文档库 最新最全的文档下载
当前位置:文档库 › 李凡长版 组合数学课后习题答案 习题1

李凡长版 组合数学课后习题答案 习题1

李凡长版 组合数学课后习题答案 习题1
李凡长版 组合数学课后习题答案 习题1

1

第一章 排列组合

1、 在小于2000的数中,有多少个正整数含有数字2?

解:千位数为1或0,百位数为2的正整数个数为:2*1*10*10;

千位数为1或0,百位数不为2,十位数为2的正整数个数为:2*9*1*10; 千位数为1或0,百位数和十位数皆不为2,个位数为2的正整数个数为:2*9*9*1;

故满足题意的整数个数为:2*1*10*10+2*9*1*10+2*9*9*1=542。

2、 在所有7位01串中,同时含有“101”串和“11”串的有多少个? 解:(1) 串中有6个1:1个0有5个位置可以插入:5种。 (2) 串中有5个1,除去0111110,个数为()6

2

-1=14。

(或:

()()41

42

*2+=14)

(3)串中有4个1:分两种情况:①3个0单独插入,出去1010101,共()53

-1

种;②其中两个0一组,另外一个单独,则有

()()2*)2,2(41

52

-P 种。

(4)串中有3个1:串只能为**1101**或**1011**,故共4*2种。 所以满足条件的串共48个。

3、一学生在搜索2004年1月份某领域的论文时,共找到中文的10篇,英文的12篇,德文的5篇,法文的6篇,且所有的都不相同。如果他只需要2篇,但必须是不同语言的,那么他共有多少种选择? 解:10*12+10*5+10*6+12*5+12*6+5*6

4、设由1,2,3,4,5,6组成的各位数字互异的4位偶数共有n 个,其和为m 。求n 和m 。

解:由1,2,3,4,5,6组成的各位数字互异,且个位数字为2,4,6的偶数均有P(5,3)=60个,于是:n = 60*3 = 180。

以a 1,a 2,a 3,a 4分别表示这180个偶数的个位、十位、百位、千位数字之和,则

m = a 1+10a 2+100a 3+1000a 4。

因为个位数字为2,4,6的偶数各有60个,故 a 1 = (2+4+6)*60=720。 因为千(百,十)位数字为1,3,5的偶数各有3*P(4,2) = 36个,为2,4,6的偶数各有2*P(4,2) = 24个,故

a 2 = a 3 = a 4 = (1+3+5)*36 + (2+4+6)*24 = 612。

因此, m = 720 + 612*(10 + 100 + 1000) = 680040。

5、 从{1,2,…,7}中选出不同的5个数字组成的5位数中,1与2不相邻的数

字有多少个? 解:1与2相邻:())4,4(253P ??。故有1和 2 但它们不相邻的方案数:

()())4,4(2)5,5(53

5

3

P P ??-?

只有1或2:())5,5(254P ?? 没有1和2:P(5,5)

2

故总方案数:()())4,4(2)5,5(5353P P ??-?+())5,5(25

4P ??+ P(5,5)

6、 安排5个人去3个学校参观,每个学校至少一人,共有多少种安排方案? 解:方法一:有两种方案:①有两个学校只要一个人去,剩下的那个去3人;②有两个学校去2人,剩下的去1人。故方案数为:(()()()()2/2/32

52

41

5

1

+)*P(3,3)

=150。 方法二:

()()()()()()21

32

31

52

31

53

+=150。

7、 现有100件产品,其中有两件是次品. 如果从中任意抽出5件,抽出的产品

中至多有一件次品的概率是多少? 解:无次品:()985;

有一件次品:()984()21

因此,概率为(()985+()984()21)/

()100

5

8、 有七种小球,每个小球内有1~7个星星。一次活动中,主办方随机发放礼

品盒,每个盒里放两个这样的小球,那么共有多少种这样的礼品盒? 解:方法一、

(

)281272

=-+

方法二、(7×7-7)/2+7=28

方法三、一个球是一星球,另一个球可以是一~七星球,故有7种; 一个球是二星球,另一个球可以是二~七星球,故有6种;

…………

一个球是七星球,另一个球可以是七星球,故有1种。 因此,共7+6+…+1=28种。

9、 服务器A 接到发往服务器B 、C 、D 、E 、F 的信包各3个,但它一次只能发出一个信包。问共有多少种发送方式?如果发往服务器B 的信包两两不能相邻发出呢? 解:(1){3?B,3?C,3?D,3?E,3?F}的全排列

(2)其余4个服务器全排列,在插入B 的三个:???

?

??+++!3!3!3!3)!3333(3

10、 有m 个省,每省有n 个代表,若从这mn 个代表中选出k (k ≤m )个组

成常任委员会,要求委员会中的人来自不同的省,一共有多少种不同的选法?

解:()m k ?n

k

11、 7对夫妇围一圆桌而坐,每对夫妇都不相邻的坐法有多少种? 解:7个夫人先坐:7!/7

第一个丈夫不坐在他夫人旁边,则有5个地方可以坐;

第二个丈夫由于可以坐在第一个丈夫旁边,故有6个地方可以坐;

3

……………………

第7个丈夫有11分地方可以坐。

因此:5*6*7*8*9*10*11*7!/7=1197504000。 12、 设S = {n 1·a 1, n 2·a 2,…,n k ·a k },其中n 1 = 1,n 2 + n 3 +…+ n k = n ,证明S 的圆

排列的个数等于:

!

!!!

k n n n n ???32

证明:S 的全排列为:

!

!!)!

1(21k n n n n +

因为要排成(n+1)圆,故圆排列数为

!!!)!1(21k n n n n +/(n+1)= !

!!

2k n n n

13、 有8个大小相同的棋子(5个红的3个蓝的),放在12×12的棋盘上,

每行、每列都只能放一个,问有多少种放法. 解:

()())3,7()5,12(73

125

P P

先放红的。选出5行出来

()125

,列可任选为P(12,6)。

再先放蓝的。选出3行出来()73

,列可任选为P(7,3)。

14、

设1≤r ≤n ,考虑集合{1,2,…,n}的所有r 元子集及每个子集中的最小数,

证明这些最小数的算数平均数为 1

1

++r n .

证明:r 元子集共()n r 个,于是共有()n

r 个最小数。下面我们求出这些最小数之和。

如果r 元子集中的最小数为k ,那么除k 外的r-1个数只能从{k+1,k+2,…,n}

中取,有()k n r --1种取法,即以k 为最小数的r 子集有()k

n r --1个,因此这些最小数

之和为

()k

n r r n k k --+-=∑1

1

1

。于是平均数为()()k n r r n k n r

k --+-=∑1

11

1

由()()n m n n m -=和()()()1

1+-=+n m n m n m 有 ()(

)(

)()∑∑∑-=+++-+--=--+-==+=+-r

n k n r k n r

k n r

r

n k k

n r r n k r r r k n 1

11

111

1

11

)1(

()()n r

r n k k n r n n )1()

1(1

1

1

+=+∑+-=--

上面两式相减得:

()()()11

1

1

1

)1(+++-=---+=∑n r n r

r n k k n r r n k

4 因此()()k n r r n k n

r

k --+-=∑1

1

1

1

=11

++r n 。 15、

用二项式定理展开(4x - 3y)8.

解:()∑=--8

88)

3()4(r r

r r y x 16、

(3y – 2z)20的展开式中,y 5z 15的系数是什么?

