文档库 最新最全的文档下载
当前位置:文档库 › 初中数学专题-几何综合题练习

初中数学专题-几何综合题练习

初中数学专题-几何综合题练习
初中数学专题-几何综合题练习

数学总复习——几何综合题

中考中,几何综合题主要考察了利用图形变换(平移、旋转、轴对称)证明线段、角的数量关系及动态几何问题。学生通常需要在熟悉基本几何图形及其辅助线添加的基础上,将几何综合题目分解为基本问题,转化为基本图形或者可与基本图形、方法类比,从而使问题得到解决。

在解决几何综合题时,重点在思路,在老师讲解及学生解题时,对于较复杂的图形,根据题目叙述重复绘图过程可以帮助学生分解出基本条件和图形,将新题目与已有经验建立联系从而找到思路,之后绘制思路流程图往往能够帮助学生把握题目的脉络;在做完题之后,注重解题反思,总结题目中的基本图形及辅助线添加方法,将题目归类整理;对于典型的题目,可以解析题目条件,通过拓展题目条件或改变条件,给出题目的变式,从而对于题目及相应方法有更深入的理解。同时,在授课过程中,将同一类型的几何综合题成组出现,分析讲解,对学生积累对图形的“感觉”有一定帮助。

一.考试说明要求(与几何内容有关的“C”级要求)

图形与证明中要求:会用归纳和类比进行简单的推理。

图形的认识中要求:会运用几何图形的相关知识和方法(两点之间的距离,等腰三角形、等边三角形、直角三角形的知识,全等三角形的知识和方法,平行四边形的知识,矩形、菱形和正方形的知识,直角三角形的性质,圆的性质)解决有关问题;能运用三角函数解决与直角三角形相关的简单实际问题;能综合运用几何知识解决与圆周角有关的问题;能解决与切线有关的问题。

图形与变换中要求:能运用轴对称、平移、旋转的知识解决简单问题。

二.基本图形及辅助线

解决几何综合题,是需要厚积而薄发,所谓的“几何感觉”,是建立在足够的知识积累的基础上的,熟悉基本图形及常用的辅助线,在遇到特定条件时能够及时联想到对应的模型,找到“新”问题与“旧”模型间的关联,明确努力方向,才能进一步综合应用数学知识来解决问题。在中档几何题目教学中注重对基本图

形及辅助线的积累是非常必要的。

举例:

1、与相似及圆有关的基本图形

E

D

A

B C

O

D

C

A

B

O

D

A

C

B E

2、正方形中的基本图形

3、基本辅助线

(1)角平分线——过角平分线上的点向角的两边作垂线(角平分线的性质)、翻折;

(2)与中点相关——倍长中线(八字全等),中位线,直角三角形斜边中线; (3)共端点的等线段——旋转基本图形(60°,90°),构造圆;垂直平分线,角平分线——翻折; 转移线段——平移基本图形(线段),旋转,翻折; (4)特殊图形的辅助线及其迁移——梯形的辅助线等.

三.题目举例

在几何综合题解题教学中,建议可以分为以下三个阶段:

第一阶段:基本图形、辅助线等的积累——在讲授综合题目前,搭配方法类似的中档题,或者给有阅读材料(小问递进启发)的综合题目,给学生入手点的启发。注重提升学生的迁移能力,培养转化数学思想方法。

第二阶段:反思与总结——引导学生在解题遇到困难时,记录思维卡点,分析问题所在;注重一题多解,并注重各种解法的可迁移性;在解题后,能够抽离出题目的基本型,将题目的图形,方法进行归类整理。

第三阶段:综合能力的提升——学生在遇到综合问题时能够联想到之前的经验,形成所谓的“几何感觉”。此时练习可以综合性较强的题目为主,要注重书写过程时抓住要点,简明有条理性。

(一)基本图形与辅助线的添加

1、(宣武一模,23)已知: AC 平分MAN ∠

(1)在图1中,若?=∠120MAN ,?=∠=∠90ADC ABC ,AC AD AB ___+。(填

写“>”或“<”或“=”)

(2)在图2中,若?=∠120MAN ,?=∠+∠180ADC ABC ,则(1)中结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由; (3)在图3中:

①若?=∠60MAN ,?=∠+∠180ADC ABC ,判断AD AB +与AC 的数量关系,并说明理由;

②若)1800(?<

图 1 图 2 图3

2、(海淀一模,25)已知:AOB △中,2AB OB ==,COD △中,3CD OC ==,

ABO DCO =∠∠. 连接AD 、BC ,点M 、N 、P 分别为OA 、OD 、BC 的中

点.

图1 图2

(1) 如图1,若A 、O 、C 三点在同一直线上,且60ABO =o ∠,则PMN △的形状是________________,此时

AD

BC

=________; P

N

M

D

B A

O

P

N

M

D

A B

O

(2) 如图2,若A 、O 、C 三点在同一直线上,且2ABO α=∠,证明

PMN BAO △∽△,并计算

AD

BC

的值(用含α的式子表示); (3) 在图2中,固定AOB △,将COD △绕点O 旋转,直接写出PM 的最大值. 3、(海淀一模,25)在Rt △ABC 中,∠ACB =90°,tan ∠BAC=1

2

. 点D 在边AC 上(不与A ,C 重合),连结BD ,F 为BD 中点.

(1)若过点D 作DE ⊥AB 于E ,连结CF 、EF 、CE ,如图1. 设CF kEF =,则k = ;

(2)若将图1中的△ADE 绕点A 旋转,使得D 、E 、B 三点共线,点F 仍为BD 中点,如图2所示.求证:BE-DE=2CF ;

(3)若BC=6,点D 在边AC 的三等分点处,将线段AD 绕点A 旋转,点F 始终

为BD 中点,求线段CF 长度的最大值.

4、已知:在△ABC 中,∠ABC =90?, 点E 在直线AB 上, ED 与直线AC 垂直, 垂足为D ,且点M 为EC 中点, 连接BM , DM .

(1)如图1,若点E 在线段AB 上,探究线段BM 与DM 及∠BMD 与∠BCD 所满足

的数量关系, 并直接写出你得到的结论;

(2)如图2,若点E 在BA 延长线上,你在(1)中得到的结论是否发生变化?写出

B

C

A

D

E

F

B D

E

A F

C

B

A

C

1

图2

图备图

你的猜想并加以证明;

(3)若点E 在AB 延长线上,请你根据条件画出相应的图形,并直接写出线段BM

与DM 及∠BMD 与∠BCD 所满足的数量关系.

