文档库 最新最全的文档下载
当前位置:文档库 › TRVP1基因多态性在广西汉族人群中的分布

TRVP1基因多态性在广西汉族人群中的分布

TRVP1基因多态性在广西汉族人群中的分布
TRVP1基因多态性在广西汉族人群中的分布

龙源期刊网 https://www.wendangku.net/doc/4711699061.html,

TRVP1基因多态性在广西汉族人群中的分布

作者:何东明陆永光唐真武蓝子深刘秋霞

来源:《中国现代医生》2017年第32期

[摘要] 目的分析广西地区汉族人群瞬时受体电位香草酸亚型1(TRVP1)基因多态性及基因型和单倍型特点,为研究TRVP1与疾病的关系提供依据。方法采用单碱基延伸的聚合酶链反应(PCR)技术和 DNA 测序法,检测207例健康广西汉族人TRVP1基因多态性,分析广西人群4个位点的基因型和等位基因的分布频率,并与美国国家生物技术信息中心(NCBI)公布的其他人群基因多态性分型数据比较。结果广西汉族人群TRPV1基因rs222747、

rs224534、rs4790522和rs8065080位点各具有3种基因型。与人类基因组计划公布的欧洲人群、非洲人群、日本人群和北京汉族人群的单核苷酸多态性分型数据相比,广西汉族人群TRPV1基因不同多态性位点的基因型和等位基因频率与其他地区人群的分布比较,差异有统

计学意义(P

[关键词] 瞬时受体电位香草酸亚型1;基因多态性;广西;汉族

[中图分类号] R363 [文献标识码] A [文章编号] 1673-9701(2017)32-0001-04

[Abstract] Objective To analyze the polymorphism of transient receptor potential vanillic acid subtype 1, genotype and haplotype in the population of Guangxi Han population, and to provide the basis for studying the relationship between TRVP1 and and diseases. Methods The polymorphism of TRVP1 gene in 207 healthy Guangxi Han Chinese were detected by polymerase chain reaction (PCR) extended by single base and DNA sequencing. The genotype of 4 loci and the frequency of allele distribution in Guangxi population were analyzed and compared with the gene polymorphism data of other populations published by the National Center for Biotechnology Information(NCBI). Results There were three genotypes respectively in rs222747, rs224534, rs4790522 and rs8065080 loci of TRPV1 gene in Guangxi Han population. There were significant differences(P

[Key words] Transient receptor potential vanillic acid subtype 1; Gene polymorphism;Guangxi; Han nationality

瞬时受体电位香草酸亚型1(transient receptor potential family vanilloid subtype 1,

TRPV1),又称辣椒素受体(vanilloid receptor subtype1,VR1),属于瞬时感受器电位家族成员之一,是一个非选择性配体门控阳离子通道[1]。TRPV1可被辣椒素(capsaicin,CAP)、多种内源性配体及酸、热等刺激因素激活,释放多种神经活性肽,进而参与痛觉整合、心血管系统调节、抗炎、调节胃肠功能、抗肿瘤等生理和病理生理过程[2,3]。TRPV1 基因位于人类17p13 染色体,多个位点存在非同义单核苷酸多态性[4]。目前国内外已有研究证实,TRPV1

基因多态性

基因多态性 多态性(polymorphism)是指在一个生物群体中,同时和经常存在两种或多种不连续的变异型或基因型(genotype)或等位基因(allele),亦称遗传多态性(genetic polymorphism)或基因多态性。从本质上来讲,多态性的产生在于基因水平上的变异,一般发生在基因序列中不编码蛋白的区域和没有重要调节功能的区域。对于一个体而言,基因多态性碱基顺序终生不变,并按孟德尔规律世代相传。 基因多态性分类生物群体基因多态性现象十分普遍,其中,人类基因的结构、表达和功能,研究比较深入。人类基因多态性既来源于基因组中重复序列拷贝数的不同,也来源于单拷贝序列的变异,以及双等位基因的转换或替换。按引起关注和研究的先后,通常分为3大类:DNA片段长度多态性、DNA重复序列多态性、单核苷酸多态性。 DNA片段长度多态性DNA片段长度多态性(FLP),即由于单个碱基的缺失、重复和插入所引起限制性内切酶位点的变化,而导致DNA片段长度的变化。又称限制性片段长度多态性,这是一类比较普遍的多态性。 DNA重复序列多态性DNA重复序列的多态性(RSP),特别是短串联重复序列,如小卫星DNA和微卫星DNA,主要表现于重复序列拷贝数的变异。小卫星(minisatellite)DNA由15~65bp的基本单位串联而成,总长通常不超过20kb,重复次数在人群中是高度变异的。这种可变数目串联重复序列(VNTR)决定了小卫星DNA长度的多态性。微卫星(microsatellite)DNA 的基本序列只有1~8bp,而且通常只重复10~60次。 单核苷酸多态性单核苷酸多态性(SNP),即散在的单个碱基的不同,包括单个碱基的缺失和插入,但更多的是单个碱基的置换,在CG序列上频繁出现。这是目前倍受关注的一类多态性。 SNP通常是一种双等位基因的(biallelic),或二态的变异。SNP大多数为转换,作为一种碱基的替换,在基因组中数量巨大,分布频密,而且其检测易于自动化和批量化,因而被认为是新一代的遗传标记。 遗传背景知识遗传和变异各种生物都能通过生殖产生子代,子代和亲代之间,不论在形态构造或生理功能的特点上都很相似,这种现象称为遗传(heredity)。但是,亲代和子代之间,子代的各个体之间不会完全相同,总会有所差异,这种现象叫变异(variation)。遗传和变异是生命的特征。遗传和变异的现象是多样而复杂的,正因为如此,才导致生物界的多种多样性。

