文档库 最新最全的文档下载
当前位置:文档库 › 压水堆核电站铁水反应机理研究

压水堆核电站铁水反应机理研究

压水堆核电站铁水反应机理研究
压水堆核电站铁水反应机理研究

第44卷第4期原子能科学技术

Vo l.44,N o.4 2010年4月Atomic Ener gy Science and T echno logy Apr.2010

压水堆核电站铁水反应机理研究

吕雪峰,陆道纲,刘

(华北电力大学核科学与工程学院,北京

102206)

摘要:从微观上研究压水堆核电站严重事故下减少或控制氢气生成的措施需研究氢气生成的微观机理。本工作采用量子化学理论,应用量子化学软件包G aussian03,在B3L Y P/6 311+G (d)理论模型上研究了压水堆严重事故下铁水反应的微观机理,并计算了活化能。结果表明,铁水反应是由两个基元反应组成的总包反应。第2步基元反应的正反应活化能较大,是铁水反应的速控步。在微观上研究减少或控制氢气生成的措施应从第2步基元反应入手。关键词:压水堆;铁水反应;反应机理中图分类号:T L 364.4

文献标志码:A 文章编号:1000 6931(2010)04 0447 04

Study on Reaction Mechanism of Iron With Water in Pressurized Water Reactor

L Xue feng,LU Dao gang,LIU Bin

(School of N uclear S cience and Engineer ing ,N or th China E lectr ic P ower Univer sity ,Beij ing 102206,China)

Abstract: The reaction mechanisms on hydrog en g ener ation are the base of study ing the micro cosmic measure to reduce or control hydrogen generation in the severe accidents fo r the pressurized w ater reacto r plants.T he quantum chem istry softw are Gaussian03w as used to study the reactio n mechanism of iron w ith w ater at the B3LYP/6 311+G(d)theory mo del of quantum chemistr y.The active energy w as calculated.The results show that the reaction of iron with w ater is a total reaction,dividing into tw o elementary reactio ns.The reaction rate o f the total reaction is determ ined by the second elementary r eaction because o f its higher activ e energ y.It is concluded that the second elementary r eaction should be the key elementary reaction to reduce the hy dro gen generation.

Key words:pr essurized w ater reactor;reaction o f ir on w ith w ater;reaction mechanism 收稿日期:2009 07 31;修回日期:2009 09 04

基金项目:教育部博士学科点专项科研基金资助项目(20070079013);校内博士基金、长江学者和创新团队发展计划资助项目

(IRT0720)

作者简介:吕雪峰(1978 ),女,河南南阳人,讲师,博士,核科学与技术专业

不锈钢是压水堆的压力容器和堆内构件的主要材料,铁是不锈钢材料中的主要组成元素之一。压水堆核电站严重事故下,丧失余热排

出手段后,堆芯燃料温度持续上升进而导致堆芯熔化解体,堆芯熔融物进入反应堆压力壳底部水坑致使反应堆压力壳失效。在该事故过程

中,铁与水蒸气在高温下反应是压水堆产生氢气的重要途径之一[1]。氢气在产生源附近或在安全壳内与空气混合后可能发生燃烧或爆炸[2 3]

。氢气的燃烧或爆炸对安全壳完整性构成严重威胁,造成放射性物质泄漏到环境中[4]。

国内外的实验和理论研究[5 17]主要从宏观角度研究压水堆严重事故下的氢气行为,尚未从微观机理上对压水堆核电站安全壳内氢气行为进行研究。本工作将探索压水堆核电站严重事故下铁与水蒸气反应的微观机理,为从微观上提出减少或控制压水堆严重事故下生成氢气的措施奠定理论基础。

1研究内容与方法

压水堆核电站严重事故下,不锈钢材料中

的铁与水蒸气的反应主要有两个:Fe+H 2O FeO+H 2和3Fe+4H 2O Fe 2O 4+4H [16]2。根据计算经验,反应3Fe+4H 2O Fe 2O 4+4H 2

是包含众多基元反应的总包反应,反应过程非常复杂。为探明压水堆铁水反应的基本原理,首先研究相对简单的反应Fe+H 2O FeO +H 2,为深入探索铁水反应微观机理奠定基础。反应Fe+H 2O FeO+H 2微观机理研究主要包括寻找反应路径和计算反应的活化能。量子化学计算在实验化学和材料研究等方面已获得广泛应用[18 19],本工作采用量子化学软件包Gaussian03在适合于金属铁的B3LYP/6 311+G(d)理论模型上对铁水反应的微观机理进行研究,找到反应的过渡态,确定最低能量路径,计算正(逆)反应的活化能。

具体研究步骤如下:1)对压水堆核电站严重事故下铁水反应所包含的每个基元反应优化出过渡态(T S);2)在过渡态基础上利用内禀反应坐标理论(IRC)计算反应的最低能量路

径;3)在同一理论模型上对最低能量路径上各稳定点(反应物、过渡态、产物)进行几何构型优化和频率分析,计算出各稳定点的能量;4)根据各稳定点经零点能修正后的能量计算正(逆)反应的活化能。

2

结果与讨论

2.1

反应过程

研究发现,压水堆核电站严重事故下铁与

水蒸气反应Fe+H 2O FeO +H 2是一总包反应,包括两个基元反应Fe+H 2O H FeOH 和H FeOH FeO+H 2。反应物Fe 向H 2O 接近的过程中能量升高,越过过渡态1后能量下降生成中间体H FeOH ,此后能量继续升高,越过过渡态2后生成产物FeO 和H 2,具体反应过程示于图1。两个基元反应的过渡态的几何构型参数列于表1。2.2稳定点频率

要确定所搜索到的过渡态就是所研究反应的真正过渡态,首先过渡态必须有且只有1个虚频。因此,在B3LYP/6 311+G(d)理论模型上对压水堆严重事故下铁与水蒸气反应Fe+H 2O FeO+H 2的反应路径上各稳定点(反应物、过渡态1、中间体、过渡态2、产物)进行了频率分析,过渡态1振动频率的计算结果为-1223.1、514.07、589.51、885.06、1373.64、3000.63cm

-1

,过渡态2振动频率的计算结果

为-1025.25、598.07、695.29、767.84、1636.27、2175.41cm -1。 从两个过渡态的振动频率可以看出,各基元反应的过渡态都有且只有1个虚频,满足过渡态的第1个判据,因此,所搜索到的两个过渡态有可能是反应Fe+H 2O FeO+H 2所包含

的两个基元反应的真正过渡态。

图1F e+H 2O FeO+H 2的反应过程示意图Fig.1

Reactio n mechanism of Fe+H 2O F eO+H 2

448

原子能科学技术 第44卷

表1

过渡态的几何构型参数

Table 1

Geometric parameters of transition state

稳定点键长

键角

过渡态1

O 1 Fe 2(0.1877)O 1

H 3(

0.971)

O 1 H 4(0.1387)

!H 3O 1Fe 2(115.454)!H 4O 1Fe 2(

59.833)

!H 4O 1Fe 2H 3(95.400)过渡态2

O 1 H 2(0.1488)H 2 H 3(0.0905)O 1 H 4(0.1693)

!H 3H 2O 1(138.392)!Fe 4O 1H 2(64.769)!Fe 4O 1H 2H 3(0.0)

注:O 1 H 2为第1个原子O 与第2个原子H 之间的键

长,括号内为键长量值,单位为nm ;!H 3H 2O 1为键角,!H 4O 1Fe 2H 3为二面角,括号内为键角量值,单位为(?)