图1 图2

5、(北京,25)请阅读下列材料:

问题:如图1,在菱形ABCD 和菱形BEFG 中,点A B E ,,在同一条直线上,P 是线段DF 的中点,连结PG PC ,.若60ABC BEF ∠=∠=o ,探究PG 与PC 的位置关系及

PG

PC

的值. 小聪同学的思路是:延长GP 交DC 于点H ,构造全等三角形,经过推理使问题得到解决.

请你参考小聪同学的思路,探究并解决下列问题: (1)写出上面问题中线段PG 与PC 的位置关系及

PG

PC

的值; (2)将图1中的菱形BEFG 绕点B 顺时针旋转,使菱形BEFG 的对角线BF 恰好与菱形ABCD 的边AB 在同一条直线上,原问题中的其他条件不变(如图2).你在(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明. (3)若图1中2(090)ABC BEF αα∠=∠=<

D

A

B E

F C

P

G 图1

D

C

G P

A

B

F

图2

B

E

D A

M

C

B E D A M

C E

B

A

C

M

转任意角度,原问题中的其他条件不变,请你直接写出PG

PC

的值(用含α的式子表示).

解:(1)线段PG 与PC 的位置关系是 ;

PG

PC

= . 6、(西城一模,24)如图1,在□ABCD 中,AE ⊥BC 于E ,E 恰为BC 的中点,

2tan =B .

(1)求证:AD =AE ;

(2)如图2,点P 在BE 上,作EF ⊥DP 于点F ,连结AF .

求证:AF EF DF 2=-;

(3)请你在图3中画图探究:当P 为射线E C 上任意一点(P 不与点E 重

合)时,作EF ⊥DP 于点F ,连结AF ,线段DF 、EF 与AF 之间有怎样的数量关系?直接写出你的结论.

7、(北京,25)我们给出如下定义:若一个四边形的两条对角线相等,则称这个四边形为等对角线四边形。请解答下列问题:

(1)写出你所学过的特殊四边形中是等对角线四边形的两种图形的名称; (2)探究:当等对角线四边形中两条对角线所夹锐角为60°时,这对60°

角所对的两边之和与其中一条对角线的大小关系,并证明你的结论。

8、(西城一模,25)在Rt △ABC 中,∠C =90°,D ,E 分别为CB ,CA 延长线上的点,BE 与AD 的交点为P .

(1)若BD=AC ,AE=CD ,在图1中画出符合题意的图形,并直接写出∠APE 的度数;

(2

)若AC

,CD =,求∠APE 的度数.

图1

E

B

C

A

D

图3

E B

C

A D

图2

E

C

B A

F

P

9、(北京,25)我们知道:有两条边相等的三角形叫做等腰三角形.类似地,我们定义:至少有一组对边相等的四边形叫做等对边四边形. (1)请写出一个你学过的特殊四边形中是等对边四边形的图形的名称;

(2)如图,在ABC △中,点D E ,分别在AB AC ,上,设CD BE ,相交于点O ,若60A ∠=°,

12

DCB EBC A ∠=∠=

∠.请你写出图中一个与A ∠相等的角,并猜想图中哪个四边形是等对边四边形;

(3)在ABC △中,如果A ∠是不等于60°的锐角,点D E ,分别在AB AC ,上,

且1

2

DCB EBC A ∠=∠=∠.探究:满足上述条件的图形中是否存在等对边四边形,

并证明你的结论.

(二)从题目中获得方法的启发,类比解决问题

1、(北京,23)如图①,OP 是∠MON 的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等三角形。请你参考这个作全等三角形的方法,解答下列问题:

(1)如图②,在△ABC 中,∠ACB 是直角,∠B =60°,AD 、CE 分别是∠

BAC 、∠BCA 的平分线,AD 、CE 相交于点F 。请你判断并写出FE 与FD 之间的数量关系;

(2)如图③,在△ABC 中,如果∠ACB 不是直角,而(1)中的其它条件不变,

请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由。

B

O

A

D

E

C

2、(石景山一模,24)我们知道三角形三条中线的交点叫做三角形的重心.经过

证明我们可得三角形重心具备下面的性质:重心到顶点的距离与重心到该顶点

对边中点的距离之比为2﹕1.请你用此性质解决下面的问题.

已知:如图,点O为等腰直角三角形ABC的重心,ο

90

=

∠CAB,直线m过点O,过C

B

A、

、三点分别作直线m的垂线,垂足分别为点F

E

D、

、.

(1)当直线m与BC平行时(如图1),请你猜想线段CF

BE、和AD三者之间的数量关系并证明;

(2) 当直线m绕点O旋转到与BC不平行时,分别探究在图2、图3这两种

情况下,上述结论是否还成立?若成立,请给予证明;若不成立,线段

CF

BE

AD、

、三者之间又有怎样的数量关系?请写出你的结论,不需证明.

3、(南京,27)如图①,P为△ABC内一点,连接P A、PB、PC,在△P AB、△

PBC和△P AC中,如果存在一个三角形与△ABC相似,那么就称P为△ABC的

自相似点.

⑴如图②,已知Rt△ABC中,∠ACB=90°,∠ACB>∠A,CD是AB上

的中线,过点B作BE⊥CD,垂足为E,试说明E是△ABC的自相似点.

⑵在△ABC中,∠A<∠B<∠C.

①如图③,利用尺规作出△ABC的自相似点P(写出作法并保留作图痕

迹);

②若△ABC的内心P是该三角形的自相似点,求该三角形三个内角的度

m

O

F

E

D

C

B

A

B C

D

E

F

O

m

m

A

B

(D)

E F

O

图1 图2 图3

数.

(三) 一题多解与题目的变式及类题

1、(西城中考总复习P64例5)点M 为正方形ABCD 的边AB (或

延长线上)任一点(不与A ,B 重合),90DMN ∠=?,射线MN 与ABC ∠的外角平分线交于点N ,求证:DM=MN. 【变式】

A 、方法类比,改变图形

(1)等边三角形ABC 中,在BC 边上任取一点D (不与A ,B 重合), 作 60ADE ∠=?, DE 交∠C 的外角平分线于E ,判断△ADE 的形状,并证明。若D 是射线BC 上任一点,上述结论是否成立?