基因多态性分析

. 人基因多态性分析 一、实验目的 1. 了解基因多态性在阐明人体对疾病、毒物的易感性与耐受性、疾病临床表现的多样性以及对药物治疗的反应性中的重要作用。 2. 了解分析基因多态性的基本原理和研究方法。 二、实验原理 基因多态性(gene polymorphism)是指在一个生物群体中,同时存在两种及以上的变异型或基因型或等位基因,也称为遗传多态性(genetic polymorphism)。人类基因多态性对于阐明人体对疾病的易感性、毒物的耐受性、药物代谢差异及遗传性疾病的分子机制有重大意义;与致病基因连锁的多态性位点可作为遗传病的诊断标记,并为分离克隆致病基因提供依据;病因未知的疾病与候选基因多态性的相关性分析,可用于辅助筛选致病易感基因。 聚合酶链反应-限制性片段长度多态性(polymerase chain reaction—Restriction Fragment Length Polymorphism,PCR-RFLP)分析是一种常用的DNA分子标记。原理是通过PCR扩增获得目的基因。若目的基因存在等位变异(多态性),且变异正好发生在某种限制性内切酶识别位点上,使酶切位点增加或者消失,则酶切结果就会产生大小不同的片段,即片段长度多态性,再利用琼脂糖凝胶电泳分离,可呈现出多态性电泳图谱。若将患者与正常的多态性图谱比较,可确定是否变异。应用PCR-RFLP,可检测某一致病基因已知的点突变,进行直接基因诊断,也可以此为遗传标记进行连锁分析进行间接基因诊断。 三、器材与试剂 1. 器材 ⑴离心机。 ⑵DNA扩增仪。 ⑶电泳仪。 ⑷水平电泳槽。 ⑸紫外检测仪。 ⑹移液器。 2. 试剂 . . ⑴口腔拭子DNA抽提试剂盒。 ⑵琼脂糖。 ⑶1×TAE电泳缓冲液:980ml蒸馏水中加入50×TAE母液20ml。 ⑷50×TAE母液:Tris 121g,0.5M EDTA(pH8.0)50ml,冰醋酸28.55ml,定容至500ml。

如何用PCR法检测基因的多态性

如何用PCR法检测基因的多态性 多态性(polymorphism)是指处于随机婚配的群体中,同一基因位点可存在2种以上的基因型。在人群中,个体间基因的核苷酸序列存在着差异性称为基因(DNA)的多态性(gene polymorphism)。这种多态性可以分为两类,即DNA 位点多态性(site polymorphism)和长度多态性(longth polymorphism)。 基因多态性的主要检测方法简述如下: 1.限制性片段长度多态性(Restriction Fragment Length Polymorphism,RFLP):由DNA 的多态性,致使DNA 分子的限制酶切位点及数目发生改变, 用限制酶切割基因组时, 钠 问 亢兔扛銎 蔚某ざ染筒煌 此 降南拗菩云 纬ざ榷嗵 裕 贾孪拗破 纬ざ确⑸ 谋涞拿盖形坏悖 殖莆 嗵 晕坏恪W钤缡怯肧outhern Blot/RFLP方法检测,后来采用聚合酶链反应(PCR)与限制酶酶切相结合的方法。现在多采用PCR-RFLP法进行研究基因的限制性片段长度多态性。 2.单链构象多态性(SSCP):是一种基于单链DNA构象差别的点突变检测方法。相同长度的单链DNA如果顺序不同,甚至单个碱基不同,就会形成不同的构象。在电泳时泳动的速度不同。将PCR产物经变性后,进行单链DNA凝胶电泳时,靶DNA中若发生单个碱基替换等改变时,就会出现泳动变位(mobility shift),多用于鉴定是否存在突变及诊断未知突变。 3.PCR-ASO探针法(PCR-allele specific oligonucleotide, ASO):即等位基因特异性寡核苷酸探针法。在PCR扩增DNA片段后,直接与相应的寡核苷酸探杂交,即可明确诊断是否有突变及突变是纯合子还是杂合子。其原理是:用PCR扩增后,产物进行斑点杂交或狭缝杂交,针对每种突变分别合成一对寡核苷酸片段作为探针,其中一个具有正常序列,另一个则具有突变碱基。突变碱基及对应的正常碱基匀位于寡核苷酸片段的中央,严格控制杂交及洗脱条件,使只有与探针序列完全互补的等位基因片段才显示杂交信号,而与探针中央碱基不同的等位基因片段不显示杂交信号,如果正常和突变探针都可杂交,说明突变基因是杂合子,如只有突变探针可以杂交,说明突变基因为纯合子,若不能与含有突变序列的寡核苷探针杂交,但能与相应的正常的寡核苷探针杂交,则表示受检者不存在这种突变基因。若与已知的突变基因的寡核苷探针匀不能杂交,提示可能为一种新的突变类型。 4. PCR-SSO法:SSO技术即是顺序特异寡核苷酸法(Sequence Specific Oligonucleotide, SSO)。原理是PCR基因片段扩增后利用序列特异性寡核苷酸探针,通过杂交的方法进行扩增片段的分析鉴定。探针与PCR产物在一定条件下杂交具有高度的特异性,严格遵循碱基互补的原则。探针可用放射性同位素

