文档库 最新最全的文档下载
当前位置:文档库 › 一元二次方程的判别式和根与系数的关系.doc

一元二次方程的判别式和根与系数的关系.doc

一元二次方程的判别式和根与系数的关系.doc
一元二次方程的判别式和根与系数的关系.doc

第二节 一元二次方程的判别式和根与系数的关系

例一:若x 0是一元二次方程ax 2+bx+c=0(a ≠0)的根,则判别式△=b 2-4ac 与平方式M =(2ax 0+b )2的关系是什么? 解:方法一:由x 0是方程的根,知

ax 02+bx 0+c=0

乘以4a 后配方,得

4a 2x 02+4abx 0+b 2-b 2+4ac=0, (2ax 0+b )2=b 2-4ac,

即 △=M

方法二:由求根公式,有

x 0=

a

ac

b b 242-±-,

即 2ax 0+b=?±

平方,得 M =△

方法三:∵(2ax 0+b )2=4a 2x 02+4abx 0+b 2=4a(ax 02+bx 0)+b 2 又ax 02+bx 0+c=0, ∴ax 02+bx 0=-c

∴(2ax 0+b )2=b 2-4ac, 即 △= M

例二(2003〃全国初中联赛):已知a,b,c 满足a+b+c=2,abc=4 求:(1)a,b,c 中最大者的最小值; (2)c b a ++的最小值

解:(1)不妨设a 是a,b,c 中的最大者,即a ≥b,a ≥c. 由题设,知a >0,且b+c=2-a,bc=

a

4

. 于是,b,c 是一元二次方程x 2-(2-a )x+

a 4

=0的两实数根,则 △ =(2-a )2-4×a

4

≥0,

a 3-4a 2

+4a-16≥0, (a 2+4)(a-4) ≥0,

∴ a ≥4.

当a=4,b=c=-1时,满足题意,故a,b,c 中最大者的最小值为4. (2)因为abc >0,所以a,b,c 为全大于0或一正二负. ①若a,b,c 均大于0,则由(1),知a,b,c 中最大者的最小值不小于4.这与a+b+c=2矛盾.

②若a,b,c 为一正二负,设a >0,b <0,c <0,则c b a ++=a-b-c=

a-(2-a)=2a-2. 由(1),知a ≥4,故2a-2≥6.

当a=4,b=c=-1时,满足题设条件且使得不等式等号成立,故c b a ++的最小值为6.

例三:若二次方程(b-c)x 2+(a-b)x+(c+a)=0有两相等实根,且b ≠c ,则a,b,c 间的关系是什么?

解:方法一:由判别式△=0,知 △ =(a-b)2-4(b-c)(c-a) =(a+b)2-4(a+b)c+4c 2 =(a+b-2c)2

=0

∴ a+b-2c=0

方法二:∵ (b-c )x 2

+(a-b)x+(c+a)=0,

∴方程有一个根是x 1=1,另一个根是x 2=c

b a

c --.

又∵ x 1=x 2,

∴c

b a

c --=1. ∴c-a=b-c. ∴a+b-2c=0.

例四:a 为实数,M =(a -+32)2,N =4(a-1-32-)。问a 为何值时,M >N 成立?

解:构造实系数的一元二次方程

x 2+(a -+32)x+(a-1-32-)=0

解得 x 1=1, x 2=a-1-32-. 当x 1=x 2时,有

a-1-32-=1

即 a=2+32+.

此时一元二次方程△=0,

(a -+32)2-4(a-1-32-)=0.

∴ M =N ,不符合题意. 当x 1≠x 2时,有

a-1-32-≠1,

∴a ≠2+32+. 此时一元二次方程△>0,

(a -+32)2-4(a-1-32-)>0.

∴ M >N ,符合题意.

∴ 当a ≠2+32+时,M >N .

例五:设实数s,t 分别满足19s 2+99s+1=0,t 2+99t+19=0,并且st ≠1,求t

s st 1

4++的值.

解:∵ s ≠0,方程19s 2+99s+1=0可变形为

(s 1)2+99(s

1

)+19=0. 又 st ≠1,

∴ s 1

,t 是一元二次方程x 2+99x+19=0的两个不同的实数根.

于是,有

??????

?=?-=+,191,991

t s

t s

即 1+st=-99s,t=19s.

∴ t s st 14++=s

s

s 19499+-=-5.

例六:已知M+V=96,且二元方程x 2+Mx+V=0的根都是整数,求方程的最大根. 解:设方程的两个整数根为x 1,x 2,则有

x 1+x 2=-M ,x 1x 2=V.

∵ M+V=96,

∴ x 1x 2-(x 1+x 2)=M+V=96. ∴ x 1x 2-x 1-x 2+1=97,即

(x 1-1)(x 2-1)=97,

∵ 97为质数,设x 1最大,则x 1-1=97. ∴ x 1=98

因此,方程的最大根是98.

例七:已知a,b,c,d 是非零数,c 和d 是x 2+ax+b=0的解,a 和b 是x 2+cx+d=0的解,求a+b+c+d 的值

解:由根与系数的关系,知

????

??

?=-=+=-=+,

,,,d ab c b a b cd a d c ∴???

??===++=++,,,

0d ab b cd c b a d c a ∴??

?

??===-,,,0d ab b cd d b ∴???????-=-===.

2,2,1,1d b a c 故 a+b+c+d=-2.

例八(2000〃全国初中联赛):设m 是不小于-1的实数,使得关于x 的方程x 2+2(m-2)x+m 2-3m+3=0有两个不相等的实数根x 1,x 2.

(1)若x 12+ x 22=6,求m 的值.

(2)求

2

21112

12x mx x mx -+

-的最大值. 解:因为方程有两个不相等的实数根,所以

△ =4(m-2)2-4(m 2-3m+3)=-4m+4>0,

则m <1,

结合题意,知 -1≤m <1. (1) ∵ x 12+ x 22=(x 1+x 2)2-2x 1x 2

=4(m-2)2-2(m 2-3m+3) =2m 2-10m+10=6, ∴ m=

2

17

5±. 又 -1≤m <1,

∴ m=

2

17

5-. (2) 22111212x mx x mx -+

-=()[]

1

212121212

221+--+-+x x x x x x x x x x m =()()()[]

()()14233242332101022+-++--+-++-m m m m m m m m m

=2(m 2-3m+1) =2(m-23)2-2

5

.