(2)(西城一模,25)如图,正六边形ABCDEF,点M 在AB 边上,

120FMH ?∠=,MH 与六边形ABC ∠外角的平分线BQ 交于H

点.

①当点M 不与点A 、B 重合时,求证:∠AFM=∠BMH;

②当点M 在正六边形ABCDEF 一边AB 上运动(点M 不与点B 重合)时,猜想FM 与MH 的数量关系,并对猜想的结果加以证明.

B 、改变背景

(3)(密云一模,24)如图,边长为5的正方形OABC 的顶点

E

D

F A

C

B

N

M

H

Q

B

P

G

O

F

A

E

C

y

N

A

D C

B

B

B C

C C

D

P

E

O 在坐标原点处,点A C 、分别在x 轴、y 轴的正半轴上,点E 是OA 边上的点(不

与点A 重合),EF CE ⊥,且与正方形外角平分线AC 交于点P . (1)当点E 坐标为(30),时,试证明CE EP =;

(2)如果将上述条件“点E 坐标为(3,0)”改为“点E 坐标为(t ,0)(0t >)”,结论

CE EP =是否仍然成立,请说明理由;

(3)在y 轴上是否存在点M ,使得四边形BMEP 是平行四边形?若存在,请证

明;若不存在,请说明理由.

2、如图,在正方形ABCD 中,E 、F 分别是BC 、CD 上的点,且∠

EAF =45 °,求证:EF =BE +FD .

【变式】方法类比,特殊到一般

(1)如图,在四边形ABCD 中,AB =AD ,∠B+∠D =180°,E 、F 分别是BC 、CD 上的点,且∠EAF 是∠BAD 的一半,那么结论EF =BE +FD 是否仍然成立?若成立,请证明;请写出它们之间的数量关系,并证明.

(2)在四边形ABCD 中,AB =AD ,∠B+∠D =180°,延长BC

到点E ,延长CD 到点F ,使得∠EAF 仍然是∠BAD 的一半,则结论EF =BE +FD 是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.

3、(房山一模,25)已知:等边三角形ABC

(1) 如图1,P 为等边△ABC 外一点,且∠BPC=120°.试猜想线段BP 、PC 、

AP 之间的数量关系,并证明你的猜想;

A

B

C

D

E

F

A

B

C

D

E

F

D

C

B

A

A

B

C

D

A

B C

D

(2)如图2,P 为等边△ABC 内一点,且∠APD=120°.求证:PA+PD+PC >

BD

【类题】1、(丰台一模,25)已知:在△ABC 中,BC=a ,AC=b ,以AB 为边作等边三角形ABD. 探究下列问题:

(1)如图1,当点D 与点C 位于直线AB 的两侧时,a=b=3,且∠ACB=60°,则CD= ;

(2)如图2,当点D 与点C 位于直线AB 的同侧时,a=b=6,且∠ACB=90°,则CD= ;

(3)如图3,当∠ACB 变化,且点D 与点C 位于直线AB 的两侧时,求 CD 的

最大值及相应的∠ACB 的度数.

1 图 2

图3

【类题】2、(西城一模,25)已知:2PA 4PB =,以AB 为一边作正方形ABCD ,使P 、D 两点落在直线AB 的两侧. (1)如图,当∠APB=45°时,求AB 及PD 的长;

C

B

图1

B

P

图2

(2)当∠APB变化,且其它条件不变时,求PD 的

最大值,及相应∠APB的大小.

4、(学探诊P42-15)如图1,在梯形ABCD中,AD∥BC,∠C=90°,点E为CD 的中点,点F在底边BC上,且∠FAE=∠DAE.

(1)请你通过观察、测量、猜想,得出∠AEF的度数;

(2)若梯形ABCD中,AD∥BC,∠C不是直角,点F在底边BC或其延长线上,如图2、图3,其他条件不变,你在(1)中得出的结论是否仍然成立,若都成立,请在图2、图3中选择其中一图进行证明;若不都成立,请说明理由.

图1 图2 图3

【类题】(平谷一模,24)已知点A,B分别是两条平行线m,n上任意两点,C 是直线n上一点,且∠ABC=90°,点E在AC的延长线上,BC=k AB (k≠0).(1)当k=1时,在图(1)中,作∠BEF=∠ABC,EF交直线m于点F.,写出线段EF与EB的数量关系,并加以证明;

(2)若k≠1,如图(2),∠BEF=∠ABC,其它条件不变,探究线段EF与EB 的数量关系,并说明理由.

(1)(2)

(四) 方法的综合应用

1、(北京,23)如图,已知ABC △.

(1)请你在BC 边上分别取两点D E ,(BC 的中点除外),连结AD AE ,,写出使此图中只存在两对.....面积相等的三角形的相应条件,并表示出面积相等的三角形;

(2)请你根据使(1)成立的相应条件,证明AB AC AD AE +>+.

2、(北京,25)问题:已知△ABC 中,∠BAC =2∠ACB ,点D 是△ABC 内的一点,且AD =CD ,BD =BA 。探究∠DBC 与∠ABC 度数的比值。

请你完成下列探究过程:

先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明。

(1) 当∠BAC =90?时,依问题中的条件补全右图。 观察图形,AB 与AC 的数量关系为 ;

当推出∠DAC =15?时,可进一步推出∠DBC 的度数为 ; 可得到∠DBC 与∠ABC 度数的比值为 ;

(2) 当∠BAC ≠90?时,请你画出图形,研究∠DBC 与∠ABC 度数的比值是否与(1)中的结论相同,写出你的猜想并加以证明。

3、(西城二模,24)在△ABC 中,点P 为BC 的中点.

(1)如图1,求证:AP <

2

1

(AB +BC ); (2)延长AB 到D ,使得BD=AC ,延长AC 到E ,使得CE=AB ,连结DE .

①如图2,连结BE ,若∠BAC=60°,请你探究线段BE 与线段AP 之间的数量关系.写出你的结论,并加以证明;

②请在图3中证明:BC ≥2

1

DE .

