文档库 最新最全的文档下载
当前位置:文档库 › 高二数学空间直线的方向向量和平面的法向量

高二数学空间直线的方向向量和平面的法向量

利用空间向量求空间角教案设计

利用空间向量求空间角 一、高考考纲要求: 能用向量方法解决异面直线的夹角、线面角、面面角问题.体会向量法在立体几何中的应用. 二、命题趋势: 在高考中,本部分知识是考查的重点内容之一,主要考查异面直线所成角、线面角、面面角的计算,属中档题,综合性较强,与平行垂直联系较多. 三、教学目标 知识与技能:能用向量法熟练解决异面直线的夹角、线面角、面面角的计算问题,了解向量法在研究立体几何问题中的应用; 过程与方法:通过向量这个载体,实现“几何问题代数化”的思想,进一步发展学生的空间想象能力和几何直观能力; 情感态度价值观:通过数形结合的思想和方法的应用,进一步让学生感受和体会空间直角坐标系,方向向量,法向量的魅力. 四、教学重难点 重点:用向量法求空间角——线线角、线面角、二面角; 难点:将立体几何问题转化为向量问题. 五、教学过程 (一)空间角公式 1、异面直线所成角公式:如图,设异面直线l ,m 的方向向量分别为a r ,b r ,异面直线l ,m

2、线面角公式:设直线l 为平面α的斜线,a r 为l 的方向向量,n r 为平面α的法向量,θ为 l 与α所成的角,则sin cos ,a n θ==r r a n a n ?r r r r . 3、面面角公式:设1n r ,2n r 分别为平面α、β的法向量,二面角为θ,则12,n n θ=r r 或 12,n n θπ=-r r (需要根据具体情况判断相等或互补) ,其中121212 cos ,n n n n n n ?=r r r r r r . α θ O n r a

(二)典例分析 如图,已知:在直角梯形OABC 中,//OA BC ,90AOC ∠=o ,SO ⊥面OABC ,且 1,2OS OC BC OA ====.求: (1)异面直线SA 和OB 所成的角的余弦值; (2)OS 与面SAB 所成角α的正弦值; (3)二面角B AS O --的余弦值. 解:如图建立空间直角坐标系,则(0,0,0)O , (2,0,0)A ,(1,1,0)B ,(0,1,0)C ,(0,0,1)S , 于是我们有(2,0,1)SA =-u u r ,(1,1,0)AB =-u u u r ,(1,1,0)OB =u u u r ,(0,0,1)OS =u u u r , (1)cos ,5SA OB SA OB SA OB ?== =u u r u u u r u u r u u u r u u r u u u r , 所以异面直线SA 和OB 所成的角的余弦值为5 . (2)设平面SAB 的法向量(,,)n x y z =r , 则0,0, n AB n SA ??=???=??r u u u r r u u r ,即0,20.x y x z -+=??-=? 取1x =,则1y =,2z =,所以(1,1,2)n =r , sin cos ,3OS n OS n OS n α?∴=== =u u u r r u u u r r u u u r r . (3)由(2)知平面SAB 的法向量1(1,1,2)n =u r , 又OC ⊥Q 平面AOS ,OC ∴u u u r 是平面AOS 的法向量, 令2(0,1,0)n OC ==u u r u u u r ,则有121212 cos ,n n n n n n ?== =u r u u r u r u u r u r u u r . ∴二面角B AS O --O A B C S

利用空间向量求空间角考点与题型归纳

利用空间向量求空间角考点与题型归纳 一、基础知识 1.异面直线所成角 设异面直线a ,b 所成的角为θ,则cos θ=|a ·b | |a ||b | ? , 其中a ,b 分别是直线a ,b 的方向 向量. 2.直线与平面所成角 如图所示,设l 为平面α的斜线,l ∩α=A ,a 为l 的方向向量,n 为平面α的法向量, φ为l 与α所成的角,则sin φ=|cos 〈a ,n 〉|=|a ·n | |a ||n | ? . 3.二面角 (1)若AB ,CD 分别是二面角α-l -β的两个平面内与棱l 垂直的异面直线,则二面角(或其补角)的大小就是向量AB ―→与CD ―→ 的夹角,如图(1). (2)平面α与β相交于直线l ,平面α的法向量为n 1,平面β的法向量为n 2,〈n 1,n 2〉=θ,则二面角α -l -β为θ或π-θ.设二面角大小为φ,则|cos φ|=|cos θ|= |n 1·n 2| |n 1||n 2| ? ,如图(2)(3). 两异面直线所成的角为锐角或直角,而不共线的向量的夹角为(0,π),所以公式中要加绝对值. 直线与平面所成角的范围为????0,π 2,而向量之间的夹角的范围为[0,π],所以公式中要加绝对值. 利用公式与二面角的平面角时,要注意〈n 1,n 2〉与二面角大小的关系,是相等还是互