设 y=2(m-23)2-2

5

,-1≤m <1.

∵ y 在-1≤m <1是递减的,

∴ 当m=-1时,y 有最大值为10. 故

2

21112

12x mx x mx -+-得最大值为10. 讨论思考题:关于方程的两根同大于某个数的问题

竞赛中经常会出现方程的两个根同时为正,或同时为负,或一正一负的情况.这类问题可以用根与系数的关系来解决,但如果方程的两根都是大于某个数m ,问题该如何解决?

建议:如果x 1>m,x 2>m ,则有x 1-m >0,x 2-m >0,我们可以把x-m 当作一个整体来解决,则

()()??

?>-->-+-.0,

021

21m x m x m x m x 我们也可以用换元的方法,把方程ax 2+bx+c=0(a ≠0)转化成a (y-m )

2

+b(y-m)+c=0(y=x-m)来解决,这时有

??

?>>+.0,

02

121y y y y 讨论:若x 1,x 2(x 1>x 2)是ax 2+bx+c=0(a ≠0)的两根,且m 为实数,当△≥0

时,一般地,

①(x 1-m )(x 2-m )<0 ? x 1>m, x 2<m.

②(x 1-m)+(x 2-m) >0且(x 1-m )(x 2-m )>0 ? x 1>m, x 2>m.

③(x 1-m)+(x 2-m) <0且(x 1-m )(x 2-m )>0 ? x 1<m, x 2<m.

当m=0时,上述问题就转化为ax 2+bx+c=0(a ≠0)有两正根、两负根、两异根的条件。

例九:当a<-1时,方程(a3+1)x2+(a2+1)x-(a+1)=0的根的情况是()。

A.两负根

B.一正根,一负根且负根的绝对值大

C.没有实根

D.一正根,一负根且负根的绝对值小

解:∵ a<-1,

∴ a3+1<0,a2+1>0,-(a+1)>0.

由根与系数的关系,知

⑴x

1x

2

=

1

1

3+

+

-

a

a

<0,表明两根一正一负;

⑵x

1+x

2

=

1

1

3

2

+

+

-

a

a

>0,表明正根的绝对值大.

故选D.

解实系数一元二次方程

课题解实系数一元二次方程 教学目标: 1.掌握在复数集内解一元二次方程和解二项方程的方法;使学生掌握含有未知数 的解法. 2.教学过程中,渗透数学转化思想及方程的思想,提高学生灵活运用数学知识解题的能力;培养学生严谨的逻辑思维. 3.通过对实系数一元二次方程在实数范围内求解和在复数范围内求解的比较,认识到任何事物都是相对的,而不是绝对的这一辩证唯物主义的观点. 教学重点与难点: 个复数相等的充分必要条件的运用. 教学过程: 一、引入新课 问题一:方程x2+1=0在复数范围内有没有解,解集是什么? 因为-1=i2,则原方程化为x2-i2=0,即(x+i)(x-i)=0.所以原方程解集为{i,-i}.问题二:方程ax2+bx+c=0(a,b,c是实数)在复数范围内解集是什么? 当Δ=b2-4ac>0时,方程有两个不相等的实根,解集为 二、讲授新课 引导思考:方程x2+1=0中,Δ=-4<0,上述结论对吗? 解为: 无意义.此时方程的解集为 1、实系数一元二次方程ax2+bx+c=0在复数范围内解的情况为: 当Δ≥0时有实根; 当Δ<0时,有一对共轭的虚根. 例1 、在复数集上解方程x2-4x+5=0

i i x ac b ±=±=<-=-2244,0442所以 解: 例2 已知实系数一元二次方程2x 2+ax +b=0的一个根为2i-3,求a ,b 的值. 解:2x 2+ax +b=0一根为2i-3,另一根为-3-2i .由韦达定理知: b=(2i-3)(-2i-3)=9+16=25, a=2i-3+(-2i-3)=-6. 我们上面解决了实系数一元二次方程求解问题.对于至少有一个系数是虚数的一元二次方程应该如何解? 例3 求方程x 2-2ix-5=0的解. 解:将方程左端配方,得(x-i )2-4=0,即(x-i )2=4.解得x-i=±2,即x 1=2+i ,x 2=-2+i . 练习P22 1、2、3 2、二项方程:形如),0,,,0(N n a C b a b ax n ∈≠∈=+的方程,任何一个二项方程都可以化为)(C c c x n ∈=的形式,都可以用复数的开方来求根. 例4、在复数集上解方程x 5=32. ??? ??+=+===+=+=54sin 54cos 2)5 2sin 52(cos 22 4,3,2,1,0),5 2sin 52(cos 2) 0sin 0(cos 323215ππππππi x i x x k k i k x i x 即:所以解:原方程就是 ??? ??+=+=58sin 58cos 2)56sin 56(cos 254ππππi x i x 这个方程的根的几何意义是复平面内的五个点,这些点均匀分布在以原点为圆心,以2为半径的圆上.

中考专题_一元二次方程根的判别式及根与系数的关系

一元二次方程根的判别式及根与系数的关系 【重点、难点、考点】 重点:①判定一元二次方程根的情况,会利用判别式求待定系数的值、及取值范围。 ②掌握根与系数的关系及应用 难点:由判别式,根与系数的关系求字母的取值范围,或与根有关的代数式的值。 考点:中考命题的重点和热点,既可单独成题,又可与二次函数综合运用,是初中代数的重要内容之一。 【经典范例引路】 例1 若关于x 的一元二次方程(m -2)2x 2+(2m +1)x +1=0有两个不相等的实数根,则m 的取值范围是( ) A.m<43 B.m ≤43 C.m>43 且m ≠2 D.m ≥43 且 m ≠2 (2001年山西省中考试题) 【解题技巧点拨】 解 C ①解答此题时,学生虽然能运用判别式定理,但往往忽略“方程ax 2+bx +c =0 作为一元二次方程时 a ≠0”的情形 解题原理:对方程ax 2+bx +c =0 (a ≠0) 方程有两实根Δ方程有两相等实根 Δ方程有两不等实根Δ?≥? ?? ?=?>000 Δ<0?方程没有实根 注意:学生在运用时,可能会由“方程有两实根”得出“Δ>0” 题型:①判定方程根的情况或判断简单的二元二次方程组是否有解,②证明一元二次方程有无实根,③求待定系数的值或取值范围,④根与系数的关系综合运用。 例2 先阅读下列第(1)题的解答过程