4、(北京中考,24)在□

ABCD 中,∠BAD 的平分线交直线BC 于点E ,交直线DC 于点F 。

(1)在图1中证明CE CF =;

(2)若90ABC ∠=?,G 是EF 的中点(如图2),直接写出∠BDG 的度数; (3)若120ABC ∠=?,FG ∥CE ,FG CE =,分别连结DB 、DG (如图3),求∠BDG 的度数。

图1 图2 图3

(五)动点问题与分类讨论

1、(上海,25)在Rt △ABC 中,∠ACB =90°,BC =30,AB =50.点P 是AB 边上任意一点,直线PE ⊥AB ,与边AC 或BC 相交于E .点M 在线段AP 上,点N 在线段BP 上,EM =EN ,sin ∠EMP =

12

13

. (1)如图1,当点E 与点C 重合时,求CM 的长;

(2)如图2,当点E 在边AC 上时,点E 不与点A 、C 重合,设AP =x ,BN =y ,求y 关于x 的函数关系式,并写出函数的定义域;

(3)若△AME ∽△ENB (△AME 的顶点A 、M 、E 分别与△ENB 的顶点E 、N 、B 对应),求AP 的长.

E

A

C

B

G

E B

E C B

图1 图2 备用图

2、(密云一模,25)如图,在梯形ABCD 中,3AD BC AD =∥,, 510DC BC ==,,

梯形的高为4.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t (秒). (1)当MN AB ∥时,求t 的值;

(2)试探究:t 为何值时,MNC △为等腰三角形.

3、(东城一模,24)等边△ABC 边长为6,P 为BC 边上一点,∠MPN =60°,且PM 、PN 分别于边AB 、AC 交于点E 、F .

(1)如图1,当点P 为BC 的三等分点,且PE ⊥AB 时,判断△EPF 的形状; (2)如图2,若点P 在BC 边上运动,且保持PE ⊥AB ,设BP =x ,四边形AEPF

面积的y ,求y 与x 的函数关系式,并写出自变量x 的取值范围; (3)如图3,若点P 在BC 边上运动,且∠MPN 绕点P 旋转,当CF =AE =2

时,求PE 的长.

图1 图2 图3

4、(北京,24)在□ABCD 中,过点C 作CE ⊥CD 交AD 于点E ,将线段EC 绕点E 逆时针旋转90°得到线段EF (如图1). (1)在图1中画图探究:

①当1P 为射线CD 上任意一点(1P 不与C 点重合)时,连结1EP ,将线段1EP 绕点E 逆时针旋转90°得到线段1EG .判断直线1FG 与直线CD 的位置关系并加以证明;

②当2P 点为线段DC 的延长线上任意一点时,连结2EP ,将线段2EP 绕点E 逆时针旋转90°得到线段2EG .判断直线12G G 与直线CD 的位置关系,画出图形并直接写出你的结论.

(2)若AD =6,4

tan

3

B

=, AE =1,在①的条件下,设1CP =x ,1

1

P FG S ? =y ,求y 与

x 之间的函数关系式,并写出自变量x 的取值范围.

5、(西城二模,24)如图1,在Rt △ABC 中,∠C =90°,AC =9cm ,BC =12cm .在Rt △DEF 中,∠DFE =90°,EF =6cm ,DF =8cm .E ,F 两点在BC 边上,DE ,DF 两边分别与AB 边交于G ,H 两点.现固定△ABC 不动,△DEF 从点F 与点B 重合的位置出发,沿BC 以1cm/s 的速度向点C 运动,点P 从点F 出发,在折线FD —DE 上以2cm/s 的速度向点E 运动.△DEF 与点P 同时出发,当点E 到达点C 时,△DEF 和点P 同时停止运动.设运动的时间是t (单位:s ),t >0. (1)当t =2时,PH= cm ,DG = cm ; (2)t 为多少秒时△PDE 为等腰三角形?请说明理由; (3)t 为多少秒时点P 与点G 重合?写出计算过程; (4)求tan ∠PBF 的值(可用含t 的代数式表示).

图1

图2(备用)

初中数学几何题及答案

经典难题(一) 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二) 3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、 CC 1、DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 经典难题(二) A P C D B A F G C E B O D D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 A N F E C D B

P C G F B Q A D E 1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) 2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题: 设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形 CBFG ,点P 是EF 的中点. 求证:点P 到边AB 的距离等于AB 的一半.(初二) 经典难题(三) 1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .(初二) · A D H E M C B O · G A O D B E C Q P N M · O Q P B D E C N M · A A F D E C B

专题九几何综合体、代数和几何综合题(含问题详解)

2012年中考第二轮专题复习九:几何综合体、代数和几何综 合题 1(2011省)如图,四边形ABCD是正方形,点E,K分别在BC,AB上,点G在BA的延长线上,且CE=BK=AG. (1)求证:①DE=DG;②DE⊥DG (2)尺规作图:以线段DE,DG为边作出正方形DEFG (要求:只保留作图痕迹,不写作法和证明); (3)连接(2)中的KF,猜想并写出四边形CEFK是怎样的 特殊四边形,并证明你的猜想: (4)当时,请直接写出的值. 考点:正方形的性质;全等三角形的判定与性质;平行四边形的判定;作图—复杂作图。分析:(1)由已知证明DE、DG所在的三角形全等,再通过等量代换证明DE⊥DG; (2)根据正方形的性质分别以点G、E为圆心以DG为半径画弧交点F,得到正方形DEFG;(3)由已知首先证四边形CKGD是平行四边形,然后证明四边形CEFK为平行四边形; (4)由已知表示出的值. 解答:(1)证明:∵四边形ABCD是正方形, ∴DC=DA,∠DCE=∠DAG=90°. 又∵CE=AG, ∴△DCE≌△GDA, ∴DE=DG, ∠EDC=∠GDA, 又∵∠ADE+∠EDC=90°, ∴∠ADE+∠GDA=90°, ∴DE⊥DG. (2)如图. (3)四边形CEFK为平行四边形. 证明:设CK、DE相交于M点, ∵四边形ABCD和四边形DEFG都是正方形, ∴AB∥CD,AB=CD,EF=DG,EF∥DG, ∵BK=AG, ∴KG=AB=CD, ∴四边形CKGD是平行四边形,