解:()155205)2(3-

17、 证明:

()()()()()()???+++=???+++n n n n n n

5

3

1

4

2

证明:该等式的组合意义是说,n 元集S 的偶子集数与奇子集数相等。 现在我们任取S 中的一个元x 。对S 的任何一个偶子集A ?S ,如果x ∈A ,则令B =A-{x};否则,令B =A ∪{x}。B 显然是S 的奇子集。不难证明这是所有偶子集与所有奇子集之间的一一对应。所以,S 的偶子集数与奇子集数相等。 18、

证明等式∑=-+=?n

0k 11)!(n k!k 并讨论其组合意义.

证明:(n+1)!= n*n!+n!

n! = (n-1)*(n-1)!+(n-1)! ……………… 2! = 1*1!+1!

以上各式相加,整理得:(n+1)! = n+n!+(n-1)*(n-1)!+…+2*2!+1*1!+1 故

∑=-+=?n

k 11)!(n k!k 。

组合意义:将(n+1)个不同物体a 1,a 2,…,a n+1放入(n+1)个不同的盒子A 1,A 2,…,A n+1内的方法如下:

(a 1不在A 1内)+(a 1在A 1内但a 2不在A 2内)+(a 1,a 2分别在A 1,A 2内但a 3不在A 3内)+……+(a 1,a 2,…, a i 分别在A 1,A 2,…, A i 内但a i+1不在A i+1内)+……+(a 1,a 2,…, a n+1分别在A 1,A 2,…, A n+1内) 即: ∑=+?=+n

0k 1k!k 1)!(n

故 ∑=-+=?n

k 11)!(n k!k

19、

证明:()()!

!!)!

(k n m k n m n

m m k n m k

++=+++

证明:()()!

!!)!

(!!)!()!(!)!(k n m k n m n m n m n m k k n m n

m m k n m k

++=+?+++=+++

5

20、

证明:()()

??

?>==∑=m

n 0,m

n 1(-1)k m

n

m

k n k

k

-n 若,若. 证明:若n=m :()()()()n

m n n n -n k m n

m

k n k k -n (-1)

(-1)=∑==1。 若n>m :我们知道,(1+x) n

=

()k

n

k n k x

∑=

对该式两边求m 阶导数:()m

k n

k n k

m

n x

m k k x m n n -=--=

+-∑)!(!)1()!(!0

乘以!

2m x k

n m -+:()()()m

k k m

n

k n k

m

n n m k

n m x

x x -=--+∑=

+0

2)

1(

令x = -1:0 = ()()k m

n

m

k n

k

k -n (-1)∑=

21、

证明下列等式:

(1)()()()∑

=-=m

k n

m

m n k

k n m

-n 2

证明:()()()()n m

m k

n

k k n m -n )!

()!(!!

)!(!)!()!(!)!(=

--=----=

-k m m n k n k n k k m m n n k n

因此,()()()∑=-=m

k n

m m n k k n m -n 2

(2)()()(

)1r n m

i r i

m

i i

n i

m +++=--=∑

证明:利用路径问题解决。

左边第i 项相当于从点c (-r-1,0)到点(-1,i),再经点(0,i),最后到达b (n-m,m)的所有路径数。而右边为从c 到b 的所有路径数。因此得证。

22、 证明:()()()()()2n

1n 2n n 12n 1n 12n 1n 2n n 1n 1--+---=-=+ 证明:

()1

1

!!)!2(1n 12n n

+?

=+n n n n ()())

1(!!)!2()1()!1(!2

2)!2()!

1(!)!1()!2(!

)!1()!12()!2()!1()!12()!2()!1()!12(!)!1()!12(1

2n 1

n 12n 1

n +=

+-?=

+------+-=

-+----=--+--n n n n n n n n n n n n n n n n n n n n n n n n n

6

()())

1(!!)!

2()!1()!1(!!!!)!2()!1()!1()!2()!1()!1()!2(!!)!2(2n 1

n 2n

n

+=+--+-=+--=--n n n n n n n n n n n n n n n n n n n n

因此 ()()()()()2n 1

n 2n n

12n 1

n 12n 1

n 2n n

1

n 1--+---=-=+

23、

试证明:

(1)()∑=-+=n

k 2

n n k

2

1)2

n(n k

证明:由二项式定理知:()

k n

k n k x ∑= = (1+x) n

等式两边对x 求2次导数得:()

k n

k n k 2)(x k k ∑=- = n(n-1) (1+x) n-2

令x=1,则:()∑=-n

k n k 2)(k k = n(n-1) 2

n-2 整理得:()()()∑

=-=m

k n

m

m n k

k

n m

-n 2

(2)()()()n k

n 1

k n k

k 1)(k n

++=+

证明:()k)!

(n k!n!

n n n k -?

=

()()k)!

(n k!n!

n 1)!

k (n 1)!k)(k k(n k

k n 1)!

k (n 1)!k)(k (n n!

1)!k (n 1)!(k k n!k)!

(n k!n!

k 1)!-k -(n 1)!(k n!1)(k k 1)(k n k

n

1

k -?

=----+-=

----+

---?=

-?

+++=+++

得证。 24、

证明:()

=+++--=

++n

0k 2n n k

2)

1)(n (n 3

n 22)

1)(k (k 1

. 证明:由二项式定理知:()

k n

k n k x ∑= = (1+x) n

等式两边对x 积分得:()1n

0k 1

n k

)1(1)

(n 1111)

(k 1

+=+++=++

+∑

n k x n x

7

再次积分:

()∑

=+++++=

+++++++n

0k 22

n k

2)

1)(n (n )1(2)1)(n (n 1

12)

1)(k (k 1

n k x n x x

令x =1。整理,得证。 25、 展开(a+3b-7c-d)5.

解:()

43214321)()7()3(n 5

0k 5n n n n n n n d c b a --∑=+++(n 1+n 2+n 3+n 4 = 5)。 26、

(4x + 3y – 2z)20的展开式中,x 5y 7z 8的系数是什么?x 5y 15的呢?

解:x 5y 7z 8的系数:

87

5)2(34!

8!7!5!20-??? x 5y 15的系数:15

534!

15!5!20??

27、 求(3+x+x 2+2x 3)6的展开式中x 5的系数.

解:

53223324213!

5!1!

6312!3!2!1!6311!2!3!1!6311!3!1!2!6312!4!1!1!6??+???+???+???+??? 28、 证明:整数n 的m 分拆数等于整数n-

()m

2

的m 分拆数.

证明:设n=a 1+ a 2+…+a m 是n 的一个m 项分拆,并假定a 1≥a 2≥…≥a m ≥1,则

(a 1-1)+( a 2-1)+…+( a m -1)=n-m

是n-m 的一个项数不超过m 的拆分。

反之,设a 1+ a 2+…+a r =n-m(r ≤m)是n-m 的一个分拆,则

r m r r a a a -+???+++++???++++111)1()1()1(21 = ((n-m)+r)+(m-r)=n 是n 的一个m 项拆分。于是这两种拆分一一对应,故其拆分数相等。 得证。

29、 设将N 无序分拆成正整数之和且使得这些正整数都小于等于m 的方法数

为B ’(N,m). 证明:B ’(N,m) = B ’(N,m-1) + B ’(N-m,m).

证明:B ’(N,m)分为两类:一类是m 不是其中一个,则为B ’(N,m-1);一类是m 是其中一个,即B ’(N-m,m)。故B ’(N,m) = B ’(N,m-1) + B ’(N-m,m).