2.3最低能量路径

要确定所搜索到的两个过渡态是压水堆严

重事故下铁与水蒸气反应Fe+H 2O FeO+H 2

所包含的两个基元反应的真正过渡态,还需满足第2个判据:从过渡态出发进行内禀反应坐标计算,得到的最小能量路径的两端分别连接着各基元反应的反应物和产物。本工作在优化出的两个基元反应的过渡态基础上分别进行的内禀反应坐标理论(IRC)计算结果证明,IRC 曲线的两端的确连接着所对应基元反应的反应物和产物,所搜索到的过渡态的确为所研究反应的过渡态。该总包反应的最低能量路径示于图2

图2 Fe+H 2O F eO +H 2最低能量路径示意图Fig.2

M inimum energ y path of F e+H 2O FeO+H 2

从图2可看出,基元反应Fe +H 2O H FeOH 的正反应活化能低于逆反应活化能,正反应比较容易进行;基元反应H FeOH FeO+H 2的正反应活化能大于逆反应活化能,正反应相对难以进行;基元反应H FeOH FeO+H 2的正反应活化能大于基元反应Fe+H 2O H FeOH 的正反应活化能,故

第2步基元反应H FeOH FeO+H 2比较难以进行。2.4

活化能计算

要计算压水堆核电站严重事故下铁与水蒸气反应Fe+H 2O FeO+H 2的活化能,必须计算每个基元反应最小能量路径上各稳定点(反应物、过渡态、产物)的能量。最小能量路径上各稳定点的能量列于表2。

表2各稳定点的能量Table 2

Energy of all stable points

稳定点(E 0+E ZPV )/a u Fe+H 2O

-1340.037754过渡态1-1340.034731H FeOH -1340.084059过渡态2-1340.015913FeO+H 2

-1340.023352

注:E ZPV 为零点能

由表2提供的能量计算的基元反应Fe+H 2O H FeOH 正、逆反应的活化能分别为:

E f1=E TS1-E R1=7.9369kJ #mo l -1E r1=E TS1-E P1=129.5107kJ #mo l -1 基元反应H FeOH FeO+H 2正、逆反应的活化能分别为:

E f2=E TS2-E R2=178.9173kJ #mo l

-1

E r2=E TS2-E P2=19.5311kJ #m ol

-1

两个基元反应活化能的计算结果与图2结果一致,基元反应H FeOH FeO+H 2的正反应活化能为178.9173kJ #mol -1

,远大于基元反应Fe +H 2O H FeOH 的正反应活化能7.9369kJ #m ol -1

,相对难以进行,是铁与水蒸气反应的速控步,铁与水蒸气反应生成氢气

的快慢主要由该基元反应决定。所以,在压水堆严重事故下,减少氢气生成的措施可从该基元反应入手。

文中计算的是铁原子和气态水分子的反应,实际上严重事故下的金属铁并非以原子形态存在,计算所得反应速率较实际速率快。

3结论

研究了压水堆严重事故下铁与水蒸气反应Fe+H 2O FeO+H 2的微观机理,并利用内禀

449

第4期 吕雪峰等:压水堆核电站铁水反应机理研究

反应坐标理论(IRC)对反应路径进行确认。计算结果表明,铁水反应Fe+H2O FeO+H2是由两个基元反应Fe+H2O H FeOH, H FeOH FeO+H2组成的总包反应。

第2步基元反应H FeOH FeO+H2的正反应活化能为178.9173kJ#mol-1,远大于基元反应Fe+H2O H FeOH的正反应活化能,因此,基元反应H FeOH FeO+H2是铁水反应的速控步,从微观上研究压水堆严重事故下减少氢气生成量或降低氢气生成速率的措施应从基元反应H FeOH FeO+H2入手。

参考文献:

[1] N EA.In vessel and ex v essel hydro gen sources,

N EA/CSN I/R(2001)15[R].F rance:N uclear

Ener gy A gency,2001.

[2] SEHG A L B R.A cco mplishments and challeng es

of the sev ere accident research[J].N uclear Engi

neer ing and Desig n,2001,210:79 94

[3] 朱继洲,奚树人,杨志林,等.核反应堆安全分析

[M].西安:西安交通大学出版社,2000.

[4] Severe accident risks:A n assessment for five U S

nuclear power plants,N U R EG:N U REG 1150

[R].U SA:N RC,1990.

[5] PR EU SSER G.Co ncept for the analysis of hy

dr og en problems on nuclear po wer plants after

accidents[C]?Pro ceedings of the OECD/N EA/

CSNI W orkshop o n the Implementatio n of H y

dr og en M itig ation T echniques.Canada:[s.n.],

1996.

[6] RO YL P.A naly sis o f mitig ating measur es dur ing

steam/hydro gen distr ibutions in nuclear r eacto r

containments w ith the3D field co de G ASF LO W

[C]?P ro ceedings of the O ECD/N EA/CSN I

Wo rkshop on the Implementation of Hy dr og en

M it igat ion T echniques.Canada:[s.n.],1996.

[7] RO YL P,RO CH H OL Z H,BREIT U N G W,et

al.A naly sis of steam and hydro gen distributio ns

w ith P AR mitig atio n in N PP containments[J].

N uclear Eng ineering and Desig n,2000,202(2

3):231 248.

[8] Y IM K.H y dr og en mix ing study in CA N DU con

tainments cell size spatial converg ence analy sis o n

GO T H IC distr ibuted par ameter models[C]?

Pro ceedings o f the19th CN S Simulatio n Sympo

sium.H amilto n,Ontar io:[s.n.],1995. [9] W A NG L L.M o delling of hy dr og en deflag ration

in a vented vessel[C]?Pro ceedings of the19th

CN S Simulation Symposium.Hamilton,O ntar i

o:[s.n.],1995.

[10]D U RST B.Interactio n o f turbulence deflag ration

w ith r epr esentative flo w obstacles[C]?Pr oceed

ing s of the OECD/N EA/CSNI W orkshop o n the

I mplementation of H ydro gen M itigation T ech

niques.Canada:[s.n.],1996.

[11]RO YL P.V alidation of G ASF LO W for analy sis

o f st eam/hydrog en transpo rt and combustion

pr ocesses in nuclear reacto r containments[C]?

Pro ceedings of the13th SM iRT Conference.

Brazil:[s.n.],1995.

[12]D ORO FEEV S B,SID ORO V V P.Deflag ration

t o detonation tr ansit ion in larg e confined vo lume

o f lean hydrog en air mixtur es[J].Combustion

and Flame,1996,104:95 110.

[13]郎明刚.大亚湾核电站全厂断电诱发的严重事

故研究[D].北京:清华大学核能与新能源技术

研院,2002.

[14]甘向阳.大亚湾核电站二级PSA中的L O CA诱

发严重事故的研究[D].北京:清华大学核能与

新能源技术研院,2001.

[15]林继铭.严重事故下安全壳喷淋模式的研究

[D].北京:清华大学核能与新能源技术研院,

2003.

[16]肖建军.严重事故下安全壳内氢气分布及缓解

措施的研究[D].北京:清华大学核能与新能源

技术研院,2006.

[17]宋春景.典型严重事故下安全壳内氢分布分析

及对策探讨[D].上海:上海核工程研究设计院,

2004.

[18]R YDE U.Co mbined quant um and mo lecular me

chanics calculations on metallo pr oteins[J].Cur

r ent Opinio n in Chemical Biolog y,2003,7(1):

136 142.

[19]L AT OU R J R A,H EN CH L L.A theo retical

analysis of the ther modynamic contr ibutions for

t he adso rptio n of individual pr otein residues on

functionalized surfaces[J].Biomater ials,2002,

23(23):4633 4648.