补,需要结合图形进行判断. 二、常用结论 解空间角最值问题时往往会用到最小角定理 cos θ=cos θ1cos θ2. 如图,若OA 为平面α的一条斜线,O 为斜足,OB 为OA 在平面α内的射影,OC 为平面α内的一条直线,其中θ为OA 与OC 所成的角,θ1为OA 与OB 所成的角,即线面角,θ2为OB 与OC 所成的角,那么cos θ=cos θ1cos θ2. 考点一 异面直线所成的角 [典例精析] 如图,在三棱锥P -ABC 中,P A ⊥底面ABC ,∠BAC =90°.点D ,E ,N 分别为棱P A ,PC ,BC 的中点,M 是线段AD 的中点,P A =AC =4,AB =2. (1)求证:MN ∥平面BDE ; (2)已知点H 在棱P A 上,且直线NH 与直线BE 所成角的余弦值为7 21 ,求线段AH 的长. [解] 由题意知,AB ,AC ,AP 两两垂直,故以A 为原点,分别以AB ―→,AC ―→,AP ―→ 方向为x 轴、y 轴、z 轴正方向建立如图所示的空间直角坐标系.依题意可得A (0,0,0),B (2,0,0),C (0,4,0),P (0,0,4),D (0,0,2),E (0,2,2),M (0,0,1),N (1,2,0). (1)证明:DE ―→=(0,2,0),DB ―→ =(2,0,-2). 设n =(x ,y ,z )为平面BDE 的法向量, 则????? n ·DE ―→=0,n ·DB ―→=0, 即????? 2y =0,2x -2z =0. 不妨取z =1,可得n =(1,0,1).

高中数学的空间向量知识

高中数学的空间向量知识 基本内容 空间向量作为新加入的内容,在处理空间问题中具有相当的优越性,比原来处理空间问题的方法更有灵活性。 如把立体几何中的线面关系问题及求角求距离问题转化为用向量解决,如何取向量或建立空间坐标系,找到所论证的平行垂直等关系,所求的角和距离用向量怎样来表达是问题的关键.立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。这里比较多的主要是用向量证明线线、线面垂直及计算线线角,而如何用向量证明线面平行,计算点到平面的距离、线面角及面面角的例题不多,起到一个抛砖引玉的作用。 以下用向量法求解的简单常识: 1、空间一点P位于平面MAB的充要条件是存在唯一的有序实数对x、y,使得PM=xPA+yPB(其中PM等为向量,由于图不方便做就如此代替,下同) 2、对空间任一点O和不共线的三点A,B,C,若:OP=xOA+yOB+zOC (其中x+y+z=1),则四点P、A、B、C共面. 3、利用向量证a‖b,就是分别在a,b上取向量(k∈R). 4、利用向量证在线a⊥b,就是分别在a,b上取向量. 5、利用向量求两直线a与b的夹角,就是分别在a,b上取,求:的问题. 6、利用向量求距离就是转化成求向量的模问题:. 7、利用坐标法研究线面关系或求角和距离,关键是建立正确的空间直角坐标系,正确表达已知点的坐标. 首先该图形能建坐标系 如果能建 则先要会求面的法向量 求面的法向量的方法是 1。尽量在空中找到与面垂直的向量 2。如果找不到,那么就设n=(x,y,z) 然后因为法向量垂直于面 所以n垂直于面内两相交直线

用向量法求二面角的平面角教案

第三讲:立体几何中的向量方法——利用空间向量求二面角的平面角 大家知道,立体几何是高中数学学习的一个难点,以往学生学习立体几何时,主要采取“形到形”的综合推理方法,即根据题设条件,将空间图形转化为平面图形,再由线线,线面等关系确定结果,这种方法没有一般规律可循,对人的智力形成极大的挑战,技巧性较强,致使大多数学生都感到束手无策。 高中新教材中,向量知识的引入,为学生解决立体几何问题提供了一个有效的工具。它能利用代数方法解决立体几何问题,体现了数形结合的思想。并且引入向量,对于某些立体几何问题提供通法,避免了传统立体几何中的技巧性问题,因此降低了学生学习的难度,减轻了学生学习的负担,体现了新课程理念。 为适应高中数学教材改革的需要,需要研究用向量法解决立体几何的各种问题。本文举例说明如何用向量法解决立体几何的空间角问题。以此强化向量的应用价值,激发学生学习向量的兴趣,从而达到提高学生解题能力的目的。 利用向量法求空间角,不需要繁杂的推理,只需要将几何问题转化为向量的代数运算,方便快捷。空间角主要包括线线角、线面角和二面角,下面对二面角的求法进行总结。 教学目标 1.使学生会求平面的法向量; 2.使学生学会求二面角的平面角的向量方法; 3.使学生能够应用向量方法解决一些简单的立体几何问题; 4.使学生的分析与推理能力和空间想象能力得到提高. 教学重点

求平面的法向量; 求解二面角的平面角的向量法. 教学难点 求解二面角的平面角的向量法. 教学过程 Ⅰ、复习回顾 一、回顾相关公式: 1、二面角的平面角:(范围:],0[πθ∈) 向量夹角的补角. 3、用空间向量解决立体几何问题的“三步曲”: (1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;(化为向量问题) (2)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题;(进行向量运算) (3)把向量的运算结果“翻译”成相应的几何意义。(回到图形) Ⅱ、典例分析与练习 例1、如图,ABCD 是一直角梯形,?=∠90ABC ,⊥SA 面ABCD ,1===BC AB SA ,