∴CK=DG=EF,CK∥DG, ∴∠KME=∠GDE=∠DEF=90°, ∴∠KME+∠DEF=180°, ∴CK∥EF, ∴四边形CEFK为平行四边形. (4)=. 点评:此题考查的知识点是正方形的性质、全等三角形的判定和性质、平行四边形的判定及作图,解题的关键是先由正方形的性质通过证三角形全等得出结论,此题较复杂 2(2011建设兵团)如图,在等腰梯形ABCD中,AD=4,BC=9,∠B=45°.动点P从点B出发沿BC向点C运动,动点Q同时以相同速度从点C出发沿CD向点D运动,其中一个动点到达端点时,另一个动点也随之停止运动. (1)求AB的长; (2)设BP=x,问当x为何值时△PCQ的面积最大, 并求出最大值; (3)探究:在AB边上是否存在点M,使得四边形PCQM为 菱形?请说明理由. 考点:等腰梯形的性质;二次函数的最值;菱形的性质;解直角三角形。 分析:(1)作AE⊥BC,根据题意可知BE的长度,然后,根据∠B的正弦值,即可推出AB 的长度; (2)作QF⊥BC,根据题意推出BP=CQ,推出CP关于x的表达式,然后,根据∠C的正弦值推出高QF关于x的表达式,即可推出面积关于x的二次函数式,最后根据二次函数的最值即可推出x的值; (3)首先假设存在M点,然后根据菱形的性质推出,∠B=∠APB=∠BAP=45°,这是不符合三角形角和定理的,所以假设是错误的,故AB上不存在M点. 解答:解:(1)作AE⊥BC, ∵等腰梯形ABCD中,AD=4,BC=9, ∴BE=(BC﹣AD)÷2=2.5, ∵∠B=45°, ∴AB=, (2)作QF⊥BC, ∵等腰梯形ABCD, ∴∠B=∠C=45°, ∵点P和点Q的运动速度、运动时间相同,BP=x, ∴BP=CQ=x, ∵BC=9, ∴CP=9﹣x,QF=, 设△PQC的面积为y,

初中数学几何图形综合题(供参考)

初中数学几何图形综合题 必胜中学2018-01-30 15:15:15 题型专项几何图形综合题 【题型特征】以几何知识为主体的综合题,简称几何综合题,主要研究图形中点与线之间的位置关系、数量关系,以及特定图形的判定和性质.一般以相似为中心,以圆为重点,常常是圆与三角形、四边形、相似三角形、锐角三角函数等知识的综合运用. 【解题策略】解答几何综合题应注意:(1)注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构造基本图形.(2)掌握常规的证题方法和思路;(3)运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题.还要灵活运用其他的数学思想方法等. 【小结】几何计算型综合问题,是以计算为主线综合各种几何知识的问题.这类问题的主要特点是包含知识点多、覆盖面广、逻辑关系复杂、解法灵活.解题时必须在充分利用几何图形的性质及题设的基础上挖掘几何图形中隐含的数量关系和位置关系,在复杂的“背景”下辨认、分解基本图形,或通过添加辅助线补全或构造基本图形,并善于联想所学知识,突破思维障碍,合理运用方程等各种数学思想才能解决. 【提醒】几何论证型综合题以知识上的综合性引人注目.值得一提的是,在近年各地的中考试题中,几何论证型综合题的难度普遍下降,出现了一大批探索性试题,根据新课标的要求,减少几何中推理论证的难度,加强探索性训练,将成为几何论证型综合题命题的新趋势. 为了复习方便,我们将几何综合题分为:以三角形为背景的综合题;以四边形为背景的综合题;以圆为背景的综合题.

类型1操作探究题 1.在Rt△ABC中,∠C=90°,Rt△ABC绕点A顺时针旋转到Rt△ADE的位置,点E在斜边AB上,连接BD,过点D作DF⊥AC于点F. (1)如图1,若点F与点A重合,求证:AC=BC;

初中数学几何辅助线技巧

几何常见辅助线口诀三角形 图中有角平分线,可向两边作垂线。 也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。 线段和差及倍半,延长缩短可试验。 线段和差不等式,移到同一三角去。 三角形中两中点,连接则成中位线。 三角形中有中线,倍长中线得全等。 四边形 平行四边形出现,对称中心等分点。 梯形问题巧转换,变为三角或平四。 平移腰,移对角,两腰延长作出高。 如果出现腰中点,细心连上中位线。 上述方法不奏效,过腰中点全等造。 证相似,比线段,添线平行成习惯。 等积式子比例换,寻找线段很关键。 直接证明有困难,等量代换少麻烦。 斜边上面作高线,比例中项一大片。 圆形

半径与弦长计算,弦心距来中间站。 圆上若有一切线,切点圆心半径联。 切线长度的计算,勾股定理最方便。 要想证明是切线,半径垂线仔细辨。 是直径,成半圆,想成直角径连弦。 弧有中点圆心连,垂径定理要记全。 圆周角边两条弦,直径和弦端点连。 弦切角边切线弦,同弧对角等找完。 要想作个外接圆,各边作出中垂线。 还要作个内接圆,内角平分线梦圆。 如果遇到相交圆,不要忘作公共弦。 内外相切的两圆,经过切点公切线。 若是添上连心线,切点肯定在上面。 要作等角添个圆,证明题目少困难。 由角平分线想到的辅助线 一、截取构全等: 如图,AB//CD,BE平分∠ABC,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。

分析:在此题中可在长线段BC上截取BF=AB,再证明CF=CD,从而达到证明的目的。这里面用到了角平分线来构造全等三角形。另外一个全等自已证明。此题的证明也可以延长BE与CD的延长线交于一点来证明。自己试一试。 二、角分线上点向两边作垂线构全等: 如图,已知AB>AD, ∠BAC=∠FAC,CD=BC。求证:∠ADC+∠B=180 分析:可由C向∠BAD的两边作垂线。近而证∠ADC与∠B之和为平角。 三、三线合一构造等腰三角形: 如图,AB=AC,∠BAC=90 ,AD为∠ABC的平分线,CE⊥BE.求证:BD=2CE。 分析:延长此垂线与另外一边相交,得到等腰三角形,随后全等。四、角平分线+平行线: 如图,AB>AC, ∠1=∠2,求证:AB-AC>BD-CD。

初中数学几何题(超难)及答案分析

几何经典难题 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初三) 2、已知:如图,P 是正方形ABCD 内点, ∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二) 3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1 的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交 MN 于E 、F . 求证:∠DEN =∠F . 5、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初三) A P C D B A F G C E B O D D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 A N F E C D M B · A D H E M C B O

P C G F B Q A D E 6、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E , 直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初三) 7、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题: 设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初三 ) 8、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点. 求证:点P 到边AB 的距离等于AB 的一半.(初二) · G A O D B E C Q P N M · O Q P B D E C N M · A