CYP2C19基因多态性检测

CYP2C19基因多态性检测 项目简介:CYP2C19是CYP450酶第二亚家族中的重要成员,是人体重要的药物代谢 酶,在肝脏中有很多表达。CYP2C19基因座位于染色体区10q24.2上,由9个外显子构成。CYP2C19具有很多SNP位点,最常见的是CYP2C19*2和CYP2C19*3。CYP2C19*2会导致转录蛋白的剪切突变失活,而CYP2C19*3能构成一个终止子,破坏转录蛋白的活性。据统计,CYP2C19*2和CYP2C19*3两个突变位点能解释几乎100%的东亚人和85%的高加索人种的相关弱代谢遗传缺陷,而其他两种等位基因CYP2C19*4和CYP2C19*5主要在高加索人种中分布。大量证据证实,不同人种在CYP2C19的底物的代谢能力有很大差异;2–5%高加索人是弱代谢者,而13–23%的亚洲人是弱代谢者。这是由于在亚洲人口中CYP2C19*2和CYP2C19*3等位基因的高频率造成的。通过CYP2C19基因检测,判断患者对相关药物的代谢能力,可以指导临床用方案的制定,实现个体化用药治疗。 临床上常用的经由CYP2C19酶代谢的药物: 1、治疗胃酸相关性疾病:如质子泵抑制剂:奥美拉唑(omeprazole)、兰索拉唑(lansoprazole)、泮托拉唑(pantoprazole)、 雷贝拉唑(rabeprazole)、埃索美拉唑 (Esomeprazole)。 2、治疗心血管疾病:Clopidogrel、氯吡格雷、抗凝血药物。 3、抗真菌药物:Voriconazole、伏立康唑、广谱抗真菌药物。 4、神经类药物:①S-美芬妥英mephenytoin为乙内酰脲类抗癫痫药,在体内的羟化代谢主要由单基因CYP2C19编码表达的CYP2C19酶蛋白介导,由羟化酶CYP2C19氧化生成4’-羟基美芬妥英;②地西泮diazepam,一种长效的镇静、安眠药;③丙米嗪imipramine ,抗抑郁药,N-去甲基化和2-羟化;④苯巴比妥phenobarbital,传统的抗癫痫药;⑤抗心律失常药,抗抑郁药,抗精神病药,β受体阻断剂,抗高血压药和止痛剂。 5、抗肿瘤药:环磷酰胺。 6、抗结核药:利福平。 7、孕激素:黄体酮。 8、抗疟疾药:氯胍。 9、HIV蛋白酶抑制剂。 10、抗移植排斥药物:他克莫司、兰索拉唑。 CYP2C19基因多态性检测标本采集及出报告时间:病人抽静脉血2ml(用 EDTA-K2抗凝)送检验科分子生物诊断室,4个工作日出报告。 电话:8801063 手机:余宗涛65327 高波 64444 CYP2C19基因多态性检测临床意义: 1、基因剂量效应。 2、CYP2C19基因多态性,导致了个体间酶活性的多样性。等位基因的突变使酶活性降低,对药物代谢的能力随着等位基因的不同组合而呈现出一定的规律性,表现出正常基因纯合子>正常基因与突变基因杂合子> 突变基因纯合子或杂合子的变化趋势。 3、对于不同代谢能力的个体,运用不同的药物剂量等策略是非常必要的,可达到更好的治疗效果。 4、根据CYP2C19基因型给予个性化的药物和剂量可以降低副作用发生率-安全性;提高治

基因多态性分析

人基因多态性分析 一、实验目的 1. 了解基因多态性在阐明人体对疾病、毒物的易感性与耐受性、疾病临床表现的多样性以及对药物治疗的反应性中的重要作用。 2. 了解分析基因多态性的基本原理和研究方法。 二、实验原理 基因多态性(gene polymorphism)是指在一个生物群体中,同时存在两种及以上的变异型或基因型或等位基因,也称为遗传多态性(genetic polymorphism)。人类基因多态性对于阐明人体对疾病的易感性、毒物的耐受性、药物代谢差异及遗传性疾病的分子机制有重大意义;与致病基因连锁的多态性位点可作为遗传病的诊断标记,并为分离克隆致病基因提供依据;病因未知的疾病与候选基因多态性的相关性分析,可用于辅助筛选致病易感基因。 聚合酶链反应-限制性片段长度多态性(polymerase chain reaction—Restriction Fragment Length Polymorphism,PCR-RFLP)分析是一种常用的DNA分子标记。原理是通过PCR扩增获得目的基因。若目的基因存在等位变异(多态性),且变异正好发生在某种限制性内切酶识别位点上,使酶切位点增加或者消失,则酶切结果就会产生大小不同的片段,即片段长度多态性,再利用琼脂糖凝胶电泳分离,可呈现出多态性电泳图谱。若将患者与正常的多态性图谱比较,可确定是否变异。应用PCR-RFLP,可检测某一致病基因已知的点突变,进行直接基因诊断,也可以此为遗传标记进行连锁分析进行间接基因诊断。 三、器材与试剂 1. 器材 ⑴离心机。 ⑵DNA扩增仪。 ⑶电泳仪。 ⑷水平电泳槽。 ⑸紫外检测仪。 ⑹移液器。 2. 试剂

基因多态性及其生物学作用和医学意义doc资料

基因多态性及其生物学作用和医学意义

基因多态性及其生物学作用和医学意义 一、基因多态性: 多态性(polymorphism)是指处于随机婚配的群体中,同一基因位点可存在2 种以上的基因型。在人群中,个体间基因的核苷酸序列存在着差异性称为基因(DNA)的多态性(gene polymorphism)。这种多态性可以分为两类,即DNA位点多态性(site polymorphism)和长度多态性 (longth polymorphism)。 1.位点多态性:是由于等位基因之间在特定的位点上DNA序列存在差异,也就是基因组中散在的碱基的不同,包括点突变(转换和颠换),单个碱基的置换、缺失和插入。突变是基因多态性的一种特殊形式,单个碱基的置换又称为单核苷酸多态性(single nucleotide polymorphism, SNP), SNP通常是一种二等位基因(biallelic)或二态的变异。据估计,单碱基变异的频率在1/1000-2/1000。SNP在基因组中数量巨大,分布频密,检测易于自动化和批量化,被认为是新一代的遗传标记。 2. 长度多态性:一类为可变数目***重复序列(variable number of tandem repeats, VNTRS),它是由于相同的重复顺序重复次数不同所致,它决定了小卫星 DNA(minisatellite)长度的多态性。小卫星是由15-65 bp的基本单位***而 成,总长通常不超过20bp,重复次数在人群中是高度变异的。另一类长度多态性是由于基因的某一片段的缺失或插入所致,如微卫星DNA (microsatellite),它们是由重复序列***构成,基本序列只有1-8bp,如(TA)n及