高二数学空间向量与立体几何测试题

高二数学 空间向量与立体几何测试题 第Ⅰ卷(选择题,共50分) 一、选择题:(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只 有一项是符合题目要求的) 1.在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异面直线,则a 、b 一定不共面;③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为p =x a +y b +z c .其中正确命题的个数为 ( ) A .0 B.1 C. 2 D. 3 2.在平行六面体ABCD -A 1B 1C 1D 1中,向量1D A 、1D C 、11C A 是 ( ) A .有相同起点的向量 B .等长向量 C .共面向量 D .不共面向量 3.若向量λμλμλ且向量和垂直向量R b a n b a m ∈+=,(,、则)0≠μ ( ) A .// B .⊥ C .也不垂直于不平行于, D .以上三种情况都可能 4.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共面,则实数λ等于 ( ) A. 627 B. 637 C. 647 D. 65 7 5.直三棱柱ABC —A 1B 1C 1中,若CA =a ,CB =b ,1CC =c , 则1A B = ( ) A.+-a b c B. -+a b c C. -++a b c D. -+-a b c 6.已知a +b +c =0,|a |=2,|b |=3,|c |=19,则向量a 与b 之间的夹角><,为( ) A .30° B .45° C .60° D .以上都不对 7.若a 、b 均为非零向量,则||||?=a b a b 是a 与b 共线的 ( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分又不必要条件 8.已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的 中线长为 ( ) A .2 B .3 C .4 D .5 9.已知则35,2,23+-=-+= ( ) A .-15 B .-5 C .-3 D .-1

向量法求空间角(高二数学,立体几何)

A B C D P Q 向量法求空间角 1.(本小题满分10分)在如图所示的多面体中,四边形ABCD 为正方形,四边形ADPQ 是直角梯形,DP AD ⊥,⊥CD 平面ADPQ ,DP AQ AB 2 1==. (1)求证:⊥PQ 平面DCQ ; (2)求平面BCQ 与平面ADPQ 所成的锐二面角的大小. 2.(满分13分)如图所示,正四棱锥P -ABCD 中,O 为底面正方形的中心,侧棱PA 与底面ABCD 所成的角的正切值为 2 6. (1)求侧面PAD 与底面ABCD 所成的二面角的大小; (2)若E 是PB 的中点,求异面直线PD 与AE 所成角的正切值; (3)问在棱AD 上是否存在一点F ,使EF ⊥侧面PBC ,若存在,试确定点F 的位置;若不存在,说明理由. B

3.(本小题只理科做,满分14分)如图,已知AB⊥平面ACD,DE//AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点. (1)求证:AF//平面BCE; (2)求证:平面BCE⊥平面CDE; (3)求平面BCE与平面ACD所成锐二面角的大小. P-中,PD⊥底面ABCD,且底面4.(本小题满分12分)如图,在四棱锥ABCD ABCD为正方形,G PD =分别为CB PC, ,的中点. = PD F ,2 E AD, , AP平面EFG; (1)求证:// (2)求平面GEF和平面DEF的夹角.

H P G F E D C B 5.如图,在直三棱柱111AB C A B C -中,平面1A BC ⊥ 侧面11A ABB 且12AA AB ==. (Ⅰ)求证:AB BC ⊥; (Ⅱ)若直线AC 与平面1A BC 所成的角为6 π,求锐二面角1A A C B --的大小. 6.如图,四边形ABCD 是正方形,EA ⊥平面ABCD ,EA PD ,2AD PD EA ==,F ,G , H 分别为PB ,EB ,PC 的中点. (1)求证:FG 平面PED ; (2)求平面FGH 与平面PBC 所成锐二面角的大小.

数学高二-选修2-1测评7 空间向量的运算

学业分层测评(七) (建议用时:45分钟) [学业达标] 一、选择题 1.(2016·广州高二检测)若a ,b 均为非零向量,则a·b =|a ||b |是a 与b 共线的 ( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分又不必要条件 【解析】 由a·b =|a ||b |cos θ=|a||b|可知cos θ=1,由此可得a 与b 共线;反过来,若a ,b 共线,则cos θ=±1,a·b =±|a ||b |.故a·b =|a ||b |是a ,b 共线的充分不必要条件. 【答案】 A 2.如图2-2-7所示,已知三棱锥O -ABC 中,M ,N 分别是OA ,BC 的中点,点G 在线段MN 上,且MG =2GN .设OG →=xOA →+yOB →+zOC → ,则x ,y ,z 的值分别为( ) 图2-2-7 A .x =13,y =13,z =1 3 B .x =13,y =13,z =1 6 C .x =13,y =16,z =1 3 D .x =16,y =13,z =1 3