30、 证明:周长为2n ,边长为整数的三角形的个数等于数n 的3分拆数. 证明:设n 的一个拆分n=x+y+z ,则

2(x+y+z)=(x+y)+(x+z)+(y+z)=2n

其中 (x+y)+(x+z)=2x+(y+z)>y+z

同理 (y+z)+(x+z)>(x+y),(x+y)+(y+z)>(x+z)

因此(x+y),(x+z),(y+z)可以组成一个三角形,且周长为2n 。

反之,设一个周长为2n 的三角形,其三条边长a ,b ,c 是整数,则

n=

2

c

b a ++ 设x=n-a ,y=n-b ,z=n-

c 。显然x ,y ,z 都是正整数,而

x+y+z=n-a+n-b+n-c=3n-(a+b+c)=n

即构成n 的一个拆分。 得证.

8

31、 n 个人出去野炊,其中r 个人围一圈,另外n-r 个人围一圈,问共有多少

种不同的方案? 解:()r

n r n r r n r --?

?

)!

(! 32、 把n 个不同颜色的小球放入r 个不同形状的盒子,恰好有1个空盒的放

法有多少种?恰好有m (m

33、 一凸十边形内任意三条对角线不共点(即不相交于同一点),问这些对角

线被它们的交点分成多少条线段?

解:该10边形的对角线条数为:()3510102=-,交点数为()21010

4=。

设第i 条对角线上交点数为ni ,则线段有ni+1条;即总数为:

()35

135

135

1

+=

+∑∑==i i

i i

n

n

每个交点由2条对角线相交而成,因而∑=35

1

i i

n =2*210=420

故总线段数为420+35=455。

34、 一次小型聚会中,主人要把4块相同的蛋糕、6杯不同的饮料和5盘不

同的水果分给5个客人,其余各项可随便使用。问任一客人接到3份不同食物的概率是多少?

解:先把4块相同的蛋糕分给5个人:()701

544

=-+; 再分6杯不同的饮料:56=15625; 再分5盘不同的水果:55=3125。

而一位客人接到3种物品的情况有:1*6*5=30种。因此所求概率为:

()

3125

*15625*704*4**304

56

3*100。

35、

(x 1 + x 2 +…+ x m )n 的展开式有多少项?

解:,!

!!!)(21212121m n

m n n m n m x x x n n n n x x x ??????=+???++∑

其中n i ≥0,且

n 1+n 2+…+n m =n (*)

则原题即相当于求方程(*)的非负整数解的个数。即为:()1

-+n m n

。 36、 10个人进行排名,其中甲必须在乙的前面,丙必须在丁的后面,问共有

多少种排名方案?

解:先排好甲、乙。则可把除丙、丁外的6人插入,方案数为36。

那么现在有9个位置可以插入丁;然后再把丙放在它后面的位置,方案数为:1+2+…+9=45。

9

故总方案数为45*36。

37、 10套试验设备由15位学生使用,其中第一与第二、第三套使用人数相

同,与第四、第五套不同。问有多少种分配方案? 提示:分情况考虑。

(1)第一、二、三套没有学生使用: 715-615()21

+5

15

(2)第一、二、三套各由一位学生使用: P(15,3)*712-P(15,4)*611

()21

+P(15,5)*5

10

(3) 第一、二、三套各由两位学生使用:

()()()42

62

156

*79

-()()()()()2174262821586*+()()()()()5

42

628210215105*;

(4) 第一、二、三套各由三位学生使用:

()()()63

93

159

*76

-()()()()()213639312315126*+()()()()0

63

931231535*;

(5) 第一、二、三套各由四位学生使用:

()()()84

144

1512

*73

(6) 第一、二、三套各由五位学生使用:;

()()()55

105

155

综合以上六种情况和得分配方案数。

吉林大学离散数学课后习题答案

第二章命题逻辑 §2.2 主要解题方法 2.2.1 证明命题公式恒真或恒假 主要有如下方法: 方法一.真值表方法。即列出公式的真值表,若表中对应公式所在列的每一取值全为1,这说明该公式在它的所有解释下都是真,因此是恒真的;若表中对应公式所在列的每

一取值全为0,这说明该公式在它的所有解释下都为假,因此是恒假的。 真值表法比较烦琐,但只要认真仔细,不会出错。 例2.2.1 说明G= (P∧Q→R)∧(P→Q)→(P→R)是恒真、恒假还是可满足。 解:该公式的真值表如下: 表2.2.1 由于表2.2.1中对应公式G所在列的每一取值全为1,故

G恒真。 方法二.以基本等价式为基础,通过反复对一个公式的等价代换,使之最后转化为一个恒真式或恒假式,从而实现公式恒真或恒假的证明。 例2.2.2 说明G= ((P→R) ∨? R)→ (? (Q→P) ∧ P)是恒真、恒假还是可满足。 解:由(P→R) ∨? R=?P∨ R∨? R=1,以及 ? (Q→P) ∧ P= ?(?Q∨ P)∧ P = Q∧? P∧ P=0 知,((P→R) ∨? R)→ (? (Q→P) ∧ P)=0,故G恒假。 方法三.设命题公式G含n个原子,若求得G的主析取范式包含所有2n个极小项,则G是恒真的;若求得G的主合取范式包含所有2n个极大项,则G是恒假的。 方法四. 对任给要判定的命题公式G,设其中有原子P1,P2,…,P n,令P1取1值,求G的真值,或为1,或为0,或成为新公式G1且其中只有原子P2,…,P n,再令P1取0值,求G真值,如此继续,到最终只含0或1为止,若最终结果全为1,则公式G恒真,若最终结果全为0,则公式G

(完整word版)组合数学课后答案

习题二证明:在一个至少有2人的小组中,总存在两个人,他们在组内所认识的人数相同。证明:假设没有人谁都不认识:那么每个人认识的人数都为[1,n-1],由鸽巢原理知,n个人认识的人数有n-1种,那么至少有2个人认识的人数相同。假设有1人谁都不认识:那么其他n-1人认识的人数都为[1,n-2],由鸽巢原理知,n-1个人认识的人数有n-2种,那么至少有2个人认识的人数相同。假设至少有两人谁都不认识,则认识的人数为0的至少有两人。

任取11个整数,求证其中至少有两个数的差是10的整数倍。证明:对于任意的一个整数,它除以10的余数只能有10种情况:0,1,…,9。现在有11个整数,由鸽巢原理知,至少有2个整数的余数相同,则这两个整数的差必是10的整数倍。证明:平面上任取5个坐标为整数的点,则其中至少有两个点,由它们所连线段的中点的坐标也是整数。证明:有5个坐标,每个坐标只有4种可能的情况:(奇数,偶数);(奇数,奇数);(偶数,偶数);(偶数,奇数)。由鸽巢原理知,至少有2个坐标的情况相同。又要想使中点的坐标也是整数,则其两点连线的坐标之和为偶数。因为奇数+奇数= 偶数;偶数+偶数=偶数。因此只需找以上2个情况相同的点。而已证明:存在至少2个坐标的情况相同。证明成立。

一次选秀活动,每个人表演后可能得到的结果分别为“通过”、“淘汰”和“待定”,至少有多少人参加才能保证必有100个人得到相同的结果证明:根据推论2.2.1,若将3*(100-1)+1=298个人得到3种结果,必有100人得到相同结果。一个袋子里装了100个苹果、100个香蕉、100个橘子和100个梨。那么至少取出多少水果后能够保证已经拿出20个相同种类的水果证明:根据推论2.2.1,若将4*(20-1)+ 1 = 77个水果取出,必有20个相同种类的水果。

