振动的振幅;(3)确定振动的周期和频率;(4)确定各时刻质点的振动方向;(5)比较各时刻质点加速度的大小和方向. 例1一质点做简谐运动的位移x与时刻t的关系如图1所示,由图可知( ) 图1

A.频率是2 Hz B.振幅是5 cm C.t=1.7 s时的加速度为正,速度为负 D.t=0.5 s时质点所受的合外力为零 E.图中a、b两点速度大小相等、方向相反 F.图中a、b两点的加速度大小相等,方向相反 二、简谐运动的周期性和对称性 1.周期性:做简谐运动的物体在完成一次全振动后,再次振动时则是重复上一个全振动的形式,因此做简谐运动的物体通过同一位置能够对应不同的时刻,做简谐运动的物体具有周期性. 2.对称性 (1)速率的对称性:系统在关于平稳位置对称的两位置具有相等的速率. (2)加速度和回复力的对称性:系统在关于平稳位置对称的两位置具有等大反向的加速度和回复力. (3)时刻的对称性:系统通过关于平稳位置对称的两段位移的时刻相等.振动过程中通过任意两点A、B的时刻与逆向通过的时刻相等. 例2物体做简谐运动,通过A点时的速度为v,通过1 s后物体第一次以相同速度v通过B点,再通过1 s物体紧接着又通过B点,已知物体在2 s内所走过的总路程为12 cm,则该简谐运动的周期和振幅分别是多大? 三、单摆周期公式的应用 1.单摆的周期公式T=2πl g .该公式提供了一种测定重力加速度的方法. 2.注意:(1)单摆的周期T只与摆长l及g有关,而与振子的质量及振幅无关. (2)l为等效摆长,表示从悬点到摆球球心的距离,要区分摆长和摆线长.小球在光滑圆周上小角度振动和双线摆也属于单摆,“l”实际为摆球到摆动所在圆弧的圆心的距离.(3)g为当地的重力加速度或“等效重力加速度”. 例3有两个同学利用假期分别去参观北京大学和南京大学的物理实验室,并各悠闲那儿利用先进的DIS系统较准确地探究了“单摆的周期T与摆长l的关系”,他们通过校园网交换实验数据,并由运算机绘制了T2—l图像,如图2甲所示,去北大的同学所测实验结果对应的图线是________(填“A”或“B”).另外,在南大做探究的同学还利用运算机绘制了两种单摆的振动图像(如图乙),由图可知,两单摆摆长之比l a∶l b=________.

最新15机械振动习题解答

第十五章 机械振动 一 选择题 1. 对一个作简谐振动的物体,下面哪种说法是正确的?( ) A. 物体在运动正方向的端点时,速度和加速度都达到最大值; B. 物体位于平衡位置且向负方向运动时,速度和加速度都为零; C. 物体位于平衡位置且向正方向运动时,速度最大,加速度为零; D. 物体处负方向的端点时,速度最大,加速度为零。 解:根据简谐振动的速度和加速度公式分析。 答案选C 。 2.下列四种运动(忽略阻力)中哪一种不是简谐振动?( ) A. 小球在地面上作完全弹性的上下跳动; B. 竖直悬挂的弹簧振子的运动; C. 放在光滑斜面上弹簧振子的运动; D. 浮在水里的一均匀球形木块,将它部分按入水中,然后松开,使木块上下浮动。 解:A 中小球没有受到回复力的作用。 答案选A 。 3. 一个轻质弹簧竖直悬挂,当一物体系于弹簧的下端时,弹簧伸长了l 而平衡。则此系统作简谐振动时振动的角频率为( ) A. l g B. l g C. g l D. g l 解 由kl =mg 可得k =mg /l ,系统作简谐振动时振动的固有角频率为l g m k == ω。 故本题答案为B 。 4. 一质点作简谐振动(用余弦函数表达),若将振动速度处于正最大值的某时刻取作t =0,则振动初相?为( ) A. 2π- B. 0 C. 2 π D. π 解 由 ) cos(?ω+=t A x 可得振动速度为 ) sin(d d ?ωω+-== t A t x v 。速度正最大时有0) cos(=+?ωt ,1) sin(-=+?ωt ,若t =0,则 2 π -=?。 故本题答案为A 。 5. 如图所示,质量为m 的物体,由劲度系数为k 1和k 2的两个轻弹簧连接,在光滑导轨上作微小振动,其振动频率为 ( )