中考数学综合专题训练【以圆为基础的几何综合题】精品专题解析

中考数学综合专题训练【以圆为基础的几何综合题】精品专题解析 几何综合题一般以圆为基础,涉及相似三角形等有关知识;这类题虽较难,但有梯度,一般题目中由浅入深有1~3个问题,解答这种题一般用分析综合法. 【典型例题精析】 例1.如图,已知⊙O的两条弦AC、BD相交于点Q,OA⊥BD. (1)求证:AB2=AQ·AC: (2)若过点C作⊙O的切线交DB的延长线于点P,求证:PC=PQ. P 分析:要证A B2=AQ·AC,一般都证明△ABQ∽△ACB.∵有一个公共角∠QAB=∠BAC,?∴只需再证明一个角相等即可. 可选定两个圆周角∠ABQ=∠ACB加以证明,以便转化,题目中有垂直于弦的直径,可知AB=AD,AD和AB所对的圆周角相等. (2)欲证PC=PQ, ∵是具有公共端点的两条线段, ∴可证∠PQC=∠PCQ(等角对等边) 将两角转化,一般原地踏步是不可能证明出来的,没有那么轻松愉快的题目给你做,因为数学是思维的体操. ∠BQC=∠AQD=90°-∠1(充分利用直角三角形中互余关系) ∵∠PCA是弦切角,易发现应延长AO与⊙交于E,再连结EC,?利用弦切角定理得∠PCA=∠E,同时也得到直径上的圆周角∠ACE=90°, ∴∠PCA=∠E=90°-∠1. 做几何证明题大家要有信心,拓展思维,不断转化,寻根问底,不断探索,?充分发挥题目中条件的总体作用,总能得到你想要的结论,同时也要做好一部分典型题,?这样有利于做题时发生迁移,联想. 例2.如图,⊙O1与⊙O2外切于点C,连心线O1O2所在的直线分别交⊙O1,⊙O2于A、E,?过点A作⊙O2的切线AD交⊙O1于B,切点为D,过点E作⊙O2的切线与AD交于F,连结BC、CD、?DE. (1)如果AD:AC=2:1,求AC:CE的值; (2)在(1)的条件下,求sinA和tan∠DCE的值; (3)当AC:CE为何值时,△DEF为正三角形?

初三数学几何综合练习题

初三数学几何综合练习题 1.在△ABC中,∠C=90°,AC=BC,点D在射线BC上(不与点B、C重合),连接AD,将AD绕点D顺时针旋转90°得到DE,连接BE. (1)如图1,点D在BC边上. ①依题意补全图1; ②作DF⊥BC交AB于点F,若AC=8,DF=3,求BE的长; (2)如图2,点D在BC边的延长线上,用等式表示线段AB、BD、BE之间的数量关系 (直接写出结论). 图1图2

B A C 2. 已知:Rt △A ′BC ′和 Rt △ABC 重合,∠A ′C ′B =∠ACB =90°,∠BA ′C ′=∠BAC =30°,现将Rt △A ′BC ′ 绕点B 按逆时针方向旋转角α(60°≤α≤90°),设旋转过程中射线C ′C 和线段AA ′相交于点D ,连接BD . (1)当α=60°时,A ’B 过点C ,如图1所示,判断BD 和A ′A 之间的位置关系,不必证明; (2)当α=90°时,在图2中依题意补全图形,并猜想(1)中的结论是否仍然成立,不必证明; (3)如图3,对旋转角α(60°<α<90°),猜想(1)中的结论是否仍然成立;若成立,请证明你的结论;若不成立,请说明理由. 3.如图1,已知线段BC =2,点B 关于直线AC 的对称点是点D ,点E 为射线CA 上一点,且ED =BD ,连接DE ,BE .

(1) 依题意补全图1,并证明:△BDE 为等边三角形; (2) 若∠ACB =45°,点C 关于直线BD 的对称点为点F ,连接FD 、FB .将△CDE 绕点D 顺时针旋转α度(0°<α<360°)得到△''C DE ,点E 的对应点为E ′,点C 的对应点为点C ′. ①如图2,当α=30°时,连接'BC .证明:EF ='BC ; ②如图3,点M 为DC 中点,点P 为线段'' C E 上的任意一点,试探究:在此旋转过程中,线段PM 长度的取值范围? 4.(1)如图1 ,在四边形ABCD 中,AB=BC ,∠ABC =80°,∠A +∠C =180°,点M 是AD 边上一点,把射线BM 绕点B 顺时针旋转40°,与CD 边交于点N ,请你补全图形,求MN ,AM ,CN 的数量关系; 图1 图2 图3

中考数学几何专题知识点总结78点中考数学几何压轴题

中考数学几何专题知识点总结78点中考数学 几何压轴题 1 同角或等角的余角相等 2 过一点有且只有一条直线和已知直线垂直 3 过两点有且只有一条直线 4 两点之间线段最短 5 同角或等角的补角相等 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理三角形两边的和大于第三边

16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理有两角和它们的夹边对应相等的两个三角形全等 24 推论有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理有三边对应相等的两个三角形全等 26 斜边、直角边公理 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理等腰三角形的两个底角相等 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

折叠几何综合专题---16道题目(含答案)

01如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG. (1)求证:四边形EFDG是菱形; (2)探究线段EG,GF,AF之间的数量关系,并说明理由; (3)若AG=6,EG=25,求BE的长.

(1)证明:由折叠性质可得,EF =FD ,∠AEF =∠ADF =90°,∠ EFA =∠DFA ,EG =GD ,∵EG ∥DC ,∴∠DFA =∠EGF , ∴∠EFA =∠EGF ,∴EF =EG =FD =GD ,∴四边形EFDG 是菱形; (2)解:EG 2 =1 2 GF ·AF .理由如下: 如解图,连接ED ,交AF 于点H , ∵四边形EFDG 是菱形, ∴DE ⊥AF ,FH =GH =12GF ,EH =DH =1 2 DE , ∵∠FEH =90°-∠EFA =∠FAE ,∠FHE =∠AEF =90°, ∴Rt △FEH ∽Rt △FAE ,∴EF AF =FH EF ,即EF 2=FH ·AF , 又∵FH =12GF ,EG =EF ,∴EG 2 =12 GF ·AF ; (3)解:∵AG =6,EG =25,EG 2 =12AF ·GF ,∴(25)2 =12 (6+GF )·GF , 解得GF =4或GF =-10(舍),∴GF =4,∴AF =10. ∵DF =EG =25,∴AD =BC =AF 2-DF 2=45, DE =2EH =2 EG 2 -(1 2 GF )2=8,

∵∠CDE+∠DFA=90°,∠DAF+∠DFA=90°,∴∠CDE=∠DAF,∵∠DCE=∠ADF=90°, ∴Rt△DCE∽Rt△ADF,∴EC DF = DE AF ,即 EC 25 = 8 10 , ∴EC=85 5 ,∴BE=BC-EC= 125 5 . 02如图,将矩形ABCD沿对角线BD对折,点C落在E处,BE与AD相交于点F,若DE=4,BD=8. (1)求证:AF=EF; (2)求证:BF平分∠ABD.