数学模型习题解答解读

上机练习题一 班级: 姓名: 学号: 1.建立起始值=3,增量值=5.5,终止值=44的一维数组x 答案: x=(3:5.5:44) 2.写出计算 Sin(30o )的程序语句. 答案: sin(pi*30/180) 或 sin(pi/6) 3.矩阵??????????=187624323A ,矩阵???? ??????=333222111B ;分别求出B A ?及A 与B 中对应元素之间的乘积. 答案:A = [3,2,3; 4,2,6; 7,8,1] B = [1,1,1; 2,2,2; 3,3,3] A*B ;A.*B 4计算行列式的值1 876243 23=A 。答案:det(A) 5对矩阵 ???? ??????=187624323A 进行下述操作。 (1)求秩。答案:rank(A) (2)求转置。答案:A' (3) 对矩阵求逆,求伪逆。答案:inv(A) ,pinv(A) (4) 左右反转,上下反转。答案:fliplr(A),flipud(A) (5) 求矩阵的特征值. 答案:[u,v]=eig(A) (6) 取出上三角和下三角. 答案:triu(A) tril(A) (7)以A 为分块作一个3行2列的分块矩阵。答案:repmat(a) 6 计算矩阵??????????897473535与???? ??????638976242之和。 >> a=[5 3 5;3 7 4;7 9 8]; >> b=[2 4 2;6 7 9;8 3 6]; >> a+b 7 计算??????=572396a 与?? ????=864142b 的数组乘积。 >> a=[6 9 3;2 7 5]; >> b=[2 4 1;4 6 8];

组合数学课后答案

作业习题答案 习题二 2.1证明:在一个至少有2人的小组中,总存在两个人,他们在组内所认识的人数相同。 证明: 假设没有人谁都不认识:那么每个人认识的人数都为[1,n-1],由鸽巢原理知,n 个人认识的人数有n-1种,那么至少有2个人认识的人数相同。 假设有1人谁都不认识:那么其他n-1人认识的人数都为[1,n-2],由鸽巢原理知,n-1个人认识的人数有n-2种,那么至少有2个人认识的人数相同。 2.3证明:平面上任取5个坐标为整数的点,则其中至少有两个点,由它们所连线段的中点的坐标也是整数。 证明: 方法一: 有5个坐标,每个坐标只有4种可能的情况:(奇数,偶数);(奇数,奇数);(偶数,偶数);(偶数,奇数)。由鸽巢原理知,至少有2个坐标的情况相同。又要想使中点的坐标也是整数,则其两点连线的坐标之和为偶数。因为 奇数+奇数 = 偶数 ; 偶数+偶数=偶数。因此只需找以上2个情况相同的点。而已证明:存在至少2个坐标的情况相同。证明成立。 方法二: 对于平面上的任意整数坐标的点而言,其坐标值对2取模后的可能取值只有4种情况,即:(0,0) ,(0,1) ,(1,0), (1,1),根据鸽巢原理5个点中必有2个点的坐标对2取模后是相同类型的,那么这两点的连线中点也必为整数。 2.4一次选秀活动,每个人表演后可能得到的结果分别为“通过”、“淘汰”和“待定”,至少有多少人参加才能保证必有100个人得到相同的结果? 证明: 根据推论2.2.1,若将3*(100-1)+1=298个人得到3种结果,必有100人得到相同结果。 2.9将一个矩形分成(m +1)行112m m +?? + ??? 列的网格每个格子涂1种颜色,有m 种颜色可以选择,证明:无论怎么涂色,其中必有一个由格子构成的矩形的4个角上的格子被涂上同一种颜色。 证明: (1)对每一列而言,有(m+1)行,m 种颜色,有鸽巢原理,则必有两个单元格颜色相同。 (2)每列中两个单元格的不同位置组合有12m +?? ??? 种,这样一列中两个同色单元格的位置组合共有 12m m +?? ??? 种情况 (3)现在有112m m +?? + ??? 列,根据鸽巢原理,必有两列相同。证明结论成立。 2.11证明:从S={1,3,5,…,599}这300个奇数中任意选取101个数,在所选出的数中一定存在2个数,它们之间最多差4。 证明:

数学模型第三版课后习题答案.doc

《数学模型》作业解答 第七章( 2008 年 12 月 4 日) 1.对于节蛛网模型讨论下列问题: ( 1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一时段的价格,所以第 k 1时段的价格y k 1由第k 1 和第 k 时段的数量x k 1和x k决定,如果仍设x k 1仍只取

决于 y k ,给出稳定平衡的条件,并与节的结果进行比较 . ( 2)若除了 y k 1 由 x k 1 和 x k 决定之外, x k 1 也由前两个时段的价格 析稳定平衡的条件是否还会放宽 . 解:( 1)由题设条件可得需求函数、供应函数分别为: y k 1 f x k 1 x k ) ( 2 x k 1 h( y k ) 在 P 0 (x 0 , y 0 ) 点附近用直线来近似曲线 f , h ,得到 y k 1 y 0 ( x k 1 x k x 0 ), 2 x k 1 x 0 ( y k y 0 ) , 由( 2)得 x k 2 x 0 ( y k 1 y 0 ) ( 1)代入( 3)得 x k 2 x 0 ( x k 1x k x 0 ) 2 2x k 2 x k 1 x k 2x 0 2 x 0 对应齐次方程的特征方程为 2 2 ( ) 2 8 特征根为 1, 2 4 y k 和 y k 1 确定 . 试分 (1) ( 2) (3) 当 8 时,则有特征根在单位圆外,设 8 ,则

1,2 ( ) 2 ( ) 2 8 42 2 4 1,2 1 2 即平衡稳定的条件为 2与 P 207 的结果一致 . ( 2)此时需求函数、供应函数在 P 0 (x 0 , y 0 ) 处附近的直线近似表达式分别为: y k 1 y 0 ( x k 1 x k x 0 ), ( 4) 2 x k 1 x 0 ( y k y k 1 y 0 ) , ( 5) 2 由( 5)得, (x x 0 ) β(y y y k 1 y 0 ) ( 6 ) 2 k 3 k 2 将( 4)代入( 6),得 2( x k 3 x 0 ) ( x k 2 x k 1 x 0 ) ( x k 1 x k x 0 ) 2 2 4 x k 3x k 2 2 x k 1 x k 4 x 0 4 x 0 对应齐次方程的特征方程为 4 3 2 2 0 (7) 代数方程( 7 )无正实根,且 αβ , , 2 4 不是( 7)的根 . 设( 7)的三个非零根分 别为 1, 2, 3,则 1 2 3 4 1 2 2 3 3 1 2 1 2 3 4 对( 7)作变换: , 则 12 3 q 0, p 其中 p 1 (2 2 2 ), q 1(833 2 2 ) 4 12 4 123 6