遗传病及遗传多态性

遗传病及遗传多态性 遗传病(hereditary disease)由基因突变或染色体畸变引起的疾病。已知的遗传病约有5000种,可分为3大类: 单基因遗传病由某一基因突变而引起,又分为:(1)常染色体显性遗传病,致病基因位于1~22号常染色体中的某一对上,且呈显性。如并指、多指、视网膜母细胞瘤、遗传性小脑性运动失调、先天性肌强直、多发性肠胃息肉、遗传性卟啉病等。(2)常染色体隐性遗传病,致病基因位于1~22号常染色体中的某一对上,且呈隐性。如白化病、先天性聋哑症、苯丙酮尿症、半乳糖血症、先天性鳞皮病等。(3)伴性遗传病,由性染色体上的基因发生突变而引起。包括X连锁隐性遗传病(致病基因位于X染色体上且呈隐性),如红绿色盲、血友病、先天性白内障、先天性丙种球蛋白缺乏症等;X连锁显性遗传病(致病基因位于X 染色体上且呈显性),如抗维生素D佝偻病、遗传性肾炎等。 多基因遗传病受多对微效基因控制并易受环境因素影响的遗传病。如唇裂、腭裂、先天性巨结肠、先天性幽门狭窄、早发性糖尿病、各种先天性心脏病等。 染色体异常病由先天性的染色体数目异常或结构异常而引起。又分为:(1)常染色体病,由1~22号常染色体发生畸变而引起。包括单体综合征,某一号染色体为单体,如21单体和22单体,这类病人极少见,大都于胎儿期死亡;三体综合征,某一号同源染色体不是两个而是三个,如21三体(又称先天愚型或唐氏综合征,核型为47XX或XY;+21)、18三体(Edward氏综合征)和13三体(Patan氏综合征)等;部分三体综合征(由某一片段有三份而引起)如9p部分三体综合征(9号染色体的短臂有三份);部分单体综合征(由某一常染色体的部分缺失而引起),如猫叫综合征(婴儿期哭声类似猫叫)就是5号染色体短臂部分缺失引起的。(2)性染色体病,由X和Y性染色体数目或结构变异而引起。如女性的特纳氏综合征(45,XO),男性的克氏综合征(47,XXY)等。遗传病目前尚难根治,故应积极预防。预防的措施有检出致病基因的携带者与禁止近亲结婚,推行计划生育,开展遗传咨询,进行产前检查与中止有病胎儿的妊娠等。 遗传多态性(genetic polymorphism)在一个群体内存在两种或两种以上非连续变异类型,而其中最罕见类型的频率不小于0.01(或0.05)的现象。常见的不同水平上的遗传多态性有:(1)基因多态性(gene polymorphism)。经调查人类大多数群体的ABO血型系统的三种复等位基因I A、I B和i的频率,最高的不超过0.55,最低的不小于0.2,所以,ABO血型系统的基因座为多态基因座。据研究,大多数生物的多态基因座约占总数基因座的15%~50%,即约有1/4~1/2的基因座存在两种或两种以上的等位基因。(2)染色体多态性(chromosome polymorphism)。在一群体中的同一染色体上可以发生不同的倒位或易位。例如拟暗果蝇(Drosophila pseudoobscura)的第三染色体上存在多种倒位,其自然群体中的倒位类型竟多达20余种。植物群体中的倒位多态性比动物的更普遍。在一些动植物群体中(如蟑螂、直果曼陀罗)还观察到易位多态性。此外,随着研究的深入,在分子水平上还发现核酸有限制性片段长度多态性(restriction fragment length polymorphism,RFLP),例如,在群体中用同一限制性内切酶“切割”DNA,可得到不同长度的DNA片段。 现在一般用自然选择理论来解释遗传多态性产生的原因,主要有杂合优势说和依赖 选择说。杂合优势说认为,杂合体(如Aa)在适应能力上要优于纯合体(如AA和aa),因此群体中的等位基因A和a的频率就会维持在一个既不过高也不过低的水平上。依赖选