450原子能科学技术 第44卷

核电厂运行

1、核电厂与普通化石燃料电厂相比有哪些主要区别? a.核电厂有临界的特点,反应堆必须达到临界才能工作;核电厂必须保证足够的核燃料装 量,既有临界质量的限制,也要保证适当长的换料周期;反应堆中的核燃料不可能全部耗尽。 b.放射性特点:放射性物质的来源:裂变产物、衰变产物、活化产物和放射性废物(气、 液、固);防止放射性物质的释放是核电厂安全的首要目标。 c.剩余释热问题:剩余释热主要由剩余裂变发热和衰变热两部分组成;因此核反应堆必须 要有余热排出系统;冷却剂泵有一个很大的惰性飞轮。 d.系统的复杂性:核电厂系统设备比普通化石燃料电厂更为复杂;运行人员驾驭核电厂过 渡瞬变更为困难;核电厂的成本结构与普通化石燃料电厂不同(核电厂建造成本高而运行成本低,化石燃料电厂建造成本低而运行成本高);因此要求核电厂尽量带基本负荷运行,并且尽量减少停堆。 e.饱和蒸气问题:核电厂绝大多数使用饱和蒸汽,而化石燃料电厂使用过热蒸汽;饱和蒸 汽的焓值比过热蒸汽的焓值低;因此在相同规模的情况下,核电厂使用的蒸汽管道、汽轮机、调节阀门等的尺寸较大,给运行带来了一些问题。 2、压水堆核电厂载硼运行有哪些优点和缺点? 优点:1)可以控制较大的反应性,延长了反应堆的换料周期,提高了经济性; 2)有利于改善反应堆中子通量密度的分布,提高安全性,提高核燃料利用率。 3)减少了控制棒的数目,简化了控制棒系统的设计,减少了压力壳的开孔数目,提高了压力壳的安全性。 4)通过注硼可以实现可靠停堆,保证足够的停堆深度。 缺点:1)增加了一个化学容积控制系统,增加运行复杂性。 2)硼浓度过高可能导致正的慢化剂温度系数,增加了运行风险。 3)运行中需要经常调整硼浓度,增加了废物量。 3、为什么在压水堆运行中引入汽轮机快速降负荷功能?哪些条件引起汽轮 机快速降负荷? 原因:在保证反应堆安全的前提下,尽量避免紧急停堆 引起汽轮机快速降负荷的情况有:超温ΔT或超功率ΔT值比事故保护停堆值低3%; 功率高于80%满功率时一台主给水泵跳闸;一路加热器疏水箱疏水被旁通到冷凝器。 4、核电厂的运行工况有哪些 a)Ⅰ类工况:正常运行和运行瞬态 b)Ⅱ类工况:中等频度事件 c)Ⅲ类工况:稀有事件 d)Ⅳ类工况:极限事故 5、运行模式的分类(温度一栏舍去) 模式K eff额定热功率/% 冷却剂平均温度 /℃ 1. 功率运行≥0.99 >5 ≥176.6 2. 启动≥0.99 ≤5 ≥176.6 3. 热备用<0.99 0 ≥176.6

压水堆核电站组成资料

压水堆核电站组成 上一条新闻核安全名词解释下一条新闻核电站的控制调节与安全保护 enterlsb转载|栏目:电力规范| 2007-08-06 23:12:09.42 | 阅读433 次 压水堆核电站由压水堆、一回路系统和二回路系统三个主要部分组成。 2-1 压水堆主要部件 2-1-1 堆芯 堆芯结构是反应堆的核心构件,在这里实现核裂变反应,核能转化为热能;同时它又是强放射源。因此堆芯结构的设计是反应堆本体结构设计的重要环节之一。 压水堆堆芯由若干个正方形燃料组件组成,这些组件按正方形稠密栅格大致排列成一个圆柱体。用富集度为2%—4.4%的低富集铀为燃料。所有燃料组件在机械结构和几何形状上完全一致,以简化装卸料操作和降低燃料组件制造成本。燃料组件采用17×17根棒束,其中除少数插花布置的控制棒导向管外都是燃料棒。棒束外面无组件盒,以减少中子俘获损失和便于相邻组件水流的横向交混。图2—1(a)表示压水堆堆芯横剖面图,图2—1(b)表示压水堆燃料组件。 图2-1(a) 压水堆堆芯横剖面图

图2-1(b) 压水堆燃料组件 燃料棒的芯体由烧结的二氧化铀陶瓷芯块叠置而成。烧结二氧化铀的耐腐蚀性、热稳定性和辐照稳定性都好,能保证为经济性所要求的>50000MW.d/tu的单棒最大燃耗深度。燃料棒包壳采用吸收中子少的锆合金以降低燃料富集度。燃料棒全长2.5—3.8M,用6—11个镍基合金或锆合金制的定位格架固定其位置。定位格架燃料组件全长按等距离布置以保持燃料棒间距并防止由水力振动引起的横向位移。 堆芯一般分为三区,在初始堆芯中装入三种不同富集度的燃料,将最高富集度的燃料置于最外区,较低富集度的两种燃料按一定布置方式装入中区和内区,以尽量展平中子通量。第一个运行周期由于全部都是新燃料而比后备反应性在运行周期间将随着可燃物的消耗逐渐释放出来。第一个运行周期的长度一般为1.3—1.9年。以后每年换一次料,将1/3或1/4堆芯用新燃料替换,同时将未燃尽的燃料组件作适应的位置倒换以求达到最佳的径向中子通量分布,倒换方案由燃料管理设计程序制定。通常将新燃料装入最外区,将辐照过的燃料移向中心,称由外向内换料方案。由于辐照过燃料组件的放射性水平极高,所有装卸料操作均在水屏蔽层以下进行。为换料一般需要停堆3—4周,可利用这个时间进行汽轮发电机组及其它设备的检修,压力容器和蒸汽发生器在役检查工作。 为了确保燃料元件的安全,在运行中要严格限制核电站的负荷变化速率〈每分钟5%额定功率〉,用化学与容器控制系统和取样系统对冷却剂水质进行净化,PH值、氧、氢、氯、氟、硼、酸、锂-7等含量的控制及监测,并加强对燃料包壳完整性的监督。 2-1-2 控制棒组件

压水堆核电站工作原理简介

压水堆核电站工作原理简介 核反应堆是核电动力装置的核心设备,是产生核能的源泉。在压水反应堆中,能量主要来源于热中子与铀-235核发生的链式裂变反应。 裂变反应是指一个重核分裂成两个较小质量核的反应。在这种反应中,核俘获一个中子并形成一个复合核。复合核经过很短时间(10-14s)的极不稳定激化核阶段,然后开裂成两个主要碎片,同时平均放出约2.5个中子和一定的能量。一些核素,如铀-233、铀-235、钚-239和钚-241等具有这种性质,它们是核反应堆的主要燃料成分。铀-235的裂变反应如图1.3-1所示。 对于铀-235与热中子的裂变反应来说,目前已发现的裂变碎片有80多种,这说明是以40种以上的不同途径分裂。 在裂变反应中,俘获1个中子会产生2~3个中子,只要其中有1个能碰上裂变核,并引起裂变就可以使裂变继续进行下去,称之为链式反应。 由于反应前后存在质量亏损,根据爱因斯坦相对论所确定的质量和能量之间的关系,质量的亏损相当于系统的能量变化,即ΔE=Δmc2。对铀-235来说,每次裂变释放出的能量大约为200Mev(1兆电子伏=1.6×10-13焦耳)。这些能量除了极少数(约2%)随裂变产物泄露出反应堆外,其余(约98%)全部在燃料元件内转化成热能,由此完成核能向热能的转化。 水作为冷却剂,用于在反应堆中吸收核裂变产生的热能。高温高压的一回路水由反应堆冷却剂泵送到反应堆,由下至上流动,吸收堆内裂变反应放出的热量后流出反应堆,流进蒸汽发生器,通过蒸汽发生器的传热管将热量传递给管外的二回路主给水,使二回路水变成蒸汽,而一回路水流出蒸汽发生器后再由反应堆冷却剂泵重新送到反应堆。如此循环往复,形成一个封闭的吸热和放热的循环过程,构成一个密闭的循环回路,称为一回路冷却剂系统。 蒸汽发生器产生的饱和蒸汽由主蒸汽管道首先送到汽轮机的高压阀组以调节进入高压缸的蒸汽量,从高压阀组出来的蒸汽通过四根环形蒸汽管道进入高压缸膨胀做功,将蒸汽的热能转变为汽轮机转子旋转的机械能。在膨胀过程中,从高压缸前后流道不同的级后抽取部分蒸汽分别送入高压加热系统和辅助蒸汽系统。高压缸的排气一部分送往4号低压加热器用于加热凝结水,大部分通过四根管道排往位于低压缸两侧的四台汽水分离再热器,在这里进行汽水分离,并由新蒸汽对其进行再热。从汽水分离再热器出来的过热蒸汽经四根管道送入四台低压缸内膨胀做功,从四台低压缸前后流道抽取部分蒸汽分别送往3号、2号和1号低