清华组合数学()习题答案

?1.证:对n 用归纳法。先证可表示性: 当n=0,1时,命题成立。 假设对小于n 的非负整数,命题成立。对于n,设k!≤n <(k+1)!,即0≤n-k!<k·k!由假设对n-k!,命题成立, 设n-k!=∑a i ·i!,其中a k ≤k-1,n=∑a i ·i!+k!,命题成立。i=1 k i=1 k 再证表示的唯一性: 设n=∑a i ·i!=∑b i ·i!, 不妨设a j >b j ,令j=max{i|a i ≠b i }a j ·j!+a j-1·(j-1)!+…+a 1·1! =b j ·j!+b j-1·(j-1)!+…+b 1·1!,(a j -b j )·j!=∑(b i -a i )·i!≥j!>∑i·i!≥∑|b i -a i |·i!≥∑(b i -a i )·i! 另一种证法:令j=min{i|a i ≠b i }∑a i ·i!=∑b i ·i!,两边被(j+1)!除,得余数a j ·j!=b j ·j!,矛盾. i=1 k i=1k i=1 j-1i=1 j-1 i=1j-1i=1 j-1 i ≥j i ≥j ?2.证: 组合意义: 等式左边:n 个不同的球,先任取出1个,再从余下的n-1个中取r 个; 等式右边:n 个不同球中任意取出r+1个,并指定其中任意一个为第一个。显然两种方案数相同。 nC(n-1,r) = n ————= ——————— (n-1)! (r+1)·n! r!·(n-r-1)! (r+1)·r!·(n-r-1)! = ——————= (r+1)C(n,r+1).(r+1)·n! (r+1)!·(n-r-1)! ?3.证: 设有n 个不同的小球,A 、B 两个盒子,A 盒中恰好放1个球,B 盒中可放任意个球。有两种方法放球: ①先从n 个球中取k 个球(k ≥1),再从中挑 一个放入A 盒,方案数共为∑kC(n,k),其余球放入B 盒。 ②先从n 个球中任取一球放入A 盒,剩下n-1个球每个有两种可能,要么放入B 盒, 要么不放,故方案数为n2 . 显然两种方法方案数应该一样。 k=1n n-1 ?4.解:设取的第一组数有a 个,第二组有b 个,而 要求第一组数中最小数大于第二组中最大的,即只要取出一组m 个数(设m=a+b),从大到小取a 个作为第一组,剩余的为第二组。此时方案数为C(n,m)。从m 个数中取第一组数共有m-1中取法。总的方案数为∑(m-1)C(n,m)=n ·2 +1. ?5.解:第1步从特定引擎对面的3个中取1个有 C(3,1)种取法,第2步从特定引擎一边的2个中 取1个有C(2,1)种取法,第3步从特定引擎对面的2个中取1个有C(2,1)中取法,剩下的每边1个取法固定。 所以共有C(3,1)·C(2,1)·C(2,1)=12种方案。 m=2 n n-1 ?6.解:首先所有数都用6位表示,从000000到 999999中在每位上0出现了10 次,所以0共出现 了6·10 次,0出现在最前面的次数应该从中去掉, 000000到999999中最左1位的0出现了10 次, 000000到099999中左数第2位的0出现了10 次, 000000到009999左数第3位的0出现了10 次, 000000到000999左数第4位的0出现了10 次, 000000到000099左数第5位的0出现了10 次, 000000到000009左数第6位的0出现了10 次。另外1000000的6个0应该被加上。所以0共出现了 6·10 –10 –10 –10 –10 –10 –10 +6 = 488895次。 5 5 5 4 3 2 1 5543210 ?7.解:把n 个男、n 个女分别进行全排列,然后 按乘法法则放到一起,而男女分别在前面,应该 再乘2,即方案数为2·(n!) 个. 围成一个圆桌坐下, 根据圆排列法则,方案数为2 ·(n!) /(2n)个. ?8.证:每个盒子不空,即每个盒子里至少放一 个球,因为球完全一样,问题转化为将n-r 个小球放入r 个不同的盒子,每个盒子可以放任意个球,可以有空盒,根据可重组合定理可得共有C(n-r+r-1,n-r) = C(n-1,n-r)中方案。根据C(n,r)=C(n,n-r),可得 C(n-1,n-r)=C(n-1,n-1-(n-r))=C(n-1,r-1)个方案。证毕。 2 2 ?9.解:每个能整除尽数n 的正整数都可以选取每个素数p i 从0到a i 次,即每个素数有a i +1种选择,所以能整除n 的正整数数目为(a 1+1)·(a 2+1)·…·(a l +1)个。 ?10.解:相当于把n 个小球放入6个不同的盒子里,为可重组合,即共有C(n+6-1,n)中方案,即C(n+5,n)中方案。 ?11.解:根据题意,每4个点可得到两条对角线,1个对角线交点,从10个顶点任取4个的方案有C(10,4)中,即交于210个点。

数学模型课后答案

数学模型课后答案

《数学模型》作业答案 第二章(1)(2012年12月21日) 1.学校共1000名学生,235人住在A宿舍,333人住在B宿舍,432人住在C宿舍.学生们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数: (1). 按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者; (2). §1中的Q值方法; (3).d’Hondt方法:将A、B、C各宿舍的人数用正整数n=1,2,3,……相除,其商数如下表:

将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A 、B 、C 行有横线的数分别为2,3,5,这就是3个宿舍分配的席位.你能解释这种方法的道理吗? 如果委员会从10个人增至15人,用以上3种方法再分配名额,将3种方法两次分配的结果列表比较. 解:先考虑N=10的分配方案, , 432 ,333 ,235321 ===p p p ∑==3 1 . 1000i i p 方法一(按比例分配) , 35.23 1 11 == ∑=i i p N p q , 33.33 1 22 == ∑=i i p N p q 32 .43 1 33 == ∑=i i p N p q 分配结果为: 4 ,3 ,3321 ===n n n 方法二(Q 值方法) 9个席位的分配结果(可用按比例分 配)为: 4 ,3 ,2321===n n n 第10个席位:计算Q 值为

2. 试用微积分方法,建立录像带记数器读数n 与转过时间的数学模型. 解: 设录像带记数器读数为n 时,录像带转过时间为t.其模型的假设见课本. 考虑t 到t t ?+时间内录像带缠绕在右轮盘上的长度,可得,2)(kdn wkn r vdt π+=两边积分,得 ??+=n t dn wkn r k vdt 0 )(2π ) 2 2 2 n wk k(r n πvt +=∴ . 2 2 2n v k w n v rk t ππ+=∴ 《数学模型》作业解答 第三章1(2008年10月14日) 1. 在 3.1节存贮模型的总费用中增加购买货物本身的费用,重新确定最优订货周期和订货批量.证明在不允许缺货模型中结果与原来的一样,而在允许缺货模型中最优订货周期和订货批量都比原来结果减少.

数学建模习题及答案课后习题

第一部分课后习题 1.学校共1000名学生,235人住在A宿舍,333人住在B宿舍,432人住在C宿舍。学生 们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数: (1)按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者。 (2)2.1节中的Q值方法。 (3)d’Hondt方法:将A,B,C各宿舍的人数用正整数n=1,2,3,…相除,其商数如 将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A,B,C行有横线的数分别为2,3,5,这就是3个宿舍分配的席位。你能解释这种方法的道理吗。 如果委员会从10人增至15人,用以上3种方法再分配名额。将3种方法两次分配的结果列表比较。 (4)你能提出其他的方法吗。用你的方法分配上面的名额。 2.在超市购物时你注意到大包装商品比小包装商品便宜这种现象了吗。比如洁银牙膏50g 装的每支1.50元,120g装的3.00元,二者单位重量的价格比是1.2:1。试用比例方法构造模型解释这个现象。 (1)分析商品价格C与商品重量w的关系。价格由生产成本、包装成本和其他成本等决定,这些成本中有的与重量w成正比,有的与表面积成正比,还有与w无关的因素。 (2)给出单位重量价格c与w的关系,画出它的简图,说明w越大c越小,但是随着w 的增加c减少的程度变小。解释实际意义是什么。 3.一垂钓俱乐部鼓励垂钓者将调上的鱼放生,打算按照放生的鱼的重量给予奖励,俱乐部 只准备了一把软尺用于测量,请你设计按照测量的长度估计鱼的重量的方法。假定鱼池中只有一种鲈鱼,并且得到8条鱼的如下数据(胸围指鱼身的最大周长): 先用机理分析建立模型,再用数据确定参数 4.用宽w的布条缠绕直径d的圆形管道,要求布条不重叠,问布条与管道轴线的夹角 应 多大(如图)。若知道管道长度,需用多长布条(可考虑两端的影响)。如果管道是其他形状呢。

组合数学课后标准答案

组合数学课后标准答案

————————————————————————————————作者:————————————————————————————————日期:

习题二证明:在一个至少有2人的小组中,总存在两个人,他们在组内所认识的人数相同。证明:假设没有人谁都不认识:那么每个人认识的人数都为[1,n-1],由鸽巢原理知,n个人认识的人数有n-1种,那么至少有2个人认识的人数相同。假设有1人谁都不认识:那么其他n-1人认识的人数都为[1,n-2],由鸽巢原理知,n-1个人认识的人数有n-2种,那么至少有2个人认识的人数相同。假设至少有两人谁都不认识,则认识的人数为0的至少有两人。

任取11个整数,求证其中至少有两个数的差是10的整数倍。证明:对于任意的一个整数,它除以10的余数只能有10种情况:0,1,…,9。现在有11个整数,由鸽巢原理知,至少有2个整数的余数相同,则这两个整数的差必是10的整数倍。证明:平面上任取5个坐标为整数的点,则其中至少有两个点,由它们所连线段的中点的坐标也是整数。2.3证明:有5个坐标,每个坐标只有4种可能的情况:(奇数,偶数);(奇数,奇数);(偶数,偶数);(偶数,奇数)。由鸽巢原理知,至少有2个坐标的情况相同。又要想使中点的坐标也是整数,则其两点连线的坐标之和为偶数。因为奇数+奇数= 偶数;偶数+偶数=偶数。因此只需找以上2个情况相同的点。而已证明:存在至少2个坐标的情况相同。证明成立。

一次选秀活动,每个人表演后可能得到的结果分别为“通过”、“淘汰”和“待定”,至少有多少人参加才能保证必有100个人得到相同的结果?证明:根据推论2.2.1,若将3*(100-1)+1=298个人得到3种结果,必有100人得到相同结果。一个袋子里装了100个苹果、100个香蕉、100个橘子和100个梨。那么至少取出多少水果后能够保证已经拿出20个相同种类的水果?证明:根据推论2.2.1,若将4*(20-1)+ 1 = 77个水果取出,必有20个相同种类的水果。

(完整版)数学模型第二章习题答案

15.速度为v 的风吹在迎风面积为s 的风车上,空气密度是ρ ,用量纲分析方法确定风车获得的功率P 与v 、S 、ρ的关系. 解: 设P 、v 、S 、ρ的关系为0),,,(=ρs v P f , 其量纲表达式为: [P]=32-T ML , [v ]=1-LT ,[s ]=2L ,[ρ]=3-ML ,这里T M L ,,是基本量纲. 量纲矩阵为: A=) ??????? ???---ρ()() ()()()()(001310013212s v P T M L 齐次线性方程组为: ?? ? ??=--=+=-++0 30 32221414321y y y y y y y y 它的基本解为)1,1,3,1(-=y 由量纲i P 定理得 1131ρπs v P -=, 1 13ρλs v P =∴ , 其中λ是无量纲常数. 16.雨滴的速度v 与空气密度ρ、粘滞系数μ和重力加速度g 有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系 数,用量纲分析方法给出速度v 的表达式. 解:设v ,ρ,μ,g 的关系为(f v ,ρ,μ,g )=0.其量纲表达式为[v ]=LM 0T -1,[ρ]=L -3MT 0 , [μ]=MLT -2 (LT -1L -1 )-1L -2 =MLL -2T -2 T=L -1 MT -1 ,[g ]=LM 0T -2 ,其中L ,M ,T 是基本量纲. 量纲矩阵为 A=) ()()()()()() (210101101131g v T M L μρ??????????----- 齐次线性方程组Ay=0 ,即 ??? ??==+=+0 2y -y - y -0 y y 0y y -3y -y 431 324321 的基本解为y=(-3 ,-1 ,1 ,1) 由量纲i P 定理 得 g v μρπ1 3 --=. 3 ρ μλg v =∴,其中λ是无量纲常数.

李凡长版-组合数学课后习题答案-习题3

李凡长版-组合数学课后习题答案-习题3

第三章递推关系 1.在平面上画n条无限直线,每对直线都在不同的点相交,它们构成的无限 区域数记为f(n),求f(n)满足的递推关系. 解: f(n)=f(n-1)+2 f(1)=2,f(2)=4 解得f(n)=2n. 2.n位三进制数中,没有1出现在任何2的右边的序列的数目记为f(n),求 f(n)满足的递推关系. 解:设a n-1a n-2 …a 1 是满足条件的n-1位三进制数序列,则它的个数可以用f(n-1) 表示。 a n 可以有两种情况: 1)不管上述序列中是否有2,因为a n 的位置在最左边,因此0 和1均可选; 2)当上述序列中没有1时,2可选; 故满足条件的序列数为 f(n)=2f(n-1)+2n-1 n 1, f(1)=3 解得f(n)=2n-1(2+n). 3.n位四进制数中,2和3出现偶数次的序列的数目记为f(n),求f(n)满足 的递推关系. 解:设h(n)表示2出现偶数次的序列的数目,g(n)表示有偶数个2奇数个3的序列的数目,由对称性它同时还可以表示奇数个2偶数个3的序列的数目。 则有 h(n)=3h(n-1)+4n-1-h(n-1),h(1)=3 (1) f(n)=h(n)-g(n),f(n)=2f(n-1)+2g(n-1) (2) 将(1)得到的h(n)=(2n+4n)/2代入(2),可得 n+4n)/2-2f(n), 4.求满足相邻位不同为0的n位二进制序列中0的个数f(n). 解:这种序列有两种情况: 1)最后一位为0,这种情况有f(n-3)个; 2)最后一位为1,这种情况有2f(n-2)个; 所以 f(1)=2,f(2)=3,f(3)=5. 5.求n位0,1序列中“00”只在最后两位才出现的序列数f(n). 解:最后两位是“00”的序列共有2n-2个。 f(n)包含了在最后两位第一次出现“00”的序列数,同时排除了在n-1位第一次出现“00”的可能; f(n-1)表示在第n-1位第一次出现“00”的序列数,同时同时排除了在n-2位第一次出现“00”的可能; 依此类推,有 17

中国人民大学出版社第四版高等数学一第6章课后习题详解

高等数学一第6章课后习题详解 课后习题全解 习题6-2 ★ 1.求由曲线 x y =与直线 x y =所围图形的面积。 知识点:平面图形的面积 思路:由于所围图形无论表达为X-型还是Y-型,解法都较简单,所以选其一做即可 解: 见图6-2-1 ∵所围区域D 表达为X-型:?? ?<<<

∵所围区域D 表达为X-型:?????<<< <1 sin 2 0y x x π, (或D 表达为Y-型:???<<<

∴所围区域D 表达为Y-型:?? ?-<<<<-2 2 422y x y y , ∴23 16 )32 4()4(2 2 32 222= -=--=- - ? y y dy y y S D (由于图形关于X 轴对称,所以也可以解为: 2316 )324(2)4(22 32 22=-=--=? y y dy y y S D ) ★★4.求由曲线 2x y =、24x y =、及直线1=y 所围图形的面积 知识点:平面图形面积 思路:所围图形关于Y 轴对称,而且在第一象限内的图形表达为Y-型时,解法较简单 解:见图6-2-4 ∵第一象限所围区域1D 表达为Y-型:? ??<<<