(1)已知αβ是方程x2+2x-7=0的两个实数根。求α2+3β2+4β的值。 解法1 ∵α、β是方程x2+2x-7=0的两实数根 ∴α2+2α-7=0 β2+2β-7=0 且α+β=-2 ∴α2=7-2αβ2=7-2β ∴α2+3β2+4β=7-2α+3(7-2β)+4β=28-2(α+β)=28-2 ×(-2)=32 解法2 由求根公式得α=-1+22β=-1-22 ∴α2+3β2+4β=(-1+22)2+3(-1-22)2+4(-1-22) =9-42+3(9+42-4-82)=32 解法3 由已知得:α+β=-2 αβ=-7 ∴α2+β2=(α+β)2-2αβ=18 令α2+3β2+4β=A β2+3α2 +4α=B ∴A+B=4(α2+β2)+4(α+β)=4×18+4×(-2)=64 ① A-B=2(β2-α2)+4(β-α)=2(β+α) (β-α)+4(β-α)=0 ② ①+②得:2A=64 ∴A=32 请仿照上面解法中的一种或自己另外寻找一种方法解答下列各题 (2)已知x1、x2是方程x2-x-9=0的两个实数根,求代数式。x13+7x22 +3x2-66的值。 解∵x1、x2是方程x2-x-9=0的两根 ∴x1+x2=1 且x12-x1-9=0 x22-x2-9=0 即 x12=x1+9 x22=x2+9 ∴x13+7x22+3x2-66=x1(x1+9)+7(x2+9)+3x2-66 =x12+9x1+10x2-3=x1+9+9x1+10x2-3=10(x1+x2)+ 6=16 【同步达纲练习】 一、填空题

一元二次方程根的情况试题练习题

一元二次方程根的情况练习题(含答案) 一.选择题 1.一元二次方程2x2﹣5x﹣2=0的根的情况是() A.有两个相等的实数根B.有两个不相等的实数根 C.只有一个实数根D.没有实数根 2.一元二次方程3x2﹣4x+1=0的根的情况为() A.没有实数根 B.只有一个实数根 C.两个相等的实数根D.两个不相等的实数根 3.一元二次方程x2﹣7x﹣2=0的实数根的情况是() A.有两个不相等的实数根B.有两个相等的实数根 C.没有实数根 D.不能确定 4.一元二次方程x2﹣4x+4=0的根的情况是() A.有两个不相等的实数根B.有两个相等的实数根 C.无实数根D.无法确定 5.a,b,c为常数,且(a﹣c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是() A.有两个相等的实数根B.有两个不相等的实数根 C.无实数根D.有一根为0 6.一元二次方程2x2﹣3x+1=0的根的情况是() A.有两个相等的实数根B.有两个不相等的实数根 C.只有一个实数根D.没有实数根 7.一元二次方程2x2﹣3x+1=0根的情况是()

C.只有一个实数根D.没有实数根 8.y=x+1是关于x的一次函数,则一元二次方程kx2+2x+1=0的根的情况为() A.没有实数根 B.有一个实数根 C.有两个不相等的实数根D.有两个相等的实数根 9.一元二次方程x2+2x+1=0的根的情况() A.有一个实数根B.有两个相等的实数根 C.有两个不相等的实数根D.没有实数根 10.一元二次方程x2﹣x﹣1=0的根的情况为() A.有两个不相等的实数根B.有两个相等的实数根 C.只有一个实数根D.没有实数根 11.一元二次方程x2﹣2x﹣1=0的根的情况为() A.有两个相等的实数根B.有两个不相等的实数根 C.只有一个实数根D.没有实数根 12.一元二次方程4x2+1=4x的根的情况是() A.没有实数根 B.只有一个实数根 C.有两个相等的实数根D.有两个不相等的实数根 13.方程x2﹣2x+3=0的根的情况是() A.有两个相等的实数根B.只有一个实数根 C.没有实数根 D.有两个不相等的实数根 14.已知一元二次方程2x2﹣5x+3=0,则该方程根的情况是()

一元二次方程根与系数之间的关系

中考数学辅导之—一元二次方程根与系数之间关系 从暑假开始,我们系统学习了一元二次方程解法及一元二次根判别式和一元二次方程根与系数之间关系.本次,我们全面复习前面所学内容,下次,我们将学习几何中第六章解直角三角形. 一、基本内容 1.一元二次方程含义:含有一个未知数,且未知数次数最高是2整式方程叫一元二次方程. 2.一般形式:ax 2+bx+c=0(a ≠0) 3.解法: ①直接开平方法:形如x 2=b(b ≥0)和(x+a)2=b(b ≥0)形式可直接开平方.如(3x-1)2=5两边开平方得: 513±=-x 513±=x 3 51,35121-=+=∴x x ②配方法:例:01232=--x x 解:1232=-x x 31322=- x x 9 13191322+=+-x x 94)31(2=-x 3 231±=-x 3231±=x 3 1,121-==∴x x 此类解法在解一元二次方程时,一般不用.但要掌握,因为很多公式推导用这种方法. ③公式法:)0(2)0(02≥??±-=≠=++a b x a c bx ax 的求根公式是 ④因式分解法:方程右边为零.左边分解成(ax+b)(cx+d)形式,将一元二次方程转化成ax+b=0,cx+d=0形式,变成两个一元一次方程来解. 4.根判别式:△=b 2-4ac b 2-4ac>0 方程有两个不相等实根. b 2-4ac=0 方程有两个相等实根. b 2-4ac<0 方程无实根. b 2-4a c ≥0 方程有实根. 有三种应用: ①不解方程确定方程根情况. ②利用方程根条件(如有两个不相等实根,无实根,有实根等) 利用Δ建立不等式求m 或k 取值范围. ③证明Δ必小于零,或Δ必大于零来证明方程无实根或一定有实根,将Δ化成完全平方式,叙述不论m(或k)无论取何值,一定有Δ>0或Δ<0来证.