初中数学中考几何综合题

中考数学复习--几何综合题 Ⅰ、综合问题精讲: 几何综合题是中考试卷中常见的题型,大致可分为几何计算型综合题与几何论证型综合题,它主要考查学生综合运用几何知识的能力,这类题往往图形较复杂,涉及的知识点较多,题设和结论之间的关系较隐蔽,常常需要添加辅助线来解答.解几何综合题,一要注意图形的直观提示;二要注意分析挖掘题目的隐含条件、发展条件,为解题创造条件打好基础;同时,也要由未知想需要,选择已知条件,转化结论来探求思路,找到解决问题的关键. 解几何综合题,还应注意以下几点: ⑴ 注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构造基 本图形. ⑵ 掌握常规的证题方法和思路. ⑶ 运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题.还要灵活运用数 学思想方法伯数形结合、分类讨论等). Ⅱ、典型例题剖析 【例1】(南充,10分)⊿ABC 中,AB =AC ,以AC 为直径的⊙O 与AB 相交于点E ,点F 是 BE 的中点. (1)求证:DF 是⊙O 的切线.(2)若AE =14,BC =12,求BF 的长. 解:(1)证明:连接OD ,AD . AC 是直径, ∴ AD⊥BC. ⊿ABC 中,AB =AC , ∴ ∠B=∠C,∠BAD=∠DAC. 又∠BED 是圆内接四边形ACDE 的外角, ∴∠C =∠BED . 故∠B =∠BED ,即DE =DB . 点F 是BE 的中点,DF ⊥AB 且OA 和OD 是半径, 即∠DAC =∠BAD =∠ODA . 故OD ⊥DF ,DF 是⊙O 的切线. (2)设BF =x ,BE =2BF =2x . 又 BD =CD =21BC =6, 根据BE AB BD BC ?=?,2(214)612x x ?+=?. 化简,得 27180x x +-=,解得 122,9x x ==-(不合题意,舍去). 则 BF 的长为2.

数学几何解题技巧

初中数学教学中几何解题思路分析 【摘要】平面几何在初中数学中一直占据着很重要的位置。而学生在对几何知识进行学习和掌握的过程中,最重要的一个部分就是能够应用到实践中进行解题。正像美国一位著名的数学家曾经所说过的那样:“数学这门学科,真正的组成部分就是问题和解题,在问题与解题中,解题就是数学的心脏所在。”学生在学习的过程中是否会解题,能否对一定的解题技巧与方法进行掌握对学生学习效果有直接的影响。对教师来说,学生对基本的解题能力进行掌握,也是“双基”教学的一个方面。在数学中对基本的解题方法和技巧进行注意,对学生的学习能力的提高无疑有着重要的促进作用,与此同时还能够对学生良好学习习惯的形成有推动作用。 【关键词】初中数学;教学;几何;解题思路; 对初中的几何教学来说,初中几何中的重要部分是解题技巧与规律教学。尤其是在初中几何的后期与复习阶段,通过对学生的几何解题技巧的培养,能够使学生对知识有系统性的掌握,同时能够培养其对知识进行灵活应用的能力。当然,处了解题技巧与规律的培养,还应该注意对学生思维能力的培养。只有思维能力得到提高,才能更好地掌握解题技巧与规律。下面我们通过具体的实例进行详细分析初中数学几何题的解题思路, 一、初中数学几何的解题技巧 1、对常见的题型与解题方法进行归纳总结 初中的几何题中,其实常见的题型并不多,所以这对经常见的几何题型与解题方法进行归纳与总结,是初中几何解题一个和实用的解题技巧。初中几何,证明题是最常见的,而证明题中,又以线段或角的一些关系的证明最为常见。对线段的关系的证明通常包括相等及其和差关系等的证明。在这些中,相等关系的证明是学生应该进行的基本掌握,对线段相等关系的证明,在思路与方法上常用的包括“三角形全等”、“比例线段”以及“等角对等边”和对中间量的过渡进行选取等思路。在这些方法中,“三角形全等”是最常用的,也是应该掌握的基本解题方法。对线段不等关系则一般常用“线段公理”,而对线段的和差及其它(如倍、分)关系,在解题过程中要注意使用截长、补短等技巧。对常见技巧进行掌握,能有效提高学生的解题效率。 2、注意对辅助线进行添加和使用 在对初中几何进行解题的过程中,除了要对常用的解题方法与规律进行掌握外,还要对辅助线的添加与使用加以关注。在初中几何题中,当直接解题出现障碍使,添加辅助线是常见的解题技巧,往往会让人产生一种“柳暗花明又一村”的感觉。对常见技巧进行掌握,能有效提高学生的解题效率。下面我们通过一道例题详细进行分析几何证明题的解题方法及技巧: 如下图所示,已知:在ABC ?中,?=∠90C ,BC AC =,DB AD =,BF AE =,求证:DF DE =,