数学建模课后答案

第一章 4.在1、3节“椅子能在不平的地面上放稳不”的假设条件中,将四脚的连线呈正方形改为长方形,其余不变。试构造模型并求解。 答:相邻两椅脚与地面距离之与分别定义为)()(a g a f 和。f 与g 都就是连续函数。椅子在任何位置至少有三只脚着地,所以对于任意的a ,)()(a g a f 和中至少有一个不为零。不妨设0)0(,0)0(g >=f 。当椅子旋转90°后,对角线互换,0π/2)(,0)π/2(>=g f 。这样,改变椅子的位置使四只脚同时着地。就归结为证明如下的数学命题: 已 知 a a g a f 是和)()(的连续函数,对任意 0)π/2()0(,0)()(,===?f g a g a f a 且,0)π/2(,0)0(>>g f 。证明存在0a ,使0)()(00==a g a f 证:令0)π/2(0)0(),()()(<>-=h h a g a f a h 和则, 由g f 和的连续性知h 也就是连续函数。 根据连续函数的基本性质, 必存在0a (0<0a <π/2)使0)(0=a h ,即0)()(00==a g a f 因为0)()(00=?a g a f ,所以0)()(00==a g a f

8 第二章

10.用已知尺寸的矩形板材加工半径一定的圆盘,给出几种简便有效的排列方法,使加工出尽可能多的圆盘。

第三章 5.根据最优定价模型 考虑成本随着销售量的增加而减少,则设 kx q x q -=0)( (1)k 就是产量增加一个单位时成本的降低 , 销售量x 与价格p 呈线性关系0,,>-=b a bp a x (2) 收入等于销售量乘以价格p :px x f =)( (3) 利润)()()(x q x f x r -= (4) 将(1)(2)(3)代入(4)求出 ka q kbp pa bp x r --++-=02)( 当k q b a ,,,0给定后容易求出使利润达到最大的定价*p 为 b a kb ka q p 2220*+--=

数学建模课后习题答案

第一章 课后习题6. 利用1.5节药物中毒施救模型确定对于孩子及成人服用氨茶碱能引起严重中毒和致命的最小剂量。 解:假设病人服用氨茶碱的总剂量为a ,由书中已建立的模型和假设得出肠胃中的药量为: )()0(mg M x = 由于肠胃中药物向血液系统的转移率与药量)(t x 成正比,比例系数0>λ,得到微分方程 M x x dt dx =-=)0(,λ(1) 原模型已假设0=t 时血液中药量无药物,则0)0(=y ,)(t y 的增长速度为x λ。由于治疗而减少的速度与)(t y 本身成正比,比例系数0>μ,所以得到方程: 0)0(,=-=y y x dt dy μλ(2) 方程(1)可转换为:t Me t x λ-=)( 带入方程(2)可得:)()(t t e e M t y λμμ λλ ----= 将01386=λ和1155.0=μ带入以上两方程,得: t Me t x 1386.0)(-= )(6)(13866.01155.0---=e e M t y t 针对孩子求解,得: 严重中毒时间及服用最小剂量:h t 876.7=,mg M 87.494=; 致命中毒时间及服用最小剂量:h t 876.7=,mg M 8.4694= 针对成人求解: 严重中毒时间及服用最小剂量:h t 876.7=,mg M 83.945= 致命时间及服用最小剂量:h t 876.7=,mg M 74.1987= 课后习题7. 对于1.5节的模型,如果采用的是体外血液透析的办法,求解药物中毒施救模型的血液用药量的变化并作图。

解:已知血液透析法是自身排除率的6倍,所以639.06==μu t e t x λ-=1100)(,x 为胃肠道中的药量,1386.0=λ )(6600)(t t e e t y λμ---= 1386.0,639.0,5.236)2(,1100,2,====≥-=-λλλu z e x t uz x dt dz t 解得:()2,274.112275693.01386.0≥+=--t e e t z t t 用matlab 画图: 图中绿色线条代表采用体外血液透析血液中药物浓度的变化情况。 从图中可以看出,采取血液透析时血液中药物浓度就开始下降。T=2时,血液中药物浓度最高,为236.5;当z=200时,t=2.8731,血液透析0.8731小时后就开始解毒。 第二章 1.用 2.4节实物交换模型中介绍的无差别曲线的概念,讨论以下的雇员和雇主之间的关系: 1)以雇员一天的工作时间和工资分别为横坐标和纵坐标,画出雇员无差别曲线族的示意图,解释曲线为什么是那种形状; 2)如果雇主付计时费,对不同的工资率画出计时工资线族,根据雇员的无差别曲线族和雇主的计时工资线族,讨论双方将在怎样的一条曲线上达成协议; 3)雇员和雇主已经达成了协议,如果雇主想使用雇员的工作时间增加到t 2,他有两种

李凡长版 组合数学课后习题答案 习题1

1 第一章 排列组合 1、 在小于2000的数中,有多少个正整数含有数字2? 解:千位数为1或0,百位数为2的正整数个数为:2*1*10*10; 千位数为1或0,百位数不为2,十位数为2的正整数个数为:2*9*1*10; 千位数为1或0,百位数和十位数皆不为2,个位数为2的正整数个数为:2*9*9*1; 故满足题意的整数个数为:2*1*10*10+2*9*1*10+2*9*9*1=542。 2、 在所有7位01串中,同时含有“101”串和“11”串的有多少个? 解:(1) 串中有6个1:1个0有5个位置可以插入:5种。 (2) 串中有5个1,除去0111110,个数为()6 2 -1=14。 (或: ()()41 42 *2+=14) (3)串中有4个1:分两种情况:①3个0单独插入,出去1010101,共()53 -1 种;②其中两个0一组,另外一个单独,则有 ()()2*)2,2(41 52 -P 种。 (4)串中有3个1:串只能为**1101**或**1011**,故共4*2种。 所以满足条件的串共48个。 3、一学生在搜索2004年1月份某领域的论文时,共找到中文的10篇,英文的12篇,德文的5篇,法文的6篇,且所有的都不相同。如果他只需要2篇,但必须是不同语言的,那么他共有多少种选择? 解:10*12+10*5+10*6+12*5+12*6+5*6 4、设由1,2,3,4,5,6组成的各位数字互异的4位偶数共有n 个,其和为m 。求n 和m 。 解:由1,2,3,4,5,6组成的各位数字互异,且个位数字为2,4,6的偶数均有P(5,3)=60个,于是:n = 60*3 = 180。 以a 1,a 2,a 3,a 4分别表示这180个偶数的个位、十位、百位、千位数字之和,则 m = a 1+10a 2+100a 3+1000a 4。 因为个位数字为2,4,6的偶数各有60个,故 a 1 = (2+4+6)*60=720。 因为千(百,十)位数字为1,3,5的偶数各有3*P(4,2) = 36个,为2,4,6的偶数各有2*P(4,2) = 24个,故 a 2 = a 3 = a 4 = (1+3+5)*36 + (2+4+6)*24 = 612。 因此, m = 720 + 612*(10 + 100 + 1000) = 680040。 5、 从{1,2,…,7}中选出不同的5个数字组成的5位数中,1与2不相邻的数 字有多少个? 解:1与2相邻:())4,4(253P ??。故有1和 2 但它们不相邻的方案数: ()())4,4(2)5,5(53 5 3 P P ??-? 只有1或2:())5,5(254P ?? 没有1和2:P(5,5)