判别式及根与系数的关系

- 1 - 一元二次方程根的判别式与根与系数的关系练习题2010-8-5 执笔:孙梅 1、 关于x 的0122=++kx x 有两个相等的实数根,则k=_________ 2、若方程0132=--x mx 有两个不相等的实数根,则m 的取值范围是_________ 3、若关于x 的一元二次方程06)4(22=+--x kx x 没有实数根,那么k 的最小整数值是________ 4、关于x 的一元二次方程0132=-+x kx 有实数根,则k 取值范围是_________ 5、若一元二次方程0)12(2=++-k x k kx 的有实数根,求k 取值范围是_________ 6、若a 、b 、c 分别是三角形的三边,则方程02)(2=++++b a cx x b a 的根的情况是( ) A 、没有实数根 B 、可能只有一个实数根 C 、有两个相等的实数根 D 、有两个不相等的实数根 7、若关于x 的一元二次方程0122=--x kx 有两个不相等的实数根,则k 的取值范围是( ) A 、k >-1 B 、k >-1且k ≠0 C 、k <1 D 、k <1且k ≠0 8、已知x =-3是关于x 的一元二次方程052)1(22=+++-a ax x a 的一个根,则a 的值为 ( ) A 、-4 B 、1 C 、-4或1 D 、4或-1 9、试证明,不论m 为何值,方程0)14(222=---m x m x 总有两个不相等的实数根。 10、如果关于x 的方程0)1(2)1(22=--++x c bx x a 有两个相等的实数根,那么以a 、b 、c 为三边的△ABC 是什么三角形?并说明理由。 11、若关于x 的一元二次方程.0422=++m x x ⑴若x=1是方程的一个根,求方程的另一个根; ⑵若21,x x 是方程的两个不同的实数根,且21,x x 满足022 221212221=-++x x x x x x ,求m 的值. 12、已知关于x 的方程0)1(222=++-m m x . ⑴当m 取什么值时,原方程没有实数根; ⑵给m 选一个合适的非零整数,使原方程有两个实数根,并求这两个实数根的平方和. 13、已知a 、b 是关于x 的方程01)1(22=-++-m x x m 的两个实数根,且31=+b a ,求ab 的值。 14、已知关于x 的一元二次方程033)2(222=+-+-+m m x m x 有两个不相等的实数根21,x x ;⑴求实数m 的取值范围;⑵若,62221=+x x 求m 的值. 15、1x 、2x 是方程05322=--x x 的两个根,不解方程,求下列代数式的值: (1)2221x x + (2)21x x - (3)2222133x x x -+

一元二次方程根的分布教学设计

一元二次方程根的分布教学设计 大庆一中高中部孙庆夺 一、教学分析 (一)教学内容分析 本节课所讲的内容是高中数学必修一第三章第一节《函数与方程》之后的一个专题内容,是中学数学的重要内容之一。这段内容与一元二次不等式,二次函数等内容有着紧密的联系。它是在前面学习了函数与方程,二次方程,二次不等式基础上对函数与方程内容的深化和拓展,通过根的分布的不同情况,充分体现了由简单到复杂、特殊到一般的化归的数学思想。从而提升学生对数学知识的应用能力。通过学习一元二次方程根的分布,有助于学生进一步理解二次方程,二次函数,加深函数与方程思想,数形结合思想在数学学习中的应用的认识,同时也为以后数学的学习打下扎实的基础。 (二)教学对象分析 高中一年级的学生已经有了一定的观察识图能力及分析判断能力,有利用已有知识解决新问题的愿望。学生学习了函数与方程,二次方程,二次函数的知识, 已经具有用数学知识解决实际问题的能力。学生抽象逻辑思维很大程度上还属于经验型,需要感性经验的直接支持。通过学习,抽象逻辑思维逐步成熟,能够用理论作为指导来分析、综合各种事实材料,从而不断扩大自己的知识领域。 (三)教学环境分析 由于本节课涉及到根的分布情况较多,对老师的的作图提出了很高的要求。采用传统的板式教学,根本就无法向学生演示动态过程,很难满足学生的求知欲,达不到教学的最佳效果。多媒体网络教学,是现代高中数学教学全新的教育技术,

使传统的教学方式得到补充。在计算机的帮助下,利用制作好的几何画板课件,操作演示,感受根的分布的不同情况,加深学生的认识和理解,同时也符合学生认识事物从感性认识到理想认识的认知过程。 (四)教学手段 采用多媒体网络教学。《普通高中数学课程标准》指出:“现代信息技术的广泛应用真正对数学教学、数学学习方面产生深刻的影响,数学课程的设计应重视运用现代信息技术,大力开发并向学生提供更为丰富的学习资源,提倡实现信息技术与课程内容的有机结合。”本节课涉及到的图象信息较多,利用多媒体网络教学可以实现最大容量地向学生提供图象信息,并让学生整理归纳信息,增强学生的动手能力、思考能力和自主学习能力,也能实现数学课堂中学生的高参与度,从而实现资源、时间、效率的最优化。 (五)教学方式 自主式探究,学案式导学。自主探究,学案导学的教学方式,能够激发学生的学习兴趣、突出学生的主题地位,培养学生的数学应用意识、合作精神,这与《新课标》的要求是吻合的。 二、教学目标 1.知识与能力 加深对一元二次方程,二次函数图象与性质的认识;会利用函数知识,方法重新审视一元二次方程. 2.过程与方法 体验“观察-猜想-验证”探究问题的方法,领会由简单到复杂,由特殊到一般的化归思想,加深对函数与方程,数形结合思想的理解。

复数范围内实系数一元二次方程(19题)答案

复数范围内实系数一元二次方程(19题)(答案) 1 、若实系数一元二次方程的一个根是13+,则这个方程可以是 228039 x x -+= . 2、复数集内分解221x x ++= 2(x x - 3、已知1x 与2x 是方程: 20(0)ax bx c a ++=≠在复数集中的两根,则下列等式成立的是( C ) (A) 1x 与2x 共轭 (B) 240b ac ?=-≥ (C)1212,b c x x x x a a +=-=, (D)12||x x -=212214)(x x x x -+ 4、判断下列命题的真假,并说明理由; (1)在复数范围内,方程20(,,ax bx c a b c ++=∈R ,且0)a ≠总 有两个根.( √ ) ) (2)若12i +是方程20x px q ++=的一个根,则这个方程的另 一个根是12i -.( ? ) (3)若方程20x px q ++=有两个共轭虚根,则p 、q 均为实数.( √) 5、已知复数z ,解方程3i 13i z z -?=+. 解:设i()z x y x y =+∈R ,,则方程可化为(3)(3)i 13i x y y x -+-=+. 由复数相等,有3133x y y x -=??-=?,,解得543.4 x y ?=-????=-??,. ∴53i 44z =--. 6、适合方程20z z i --=的复数z 12 i 7、适合方程2560z z -+=的复数z ; | 若z R ∈,则25602,32,3z z z z z z -+=?==?=±=± 若z 为虚数, 设(,,0)z a bi a b R b =+∈≠ ,则2()60a bi +-= 222226026020a b a b abi ab ??--=-+-=??=?? 2222606056010a b b b b b a ??--=??--=?+-=?=±?=?? 所以,方程的解为2,2,3,3,,i i ---。 8、解方程210x ix i -+-= (1)x R ∈ (2)x C ∈ 解:(1)1x = (2)11x orx i ==-