【解析】 OG →=OM →+MG →=12OA →+23MN → =12OA →+23(ON →-OM →)=12OA →-23OM →+23ON → =? ????12-13OA →+23×12(OB →+OC →) =16OA →+13OB →+13OC →, ∴x =16,y =13,z =13. 【答案】 D 3.已知e 1、e 2互相垂直,|e 1|=2,|e 2|=2,a =λe 1+e 2,b =e 1-2e 2,且a 、b 互相垂直,则实数λ的值为( ) A.12 B .14 C .1 D .2 【解析】 ∵a ⊥b ,∴(λe 1+e 2)·(e 1-2e 2)=0. 又e 1⊥e 2,∴e 1·e 2=0. ∴λe 21-2e 22=0.又∵|e 1|=2,|e 2|=2, ∴4λ-8=0,∴λ=2. 【答案】 D 4.设向量a ,b 满足|a |=|b |=1,a·b =-12,则|a +2b |=( ) 【导学号:32550026】 A. 2 B . 3 C. 5 D .7 【解析】 依题意得|a +2b |2=a 2+4b 2+4a·b =5+4×? ????-12=3,则|a +2b | = 3. 【答案】 B

用空间向量解决空间中“夹角”问题

利用空间向量解决空间中的“夹角”问题 学习目标 : 1.学会求异面直线所成的角、直线与平面所成的角、二面角的向量方法; 2.能够应用向量方法解决一些简单的立体几何问题; 3.提高分析与推理能力和空间想象能力。 重点 : 利用空间向量解决空间中的“夹角” 难点 : 向量夹角与空间中的“夹角”的关系 一、复习引入 1.用空间向量解决立体几何问题的“三步曲” (1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;(化为向量问题) (2)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题;(进行向量运算) (3)把向量的运算结果“翻译”成相应的几何意义。(回到图形) 2.向量的有关知识: (1)两向量数量积的定义:><=?,cos |||| (2)两向量夹角公式:| |||,cos b a >= < (3)平面的法向量:与平面垂直的向量 二、知识讲解与典例分析 知识点1:异面直线所成的角(范围:]2 , 0(π θ∈) (1)定义:过空间任意一点o 分别作异面直线a 与b 的平行线a′与b′,那么直线a′与b′ 所成的锐角或直角,叫做异面直线a 与b 所成的角. (2)用向量法求异面直线所成角 设两异面直线a 、b 的方向向量分别为和, 问题1: 当与的夹角不大于90 的角θ与 和 的夹角的关系?问题 2:a 与b 的夹角大于90°时,,异面直线a θ与a 和b 的夹角的关系? 结论:异面直线a 、b 所成的角的余弦值为| ||||,cos |cos n m = ><=θ a

例1如图,正三棱柱111C B A ABC -的底面边长为a ,侧棱长为a 2,求1AC 和1CB 所成的角. 解法步骤:1.写出异面直线的方向向量的坐标。 2.利用空间两个向量的夹角公式求出夹角。 解:如图建立空间直角坐标系xyz A -,则 )2,,0(),0,21,23(),2,21,23(),0,0,0(11a a B a a C a a a C A -- ∴ )2,21,23(1a a a AC -=,)2,21 ,23(1a a a CB = 即21 323||||,cos 22 111111==>=<,与θ的关系? 例2、如图,正三棱柱111C B A ABC -的底面边长为a ,侧棱长为a 2,求1AC 和B B AA 11面所成角的正弦值. 分析:直线与平面所成的角步骤: 1. 求出平面的法向量 2. 求出直线的方向向量 3. 求以上两个向量的夹角,(锐角)其余角为所求角 解:如图建立空间直角坐标系xyz A -,则),0,,0(),2,0,0(1a a AA ==)2,21 ,23(1a a a AC -= 设平面B B AA 11的法向量为),,(z y x n = x y

利用空间向量求空间角和距离

利用空间向量求空间角和距离 A 级——夯基保分练 1.如图所示,在正方体ABCD -A 1B 1C 1D 1中,已知M ,N 分别是BD 和AD 的中点,则B 1M 与D 1N 所成角的余弦值为( ) A.30 30 B .3015 C. 3010 D. 1515 解析:选C 建立如图所示的空间直角坐标系.设正方体的棱长为2,则B 1(2,2,2),M (1,1,0),D 1(0,0,2),N (1,0,0),∴B 1M ―→ =(-1,-1,-2),D 1N ―→ =(1,0,-2), ∴B 1M 与D 1N 所成角的余弦值为|B 1M ―→·D 1N ―→ | |B 1M ―→|·|D 1N ―→|= |-1+4|1+1+4×1+4=30 10 . 2.如图,已知长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=1,AB =3,E 为线段AB 上一点,且AE =1 3AB ,则DC 1与平面D 1EC 所成角的 正弦值为( ) A.33535 B .277 C.33 D.24 解析:选A 如图,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则C 1(0,3,1),D 1(0,0,1),E (1,1,0),C (0,3,0), ∴DC 1―→=(0,3,1),D 1E ―→=(1,1,-1),D 1C ―→ =(0,3,-1). 设平面D 1EC 的法向量为n =(x ,y ,z ), 则????? n ·D 1E ―→=0,n · D 1C ―→=0,即????? x +y -z =0,3y -z =0,取y =1,得n =(2,1,3). ∴cos DC 1―→,n =DC 1―→·n |DC 1―→|·|n| =33535, ∴DC 1与平面D 1EC 所成的角的正弦值为335 35 .