基因多态性的检测方法

基因多态性的检测方法 多态性(polymorphism)是指处于随机婚配的群体中,同一基因位点可存在2种以上的基因型。在人群中,个体间基因的核苷酸序列存在着差异性称为基因(DNA)的多态性(gene polymorphism)。这种多态性可以分为两类,即DNA位点多态性(site polymorphism)和长度多态性(longth polymorphism)。 基因多态性的主要检测方法简述如下: 1.限制性片段长度多态性(Restriction Fragment Length Polymorphism,RFLP):由DNA 的多态性,致使DNA 分子的限制酶切位点及数目发生改变,用限制酶切割基因组时,所产生的片段数目和每个片段的长度就不同,即所谓的限制性片段长度多态性,导致限制片段长度发生改变的酶切位点,又称为多态性位点。最早是用Southern Blot/RFLP方法检测,后来采用聚合酶链反应(PCR)与限制酶酶切相结合的方法。现在多采用PCR-RFLP法进行研究基因的限制性片段长度多态性。 2.单链构象多态性(SSCP):是一种基于单链DNA构象差别的点突变检测方法。相同长度的单链DNA如果顺序不同,甚至单个碱基不同,就会形成不同的构象。在电泳时泳动的速度不同。将PCR产物经变性后,进行单链DNA凝胶电泳时,靶DNA中若发生单个碱基替换等改变时,就会出现泳动变位(mobility shift),多用于鉴定是否存在突变及诊断未知突变。 3.PCR-ASO探针法(PCR-allele specific oligonucleotide, ASO):即等位基因特异性寡核苷酸探针法。在PCR扩增DNA片段后,直接与相应的寡核苷酸探杂交,即可明确诊断是否有突变及突变是纯合子还是杂合子。其原理是:用PCR扩增后,产物进行斑点杂交或狭缝杂交,针对每种突变分别合成一对寡核苷酸片段作为探针,其中一个具有正常序列,另一个则具有突变碱基。突变碱基及对应的正常碱基匀位于寡核苷酸片段的中央,严格控制杂交及洗脱条件,使只有与探针序列完全互补的等位基因片段才显示杂交信号,而与探针中央碱基不同的等位基因片段不显示杂交信号,如果正常和突变探针都可杂交,说明突变基因是杂合子,如只有突变探针可以杂交,说明突变基因为纯合子,若不能与含有突变序列的寡核苷探针杂交,但能与相应的正常的寡核苷探针杂交,则表示受检者不存在这种突变基因。若与已知的突变基因的寡核苷探针匀不能杂交,提示可能为一种新的突变类型。 4. PCR-SSO法:SSO技术即是顺序特异寡核苷酸法(Sequence Specific Oligonucleotide, SSO)。原理是PCR基因片段扩增后利用序列特异性寡核苷酸探针,通过杂交的方法进行

环磷酰胺对雄性生殖系统的毒副作用的综述

环磷酰胺对雄性生殖系统的毒副作用的综述 02(医)七任怡2002207221 摘要:通过对1989年至2006年关于环磷酰胺对雄性生殖系统毒副作用资料的查阅,从环磷酰胺对生精细胞,干细胞因子,精原干细胞,精子的发生、形态,数量,以及睾丸染色体的毒副作用等方面分类进行综述,和大家共同探讨一下有关环磷酰胺的生殖毒副作用。 关键词:环磷酰胺生殖系统毒副作用 环磷酰胺(CTX)是一种烷化剂,1958年首次人工合成,主要用于肿瘤免疫,对多种肿瘤有明显的抑制作用,对增殖细胞群的各期均有杀伤作用。进入人体后肝脏或肿瘤组织内存在的过量磷酰胺酶或磷酸酶水解,释放出氮芥基而杀伤抑制肿瘤细胞生长的作用。主要的毒性反应有恶心、食欲减退、脱发、白细胞减少、中毒性膀胱炎、肝功能损伤。我通过对资料文献的查阅发现他对雄性生殖系统有一定的毒副作用,不可忽视,故查阅1989年至今文献现做综述如下: 1对不同发育时期睾丸生精细胞毒性损伤 岳丽琴等将环磷酰胺分别作用于处于不同发育时期的1周龄、3周龄、5周龄、9周龄雄性大鼠,应用HE染色法、TUNEI法和免疫组化法检测急性期生精细胞凋亡,bcl2蛋白表达,细胞增殖能力变化及远期组织学损害结果用药后24h,除1周龄组外,各实验组生精细胞显著凋亡(P<0.()1),bcl2蛋白表达显著下降(P0.05),膜型干细胞因子均有显著增加(P<0.05)。 (2)同一时期各实验组和对照组比较,分泌型干细胞因子表达无显著差异(P>0.05),但膜型干细胞因子表达均有显著降低(P<0.05);同一时期各实验组间比较,随环磷酰胺剂量增加,膜型干细胞因子表达有显著降低(P<0.05)。(3)同一剂量三个时期比较,各实验组分泌型干细胞因子无显著差异(P>0.05);膜型干细胞因子比较,大剂量组中无显著差异(P>0.05),中、小剂量组中24h较4w、8w均有显著降低(P<0.05),4w与8w比较无显著差异(P>0.05)。(4)增殖指数检测,4w时各实验组与对照组比较,均有显著降低(P<0.O1),并与剂量