初中物理第一章:机械运动知识点总结精华

第一章:机械运动知识点 一、测量 1、长度的单位:基本单位:米,符号m,常用单位:千米(km)、分米(dm)、厘米(cm)、毫米(mm)、微米(um)、纳米(nm)。 2、单位换算:1km=103m、1m=10dm、1dm=10cm、1cm=10mm、1mm=103um、1um=103nm;1dm=10-1m、1cm=10-2m、1mm=10-3m、1um=10-6m、1nm=10-9m。 3、长度测量的工具:刻度尺, 4、刻度尺的分度值:相邻两条刻度线之间的长度,即(一小格表示的长度),决定测量的精确程度。作用:读数时读到分度值的下一位,例如分度值是0.1cm,读数应该有2位小数。 5、刻度尺的量程:测量的范围。 6、正确使用刻度尺测长度的方法: (1)根据实际需要选择分度值和量程适合的刻度尺; (2)从零刻度线或清晰的刻度线起测量,有刻度的边紧靠被测量物体且与被测边平行,不能歪斜; (3)读数时视线要正对刻度尺且估读到分度值的下一位; (4)记录结果时,结果包括数值和单位两部分。 7、时间的基本单位是:秒,符号s;常用单位:时(h)、分(min)、 8、时间单位的换算:1h=60min、1min=60s、1h=3600s、 9、时间测量的工具:秒表、停表。 10、误差的定义:测量值与真实值之间的差别。 11、误差产生原因:(1)测量仪器不够精密;(2)测量方法不够完善。 12、减小误差的方法:(1)多次测量求平均值;(2)选用精密的测量工具;(3)改进测量方法等。 13、误差和错误的区别:(1)误差不能消除,只能尽可能减小;(2)错误是可以消除的。 二、机械运动: 1、物体位置随时间的变化,叫做机械运动。 2、参照物的定义:判断物体是静止还是运动时,选作为标准的物体叫做参照物。被选来作为参照物的物体都当作是静止的。 3、参照物选择:除研究物体本身以外的一切物体,无论是静止的还是运动的物体,都可以作为参照物。 4、判断物体是否运动的方法:如果研究物体与参照物之间的位置(距离)没有变化则研究物体是静止的,如果研究物体与参照物之间的位置(距离)有变化则研究物体是运动的,物体的运动和静止是相对的,运动还是静止要看参照物选什么。

机械运动知识点总结

机械运动知识点总结公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

1、机械运动 (1)参照物 人们判断物体是运动的还是静止的,总是先选取某一物体作为标准,相对于这个标准,如果物体的位置发生了改变,就认为它是运动的;否则,就认为它是静止的。这个被选作标准的物体叫做参照物。(2)机械运动 物理学中把一个物体相对于参照物位置的改变,叫做机械运动,简称为运动。 2.运动和静止 (1)由于运动的描述与参照物有关,所以运动和静止都是相对的。(2)自然界中的一切物体都是运动的,没有绝对静止的物体。平时所说物体是“运动的”或“静止的”都是相对于参照物而言的,这就是运动的相对性。 3.机械运动的分类 (1)根据物体运动的路线,可以将物体的运动分为直线运动和曲线运动。 (2)直线运动,可以分为匀速直线运动和变速直线运动。 匀速直线运动:在相同时间内通过的路程相等,运动快慢保持不变。 变速直线运动:在相同时间内通过的路程不相等,运动快慢发生了变化

4.速度 (1)定义:物体在单位时间内通过的路程叫做速度。可见,速度可以定量描述物体运动的快慢。 路程 (2)公式:速度= 时间 s 用s表示路程,t表示时间,v表示速度,则速度公式可表示为:v= t (3)单位:如果路程的单位取米,时间的一单位取秒,那么,由速度公式可以推出速度的单位是米/秒,符一号为m/s,读作米每秒。常用的速度单位还有千米/时,符号为Km/h,读作千米每时。 5.参照物的选取及有关物体运动方向的判断 (1)位置的变化判断 一个物体相对于另一个物体,如果其方位发生了变化或距离发生了变化,则这个物体相对于参照物的位置就发生了变化。 (2)如果两个物体同向运动,以速度大的物体为参照物,则速度小的物体向相反方向运动。 6.比较物体运动快慢的方法 (1)在通过的路程相同时,用运动时间比较运动的快慢。在路程相同时,所用时间短的物体运动快,所用时间长的物体运动慢。 (2)在运动时间相同时,用路程比较物体运动的快慢。即在时间相同时,通过路程越长的物体运动得越快,通过路程越短的物体运动得越慢。

(完整版)机械振动单元测试题(1)