一元二次方程的根与系数的关系教学案(一)

一元二次方程的根与系数的关系教学案(一) 一、素质教育目标 (一)知识教学点: 掌握一元二次方程的根与系数的关系并会初步应用. (二)能力训练点: 培养学生分析、观察、归纳的能力和推理论证的能力. (三)德育渗透点: 1.渗透由特殊到一般,再由一般到特殊的认识事物的规律; 2.培养学生去发现规律的积极性及勇于探索的精神. 二、教学重点、难点、疑点及解决方法 1.教学重点:根与系数的关系及其推导. 2.教学难点:正确理解根与系数的关系. 3.教学疑点:一元二次方程根与系数的关系是指一元二次方程两根的和,两根的积与系数的关系. 三、教学步骤 (一)明确目标 一元二次方程x2-5x+6=0的两个根是x1=2,x2=3,可以发现x1+x2=5恰是方程一次项系数-5的相反数,x1x2=6恰是方程的常数项.其它的一元二次方程的两根也有这样的规律吗?这就是本节课所研究的问题,利用一元二次方程的一般式和求根公式去推导两根和及两根积与方程系数的关系——一元二次方程根与系数的关系.(二)整体感知

一元二次方程的求根公式是由系数表达的,研究一元二次方程根与系数的关系是指一元二次方程的两根的和,两根的积与系数的关系.它是以一元二次方程的求根公式为基础.学了这部分内容,在处理有关一元二次方程的问题时,就会多一些思想和方法,同时,也为今后进一步学习方程理论打下基础. 本节先由发现数字系数的一元二次方程的两根和与两根积与方程系数的关系,到引导学生去推导论证一元二次方程两根和与两根积与系数的关系及其应用.向学生渗透认识事物的规律是由特殊到一般,再由一般到特殊,培养学生勇于探索、积极思维的精神.(三)重点、难点的学习及目标完成过程 1.复习提问 (1)写出一元二次方程的一般式和求根公式. (2)解方程①x2-5x+6=0,②2x2+x-3=0. 观察、思考两根和、两根积与系数的关系. 在教师的引导和点拨下,由学生得出结论,教师提问:所有的一元二次方程的两个根都有这样的规律吗? 2.推导一元二次方程两根和与两根积和系数的关系. 设x1、x2是方程ax2+bx+c=0(a≠0)的两个根.

一元二次方程及根的定义

一元二次方程及根的定 义 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

一元二次方程及根的定义 1.已知关于的方程的一个根为2,求另一个根及 的值. 思路点拨:从一元二次方程的解的概念入手,将根代入原方程解的值,再代回原方程,解方程求出另一个根即可. 解:将代入原方程,得 即 解方程,得 当时,原方程都可化为 解方程,得. 所以方程的另一个根为4,或-1. 总结升华:以方程的根为载点.综合考查解方程的问题是一个常考问题,解这类问题关键是要抓住“根”的概念,并以此为突破口. 举一反三: 【变式1】已知一元二次方程的一个根是,求代数式 的值. 思路点拨:抓住为方程的一个根这一关键,运用根的概念解题. 解:因为是方程的一个根, 所以, 故, , 所以.

. 总结升华:“方程”即是一个“等式”,在“等式”中,根据题目的需要,合理地变形,是一种对代数运算综合要求较高的能力,在这一方面注意丰富自己的经验. 类型二、一元二次方程的解法 2.用直接开平方法解下列方程: (1)3-27x2=0; (2)4(1-x)2-9=0. 解:(1)27x2=3 . (2)4(1-x)2=9 3.用配方法解下列方程: (1);(2). 解:(1)由, 得, ,

, 所以, 故. (2)由, 得, , , 所以 故 4.用公式法解下列方程: (1);(2);(3). 解:(1)这里 并且 所以, 所以,. (2)将原方程变形为, 则 , 所以,

所以. (3)将原方程展开并整理得, 这里, 并且, 所以. 所以. 总结升华:公式法解一元二次方程是解一元二次方程的一个重点,要求熟练掌握,它对我们的运算能力有较高要求,也是提高我们运算能力训练的好素材. 5.用因式分解法解下列方程: (1);(2); (3). 解:(1)将原方程变形为, 提取公因式,得, 因为,所以 所以或, 故 (2)直接提取公因式,得 所以或,(即 故. (3)直接用平方差公式因式分解得

判别式和根与系数关系

判别式和根与系数关系专题复习 1.若关于x 的一元二次方程2210x x -+=有实数根,则m 的取值范围是( ) A.1m < B. 1m <且0m ≠ C.m ≤1 D. m ≤1且0m ≠ 2. 一元二次方程2210x x --=的根的情况为( ) A.有两个相等的实数根 B.有两个不相等的实数根 C.只有一个实数根 D. 没有实数根 3.已知关于x 的一元二次方程2410x x m ++-=.请你为m 选取一个合适的整数,当m =____________时,得到的方程有两个不相等的实数根; 4.已知x x 12,是方程x x 2210--=的两个根,则1112x x +等于__________. 5.若关于x 的方程227(21)04 x k x k +-+- =有两个相等的实数根,求k 的取值范围。 6、已知关于x 的方程2(2)2(1)10m x m x m ---++=,当m 为何非负整数时: (1)方程只有一个实数根; (2)方程有两个相等的实数根; (3)方程有两个不等的实数根. 7、求证:关于x 的方程2(21)10x k x k +++-=有两个不相等的实数根。

8、 证明:不论a ,b ,c 为任何实数,关于x 的方程0)()(22=+---c ab x b a x 都有实数 根. 9、求证:方程074)1(3222=--+-+m m x m x 对于任何实数m ,永远有两个不相等的实数根;(15分) 10、已知方程222(9)(34)0x k x k k +-+++=有两个相等的实数根,求k 值,并求出方程的根。 11、 已知关于x 的一元二次方程22 23840x mx m m --+-=. (1)求证:原方程恒有两个实数根; (2)若方程的两个实数根一个小于5,另一个大于2,求m 的取值范围.