细胞色素CYP2C19基因多态性与药物相互作用_张平平

[10]Illouz S,Nakamura T,Webb M,et al1Comparison of University of Wisconsin and ET-Kyoto preservation solutions for t he cryopreservation of primary human hepatocytes1Transplant Proc,2008,40(5):1706~17091 [11]Colaco C,Sen S,Thangavelu M,et al1Extraordinary stability of enzymes dried in trehalose:simplified molecular biolo2 gy1Biotechnology(N Y),1992,10(9):1007~10111 [12]Mat suo T1Trehalose protect s corneal epit helial cells from deat h by drying1Br J Opht halmol,2001,85(5):610~6121 [13]Mat suo T,Tsuchida Y,Morimoto N1Trehalose eye drops in t he treat ment of dry eye syndrome1Opht halmology,2002,109(11): 2024~20291 [14]Mat suo T1Trehalose versus hyaluronan or cellulose in eyedrops for t he treat ment of dry eye1Jpn J Opht halmol,2004,48(4):321~3271 [15]胡宗利,夏玉先,陈国平,等1海藻糖的生产制备及其应用前景 1中国生物工程杂志,2004,24(4):44~481 [16]Takanobu H1Novel functions and applications of trehalose1Pure Appl Chem,2002,74(7):1263~12691 细胞色素CYP2C19基因多态性与药物相互作用 张平平,王明波,张鉴1,李军1 (山东万杰医学院,山东淄博255213;11山东大学附属省立医院临床药理中心,山东济南250012) 摘要:C YP2C19酶是一种重要的药物代谢酶,参与多种药物的体内代谢。本文综述了C YP2C19酶的基因多态性及临床应用方面的研究进展,讨论经C YP2C19代谢的药物在联合用药时药物之间的相互作用及可能出现的临床后果,为临床合理用药提供参考依据。 关键词:C YP2C19 代谢 抑制 诱导 药物相互作用 中图分类号:R968 文献标识码:A 文章编号:1672-7738(2009)06-0352-04 The gene polymorphism of CYP2C19and drug interaction ZHAN G Ping2ping,WAN G Ming2bo,ZHAN G Jian1,L I J un1 (Wanjie Medical College of Shangdong,Zibo255213;11The center of Clinical Pharmacology,Shandong Provincial Hospital Affiliated to Shandong University,Ji′nan250012) ABSTRACT:C YP2C19enzyme is an important drug-metabolizing enzyme involved in the metabolism of a variety of drugs in vivo1This article introduced the progress of the gene polymorphism of CYP2C19enzyme and its application in clinical1The interaction and possible clinical consequences of the drugs metabolized by C YP2C19in combination were also illustrated which provided the reference for the clinical rational administration1 KE Y WOR DS:C YP2C19;metabolism;inhibition;induction;drug interactions 细胞色素P450是由一组结构和功能相关的血红蛋白超家族基因编码的同工酶,是药物在体内的主要代谢酶系。在C YP450超家族中,C YP2是最大的家族,有15个亚家族,而C YP2C是其中最大的亚家族,该亚家族中C YP2C9、2C19与药物代谢关系密切。 1 C YP2C19与药物代谢 现已证实C YP2C19酶主要参与药物在体内的羟化反应。C YP2C19酶活性存在显著的个体差异和种族差异,表现为遗传多态性,导致酶变异,酶活性下降,代谢药物的能力下降,从而使多种药物在体内的代谢产生个体差异,导致血药浓度的个体差异,血药浓度升高,故常引起与血药浓度相关的药物不良反应。同时服用经C YP2C19代谢的药物,可能发生相互作用,从而影响临床治疗效果。 2 C YP2C19的基因突变与表型研究进展 C YP2C19酶又称为S-美芬妥英羟化酶,定位于10号染色体上(10q2411-10q2413),有9个外显子。现已发现其至少存在18种等位基因,较常见的2个等位基因多态性位点为C YP2C19m1和C YP2C19m2。其外显子5发生的单个碱基突变(G→A)称为M1突变,突变的基因称为m1等位基因。其外显子4发生的单个碱基突变(G→A)称为M2突变,突变的基因称为m2等位基因。这些突变导致酶活性下降,代谢能力减低,易引起药物不良反应。另外在研究白种人的C YP2C19基因时,发现了一例较罕见的新突变,即外显子9发生了单碱基突变(C→T),不过该突变频率极低(0125%),其是否会改变个体的酶蛋白含量,有待于进一步研究。 C YP2C19酶具遗传多态性,代谢速度快者为强代谢者(extensive metabolism EM),代谢速度慢者为弱代谢者(poor

遗传学名词解释

遗传学名词解释 1.遗传(heredity):亲代与子代之间同一性状相似的现象称为遗传。 2.变异(variation):亲代与子代或子代之间出现形状差异的现象称为变异。 3.真实遗传(breeding true)/ 纯育(true-breeding):子代性状与亲代的遗传一致性极高的品系称为纯育,这种生物的性状能够代代稳定遗传的现象称为真实遗传。 4.并显性/共显性(codominance):一对等位基因的两个成员在杂合体中都表达的遗传现象称为并显性遗传,或共显性遗传。 5.复等位基因(multiple aleles):在群体中,占据某一同源染色体的同一座位上的两个以上的、决定同一性状的基因称为复等位基因。 6.叠加基因/重叠基因:对同一性状的表型具有相同效应的非等位基因称为叠加基因。 7.性连锁遗传/伴性遗传(sex-linked inheritance):由性染色体所携带的基因在遗传时与性别相联系的遗传方式称为性连锁遗传,亦称伴性遗传。 8.限性性状(sex-limited traits)和限性遗传(sex-limited inheritance):只在某一种性别表现的性状称为限性性状,限性性状的遗传行为称为限性遗传。控制限性性状的基因多数位于常染色体上,也有少部分位于性染色体上。 9.剂量补偿效应(dosage compensation effect):在XY性别决定的生物中,使性连锁基因在两种性别中有相等或近乎相等的有效剂量的遗传效应称为剂量补偿效应。 10.并发系数(coefficient of coincidence, C):实际观察到的双交换率与预期的双交换率的比值称为并发系数。并发系数越大表示干涉作用越小。 11.C值(C value)和C值悖理(C value paradox):一个物种基因组的DNA含量是相对恒定的,它通常称为该物种的C值。物种的C值与其进化复杂性之间没有严格的对应关系,这种现象称为C值悖理或C值佯谬。 N值悖理(N value paradox):生物的基因数目与生物在进化树上的位置不存在正相关的事实称为N值悖理或N值佯谬。 12.基因转变(gene conversion):在子囊菌的减数分裂过程中,由于交换使得异源双链DNA的核苷酸对发生错配,错配的核苷酸对经过修复校正后导致一个基因转变为它的等位基因,从而使减数分裂后的四分体发生异常分离现象,这种现象称为基因转变。(自己总结,仅供参考)13.同线分析(synteny analysis):将连锁分析原理用于体细胞杂种染色体分析得方法称为同线分析。14.可变剪接(alternative splicing):同一前体mRNA分子,可以在不同的剪接位点发生剪接反应,生成不同的mRNA分子,最终产生不同的蛋白质分子的一种RNA剪切方式称为可变剪接。15.中断杂交实验(interrupted mating experiment):在不同品系的大肠杆菌Hfr细胞和F-细胞的杂交过程中,每隔一定时间取样并在搅拌器内搅拌以打断配对的接合管,使接合细胞分开而中断杂交,再检测形成了何种重组子,从而确定各种基因进入F-细胞的时间和次序并进行作图的实验即为中断杂交实验。 16.共转导/并发转导(co-transduction):在噬菌体对细菌的基因进行转导时,两个基因共同转导的现象称为共转导或并发转导。两个基因之间共转导频率越高说明它们连锁越紧密,且共转导的两个基因之间的距离一般不会大于噬菌体的染色体长度。 17.高频重组菌株(high frequency recombination, Hfr):细菌的F因子能够整合到细菌的染色体中,带有一个整合的F因子的细菌品系在与F-细菌接合时可以将染色体的一部分或全部传递给F-细胞,当二者的等位基因带有不同的标记时就可以发生重组,且重组频率可达到10-2以上,因此称为高频重组菌株。 18.互补测验(complementation test)/顺反测验(cis-trans test):将两种不同rⅡ突变型的T4噬菌体对大肠杆菌K(λ)进行双重感染,若能够产生亲代基因型的子代噬菌体,则说明两种突变可以互补,位于不同的顺反子上,这个实验就称为互补测验或顺反测验。利用该测验可以确定基因之间的功能关系。 19.核外遗传(extranuclear inheritance)/细胞质遗传(cytoplasmic inheritance):在真核生物中,染色体外的遗传因子所决定的遗传现象称为核外遗传或细胞质遗传。核外遗传因子通过细胞质又一代传到下一代,且子代分离比不符合孟德尔定律、正反交的结果不同,核外因子亦不能进行遗传作图。