(完整版)机械振动单元测试题(1) 一、机械振动选择题 1.甲、乙两弹簧振子,振动图象如图所示,则可知() A.甲的速度为零时,乙的速度最大 B.甲的加速度最小时,乙的速度最小 C.任一时刻两个振子受到的回复力都不相同 D.两个振子的振动频率之比f甲:f乙=1:2 E.两个振子的振幅之比为A甲:A乙=2:1 2.甲、乙两单摆的振动图像如图所示,由图像可知 A.甲、乙两单摆的周期之比是3:2 B.甲、乙两单摆的摆长之比是2:3 C.t b时刻甲、乙两摆球的速度相同D.t a时刻甲、乙两单摆的摆角不等 3.如图所示,一端固定于天花板上的一轻弹簧,下端悬挂了质量均为m的A、B两物体,平衡后剪断A、B间细线,此后A将做简谐运动。已知弹簧的劲度系数为k,则下列说法中正确的是() A.细线剪断瞬间A的加速度为0 B.A运动到最高点时弹簧弹力为mg C.A运动到最高点时,A的加速度为g D.A振动的振幅为2mg k 4.如图所示,质量为m的物块放置在质量为M的木板上,木板与弹簧相连,它们一起在光滑水平面上做简谐振动,周期为T,振动过程中m、M之间无相对运动,设弹簧的劲度系数为k、物块和木板之间滑动摩擦因数为μ,

A .若t 时刻和()t t +?时刻物块受到的摩擦力大小相等,方向相反,则t ?一定等于2 T 的整数倍 B .若2 T t ?= ,则在t 时刻和()t t +?时刻弹簧的长度一定相同 C .研究木板的运动,弹簧弹力充当了木板做简谐运动的回复力 D .当整体离开平衡位置的位移为x 时,物块与木板间的摩擦力大小等于 m kx m M + 5.如图所示,固定的光滑圆弧形轨道半径R =0.2m ,B 是轨道的最低点,在轨道上的A 点(弧AB 所对的圆心角小于10°)和轨道的圆心O 处各有一可视为质点的静止小球,若将它们同时由静止开始释放,则( ) A .两小球同时到达 B 点 B .A 点释放的小球先到达B 点 C .O 点释放的小球先到达B 点 D .不能确定 6.如图所示,水平方向的弹簧振子振动过程中,振子先后经过a 、b 两点时的速度相同,且从a 到b 历时0.2s ,从b 再回到a 的最短时间为0.4s ,aO bO =,c 、d 为振子最大位移处,则该振子的振动频率为( ) A .1Hz B .1.25Hz C .2Hz D .2.5Hz 7.如右图甲所示,水平的光滑杆上有一弹簧振子,振子以O 点为平衡位置,在a 、b 两点之间做简谐运动,其振动图象如图乙所示.由振动图象可以得知( ) A .振子的振动周期等于t 1 B .在t =0时刻,振子的位置在a 点

机械振动和机械波知识点复习及总结要点

机械振动和机械波知识点复习 一机械振动知识要点 1.机械振动:物体(质点)在平衡位置附近所作的往复运动叫机械振动,简称振动 条件:a、物体离开平衡位置后要受到回复力作用。b、阻力足够小。回复力:效果力——在振动方向上的合力平衡位置:物体静止时,受(合)力为零的位置:运动过程中,回复力为零的位置(非平衡状态)描述振动的物理量 位移x(m)——均以平衡位置为起点指向末位置 振幅A(m)——振动物体离开平衡位置的最大距离(描述振动强弱)周期T (s)——完成一次全振动所用时间叫做周期(描述振动快慢)全振动——物体先后两次运动状态(位移和速度)完全相同所经历的过程 频率f(Hz)——1s钟内完成全振动的次数叫做频率(描述振动快慢) 2.简谐运动 概念:回复力与位移大小成正比且方向相反的振动受力特征:运动性质为变加速运动从力和能量的角度分析x、F、a、v、EK、EP 特点:运动过程中存在对称性 平衡位置处:速度最大、动能最大;位移最小、回复力最小、加速度最小最大位移处:速度最小、动能最小;位移最大、回复力最大、加速度最大、EK同步变化;x、F、a、EP同步变化,同一位置只有v可能不同 3.简谐运动的图象(振动图象) 物理意义:反映了1个振动质点在各个时刻的位移随时间变化的规律可直接读出振幅A,周期T(频率f)可知任意时刻振动质点的位移(或反之)可知任意时刻质点的振动方向(速度方向)可知某段时间F、a等的变化 4.简谐运动的表达式: 5.单摆(理想模型)——在摆角很小时为简谐振动 回复力:重力沿切线方向的分力周期公式: l (T与A、m、θ无关——等时性) g 测定重力加速度g,g= 等效摆长L=L线+r 2 T 6.阻尼振动、受迫振动、共振

相关文档