一元二次方程根的分布情况归纳总结

一元二次方程02 =++c bx ax 根的分布情况 设方程()2 00ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=, 方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件) 表一:(两根与0的大小比较即根的正负情况) 分 布情况 两个负根即两根都小于0 ()120,0x x << 两个正根即两根都大于0 ()120,0x x >> 一正根一负根即一个根小于0,一个大于0()120x x << 大致图象( >a ) 得出的结论 ()00200b a f ?>??? -?? ()0 0200 b a f ?>??? ->??>?? ()00??? -??? ->??f 综 合结论(不讨论 a ) ()00200b a a f ?>???-?? ()0 0200 b a a f ?>???->???>?? ()00

分 布情况 两根都小于k 即 k x k x <<21, 两根都大于k 即 k x k x >>21, 一个根小于k ,一个大于k 即 21x k x << 大致图象( >a ) 得出的结论 ()020b k a f k ?>??? -?? ()0 20 b k a f k ?>??? ->??>?? ()0??? -??? ->??k f 综 合结论(不讨论 a ) ()020b k a a f k ?>??? - ?? ()0 20 b k a a f k ?>??? - >???>?? ()0

一元二次方程根与系数之间的关系

中考数学辅导之—一元二次方程根与系数之间的 关系 我们系统的学习了一元二次方程的解法及一元二次根的判别式和一元,从暑假开始我们将学习几何,二次方程根与系数之间的关系.本次,我们全面复习前面所学内容,下次. 中的第六章解直角三角形一、基本内容的整式方程叫一元且未知数的次数最高是1.一元二次方程含义:含有一个未知数,2. 二次方程20) +bx+c=0(a一般形式:ax≠2.: 3.解法22如=b(b≥0)0)和(x+a)的形式可直接开平方:①直接开平方法形如 x.=b(b≥2: 两边开平方得(3x-1)=551?51??,?x?x5?x53?13x?1??21332 :② 配方法:例03x??2x?11222解:1?2x3x??xx?3311212?xx??? 939321412??x?(x)??3393121?,xx????x?121333因 为很多公式的推导用这种方,.但要掌握此类解法在解一元二次方程时,一般不用. 法?b??2)??0(?0axbx??c?0(a?)的求根公式是x:③公式法a2将一元二次方程转,:方程右边为零.左边分解成(ax+b)(cx+d)的形式④因式分解法. 变成两个一元一次方程来解化成ax+b=0,cx+d=0的形式,2-4ac =b根的判别式:△4.2. 方程有两个不相等实根b-4ac>0 2-4ac=0 方程有两个相等实根. b2-4ac<0 方程无实根. b2-4ac≥0 b方程有实根. 有三种应用: ①不解方程确定方程的根的情况. ②利用方程的根的条件(如有两个不相等实根,无实根,有实根等) 利用Δ建立不等式求m或k的取值范围. ③证明Δ必小于零,或Δ必大于零来证明方程无实根或一定有实根,将Δ化成完 全平. 来证<0Δ或>0Δ一定有,无论取何值k)或m(叙述不论,方式 cb2. +bx+c=0(a≠0)的根,则5.根与系数间的关系,某x,x是ax?x,x?x?x??212121aa: 应用. 求方程中m或k的值或另一根①不解方程,. 求某些代数式的值②不解方程,. 的取值范围m或k③利用两根的关系,求方程中. 使它与原方程有某些关系④建立一个方程,. ⑤一些杂题 : 二、本次练习: 填空题(一)22mx??x3mx?2x?m m=____. 1.关于x是一元二次方程的方程,则2常数化成一元二次方程的形式是____.其一次项系数是 2.将方程4x____,-kx+k=2x-1____. 项是222x=____. 则代数式(x+2)+(x-2)的值相等的值与8(x,-2)3.522 +( )=(x- )4.x?x 22k=____.

一元二次方程的根的判别式练习题

一元二次方程的根的判别式 1、方程2x 2+3x -k=0根的判别式是 ;当k 时,方程有实根。 2、关于x 的方程kx 2+(2k+1)x -k+1=0的实根的情况是 。 3、方程x 2+2x+m=0有两个相等实数根,则m= 。 4、关于x 的方程(k 2+1)x 2-2kx+(k 2+4)=0的根的情况是 。 5、当m 时,关于x 的方程3x 2-2(3m+1)x+3m 2-1=0有两个不相等的实数根。 6、如果关于x 的一元二次方程2x(ax -4)-x 2+6=0没有实数根,那么a 的最小整数值是 。 7、关于x 的一元二次方程mx 2+(2m -1)x -2=0的根的判别式的值等于4,则m= 。 8、设方程(x -a)(x -b)-cx=0的两根是α、β,试求方程(x -α)(x -β)+cx=0的根。 9、不解方程,判断下列关于x 的方程根的情况: (1)(a+1)x 2-2a 2x+a 3=0(a>0) (2)(k 2+1)x 2-2kx+(k 2+4)=0 10、m 、n 为何值时,方程x 2+2(m+1)x+3m 2+4mn+4n 2+2=0有实根? 11、求证:关于x 的方程(m 2+1)x 2-2mx+(m 2+4)=0没有实数根。 12、已知关于x 的方程(m 2-1)x 2+2(m+1)x+1=0,试问:m 为何实数值时,方程有实数根? 13、 已知关于x 的方程x 2-2x -m=0无实根(m 为实数),证明关于x 的方程x 2+2mx+1+2(m 2-1)(x 2+1)=0 也无实根。 14、已知:a>0,b>a+c,判断关于x 的方程ax 2+bx+c=0根的情况。 15、m 为何值时,方程2(m+1)x 2+4mx+2m -1=0。 (1)有两个不相等的实数根; (2)有两个实数根; (3)有两个相等的实数根; (4)无实数根。 16、当一元二次方程(2k -1)x 2-4x -6=0无实根时,k 应取何值? 17、已知:关于x 的方程x 2+bx+4b=0有两个相等实根,y 1、y 2是关于y 的方程y 2+(2-b)y+4=0的两实根,求以1y 、2y 为根的一元二次方程。 18、若x 1、x 2是方程x 2+ p x+q=0的两个实根,且23x x x x 222121=++,25x 1x 12221=+求p 和q 的值。 19、设x 1、x 2是关于x 的方程x 2+px+q=0(q ≠0)的两个根,且x 2 1+3x 1x 2+x 2 2=1, 0)x 1(x )x 1(x 2211=+++,求p 和q 的值。 20、已知x 1、x 2是关于x 的方程4x 2-(3m -5)x -6m 2=0的两个实数根,且23x x 21=,求常数m 的值。 21、已知α、β是关于x 的方程x 2+px+q=0的两个不相等的实数根,且α3-α2β-αβ2+ β3=0,求证:p=0,q<0 22、已知方程(x -1)(x -2)=m 2(m 为已知实数,且m ≠0),不解方程证明: (1)这个方程有两个不相等的实数根;