基因多态性及其生物学作用和医学意义.doc

基因多态性及其生物学作用和医学意义 一、基因多态性: 多态性(polymorphism)是指处于随机婚配的群体中,同一基因位点可存在2种以上的基因型。在人群中,个体间基因的核苷酸序列存在着差异性称为基因(DNA)的多态性(gene polymorphism)。这种多态性可以分为两类,即DNA位点多态性(site polymorphism)和长度多态性(longth polymorphism)。 1.位点多态性:是由于等位基因之间在特定的位点上DNA序列存在差异,也就是基因组中散在的碱基的不同,包括点突变(转换和颠换),单个碱基的置换、缺失和插入。突变是基因多态性的一种特殊形式,单个碱基的置换又称为单核苷酸多态性(single nucleotide polymorphism, SNP), SNP通常是一种二等位基因(biallelic)或二态的变异。据估计,单碱基变异的频率在1/1000-2/1000。SNP在基因组中数量巨大,分布频密,检测易于自动化和批量化,被认为是新一代的遗传标记。 2. 长度多态性:一类为可变数目***重复序列(variable number of tandem repeats, VNTRS),它是由于相同的重复顺序重复次数不同所致,它决定了小卫星DNA(minisatellite)长度的多态性。小卫星是由15-65 bp的基本单位***而成,总长通常不超过20bp,重复次数在人群中是高度变异的。另一类长度多态性是由于基因的某一片段的缺失或插入所致,如微卫星DNA(microsatellite),它们是由重复序列***构成,基本序列只有1-8bp,如(TA)n及(CGG)n 等,通常重复10-60次。长度多态性是按照孟德尔方式遗传的,它们在基因定位、DNA指纹分析,遗传病的分析和诊断中广泛地应用。 造成基因多态性的原因:1复等位基因(multiple allele)位于一对同源染色体上对应位置的一对基因称为等位基因(allele)。由于群体中的突变,同一座位的基因系列称为复等位基因。某些复合体基因的每一座位都存在为数众多的复等位基因,这是某些复合体(HLA)高度多态性的最主要原因。2共显性(condominance)一对等位基因同为显性,称为共显性,某些复合体中如HLA每一对等位基因匀为共显性。共显性大大增加了人群中某些基因表型的多样化。基因的多态性显示了遗传背景的多样性和复杂性。它可能是人类在进化过程中抵御不良环境因素的一种适应性表现,对维持种群的生存与延续具有重要的生物学意义。 二、基因多态性的生物学作用: 1.遗传密码的改变:如果基因多态性的碱基的取代、缺失、插入引编码序列的核苷酸顺序改变,在转录和翻译合成蛋白质的过程中,有的对多肽链中氨基酸的排列顺序产生影响,有的不产生影响。可分为:错义突变(missense mutation)指DNA分子中碱基对的取代,使得mRNA的某一密码子发生变化,由他所编码的氨基酸就变成另一种不同的氨基酸,使得多肽链中氨基酸的顺序也相应地发生改变。无义突变(nonsense mutation)指由于碱基取代使原来可翻译某种氨基酸的密码子变成了终止密码子。例如UAU(氨酸)颠换成UAA(终止密码子)使多肽链的合成到此终止,形成一条不完整的多肽链,使蛋白质的生物活性和功能改变。转换也可引起无义突变。同义突变(same sense mutation)指碱基的取代并不都是引起错义突变和翻译终止,也就是虽然碱基被取代了,但蛋白质水平上没有引起变化,氨基酸没有被取代。移码突变(frame-shifting mutation)指在编码序列中单个碱基、数个碱基的缺失或插入,