压水堆核电站的组成及总布置

压水堆核电站的组成及总布置 (1)反应堆厂房 –该厂房主要布置核反应堆和反应堆冷却剂系统及部分核岛辅助系统、专设安全设施系统。从结构上来讲,反应堆厂房由筏板基础,带钢衬里的圆筒形预应力钢筋混凝土安全壳及其内部结构组成。安全壳内径37m,屏蔽墙厚0.9m,总高59.4m,设计压力0.52Mpa (绝对压力)。反应堆厂房内部结构布置如下: –·-3.5m放置堆芯仪表系统、安注系统、余热排出系统热交换器、化容控制系统的再生热交换器、安全壳连续通风系统及反应堆坑通风系统的风机。 –·±0.00m放置余热排出系统泵、稳压器卸压箱、安全壳的过滤净化系统过滤器、各系统管道、应急人员气闸门。 –·4.65m主要为三套蒸汽发生器、主泵和稳压器的支承楼板的隔间,放置在本层的还有安全壳过滤净化系统的风机和反应堆压力容器顶盖存放地,压力容器也通过该层。 –·8.00m层为反应堆换料水池楼板层,堆内构件存放及燃料组件倒换装置也放置在该层,进入安全壳的人员闸门也在此标高。–·20.00m层为反应堆操作大厅,有设备闸门通入。 –·反应堆压力容器占有从-3.50至8.20m的堆本体中心净空间。M310加改进型反应堆本体由压力容器、堆芯、堆内构件、堆内测量仪表和控制棒驱动机构等设备组成。

–·各层之间的交通由楼梯与电梯联系。反应堆在运行期间,一般人员不得进入;事故检修和停堆检修时,人员可经由空气闸门进入;设备闸门为安装大件设备时的进入通道,运行时封闭。 –以下简要对堆内构件进行补充说明。 (2)核辅助厂房 –由1、2号机组共用,主要布置核辅助系统及设备,厂房面积74×46m,高22m。布置(层高变化较大,仅介绍几个重要的层间)有如下系统和设备: –·±0.00m主要有上充泵、硼回收系统、废物处理系统、设备冷却水系统、电气用房。 –·5.00~8.00m主要为硼回收系统的气体分离器和蒸发器间,过滤器及除盐装置间,废气处理系统的气体衰变箱隔间、化容控制系统设备间、阀门操作间等。 –·11.50m主要为过滤器及除盐装置上部操作间,硼水制备、硼回收系统贮槽及核辅助厂房通风系统。 –·本厂房的对外出入卫生闸门设在电气厂房±0.00m层,整个厂房内各层垂直联系是通过楼梯和电梯完成。厂房为现浇钢筋混凝土结构,有放射性防护要求的房间按屏蔽要求确定墙和楼板厚度。 (3)燃料厂房 –位于反应堆厂房南侧,外轮廓尺寸46×24m,51×24m。

先进压水堆核电厂运行及典型事故仿真实验

(申报2018国家级虚拟仿真实验项目) 先进压水堆核电厂运行及典型事故仿真实验 Virtual Reality for Operation and Typical Accidents of Advanced Pressurized Water Reactor 实验指导书 (在线实验版) Experiment Manual(online) 简介 先进压水堆是当前我国核电技术发展应用的主流。本实验基于工业级的全范围多功能核电厂压水堆模拟机开发。实验内容为正常运行工况下触发的典型事故(冷段破口失水事故、蒸汽发生器传热管断裂事故、控制棒弹棒事故等)的演化瞬态过程及干预操作,也包含反应堆原理演示等。实验形式生动,支持远程运行。

实验分步指导 请在项目主页面点击“我要做试验”,或直接输入虚拟仿真实验项目网址:https://www.wendangku.net/doc/4b11891535.html,/virexp/hdc,该页面包含了相关的实验资料,并可下载本实验指导书。点击“操作实验”进入在线实验页面。 注意,本实验支持IE内核的浏览器(如果是Windows 10内置Microsoft Edge 浏览器,打开后请中请点击菜单栏右上角的省略号“…”,在下拉菜单中选择“使用Internet Explorer打开”),推荐使用360极速浏览器。进入实验页面后,请按提示下载安装插件(UnityWebPlayer)。 插件下载完毕后,显示如下界面,进行在线实验的装载。 装载完毕后,显示实验开始界面。 点击开始后,进入在线实验界面。分为实验预备和正式实验两个环节。

实验预备:基础知识与实验原理回顾 在实验预备环节,可以选择如下动态观察和交互式操作,进行基础知识与实验原理的温习回顾,为正式实验做准备。 (1)基于核反应堆基本原理展示系统,观看压水堆部件结构动画演示; 图 核电站原理展示系统 (2)在核电站运行原理模拟机上,通过按钮进行交互式模拟核电站的各种操 作,包括启动、升功率、降功率、喷淋、停堆等关键操作。 图核电站运行原理模拟机界面

压水堆核电站的发电原理

压水堆核电站的发电原理 把热能带出,在蒸汽发生器内产生蒸汽,蒸汽推动汽轮机带动发电机发电。 一回路反应堆堆芯因核燃料裂变产生巨大的热能,由主泵泵入堆芯的水被加热成327度、155个大气压的高温高压水,高温高压水流经蒸汽发生器内的传热U型管,通过管壁将热能传递给U型管外的二回路冷却水,释放热量后又被主泵送回堆芯重新加热再进入蒸汽发生器。水这样不断地在密闭的回路内循环,被称为一回路。 二回路蒸汽发生器U型管外的二回路水受热从而变成蒸汽,推动汽轮发电机做功,把热能转化为电力:做完功后的蒸汽进入冷凝器冷却,凝结成水返回蒸汽发生器,重新加热成蒸汽。这样的汽水循环过程,被称为二回路。 三回路三回路使用海水或淡水,它的作用是在冷凝器中冷却二回路的蒸汽使之变回冷凝水。 什么是核燃料? 核燃料是可在核反应堆中通过核裂变产生核能的材料,是铀矿石经过开采、初加工、铀转化、铀浓缩,进而加工成核燃料元件。 压水堆核电站用的是浓度为3%左右的核燃料(铀一235)。大亚湾核电站的核反应堆内有157个核燃料组件,每个组件由1717根燃料棒组成。燃料棒由烧结二氧化铀芯块装入锆合金管中封焊构成。一个燃料组件中有一束控制棒,控制核裂变反应。

利用核能生产电能的电厂称为核电厂。由于核反应堆的类型不同,核电厂的系统和设备也不同。压水堆核电厂主要由压水反应堆、反应堆冷却剂系统(简称一回路)、蒸汽和动力转换系统(又称二回路)、循环水系统、发电机和输配电系统及其辅助系统组成,其流程原理如图 2.1所示。通常将一回路及核岛辅助系统、专设安全设施和厂房称为核岛。二回路及其辅助系统和厂房与常规火电厂系统和设备相似,称为常规岛。电厂的其他部分,统称配套设施。实质上,从生产的角度讲,核岛利用核能生产蒸汽,常规岛用蒸汽生产电能。 反应堆冷却剂系统将堆芯核裂变放出的热能带出反应堆并传递给二回路系统以产生蒸汽。通常把反应堆、反应堆冷却剂系统及其辅助系统合称为核供汽系统。现代商用压水堆核电厂反应堆冷却剂系统一般有二至四条并联在反应堆压力容器上的封闭环路(见图2.2)。每一条环路由一台蒸汽发生器、一台或两台反应堆冷却剂泵及相应的管通组成。一回路内的高温高压含硼水,由反应堆冷却剂泵输送,流经反应堆堆芯,吸收了堆芯核裂变放出的热能,再流进蒸汽发生器,通过蒸汽发生器传热管壁,将热能传给二回路蒸汽发生器给水,然后再被反应堆冷却剂泵送入反应堆。如此循环往复,构成封闭回路。整个一回路系统设有一台稳压器,一回路系统的压力靠稳压器调节,保持稳定。 为了保证反应堆和反应堆冷却剂系统的安全运行,核电厂还设置了专设安全设施和一系列辅助系统。 一回路辅助系统主要用来保证反应堆和一回路系统的正常运行。压水堆核电厂一回路辅助系统按其功能划分,有保证正常运行的系统和废