利用向量法求空间角经典教案

利用空间向量求空间角 目标:会用向量求异面直线所成的角、直线与平面所成的角、二面角的方法; 一、复习回顾向量的有关知识: (1)两向量数量积的定义:><=?,cos ||||(2)两向量夹角公式:| |||,cos b a b a >= < 二、知识讲解与典例分析 知识点1:两直线所成的角(范围:]2 , 0(π θ∈) (1)定义:过空间任意一点o 分别作异面直线a 与b 的平行线a′与b′,那么直线a′与b′ 所成的锐角或直角,叫做异面直线a 与b 所成的角. (2)用向量法求异面直线所成角,设两异面直线a 、b 的方向向量分别为a 和b , 问题1: 当与的夹角不大于90°时,异面直线 的角θ与 和 的夹角的关系? 问题 2:与的夹角大于90°时,,异面直线a 、θ与a 和b 的夹角的关系? 结论:异面直线a 、b 所成的角的余弦值为| ||||,cos |cos n m = ><=θ 例1如图,正三棱柱111C B A ABC -的底面边长为a ,侧棱长为a 2,求1AC 和1CB 所成的角. 解法步骤:1.写出异面直线的方向向量的坐标。 2.利用空间两个向量的夹角公式求出夹角。 解:如图建立空间直角坐标系xyz A -,则)2,,0(),0,2 1 ,23(),2,21,23(),0,0,0(11a a B a a C a a a C A -- ∴ )2,21,23(1a a a AC - =,)2,2 1 ,23(1a a a CB = 即21323,cos 22 111111==>= <11,cos BE DF 与>

高中数学空间向量与立体几何测试题及答案

高中 数学选修(2-1)空间向量与立体几何测试题 一、选择题 1.若把空间平行于同一平面且长度相等的所有非零向量的始点放置在同一点,则这些向量的终点构成的图形是( ) A.一个圆 B.一个点 C.半圆 D.平行四边形 答案:A 2.在长方体1111ABCD A B C D -中,下列关于1AC u u u u r 的表达中错误的一个是( ) A.11111AA A B A D ++u u u r u u u u r u u u u r B.111AB DD D C ++u u u r u u u u r u u u u u r C.111AD CC D C ++u u u r u u u u r u u u u u r D.11111()2 AB CD AC ++u u u u r u u u u r u u u u r 答案:B 3.若,,a b c 为任意向量,∈R m ,下列等式不一定成立的是( ) A.()()a b c a b c ++=++ B.()a b c a c b c +=+··· C.()a b a b +=+m m m D.()()a b c a b c =···· 答案:D 4.若三点,,A B C 共线,P 为空间任意一点,且PA PB PC αβ+=u u u r u u u r u u u r ,则αβ-的值为( ) A.1 B.1- C. 1 2 D.2- 答案:B 5.设(43)(32)a b ==,,,,,x z ,且∥a b ,则xz 等于( ) A.4- B.9 C.9- D. 649 答案:B 6.已知非零向量12e e ,不共线,如果1222122833e e e e e e =+=+=-u u u r u u u r u u u r , ,AB AC AD ,则四点,,,A B C D ( ) A.一定共圆 B.恰是空间四边形的四个顶点心 C.一定共面 D.肯定不共面 答案:C

第8讲立体几何中的向量方法求空间角 (1)

第8讲立体几何中的向量方法(二)——求空间角 一、选择题 1.(2016·长沙模拟)在正方体A1B1C1D1-ABCD中,AC与B1D所成的角的大小为() A.π 6 B. π 4 C. π 3 D. π 2 解析建立如图所示的空间直角坐标系,设正方体边长为1,则A(0,0,0),C(1,1,0),B1(1,0,1),D(0,1,0). ∴AC→=(1,1,0),B1D →=(-1,1,-1), ∵AC→·B1D →=1×(-1)+1×1+0×(-1)=0, ∴AC→⊥B1D →, ∴AC与B1D所成的角为π2. 答案 D 2.(2017·郑州调研)在正方体ABCD-A1B1C1D1中,BB1与平面ACD1所成角的正弦值为() A. 3 2 B. 3 3 C. 3 5 D. 2 5 解析设正方体的棱长为1,以D为坐标原点,DA,DC,DD1 所在直线分别为x轴、y轴、z轴,建立空间直角坐标系,如 图所示.则B(1,1,0),B1(1,1,1),A(1,0,0),C(0,1, 0),D1(0,0,1), 所以BB1→=(0,0,1),AC→=(-1,1,0),AD1 →=(-1,0,1). 令平面ACD1的法向量为n=(x,y,z),则n·AC→=-x+y=0,n·AD1 →=-x+z =0,令x=1,可得n=(1,1,1),