医学遗传学

第一章人类基因与基因组 第一节、人类基因组的组成 1、基因是遗传信息的结构和功能单位。 2、基因组是是细胞内一套完整遗传信息的总和,人类基因组包含核基因组和线粒体基因组 单拷贝序列串联重复序列 按DNA序列的拷贝数不同,人类基因组高度重复序列 反向重复序列 重复序列短分散核元件 中度重复序列 长分散核元件 3、多基因家族是指由某一祖先经过重复和所变异产生的一组基因。 4、假基因是基因组中存在的一段与正常基因相似但不能表达的DNA序列。 第二节、人类基因的结构与功能 1、基因的结构包括:(1)蛋白质或功能RNA的基因编码序列。(2)是表达这些结构基因所需要的启动子、增强子等调控区序列。 2、割裂基因:大多数真核细胞的蛋白质编码基因是不连续的编码序列,由非编码序列将编码序列隔开,形成割裂基因。 3、基因主要由外显子、内含子、启动子、增强子、沉默子、终止子、隔离子组成。 4、外显子大多为结构内的编码序列,内含子则是非编码序列。 5、每个内含子5端的两个核苷酸都是GT,3端的两个核苷酸都是AG,这种连接方式称为GT--AG法则。 6、外显子的数目等于内含子数目加1。 7、启动子分为1类启动子(富含GC碱基对,调控rRNA基因的编码)、2类启动子(具有TATA 盒特征结构)、3类启动子(包括A、B、C盒)。 第三节、人类基因组的多态性 1、人类基因组DNA多态性有多种类型,包括单核苷酸多态性、插入\缺失多态性、拷贝数多态性。

第二章、基因突变 突变是指生物体在一定内外环境因素的作用和影响下,遗传物质发生某些变化。基因突变即可发生在生殖细胞,也可发生在体细胞。 第一节、基因突变的类型 一、碱基置换:是指DNA分子多核苷酸链中的某一碱基或碱基对被另碱基或碱基对置换、替代的突变方式,通常又称点突变。包括: 1、同义突变:替换发生后,虽然碱基组成发生变化,但新旧密码子具有完全相同的编码意义。同义突变并不产生相应的遗传学表观效应。 2、错义突变:替换发生后,编码某一氨基酸的密码子变成了编码另一种氨基酸的密码子,改变了多肽链中氨基酸种类的结构序列组成。 3、无义突变:替换后,编码某一氨基酸的密码子变成了不编码任何氨基酸的终止密码子,引起多肽链提前终止。 4、终止密码子突变:DNA分子中某一终止密码子发生单个碱基替换后,变成了具有氨基酸编码功能的遗传密码子,导致多肽链的合成非正常继续进行。 二、移码突变:是指DNA多核苷酸链中插入或缺失一个或多个碱基对,导致DNA读码序列发生移动,改变密码子的编码意义。 三、整码突变:基因组DNA多核苷酸链的密码子之间插入或缺失三或三的倍数个碱基,导致多肽链中增加或减少一个或多个氨基酸。 四、片段突变:包括缺失、重复、重组、重排。 五、动态突变:是指在DNA分子中,短串联重复序列,尤其是三核甘酸重复序列的重复次数可随着世代传递而逐代增加,这种增加达到一定程度后会产生突变效应,从而引起某些疾病。如脆性X染色体,Huntington病。 第二节、基因突变的诱发因素及作用机制 基因突变分为自发突变和诱发突变。自发突变是指在自然条件下发生的突变。诱发突变则是指

第三讲 基因突变与单基因病(参考答案)

第三讲基因突变与单基因病-13级临床1-10班、麻 醉班 考试说明: 一、单项选择题 1 基因突变致病的可能机制是() 所编码蛋白质的结构改变,导致其功能增强所编码蛋白质的结构改变,导致其功能减弱所编码蛋白质的结构虽不变,但其表达量过多所编码蛋白质的结构虽不变,但其表达量过少以上都包括 2 点突变可引起( ) mRNA降解 DNA复制停顿阅读框架移动氨基酸置换氨基酸缺失 3 属于颠换的碱基替换为() G和T A和G T和C C和U T和U 4 属于转换的碱基替换为() A和C A和T T和C G和T G和C 5 不改变氨基酸编码的基因突变为() 同义突变错义突变无义突变终止密码突变移码突变 6 导致脆性X综合征的是哪一种突变类型( ) 移码突变碱基替换后发生错义突变动态突变碱基替换后发生无义突变碱基替换后发生终止密码突变 7 某基因表达后,合成了一条比正常基因产物短的多肽链,该基因突变为( )

移码突变动态突变错义突变终止密码突变无义突变 8 下列哪种突变可导致肽链氨基酸序列由“Ala-Gly-Val-Leu-Pro-Cys”为 “Ala-Val-Val-Leu-Pro- Cys”() 同义突变错义突变无义突变移码突变整码突变 9 终止密码突变会引起() 肽链缩短肽链延长编码的氨基酸不变编码的氨基酸性质改变都不对 10 关于基因突变说法正确的是() 由点突变引起的错义突变能够使蛋白质序列变短产生同义突变的原因是密码子具有简并性插入或者缺失碱基必定改变开放阅读框嘌呤和嘧啶互相替代的点突变称为转换结构基因的突变导致蛋白质表达量改变 11 由脱氧三核苷酸串联重复扩增而引起疾病的突变为() 移码突变动态突变片段突变转换颠换 12 下列哪种突变可导致肽链氨基酸序列由“Ala-Gly-Val-Leu-Pro-Cys”为 “Ala-Val-Gly-Val-Leu-Pro- Cys”() 错义突变无义突变终止密码子突变移码突变整码突变 13 下列哪种突变可引起移码突变( ) 转换和颠换颠换点突变缺失1-2个碱基插入3个核苷酸 14 错配联会和不等交换常引起() 错义突变中性突变移码突变整码突变大段核酸缺失或重复 15 下列哪一种数量的碱基插入会导致基因的移码突变()

相关文档
相关文档 最新文档