压水堆核电站反应堆压力容器金属材料概述

压水堆核电站反应堆压力容器金属材料概述压水堆核电站反应堆压力容器是在高温、高压流体冲刷和腐蚀,以及强烈的中子辐照等恶劣条件下运行的,因此ASME规范第Ⅺ卷要求,反应堆压力容器应采用优质材料、严格制造工艺、完善的试验和检查技术,且在服役期间必须定期进行检查。 1.反应堆压力容器结构和作用 功率在1000MW及以上的普通压水堆核电站反应堆压力容器设计压力高达17MPa,设计温度在350℃左右,直径近5m,厚度超过20cm,有的单件铸锭毛重达500多吨,设计寿命至少要求40年。因为其体积庞大,不可更换,所以压力容器的寿命决定了核电站的服役年限。压水堆压力容器是由反应堆容器和顶盖组成,前者由下法兰(含接管段)、简体和半球形下封头组焊而成,顶盖由半球形上封头和上法兰焊接组成(或者为一体化顶盖)。上下法兰面之间用两道自紧式空心金属(高镍耐蚀合金Im718或18—8钢)“0”形环密封。为了避免容器内表面和密封面腐蚀,在压力容器内壁堆焊有大于5mm厚的不锈钢衬里。为防止外表面腐蚀,压力容器外表面通常涂漆保护。 2.反应堆压力容器材料的发展史 压水堆反应堆压力容器材料一般都是在工程上成熟的材料基础上改进而成的。美国第一代压水堆核电站反应堆压力容器材料用的是具有优良工艺稳定性、焊接性和强度较好的锅炉钢A212B(法兰锻件为A350LFs),由于A212B钢淬透性和高温性能较差,第二代改用Mn-Mo 钢A302B (锻材为A336),该钢中的Mn是强化基体和提高淬透性的元素,它能提高钢的高温性能及降低回火脆性。随着核电站向大型化发展,压力容器也随之增大和增厚,A302B钢缺口韧性差的不足就逐渐显露出来,为保证厚截面钢的淬透性,使强度与韧性有良好的配合,20世纪60年代中期又对A302B钢添加Ni,改用淬透性和韧性比较好的Mn-M-Ni钢A533B (锻材为A508一Ⅱ钢)。并以钢包精炼、真空浇铸等先进炼钢技术提高钢的纯净度、减少杂质偏析,同时将热处理由正火+回火处理改为淬火+回火的调质处理,使组织细化,以获得强度、塑性和韧性配合良好的综合性能。与此同时,由于壁厚增加和面对活性区的纵向焊缝辐照性能差,所以将压力容器由板焊接结构改为环锻容器,材料采用A508一Ⅱ钢。它曾盛行一时,但自1970年西欧发现A508一Ⅱ钢堆焊层下有再热裂纹之后,又发展了A508一Ⅲ钢。 A508一Ⅲ钢是在A508一Ⅱ钢基础上,通过减少碳化物元素C、Cr、Mo、V的含量,以减少再热裂纹敏感性,使基体堆焊不锈钢衬里后,降低产生再热裂纹的倾向。为弥补因减少淬透性元素而降低的强度和淬透性,特增加了A508一Ⅲ钢中的Mn含量。因锰易增大钢中偏析,故又降低了磷、硫含量。硅在上述钢中是非合金化元素。有增加偏析、降低钢的塑、韧性的倾向,其残存量以偏低为好。厚截面的A508-Ⅲ钢淬火后,基体组织是贝氏体,当冷却速度不足时,将出现铁素体和珠光体,这种组织较贝氏体粗大,对提高强度和韧性不利,所以反应堆压力容器用钢要求采用优化的调制热处理工艺。 俄罗斯的反应堆应力容器用的材料不是Mn-Mo-Ni钢而是Cr-M0-V以及Cr-Ni-Mo-V钢。该钢已分别用在俄罗斯及东欧的VVER-440和VVER-l000压水堆上以及我国的田湾核电站

压水堆核电站的发电原理

核燃料在反应堆内发生裂变而产生大量热能,再被高压水把热能带出,在蒸汽发生器内产生蒸汽,蒸汽推动汽轮机带动发电机发电。 一回路反应堆堆芯因核燃料裂变产生巨大的热能,由主泵泵入堆芯的水被加热成327度、155个大气压的高温高压水,高温高压水流经蒸汽发生器内的传热U 型管,通过管壁将热能传递给U型管外的二回路冷却水,释放热量后又被主泵送回堆芯重新加热再进入蒸汽发生器。水这样不断地在密闭的回路内循环,被称为一回路。 二回路蒸汽发生器U型管外的二回路水受热从而变成蒸汽,推动汽轮发电机做功,把热能转化为电力:做完功后的蒸汽进入冷凝器冷却,凝结成水返回蒸汽发生器,重新加热成蒸汽。这样的汽水循环过程,被称为二回路。 三回路三回路使用海水或淡水,它的作用是在冷凝器中冷却二回路的蒸汽使之变回冷凝水。 什么是核燃料? 核燃料是可在核反应堆中通过核裂变产生核能的材料,是铀矿石经过开采、初加工、铀转化、铀浓缩,进而加工成核燃料元件。 压水堆核电站用的是浓度为3%左右的核燃料(铀一235)。大亚湾核电站的核反应堆内有157个核燃料组件,每个组件由17×17根燃料棒组成。燃料棒由烧结二氧化铀芯块装入锆合金管中封焊构成。一个燃料组件中有一束控制棒,控制核裂变反应。 利用核能生产电能的电厂称为核电厂。由于核反应堆的类型不同,核电厂的系统和设备也不同。压水堆核电厂主要由压水反应堆、反应堆冷却剂系统(简称一回路)、蒸汽和动力转换系统(又称二回路)、循环水系统、发电机和输配电系统及其辅助系统组成,其流程原理如图2.1所示。通常将一回路及核岛辅助系统、专设安全设施和厂房称为核岛。二回路及其辅助系统和厂房与常规火电厂系统和设备相似,称为常规岛。电厂的其他部分,统称配套设施。实质上,从生产的角度讲,核岛利用核能生产蒸汽,常规岛用蒸汽生产电能。 反应堆冷却剂系统将堆芯核裂变放出的热能带出反应堆并传递给二回路系统以产生蒸汽。通常把反应堆、反应堆冷却剂系统及其辅助系统合称为核供汽系统。现代商用压水堆核电厂反应堆冷却剂系统一般有二至四条并联在反应堆压力容器上的封闭环路(见图2.2)。每一条环路由一台蒸汽发生器、一台或两台反应堆冷却剂泵及相应的管通组成。一回路内的高温高压含硼水,由反应堆冷却剂泵输送,流经反应堆堆芯,吸收了堆芯核裂变放出的热能,再流进蒸汽发生器,通过蒸汽发生器传热管壁,将热能传给二回路蒸汽发生器给水,然后再被反应堆冷却剂泵送入反应堆。如此循环往复,构成封闭回路。整个一回路系统设有一台稳压器,一回路系统的压力靠稳压器调节,保持稳定。 为了保证反应堆和反应堆冷却剂系统的安全运行,核电厂还设置了专设安全设施和一系列辅助系统。 一回路辅助系统主要用来保证反应堆和一回路系统的正常运行。压水堆核电厂一回路辅助系统按其功能划分,有保证正常运行的系统和废物处理系统,部分系统同时作为专设安全设施系统的支持系统。专设安全设施为一些重大的事故提供必要的应急冷却措施,并防止放射性物质的扩散。 二回路系统由汽轮机发电机组、冷凝器、凝结水泵、给水加热器、除氧器、给水泵、蒸汽发生器、汽水分离再热器等设备组成。蒸汽发生器的给水在蒸汽发生器吸收热量变成高压蒸汽,然后驱动汽轮发电机组发电,作功后的乏汽在冷凝器内冷