所以sin θ=|cos 〈n ,BB 1→ 〉|=13×1=3 3 . 答案 B 3.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( ) A.12 B.23 C.33 D.22 解析 以A 为原点建立如图所示的空间直角坐标系 A -xyz ,设棱长为1, 则A 1(0,0,1), E ? ????1,0,12,D (0,1,0), ∴A 1D →=(0,1,-1), A 1E →=? ????1,0,-12, 设平面A 1ED 的一个法向量为n 1=(1,y ,z ),所以有???A 1D →·n 1=0,A 1E →·n 1=0,即???y -z =0,1-12z =0,解得????? y =2,z =2. ∴n 1=(1,2,2). ∵平面ABCD 的一个法向量为n 2=(0,0,1), ∴ cos 〈n 1,n 2〉=23×1=23. 即所成的锐二面角的余弦值为2 3. 答案 B 4.(2017·西安调研)已知六面体ABC -A 1B 1C 1是各棱长均等于a 的正三棱柱,D 是侧棱CC 1的中点,则直线CC 1与平面AB 1D 所成

第43讲 利用空间向量求空间角和距离(讲)(解析版)

第43讲 利用空间向量求空间角和距离 思维导图 知识梳理 1.异面直线所成角 设异面直线a ,b 所成的角为θ,则cos θ=|a ·b | |a ||b |, 其中a ,b 分别是直线a ,b 的方向向量. 2.直线与平面所成角 如图所示,设l 为平面α的斜线,l ∩α=A ,a 为l 的方向向量,n 为平面α的法向量,φ为l 与α所成的角,则sin φ=|cos 〈a ,n 〉|=|a ·n | |a ||n | 3.二面角 (1)若AB ,CD 分别是二面角α-l -β的两个平面内与棱l 垂直的异面直线,则二面角(或其补角)的大小就是向量AB ―→与CD ―→ 的夹角,如图(1). (2)平面α与β相交于直线l ,平面α的法向量为n 1,平面β的法向量为n 2,〈n 1,n 2〉=θ,则二面角α -l -β为θ或π-θ.设二面角大小为φ,则|cos φ|=|cos θ|= |n 1·n 2| |n 1||n 2| ,如图(2)(3). 4.利用空间向量求距离 (1)两点间的距离

设点A (x 1,y 1,z 1),点B (x 2,y 2,z 2),则|AB |=|AB ―→ |=(x 1-x 2)2+(y 1-y 2)2+(z 1-z 2)2. (2)点到平面的距离 如图所示,已知AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离为|BO ―→|=|AB ―→ ·n | |n | . 题型归纳 题型1 异面直线所成的角 【例1-1】(2020?济南模拟)已知直角梯形ABCD 中,//AD BC ,AB BC ⊥,1 2 AB AD BC == ,将直角梯形ABCD (及其内部)以AB 所在直线为轴顺时针旋转90?,形成如图所示的几何体,其中M 为CE 的中点. (1)求证:BM DF ⊥; (2)求异面直线BM 与EF 所成角的大小. 【分析】(1)建立空间坐标系,得出BM ,DF 的坐标,根据向量的数量积为0得出直线垂直; (2)计算BM 和EF 的夹角,从而得出异面直线所成角的大小. 【解答】(1)证明: AB BC ⊥,AB BE ⊥,BC BE B =, AB ∴⊥平面BCE , 以B 为原点,以BE ,BC ,BA 为坐标轴建立空间坐标系B xyz -,如图所示: 设1AB AD ==,则(0D ,1,1),(1F ,0,1),(0B ,0,0),M 0), ∴(2BM =,0),(1DF =,1-,0),

高中数学(理)空间向量知识点归纳总结及综合练习

空间向量知识点归纳总结 知识要点。 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)空间的两个向量可用同一平面内的两条有向线段来表示。 2. 空间向量的运算。 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量, a 平行于 b ,记作b a //。 》 (2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a b a b 共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使 p xa yb =+。 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组 ,,x y z ,使p xa yb zc =++。 若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使 OP xOA yOB zOC =++。 6. 空间向量的直角坐标系: ~ (1)空间直角坐标系中的坐标: (2)空间向量的直角坐标运算律: ①若123(,,)a a a a =,123(,,)b b b b =,则112233(,,)a b a b a b a b +=+++, 112233(,,)a b a b a b a b -=---,123(,,)()a a a a R λλλλλ=∈, 112233a b a b a b a b ?=++, 112233//,,()a b a b a b a b R λλλλ?===∈, 1122330a b a b a b a b ⊥?++=。 ②若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---。 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 》