根与系数的关系

一元二次方程的根与系数的关系 教学目的 1.使学生掌握一元二次方程根与系数的关系(即韦达定理),并学会初步运用. 2.培养学生分析、观察以及利用求根公式进行推理论证的能力. 教学重点、难点 重点:韦达定理的推导和初步运用. 难点:定理的应用. 教学过程 一、复习提问 1.一元二次方程ax2+bx+c=0的求根公式应如何表述? 2.上述方程两根之和等于什么?两根之积呢? 二、新课讲解 一元二次方程ax2+bx+c=0(a≠0)的两根为 由此得出,一元二次方程的根与系数之间存在如下关系:(又称“韦达定理”) 如果ax2+bx+c=0(a≠0)的两个根是x 1,x2,那么 例1已知方程5x2+k x-6=0的一个根是2,求它的另一根及k的值. 讲解例1

例2利用根与系数的关系,求一元二次方程2x2+3x-1=0两根的(1)平方和;(2)倒数和. 三、学生练习 1.下列各方程两根之和与两根之积各是什么? (1)x2-3x-18=0;(2)x2+5x+4=5; (3)3x2+7x+2=0;(4)2x2+3x=0. 2.方程5x2+kx-6=0两根互为相反数,k为何值? 3.方程2x2+7x+k=0的两根中有一个根为0,k 为何值? 4、已知两个数的和等于8,积等于9,求这两个数. 提示:这是一道“根与系数的关系定理”的应用题,要注意此类题的解题步骤:(1)运用定理构造方程; (2)解方程求两根; (3)得出所欲求的两个数. 四、课堂小结 1.本节课主要学习了一元二次方程根与系数关系定理,应在应用过程中熟记定理. 2.要掌握定理的四个应用:一是不解方程直接求方程的两根之和与两根之积;二是已知方程一根求另一根及系数中字母的值.三是已知方程求两根的各种代数式的值;四是已知两根的代数式的值,构造新方程; 五、布置作业: 1、本节不留书面作业。 2、探究性作业:课本55页探索。

一元二次方程根与系数关系附答案

一元二次方程根与系数的关系(附答案) 评卷人得分 一.选择题(共6小题) 1.已知关于x的一元二次方程3x2+4x﹣5=0,下列说确的是() A.方程有两个相等的实数根B.方程有两个不相等的实数根 C.没有实数根 D.无法确定 2.关于x的一元二次方程x2+2x﹣m=0有实数根,则m的取值围是()A.m≥﹣1 B.m>﹣1 C.m≤﹣1 D.m<﹣1 3.关于x的一元二次方程x2+3x﹣1=0的根的情况是() A.有两个不相等的实数根B.有两个相等的实数根 C.没有实数根 D.不能确定 4.设x1、x2是一元二次方程2x2﹣4x﹣1=0的两实数根,则x12+x22的值是()A.2 B.4 C.5 D.6 5.若α、β是一元二次方程x2﹣5x﹣2=0的两个实数根,则α+β的值为()A.﹣5 B.5 C.﹣2 D. 6.已知关于x的方程x2﹣4x+c+1=0有两个相等的实数根,则常数c的值为() A.﹣1 B.0 C.1 D.3 评卷人得分

二.填空题(共1小题) 7.若关于x的一元二次方程x2﹣3x+a=0(a≠0)的两个不等实数根分别为p,q,且p2﹣pq+q2=18,则的值为. 评卷人得分 三.解答题(共8小题) 8.已知关于x的方程x2﹣(2k+1)x+k2+1=0. (1)若方程有两个不相等的实数根,求k的取值围; (2)若方程的两根恰好是一个矩形两邻边的长,且k=2,求该矩形的对角线L 的长. 9.已知关于x的方程x2+ax+a﹣2=0. (1)若该方程的一个根为1,求a的值; (2)求证:不论a取何实数,该方程都有两个不相等的实数根. 10.已知关于x的一元二次方程(x﹣m)2﹣2(x﹣m)=0(m为常数).(1)求证:不论m为何值,该方程总有两个不相等的实数根; (2)若该方程一个根为3,求m的值. 11.已知关于x的一元二次方程x2﹣x+a﹣1=0. (1)当a=﹣11时,解这个方程; (2)若这个方程有两个实数根x1,x2,求a的取值围; (3)若方程两个实数根x1,x2满足[2+x1(1﹣x1)][2+x2(1﹣x2)]=9,求a的值. 12.已知x1,x2是关于x的一元二次方程4kx2﹣4kx+k+1=0的两个实数根.