10级-核电站调试与运行思考题

《压水堆核电厂调试与运行》 第1章绪论 1.核电厂运行与常规火力发电厂运行相比存在哪些特殊问题? 2.压水堆核电厂运行的一般原则是什么? 3.按照我国《核电厂设计安全规定》中的定义,核电厂状态分为哪几类?正常运行、预计运行事件、事故工况、严重事故 第2章核电厂技术规格书 4.核电厂技术规格书一般包括哪六个方面的内容? 5.什么是运行模式?核电厂可以将机组正常运行的状态按照热力学和堆 物理的特性划分为哪六个运行模式? 反应堆压力容器内装有燃料时堆芯反应性状态,功率水平,反应堆冷却平均温度和压力容器封头顶盖螺栓张紧程度的任意一种组合。 反应堆功率运行模式(RP)蒸汽发生器冷却正常停堆模式(NS/SG)余热排出系统冷却正常停堆模式(NS、RRA)维修停堆模式(MCS)换料停堆模式(RCS)反应堆完全卸料模式(RCD) 6.在运行模式p-t图中标出各种运行模式,并解释各限制曲线的物理意义。 7.核电厂运行限值和条件起到哪些作用? 8.运行限值和条件根据其性质可分为哪些?各限值大小间有何关系? 安全限值,安全系统整定值,正常运行的限值和条件及监督要求 第3章压水堆核电厂的调试启动 9.大型压水堆核电厂建设工程可以分为哪几个阶段? 10.核电厂调试的目的是什么? 11.缩写EC、SUT、EESR、TOB、TOTO、NCC、NSSS、HFT、LOCA、SRC的中文 含义是什么? 12.核电站所有硬件设备的现场安装施工是由什么部门负责?对安装完毕 的设备和系统的调试,使其在功能和性能上满足设计要求,是由什么部 门承担的? 13.从安装到调试的责任转移的标志是什么? 14.当系统发生责任转移时,会产生系统和设备在某一区域的安装和调试有 接口的情况,这时就必须实行什么? 15.当核电站的系统处于安装结束和调试即将开始的阶段,安装和调试活动 所涉及的两个文件是什么? 安装状态结束(EESR)报告隔离移交(TOB)报告 16.什么是安装结束报告?

压水堆核电站基础

第五章 反应堆冷却剂系统(RCP ) 反应堆冷却剂系统是核电站一回路主系统,系统代码为 RCP ,包括三个环路,每个环 路上有一台冷却剂循环泵和一台蒸汽发生器,其中 1号环路上还设有一台稳压器及与其相 关的卸压箱。 反应堆冷却剂系统的功能是: (1) 主泵使冷却剂在环路中循环,将堆芯的热量带出,通过蒸汽发生器将热量传给 二次侧给 水; (2) 堆芯中的冷却剂又起慢化剂作用,使中子得到慢化; (3) 冷却剂中溶有硼酸,用来控制反应性的变化; (4) 稳压器用来控制冷却剂压力,防止堆芯产生偏离泡核沸腾; (5 )稳压器上的安全阀起超压保护作用; (6)在发生燃料元件包壳破损时,反应堆冷却剂系统的压力边界是防止放射性泄漏 的第二道屏 障。 图5.1是RCP 系统1号环路的示意图,图中也标出了其它一些与 RCP 系统连接的辅助系 统。注意有些辅助系统与 RCP 的接口不在1号环路,这里只是示意性地把它们表示出来。 图5.1 RCP 主系统(1号环路) 5.1反应堆冷却剂泵 反应堆冷却剂泵又称主泵, 是三相感应电动机驱动的立式、 单级、轴封泵,由电动机、 11 越I 停塔轡即 曲冒 Bl

轴封组件和水力部件组成。反应堆冷却剂由装在转动轴下部的泵唧送,冷却剂通过泵壳底 部吸入,然后从泵壳侧面出口接管排出。串联布置的三级轴封有效地限制了冷却剂沿泵轴 的泄漏。 三台主泵的设备编码分别为RCP001PO、002PO、003PO。主泵名义流量23790 m3/h, 压头97.2 mCL,转速1485 rpm。其结构如图5.2所示。 5.1.1水力部件 1.泵体 泵体由泵壳、扩散器(又称导叶)、 进水导管、叶轮、泵轴组成。其中除泵轴 为不锈钢锻件之外,均为不锈钢铸件。 叶轮有七个螺旋离心叶片,装在泵轴 的下端。扩散器汇集来自叶轮的冷却剂, 它由十二个螺旋离心叶片组成,被安装在 扩散段法兰的底部,扩散器可以与泵的内 部部件同时从泵体中取出。在扩散器的下 部装有防热罩。冷却剂由泵壳底部的进口 接管吸入,由装在泵轴下部的叶轮唧送, 经扩散器从泵壳侧面的出口接管排出。 2?热屏 热屏是由12层不锈钢扁平盘管组成 的热交换器,装在叶轮与泵轴承之间,热 屏法兰构成泵壳上法兰。由RCV系统来的 高压冷却水注入泵径向轴承和轴封之间, 它对轴封来说是密封水,对径向轴承来说 则是润滑剂。 热屏冷却盘管内流动的冷却水来自设 备冷却水系统( 图5.2反应堆冷却剂泵 RRI),其进口温度为35 C,流 量约为9 m3/h。它在反应堆冷却剂(292.4 C)和轴承之间提供传热屏障,冷却流过的反应堆冷却剂,防止轴封和轴承的损坏。即使在失去RCV系统注入水的情况下,这样构成的热 屏可保持其上部温度不超过72 C。因此,在主泵运行时或在主泵停运后而一回路温度高于70 C时,必须供给热屏冷却水。 3 .泵轴承

压水堆核电站反应堆压力容器材料概述1

压水堆核电站反应堆压力容器材料概述 李承亮,张明乾 (深圳中广核工程设计有限公司上海分公司,上海200030) 摘要 反应堆压力容器是核电站重要部件之一,综述了反应堆压力容器材料的发展历程、性能要求、在役辐照脆化、制造现状等,指出A5082Ⅲ钢具有优良的焊接性、较高的淬透性和抗中子辐照脆化性,并具有良好的低温冲击韧性和较低的无延性转变温度等优点。分析了该钢的化学成分、制造工艺与性能之间的关系,对反应堆压力容器材料国产化的实现与未来发展方向的指引有一定的参考作用。 关键词 压水堆核电站 反应堆压力容器 材料 辐照脆化Overview of Reactor Pressure Vessel Steel in PWR Nuclear Power Plant s L I Chengliang ,ZHAN G Mingqian (Shanghai Branch ,China Nuclear Power Design Company Ltd.(Shenzhen ),Shanghai 200030) Abstract Reactor pressure vessel is one of the key components to PWR nuclear power plants.The development of reactor pressure vessel steel and its performance requirements ,in 2service irradiation embrittlement ,and manufactur 2ing status ,etc are summarized.It is demonstrated that A5082Ⅲsteels have advantages such as good weld 2ability ,high hardenability and enhanced resistance to neutron irradiation damage ,as well as excellent low 2temperature impact toughness and lower transition temperature without ductility.In addition ,the relation of chemical composition and fab 2rication techniques to mechanical properties is also analyzed.This paper will provides an reference for directing the suc 2cess of the localization and f uture development of reactor pressure vessel steel to some extent. K ey w ords PWR power plant ,reactor pressure vessel ,materials ,irradiation embrittlement  李承亮:男,1982年生,助理工程师,硕士,从事核电站核岛主设备材料设计、研究以及先进核能系统研究等工作 E 2mail :licliang @https://www.wendangku.net/doc/4b11891535.html, 随着国家核电中长期发展规划的颁布,未来相当长时间内 我国将大力发展压水堆核电站。反应堆压力容器是在高温、高压流体冲刷和腐蚀,以及强烈的中子辐照等恶劣条件下运行的,因此在ASM E 规范第XI 卷要求,反应堆压力容器应采用优质材料、严格制造、完善的试验和检查技术,且在服役期间应定期地进行检查。SA508系列钢是随着反应堆压力容器的大型化和整体化发展起来的,适用于制造压力容器顶盖、筒体、法兰、封头等锻件,在压水堆核电站中还应用于蒸汽发生器压力壳、稳压器压力壳和主泵压力壳等部件。 1 反应堆压力容器结构和作用 功率在1000MW 及以上的普通压水堆核电站反应堆压力 容器设计压力高达17MPa ,设计温度在350℃左右,直径近5m ,厚度超过20cm ,有的单件铸锭毛重达500多吨,设计寿命至少要求40年。因为其体积庞大,不可更换,所以压力容器的寿命决定了核电站的服役年限。 压水堆压力容器是由反应堆容器和顶盖组成,前者由下法兰(含接管段)、筒体和半球形下封头组焊而成,顶盖由半球形上封头和上法兰焊接组成(或者为一体化顶盖)。上下法兰面之间用两道自紧式空心金属(高镍耐蚀合金In 2718或1828钢)“O ”形环密封。为了避免容器内表面和密封面腐蚀,在压力容器内壁堆焊有大于5mm 厚的不锈钢衬里(过渡层309L (00Cr23Ni11)+308L (00Cr20Ni10))。为防止外表面腐蚀,压 力容器外表面通常涂漆保护。 反应堆压力容器的作用是:(1)装载着活性区及堆内所有构件,对堆芯具有辐射屏蔽作用,在顶盖上安装着控制棒管座及其驱动机构,承受很大的机械和动载荷;(2)作为承压边界,密封高温高压含放射性的一回路冷却剂并维持其压力,承受动载荷和温度载荷;(3)作为第二道屏障,在燃料元件破损后有防止裂变产物外逸的功能。 上述因素要求反应堆压力容器材料具备良好的纯净度、致密度、成分和性能均匀性,在中高温度下具有优良的力学性能(强度、塑性、冲击韧性、断裂韧性等)、冶金质量及良好的耐蚀性、焊接性和抗辐照的性能(中子辐照脆化敏感性低)、热稳定性、加工性等。其中,以面对活性区的筒体段材料性能要求最高。 2 反应堆压力容器材料的发展史 压水堆反应堆压力容器材料一般都是在工程上成熟的材料基础上改进而成的。美国第一代压水堆核电站反应堆压力容器材料用的是具有优良工艺稳定性、焊接性和强度较好的锅炉钢A212B (法兰锻件为A350L F 3),由于A212B 钢淬透性和高温性能较差,第二代改用Mn 2Mo 钢A302B [1](锻材为A336),该钢中的Mn 是强化基体和提高淬透性的元素,它能提高钢的高温性能及降低回火脆性。随着核电站向大型化发展,压力容器也随之增大和增厚,A302B 钢缺口韧性差的不足就逐渐显露出