《用向量法求直线与平面所成的角》教案

第二讲:立体几何中的向量方法——利用空间向量求直线与平面所成的 角大家知道,立体几何是高中数学学习的一个难点,以往学生学习立体几何时,主要采取“形到形”的综合 推理方法,即根据题设条件,将空间图形转化为平面图形,再由线线,线面等关系确定结果,这种方法没有一般 规律可循,对人的智力形成极大的挑战,技巧性较强,致使大多数学生都感到束手无策。 高中新教材中,向量知识的引入,为学生解决立体几何问题提供了一个有效的工具。它能利用代数方法解决立体几何问题,体现了数形结合的思想。并且引入向量,对于某些立体几何问题提供通法,避免了传统立体几何中的技巧性问题,因此降低了学生学习的难度,减轻了学生学习的负担,体现了新课程理念。 为适应高中数学教材改革的需要,需要研究用向量法解决立体几何的各种问题。本文举例说明如何用向量法解决立体几何的空间角问题。以此强化向量的应用价值,激发学生学习向量的兴趣,从而达到提高学生解题能力的目的。 利用向量法求空间角,不需要繁杂的推理,只需要将几何问题转化为向量的代数运算,方便快捷。 空间角主要包括线线角、线面角和二面角,下面对线面角的求法进行总结。 教学目标 1. 使学生学会求平面的法向量及直线与平面所成的角的向量方法; 2. 使学生能够应用向量方法解决一些简单的立体几何问题; 3. 使学生的分析与推理能力和空间想象能力得到提高. 教学重点 求平面的法向量; 求解直线与平面所成的角的向量法. 教学难点 求解直线与平面所成的角的向量法. 教学过程 I、复习回顾 一、回顾有关知识: 1

1、直线与平面所成的角:(范围:二? [0,—]) 2 思考:设平面:的法向量为n,则::n,BA .与二的关系? JT ■■二日=----- < n, BA > 2 (图 ) 2

高中数学空间向量与立体几何典型例题

空间向量与立体几何典型例题 一、选择题: 1.(2008全国Ⅰ卷理)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( C ) A . 13 B C D .23 1.解:C .由题意知三棱锥1A ABC -为正四面体,设棱长为a ,则1AB = ,棱柱的高 1 3AO a ===(即点1B 到底面ABC 的距离),故1AB 与底面ABC 所成角的正弦值为113 AO AB =. 另解:设1,,AB AC AA u u u r u u u r u u u r 为空间向量的一组基底,1,,AB AC AA u u u r u u u r u u u r 的两两间的夹角为0 60 长度均为a ,平面ABC 的法向量为111133 OA AA AB AC =--u u u r u u u r u u u r u u u r ,11AB AB AA =+u u u r u u u r u u u r 211112,,33 OA AB a OA AB ?===u u u r u u u r u u u r u u u r 则1AB 与底面ABC 所成角的正弦值为11 1 13OA AB AO AB ?=u u u u r u u u r u u u r u u u r . 二、填空题: 1.(2008全国Ⅰ卷理)等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角 C AB D -- M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 6 1 . 1.答案: 1 6 .设2AB =,作CO ABDE ⊥面, OH AB ⊥,则CH AB ⊥,CHO ∠为二面角C AB D -- cos 1CH OH CH CHO ==?∠=,结合等边三角形ABC 与正方形ABDE 可知此四棱锥为正四棱锥,则AN EM ==11(),22AN AC AB EM AC AE =+=-u u u r u u u r u u u r u u u u r u u u r u u u r , 11()()22AN EM AB AC AC AE ?=+?-=u u u r u u u u r u u u r u u u r u u u r 12 故EM AN ,所成角的余弦值1 6 AN EM AN EM ?=u u u r u u u u r u u u r u u u u r 另解:以O 为坐标原点,建立如图所示的直角坐标系, 则点(1,1,0),(1,1,0),(1,1,0),A B E C ----,

高二数学空间向量及其运算

高二数学空间向量及其运算 课题:http:///空间向量及其运算(一) 教学目的: 1.理解空间向量的概念,掌握空间向量的加法、减法和数乘运算 2.用空间向量的运算意义和运算律解决立几问题 教学重点:空间向量的加法、减法和数乘运算及运算律 教学难点:用向量解决立几问题 授课类型:新授课 课时安排:1课时 教具:多媒体、实物投影仪 内容分析: 本节,空间向量及其运算共有4个知识点:空间向量及其线性运算、共线向量与共面向量、空间向量的分解定理、两个向量的数量积这一节是全章的重点,有了第一大节空间平行概念的基础,我们就很容易把平面向量及其运算推广到空间向量由于本教材学习空间向量的主要目的是,解决一些立体几何问题,所以例习题的编排也主要是立体几何问题 本小节首先把平面向量及其线性运算推广到空间向量学生已有了空间的线、面平行和面、面平行概念,这种推广对学生学习已无困难但仍要一步步地进行,学生要时刻牢记,现在

研究的范围已由平面扩大到空间一个向量已是空间的一个平移,两个不平行向量确定的平面已不是一个平面,而是互相 平行的平行平面集,要让学生在空间上一步步地验证运算法 则和运算律这样做,一方面复习了平面向量、学习了空间向量,另一方面可加深学生的空间观念 当我们把平面向量推广到空间向量后,很自然地要认识空间 向量的两个最基本的子空间:共线向量和共面向量把平行向 量基本定理和平面向量基本定理推广到空间然后由这两个定 理推出空间直线和平面的向量表达式有了这两个表达式,我 们就可以很方便地使用向量工具解决空间的共线和共面问题 在学习共线和共面向量定理后,我们学习空间最重要的基础 定理:空间向量基本定理,这个定理是空间几何研究数量化 的基础有了这个定理空间结构变得简单明了,整个空间被3 个不共面的基向量所确定空间-个点或一个向量和实数组(x,y,z)建立起一一对应关系本节的最后一个知识点是,两个 向量的数量积由平面两个向量的数量积推广到空间最重要的 是让学生建立向量在轴上的投影概念为了减轻教学难度,内 积的几个运算性质教材中没有证明学生基础好的学校可在教 师的指导下,由学生自己证明 教学过程: 一、复习引入: 1向量的概念