数学:13.6《实系数一元二次方程》教案(1)(沪教版高二下)

13.6(1)实系数一元二次方程 上海市新中高级中学 陶志诚 一、教学内容分析 本节内容是在前面学习了复数的运算后,对初中已学过的一元二次方程的求根公式和韦达定理的推广和完善. 为了实际应用和数学自身发展的需要,数的概念需要再一次扩充——由实数扩充到了复数,解决了负数开平方的问题。那么实系数一元二次方程20a x b x c ++=,当240b ac ?=-<时方程在复数集中解的情况同样需要进一步研究.因此,本节课主要是探讨实系数一元二次方程在复数集中解的情况和在复数范围内如何对二次三项式进行因式分解等问题. 二、教学目标设计 理解实系数一元二次方程在复数集中解的情况;会在复数集中解实系数一元二次方程;会在复数范围内对二次三项式进行因式分解;理解实系数一元二次方程有虚数根时根与系数的关系,并会进行简单应用. 三、教学重点及难点 在复数集中解实系数一元二次方程;在复数范围内对二次三项式进行因式分解. 四、教学用具准备 电脑、实物投影仪 五、教学流程设计

六、教学过程设计 (一)复习引入 1.初中学习了一元二次方程20ax bx c ++=(a b c R ∈、、且0)a ≠的求根公式,我 们回顾一下: 当240b ac ?=-≥ 时,方程有两个实数根:2b x a =-± 2.上一节课学习了“复数的平方根与立方根”,大家知道-1的平方根是:i ±. 设问①:一元二次方程210x +=在复数范围内有没有解? 设问②:在复数范围内如何解一元二次方程210x x ++=? [说明] 设问①学生可以根据“复数的平方根”知,x 即为-1的平方根:i ±;设问②是为了引出本节课的课题:实系数一元二次方程. (二)讲授新课 1、实系数一元二次方程在复数集C 中解的情况: 设一元二次方程20(0)ax bx c a b c R a ++=∈≠、、且. 因为0a ≠,所以原方程可变形为2b c x x a a +=-, 配方得

根与系数之间关系应用一

2013根与系数关系应用 一.填空题(共30小题) 1.(2012?泸州)设x1,x2是一元二次方程x2﹣3x﹣1=0的两个实数根,则x12+x22+4x1x2的值为_________.2.(2012?鄂州)设x1、x2是一元二次方程x2+5x﹣3=0的两个实根,且,则a= _________. 3.(2011?苏州)已知a、b是一元二次方程x2﹣2x﹣1=0的两个实数根,则代数式(a﹣b)(a+b﹣2)+ab的值等于_________. 4.(2011?德州)若x1,x2是方程x2+x﹣1=0的两个根,则x12+x22=_________. 5.(2010?雅安)已知一元二次方程x2﹣mx+m﹣2=0的两个实数根为x1、x2,且x1x2(x1+x2)=3,则m的值是 _________. 6.(2010?芜湖)已知x1、x2为方程x2+3x+1=0的两实根,则x13+8x2+20=_________. 7.(2010?成都)设x1,x2是一元二次方程x2﹣3x﹣2=0的两个实数根,则x12+3x1x2+x22的值为_________. 8.(2009?天津)若分式的值为0,则x的值等于_________. 9.(2008?鄂州)已知α,β为方程x2+4x+2=0的二实根,则α3+14β+50=_________. 10.(2007?芜湖)已知2﹣是一元二次方程x2﹣4x+c=0的一个根,则方程的另一个根是_________.11.(2007?宿迁)设x1,x2是方程x(x﹣1)+3(x﹣1)=0的两根,则|x1﹣x2|=_________.12.(2006?株洲)已知a、b是关于x的方程x2﹣(2k+1)x+k(k+1)=0的两个实数根,则a2+b2的最小值是_________.13.(2006?日照)已知,关于x的方程x2+=1,那么x++1的值为_________.14.(2006?南充)如果α、β是一元二次方程x2+3x﹣1=0的两个根,那么α2+2α﹣β的值是_________. 15.(2001?甘肃)如果二次三项式3x2﹣4x+2k在实数范围内总能分解成两个一次因式的乘积,则k的取值范围是_________. 16.(2001?东城区)若2x2﹣5x+﹣5=0,则2x2﹣5x﹣1的值为_________. 17.(2000?辽宁)已知α,β是方程x2+2x﹣5=0的两个实数根,则α2+αβ+2α的值为_________. 18.(1999?温州)若m、n是关于x的方程x2+(p﹣2)x+1=0的两实根,则代数式(m2+mp+1)(n2+np+1)的值等于_________.

一元二次方程根的判别式根与系数之间的关系练习题

一元二次方程根的判别式、 根与系数的关系练习题 1、方程0232=+-x kx 有两个相等的实数根,则 k 。 2、若关于x 的方程0342=+-x kx 有实数根,则k 的非负整数值是 。 3、关于x 的方程()0191322 =-+--m x m mx 有 两个实数根,则m 的范围是 。 4、已知k>0且方程11232-=++k x kx 有两个相等的实数根,则k= 。 5、当 k 不小于4 1 - 时,方程 ()()01222 =+---k x k x k 根的情况是 。 6 、 如 果 关 于 x 的 方 程 ()()01222=+---m x m x m 只有一个实数根,那么 方程()()0422 =-++-m x m mx 的根的情况 是 。 7、如果关于x 的方程()0 5222 =+++-m x m mx 没有实数根,那么关于x 的方程()()0 2252=++--m x m x m 的 实 根 个 数 是 。 8、如果方程0422=--mx x 的两根为21,x x ,且 2112 1=+x x ,求实数 m 的值。 9、已知方程()02122 2 =-+++k x k x 的两实根 的平方和等于11,求k 的值。 10、m 取什么值时,方程()01222 =-++x x m 有 两个不相等的实数根? 11、m 取什 么值时,方程 ()()0132 2=++--m x m x 有两个不相等的实数根? 12、已知014=-++b a ,当k 取何值时,方程02=++b ax kx 有两个不相等的实数根? 13、当m 是什么整数时,关于x 的一元二次方程 0442=+-x mx 与0544422=--+-m m mx x 的 根都是整数? 14、在△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,且35=c ,若关于x 的方程 ()() 035235 2=-+++b ax x b 有两个相等的实数 根,且方程()0sin 5sin 1022 =+-A x A x 的两实根的平方和为6,求△ABC 的面积。(斜边 的对边 角A A = sin ) 15、已知实数a 、b 满足b b a a 22,222 2 -=-=,且a ≠b ,求a b b a +的值。 16、已知:0125,0522 2 =-+=--q q p p ,其中p 、q 这实数,求2 2 1 q p +的值。 17、设方程071012=-+-k x x 的一个根的3倍少7为另一个根,求k 的值。 18、已知方程0422 2=-+-m mx x ,不解方程,求 证:(1)它有两个不相等的实数根; (2)当m>2时,它的两个根都是正数。 19、已知:关于x 的方 程

相关文档
相关文档 最新文档