我国压水堆核电站主要设备及原理

压水堆核电站主要设备及原理 压水堆核电站主要设备典型压水反应堆的核心是一个圆柱形高压反应容器。容器内设有实现核裂变反应堆的堆芯和堆芯支承结构,顶部装有控制裂变反应的控制棒驱动机构,随时调节和控制堆芯中控制棒的插入深度。

堆芯是原子核反应堆的心脏,链式裂变反应就在这里进行。它由核燃料组件、控制棒组件和既作中子慢化剂又作为冷却剂的水组成。 堆内铀-235核裂变时释放出来的核能迅速转化为热量,热量通过热传导传递到燃料棒表面,然后,通过对流放热,将热量传递给快速流动的冷却水(冷却剂),使水温升高,从而由冷却水将热量带出反应堆,再通过一套动力回路将热能转变为电能。

压水堆核电站原理:由反应堆释放的核能通过一套动力装置将核能转变为蒸汽的动能,进而转变为电能。该动力装置由一回路系统,二回路系统及其他辅助系统和设备组成。 原子核反应堆内产生的核能,使堆芯发热,高温高压的冷却水在主冷却泵驱动下,流进反应堆堆芯,冷却水温度升高,将堆芯的热量带至蒸汽发生器。蒸汽发生器一次侧再把热量传递给管子外面的二回路循环系统的给水,使给水加热变成高压蒸汽,放热后的一次侧冷却水又重新流回堆芯。这样不断地循环往复,构成一个密闭的循环回路。 一回路系统主要设备除反应堆外,还有蒸汽发生器、冷却剂主泵机组、稳压器及主管道等。 一回路示意图

稳压器结构图

冷却剂主泵结构图 二回路中蒸汽发生器的给水吸收了一回路传来的热量变成高压蒸汽,然后推动汽轮机,带动发电机发电。做功后的乏汽在冷凝器内冷却而凝结成水,再由给水泵送至加热器,加热后重新返回蒸汽发生器,再变成高压蒸汽推动汽轮发电机作功发电。这样构成第二个密闭循环回路。 二回路系统由蒸汽发生器二次侧、汽轮机、发电机、冷凝器、凝 结水泵、给水泵、给水加热器和中间汽水分离再热器等设备组成。

压水堆核电厂运行复习资料

压水堆核电厂运行复习资料 1、核电厂构成三个部分:核岛、常规岛、配套设施。 2、核电厂工作原理:U235裂变产生的热量传给一回路冷却剂,再通过蒸汽发生器传给二回路产生蒸汽,在二 回路转为动能,由汽轮机传给发电机产生电流,供给用户。 3、稳压器功能:压力控制,使一回路压力波动限制在小数值范围;压力保护,当某种事故引起一回路压力急 剧升高,安全阀组能提供压力保护;升压、降压、除气、水位调节 4、目前采用电加热式稳压器。 5、蒸发器的三个功能:一回路冷却剂将核蒸汽供应系统的热量传给二回路给水;使二回路产生一定压力,一 定温度和一定干度蒸汽的热交换设备。 6、一回路冷却系统主要参数:出口,310~330;入口,288~300,一般温升30~40,300MW的电功率时环路 流量:15000~24000t/h。 7、反应堆本体结构:压力容器;反应堆堆芯;上下部堆内构件;控制棒组件及其驱动结构 ▲8、稳压器卸压箱结构个功能:功能:凝结和冷却当稳压器过压时,通过安全阀组排放到卸压箱的蒸汽,防止一回路冷却剂对反应堆安全壳可能造成的污染;结构:一个卧式低压容器在它筒体的上部为氮气空间,但装有一组喷雾器,筒体的底部沿轴线方向装有一根鼓泡管。 ▲9、一回路主要功能:又称压水堆冷却剂系统,功用是由冷却剂将堆芯中因核裂变产生的热量传输给蒸汽动力装置冷却堆芯,防止燃料元件烧毁。 ▲10、压水堆中冷却剂:除盐除氧的含硼水。 ▲11、可燃毒物组件只在第一炉料时使用,新的反应堆装入第一炉燃料时,装入它,补偿掉一部分过剩反应性。▲12、压力容器泄漏的探测主要用温度测量。 ▲13、蒸发器水位就是冷柱的水位。 ▲14、稳压器的顶端喷雾器的作用是降温降压。 15、连续喷淋作用:一,保持稳压器内水的温度与化学成分的均匀性;二,限制大流量喷淋启动时对管道的热冲击。

压水堆核电站基础知识

压水堆核电站基础知识 反应堆物理 (试用教材)2003年10月29日

目录 第一章核能与反应堆 (1) 1.1 核能的特点 (1) 1.2核反应堆与核电厂动力系统 (3) 1.2.1 核电厂动力系统简介 (3) 1.2.2 反应堆及其分类 (3) 第二章原子核物理基础和中子物理学 (5) 2.1 物质的组成 (5) 2.1.1 原子核的组成 (5) 2.1.2 同位素 (5) 2.2 核衰变 (7) 2.2.1 衰变类型 (7) 2.2.2 衰变率 (8) 2.3 质量与能量的关系 (9) 2.3.1 质量亏损 (9) 2.3.2 质能定律 (10) 2.4 中子与物质的相互作用 (11) 2.4.1 概述 (11) 2.4.2 中子与物质核的相互作用机理 (12) 2.4.3 中子反应截面 (13) 2.5 核裂变过程 (16) 2.5.1 核裂变机理 (16) 2.5.2 裂变截面 (17) 2.5.3 裂变产物 (19) 2.5.4 裂变中子 (20) 2.5.5 反应堆的热功率 (22) 2.5.6 衰变热 (25) 复习题 (26) 第三章反应堆稳态物理 (27) 3.1 中子循环和四因子公式 (27) 3.1.1 中子循环 (27) 3.1.2 四因子公式和临界条件 (29) 3.2 单速中子的扩散 (30) 3.2.1 概述 (30) 3.2.2 斐克定律 (30) 3.2.3 中子泄漏的计算 (31) 3.2.4 中子扩散方程 (32) 3.2.5 扩散方程的边界条件 (33) 3.2.6 点源产生的单速中子扩散 (34) 3.2.7 热中子扩散长度 (34) 3.3 中子的慢化 (35) 3.3.1 慢化的物理机制 (35) 3.3.2 弹性碰撞理论 (36)