利用空间向量求空间角检测题

利用空间向量求空间角检测题 (试卷满分100分,考试时间90分钟) 一、选择题(每小题5分,共40分) 1.已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角为( ) A .45° B.135° C .45°或135° D .90° 解析:选C ∵cos m ,n =m ·n |m ||n |=12=22,∴m ,n =45°. ∴二面角为45°或135°.故选C. 2.已知长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=1,AB =3,E 为线段AB 上一点,且AE =1 3AB ,则DC 1与平面D 1EC 所成角的正弦值为 ( ) A.33535 B.277 C.3 3 D.24 解析:选A 如图,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则C 1(0,3,1),D 1(0,0,1),E (1,1,0),C (0,3,0), ∴DC 1―→=(0,3,1),D 1E ―→=(1,1,-1),D 1C ―→ =(0,3,-1). 设平面D 1EC 的法向量为n =(x ,y ,z ), 则????? n ·D 1E ―→=0,n · D 1C ―→=0,即????? x +y -z =0,3y -z =0,取y =1,得n =(2,1,3). ∴cos DC 1―→ ,n =DC 1―→·n | DC 1―→ |·|n |=33535, ∴DC 1与平面D 1EC 所成的角的正弦值为335 35 . 3.把边长为2的正方形ABCD 沿对角线BD 折起,使得平面ABD ⊥平面CBD ,则异面直线AD ,BC 所成的角为( ) A .120° B.30° C .90° D .60° 解析:选D 建立如图所示的空间直角坐标系,则A (2,0,0),B (0,2,0),C (0,0,

高二数学选修2-1空间向量试卷与答案

高二数学(选修2-1 )空间向量试题 宝鸡铁一中司婷 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的 代号填在题后的括号内(每小题 5 分,共 60 分). 1.在正三棱柱ABC—A1B1C1中,若AB=2BB1,则 AB1与 C1B 所成的角的大小为()A. 60°B. 90°C. 105°D.75° 2.如图,ABCD—A1B1C1D1是正方体,B1E1=D1F1=A 1 B 1 ,则 BE1 4 与 DF1所成角的余弦值是() A.15 B. 1 172 图 8 D.3 C. 2 17 3.如图, 1 1 1—是直三棱柱,∠=90°,点1、 1 分别是 1 1、 A B C ABC BCA D F A B A1C1的中点,若 BC=CA=CC1,则 BD1与 AF1所成角的余弦值是() A.C. 301 10 B. 2 30图 15 15 D. 10 4.正四棱锥S ABCD 的高 SO 2 ,底边长AB 2 ,则异面直线BD 和 SC 之间的距离() .15.5C. 2 5 A5B55 5.已知ABC A1 B1 C1是各条棱长均等于 a 的正三棱柱, D 是侧棱 CC1的中点.点 C1到平面 AB1 D 的距离() A. 2 a B. 2 a 48A 1D. 5 C1 10B1 D A C B图

C.3 2 a D. 2 a 42 6.在棱长为 1 的正方体ABCD A1 B1C1D1中,则平面 AB1C 与平面 A1 C1 D 间的距离() A.3B.3C.2 3 D.3 6332 7.在三棱锥-中,⊥,==1,点、 D 分别是、的中点,⊥底 P ABC AB BC AB BC2PA O AC PC OP 面 ABC,则直线 OD与平面 PBC所成角的正弦值() A.21B.8 3 C210 D .210 636030 8.在直三棱柱ABC A1B1C1中,底面是等腰直角三角形,ACB 90,侧棱 AA1 2 ,D,E 分别是CC1与A1B的中点,点 E 在平面AB D 上的射影是ABD 的重心G.则A1B 与平面 AB D所成角的余弦值() A. 2 B. 7 C. 3 D. 3 3327 9.正三棱柱ABC A1 B1C1的底面边长为3,侧棱AA13 3 ,D是C B延长线上一点,2 且 BD BC ,则二面角B1AD B 的大小() A. 3B. 6 C. 5 D. 2 63 10.正四棱柱ABCD A1B1C1D1中,底面边长为 2 2 ,侧棱长为4, E,F 分别为棱AB,CD的中点,EF BD G .则三棱锥B1EFD1的体积V() A.6B.16 3C.16 D.16 633 11.有以下命题: ①如果向量 a, b 与任何向量不能构成空间向量的一组基底,那么a, b 的关系是不共线; ② O , A, B,C 为空间四点,且向量OA, OB, OC不构成空间的一个基底,则点 O, A, B,C 一定共面; ③已知向量 a, b, c 是空间的一个基底,则向量 a b, a b, c 也是空间的一个基底。其中

相关文档
相关文档 最新文档