最新同济大学第六版高等数学上下册课后习题答案7-5

同济大学第六版高等数学上下册课后习题 答案7-5

仅供学习与交流,如有侵权请联系网站删除 谢谢4 习题7-5 1. 求过点(3, 0, -1)且与平面3x -7y +5z -12=0平行的平面方程. 解 所求平面的法线向量为n =(3, -7, 5), 所求平面的方程为 3(x -3)-7(y -0)+5(z +1)=0, 即3x -7y +5z -4=0. 2. 求过点M 0(2, 9, -6)且与连接坐标原点及点M 0的线段OM 0垂直的平面方程. 解 所求平面的法线向量为n =(2, 9, -6), 所求平面的方程为 2(x -2)+9(y -9)-6(z -6)=0, 即2x +9y -6z -121=0. 3. 求过(1, 1, -1)、(-2, -2, 2)、(1, -1, 2)三点的平面方程. 解 n 1=(1, -1, 2)-(1, 1, -1)=(0, -2, 3), n 1=(1, -1, 2)-(-2, -2, 2)=(3, 1, 0), 所求平面的法线向量为 k j i k j i n n n 6930 1332021++-=-=?=, 所求平面的方程为 -3(x -1)+9(y -1)+6(z +1)=0, 即x -3y -2z =0. 4. 指出下列各平面的特殊位置, 并画出各平面: (1)x =0; 解 x =0是yOz 平面. (2)3y -1=0; 解 3y -1=0是垂直于y 轴的平面, 它通过y 轴上的点)0 ,3 1 ,0(. (3)2x -3y -6=0;

仅供学习与交流,如有侵权请联系网站删除 谢谢4 解 2x -3y -6=0是平行于z 轴的平面, 它在x 轴、y 轴上的截距分别是3和-2. (4)03=-y x ; 解 03=-y x 是通过z 轴的平面, 它在xOy 面上的投影的斜率为3 3. (5)y +z =1; 解 y +z =1是平行于x 轴的平面, 它在y 轴、z 轴上的截距均为1. (6)x -2z =0; 解 x -2z =0是通过y 轴的平面. (7)6x +5-z =0. 解 6x +5-z =0是通过原点的平面. 5. 求平面2x -2y +z +5=0与各坐标面的夹角的余弦. 解 此平面的法线向量为n =(2, -2, 1). 此平面与yOz 面的夹角的余弦为 3 21)2(22||||) ,cos(cos 122^=+-+=??==i n i n i n α; 此平面与zOx 面的夹角的余弦为 3 21)2(22||||) ,cos(cos 122^-=+-+-=??==j n j n j n β; 此平面与xOy 面的夹角的余弦为 3 11)2(21||||) ,cos(cos 122^=+-+=??==k n k n k n γ.

数学模型(第四版)课后详细答案

数学模型作业 六道题 作业一 1.P56.8一垂钓俱乐部鼓励垂钓者将钓上的鱼放生,打算按照放生的鱼的重量给予奖励,俱乐部只准备了一把软尺用于测量,请你设计按照测量的长度估计鱼的重量的方法。假定鱼池中只有一种鲈鱼,并且得到8条鱼的如下数据(胸围指鱼身的最大周长): 解: 要求鱼的体重,我们利用质量计算公式:M=ρV。我们假定鱼池中是同一种鱼,于是可以近似地考虑其密度是相同的。至于鱼的体积问题,由于是同一种类,可以假定这种鱼在体型上是一致的。我们假设鱼的体积和鱼身长的立方成正比。即:V=k 1 L3,因此,模型为: 33 111 M V k l K L ρρ ===……………………………模型一 利用Eviews软件,用最小二乘法估计模型中的参数K 1 ,如下图1所示: 图1 从图1结果可以得到参数K 1 =0.014591,所以模型为: 3 1 M0.014591 L = 上述模型存在缺陷,因为它把肥鱼和瘦鱼同等看待。因此,有必要改进模型。如果只假定鱼的横截面是相似的,假设横截面积与鱼身最大周长的平方成 正比,即:V=k 2 d2L,因此,模型为: 身长 /cm 36.8 31.8 43.8 36.8 32.1 45.1 35.9 32.1 质量 /g 765 482 1162 737 482 1389 652 454 胸围 /cm 24.8 21.3 27.9 24.8 21.6 31.8 22.9 21.6

22222M V k d K d L L ρρ===……………………………… 模型二 利用Eviews 软件,用最小二乘法估计模型中的参数K 2,如下图2所示: 图2 从图2可以得到参数K 2=0. 032248,所以模型为: 22M 0.032248d L = 将实际数据与模型结果比较如表1所示: 实际数 据M 765 482 1162 737 482 1389 652 454 模型一M 1 727.165 469.214 1226.061 727.165 482.629 1338.502 675.108 482.619 模型二M 2 729.877 465.248 1099.465 729.877 482.960 1470.719 607.106 483.960 2.P131.2 一家出版社准备在某市建立两个销售代理点,向7个区的大学生售书,每个区的大学生数量(单位:千人)已经表示在图上。每个销售代理点只能向本区和一个相邻区的大学生售书,这两个代理点应该建在何处,才能使所能供应的大学生的数量最大?建立该问题的整数线性规划模型并求解。 解: 将大学生数量为34、29、42、21、56、18、71的区分别标号为1、2、3、4、5、6、7区,画出如下区域区之间的相邻关系: 2 5

李凡长版组合数学课后习题标准答案习题

第二章 容斥原理与鸽巢原理 1、1到10000之间(不含两端)不能被4,5和7整除的整数有多少个? 解 令A={1,2,3,…,10000},则 |A|=10000. 记A 1、A 2、A 3分别为在1与1000之间能被4,5和7整除的整数集合,则有: |A 1| = L 10000/4」=2500, |A 2| = L 10000/5」=2000, |A 3| = L 10000/7」=1428, 于是A 1∩A 2 表示A 中能被4和5整除的数,即能被20 整除的数,其个数为 | A 1∩A 2|=L 10000/20」=500; 同理, | A 1∩A 3|=L 10000/28」=357, | A 2∩A 3|=L 10000/35」=285, A 1 ∩A 2 ∩ A 3 表示A 中能同时被4,5,7整除的数,即A 中能被4,5,7的最小公倍数lcm(4,5,6)=140整除的数,其个数为 | A 1∩A 2∩A 3|=L 10000/140」= 71. 由容斥原理知,A 中不能被4,5,7整除的整数个数为 ||321A A A ?? = |A| - (|A 1| + |A 2| +|A 3|) + (|A 1∩A 2| + |A 1∩A 3| +|A 3∩A 2|) - |A 1∩A 2∩A 3| = 5143 2、1到10000之间(不含两端)不能被4或5或7整除的整数有多少个? 解 令A={1,2,3,…,10000},记A 1、A 2、A 3分别为在1与1000之间能被4,5和7整除 的整数集合,A 中不能被4,5,7整除的整数个数为 ||321A A A ?? = |A| - ||321A A A ?? - 2 = 10000 - L 10000/140」- 2 = 9927 3、1到10000之间(不含两端)能被4和5整除,但不能被7整除的整数有多 少个? 解 令A 1表示在1与10000之间能被4和5整除的整数集,A 2表示4和5整除, 也能被7整除的整数集。则: |A 1| = L 10000/20」= 500, |A 2| = L 10000/140」= 71, 所以1与10000之间能被4和5整除但不能被7整除的整数的个数为:500-71=429。 4、计算集合{2·a, 3·b, 2·c, 4·d }的5组合数. 解 令S ∞={∞·a, ∞·b,∞·c,∞·d},则S 的5组合数为()1455 -+ = 56 设集合A 是S ∞的5组合全体,则|A|=56,现在要求在5组合中的a 的个数小于等 于2,b 的个数小于等于3,c 的个数小于等于2,d 的个数小于等于4的组合数. 定义性质集合P={P 1,P 2,P 3,P 4},其中: P 1:5组合中a 的个数大于等于3; P 2:5组合中b 的个数大于等于4; P 3:5组合中c 的个数大于等于3; P 4:5组合中d 的个数大于等于5. 将满足性质P i 的5组合全体记为A i (1≤i ≤4). 那么,A 1中的元素可以看作是由 S ∞的5-3=2组合再拼上3个a 构成的,所以|A 1| =()142 2 -+ = 10.

相关文档
相关文档 最新文档