压水堆控制概述

压水堆核电站控制概述 §1.1压水堆核电站及流程图 压水堆核电站主要是由反应堆、一回路系统、二回路系统及其它辅助系统和设备组成。由于压水堆核电站中具有放射性的一回路与不带放射性的二回路系统是相分开的,所以通常又把压水堆核电站分为核岛和常规岛两大部分,如图1-1所示。核岛是指核的系统和设备部分;常规岛是指那些和常规火电厂相似的系统和设备部分。 压水堆结构如图1-2所示,堆芯由157个燃料组件组成,燃料在4Z r合金制成的包壳内,燃料用低浓缩235U制成,形状是小圆柱体,由氧化铀烧结而成。使用普通水作冷却剂和慢化剂,压力约为15.5MPa,核反应是通过移动插入在堆内的53个控制棒束组件以及调节慢化剂中的硼酸浓度来控制的。 图1-1 压水堆核电站的组成 压水堆核电站工艺流程如图1-3所示。 一回路冷却剂水在三个冷却回路中循环,将堆芯的热量带到三个蒸汽发生器。冷却剂的循环靠冷却剂泵(主泵)来完成。一台稳压器使一回路的压力维持恒定。 在蒸汽发生器中,热量是通过蒸汽发生器管壁从一回路传到二回路,使进入蒸汽发生器的水在5.8MPa压力下汽化,产生的蒸汽送到汽轮机,汽轮机带动发电机组发电,最终把核能转化为电能。再通过26kv/400kv(香港)或26kv/500kv(广东)变压器变电压送到枢纽变电站进入电网。 由汽轮机排出的蒸汽经过冷凝器后,由给水泵打入给水加热器加热,最后回到蒸汽发生器二次侧再被一次侧冷却剂加热完成一次循环。 1

图1-2 压水堆本体结构图 2

图1-3 压水堆核电站工艺流程图 §1.2压水堆核电站控制系统 压水堆核电站控制系统如图1-4所示,主要包括: ·反应堆冷却剂平均温度(R棒组)控制系统; ·反应堆功率(N1、N2、G1、G2棒组)控制系统; ·硼酸浓度控制系统(属反应堆辅助系统—化学与容积控制系统); ·稳压器压力和水位控制系统; ·蒸汽发生器水位控制系统; ·大气蒸汽排放控制系统; ·汽机调节(负荷控制)系统; ·冷凝器蒸汽排放控制系统; ·给水流量控制系统; ·汽动泵速度控制系统; ·电动泵速度控制系统; ·发电机电压控制系统等。 闭锁信号“C”为控制棒组件控制系统提供联锁作用,用于闭锁控制棒组件的自动或手动提升,限制反应堆功率增长,防止出现由于控制棒组件过份提升而引起反应堆保护系统动作。 压水堆核电站的核功率是跟随透平功率而变化的。这种运行方式通常称为负荷跟踪运行模式(即模式G),参与电网调峰。这种模式对于电厂是最灵活的运行模式。电网需求的变化可以由汽轮机控制系统直接改变蒸汽流量,而反应堆则通过它的控制系统对负荷的变化做出响应。 3

压水堆核电站的发电原理

压水堆核电站的发电原理 核燃料在反应堆内发生裂变而产生大量热能,再被高压水把热能带出,在蒸汽发生器内产生蒸汽,蒸汽推动汽轮机带动发电机发电。 一回路反应堆堆芯因核燃料裂变产生巨大的热能,由主泵泵入堆芯的水被加热成327度、155个大气压的高温高压水,高温高压水流经蒸汽发生器内的传热U型管,通过管壁将热能传递给U型管外的二回路冷却水,释放热量后又被主泵送回堆芯重新加热再进入蒸汽发生器。水这样不断地在密闭的回路内循环,被称为一回路。 二回路蒸汽发生器U型管外的二回路水受热从而变成蒸汽,推动汽轮发电机做功,把热能转化为电力:做完功后的蒸汽进入冷凝器冷却,凝聚成水返回蒸汽发生器,重新加热成蒸汽。这样的汽水循环过程,被称为二回路。 三回路三回路使用海水或淡水,它的作用是在冷凝器中冷却二回路的蒸汽使之变回冷凝水。 什么是核燃料? 核燃料是可在核反应堆中通过核裂变产生核能的材料,是铀矿石经过开采、初加工、铀转化、铀浓缩,进而加工成核燃料元件。 压水堆核电站用的是浓度为3%右左的核燃料(铀一235)。大亚湾核电站的核反应堆内有157个核燃料组件,每个组件由17×17根燃料棒组成。燃料棒由烧结二氧化铀芯块装入锆合金管中封焊构成。一个燃料组件中有一束操纵棒,操纵核裂变反应。 利用核能生产电能的电厂称为核电厂。由于核反应堆的类型不同,核电厂的系统和设备也不同。压水堆核电厂主要由压水反应堆、反应堆冷却剂系统(简称一回路)、蒸汽和动力转换系统(又称二回路)、循环水系统、发电机和输配电系统及其辅助系统组成,其流程原理如图2.1所示。通常将一回路及核岛辅助系统、专设安全设施和厂房称为核岛。二回路及其辅助系统和厂房与常规火电厂系统和设备相似,称为常规岛。电厂的其他部分,统称配套设施。本色上,从生产的角度讲,核岛利用核能生产蒸汽,常规岛用蒸汽生产电能。 反应堆冷却剂系统将堆芯核裂变放出的热能带出反应堆并传递给二回路系统以产生蒸汽。通常把反应堆、反应堆冷却剂系统及其辅助系统合称为核供汽系统。现代商用压水堆核电厂反应堆冷却剂系统一般有二至四条并联在反应堆压力容器上的封闭环路(见图2.2)。每一条环路由一台蒸汽发生器、一台或两台反应堆冷却剂泵及相应的管通组成。一回路内的高温高压含硼水,由反应堆冷却剂泵输送,流经反应堆堆芯,汲取了堆芯核裂变放出的热能,再流进蒸汽发生器,通过蒸汽发生器传热管壁,将热能传给二回路蒸汽发生器给水,然后再被反应堆冷却剂泵送入反应堆。如此循环往复,构成封闭回路。整个一回路系统设有一台稳压器,一回路系统的压力靠稳压器调节,保持稳定。 为了保证反应堆和反应堆冷却剂系统的安全运行,核电厂还设置了专设安全设施和一系列辅助系统。 一回路辅助系统主要用来保证反应堆和一回路系统的正常运行。压水堆核电厂一回路辅助系统按其功能划分,有保证正常运行的系统和废物处理系统,部分系统同时作为专设安全设施系统的支持系统。专设安全设施为一些重大的事故提供必要的应急冷却办法,并防止放射性物质的扩散。 二回路系统由汽轮机发电机组、冷凝器、凝聚水泵、给水加热器、除氧器、给水泵、蒸汽发生器、汽水分离再热器等设备组成。蒸汽发生器的给水在蒸汽发生器汲取热量变成高压蒸汽,然后驱动汽轮发电机组发电,作功后的乏汽在冷凝器内冷凝成水,凝聚水由凝聚水泵输送,经低压加热器进入除氧器,除氧水由给水泵送入高压加热器加热后重新返回蒸汽发生器,如此形成热力循环。为了保证二回路系统的正常运行,二回路系统也设有一系列辅助系

相关文档
相关文档 最新文档