中考数学专题复习教学案几何综合题

几何综合题 Ⅰ、综合问题精讲: 几何综合题是中考试卷中常见的题型,大致可分为几何计算型综合题与几何论证型综合题,它主要考查学生综合运用几何知识的能力,这类题往往图形较复杂,涉及的知识点较多,题设和结论之间的关系较隐蔽,常常需要添加辅助线来解答.解几何综合题,一要注意图形的直观提示;二要注意分析挖掘题目的隐含条件、发展条件,为解题创造条件打好基础;同时,也要由未知想需要,选择已知条件,转化结论来探求思路,找到解决问题的关键. 解几何综合题,还应注意以下几点: ⑴ 注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构造基本图形. ⑵ 掌握常规的证题方法和思路. ⑶ 运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题.还要灵活运用数学思想方法伯数形结合、分类讨论等). Ⅱ、典型例题剖析 【例1】(南充,10分)⊿ABC 中,AB =AC ,以AC 为直径的⊙O 与AB 相交于点E ,点F 是BE 的中点. (1)求证:DF 是⊙O 的切线.(2)若AE =14,BC =12,求BF 的长. 解:(1)证明:连接OD ,AD . AC 是直径, ∴ AD ⊥BC . ⊿ABC 中,AB =AC , ∴ ∠B =∠C ,∠BAD =∠DAC . 又∠BED 是圆内接四边形ACDE 的外角, ∴∠C =∠BED . 故∠B =∠BED ,即DE =DB . 点F 是BE 的中点,DF ⊥AB 且OA 和OD 是半径, 即∠DAC =∠BAD =∠ODA . 故OD ⊥DF ,DF 是⊙O 的切线. (2)设BF =x ,BE =2BF =2x . 又 BD =CD =21 BC =6, 根据BE AB BD BC ?=?,2(214)612x x ?+=?. 化简,得 27180x x +-=,解得 122,9x x ==-(不合题意,舍去).

中考数学几何综合题汇总.doc

如图 8,在Rt ABC中,CAB 90,AC 3 , AB 4 ,点 P 是边 AB 上任意一点,过点 P 作PQ AB 交BC于点E,截取 PQ AP ,联结 AQ ,线段 AQ 交BC于点D,设 AP x ,DQ y .【2013徐汇】 (1)求y关于x的函数解析式及定义域;( 4 分) (2)如图 9,联结CQ,当CDQ和ADB相似时,求x的值;( 5 分) (3)当以点C为圆心,CQ为半径的⊙C和以点B为圆心,BQ为半径的⊙B相交的另一个交点在边 AB 上时,求 AP 的长.( 5 分) C Q D E A P B (图 8) C Q D E A (图 9) P B C A B (备用图) 【2013 奉贤】如图,已知AB是⊙O的直径,AB=8,点C在半径OA上(点C与点O、A不重合),过点 C作 AB的垂线交⊙ O于点 D,联结 OD,过点 B 作 OD的平行线交⊙ O于点 E、交射 线CD于点 F. (1)若 ⌒ ED BE⌒ ,求∠ F 的度数; (2)设CO x, EF y,写出y 与x之间的函数解析式,并写出定义域;

(3)设点 C 关于直线 OD 的对称点为 P ,若△ PBE 为等腰三角形,求 OC 的长. 第 25 题 【 2013 长宁】△ ABC 和△ DEF 的顶点 A 与 D 重合,已知∠ B = 90 . ,∠ BAC = 30 . , BC=6,∠ FDE = 90 , DF=DE=4. (1)如图①, EF 与边 、 分别交于点 ,且 . 设 DF a ,在射线 上取 AC AB G 、H FG=EH DF 一点 P ,记: DP xa ,联结 CP. 设△ DPC 的面积为 y ,求 y 关于 x 的函数解析式,并写 出定义域; (2)在( 1)的条件下,求当 x 为何值时 PC // AB ; ( 3)如图②,先将△ DEF 绕点 D 逆时针旋转,使点 E 恰好落在 AC 边上,在保持 DE 边与 AC 边完 全重合的条件下, 使△ DEF 沿着 AC 方向移动 . 当△ DEF 移动到什么位置时, 以线段 AD 、FC 、BC 的长度为边长的三角形是直角三角形. 图① 图② 【 2013 嘉定】已知 AP 是半圆 O 的直径,点 C 是半圆 O 上的一个动点 (不与点 A 、P 重合),联结 AC ,以直线 AC 为对称轴翻折 AO ,将点 O 的对称点记为 O 1 ,射线 AO 1 交半圆 O 于 点 B ,联结 OC . (1)如图 8,求证: AB ∥ OC ; (2)如图 9,当点 B 与点 O 1 重合时,求证: AB CB ;

初二数学几何解题技巧

初二数学几何解题技巧 【知识梳理】 1、几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。 2、掌握分析、证明几何问题的常用方法: (1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决; (2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止; (3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。 3、掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。

【专题一】证明线段相等或角相等 两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。 【专题二】证明直线平行或垂直 在两条直线的位置关系中,平行与垂直是两种特殊的位置。证两直线平行,可用同位角、内错角或同旁内角的关系来证,也可通过边对应成比例、三角形中位线定理证明。证两条直线垂直,可转化为证一个角等于90°,或利用两个锐角互余,或等腰三角形“三线合一”来证。 【专题三】证明线段和的问题 (一)在较长线段上截取一线段等一较短线段,证明其余部分等于另一较短线段。(截长法) (二)延长一较短线段,使延长部分等于另一较短线段,则两较短线段成为一条线段,证明该线段等于较长线段。(补短法)

最新初中数学几何题解题技巧

最新初中数学几何题解题技巧 初中数学几何题解题技巧一.添辅助线有二种情况 1按定义添辅助线: 如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。 2按基本图形添辅助线: 每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此"添线"应该叫做"补图"!这样可防止乱添线,添辅助线也有规律可循。举例如下: (1)平行线是个基本图形: 当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线

(2)等腰三角形是个简单的基本图形: 当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。 (3)等腰三角形中的重要线段是个重要的基本图形: 出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。 (4)直角三角形斜边上中线基本图形 出现直角三角形斜边上的中点往往添斜边上的中线。出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。 (5)三角形中位线基本图形 几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整

时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。 (6)全等三角形: 全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线 (7)相似三角形: 相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型;当出现相比线段重叠在一直线上时(中点可看成比为1)可添加平行线得平行线型相似三角形。若平行线过端点添则可以分点或另一端点的线段为平行方向,这类题目中往往有多种浅线方法。 (8)特殊角直角三角形

几何综合(习题)

几何综合(习题) ? 例题示范 例:如图,在四边形ABCD 中,AB =2,BC =CD =B =90°, ∠C =120°,则AD 的长为_______. D C B A 解:如图,连接AC . D C B A 在Rt △ABC 中,∵∠B =90°,AB =2,BC =∴tan ∠ACB = 3 AB BC = ∴∠ACB =30° ∴AC =2AB =4 ∵∠BCD =120° ∴∠ACD =∠BCD -∠ACB =90° 在Rt △ADC 中,AC =4,CD =∴AD = ? 巩固练习 C D B A

1. 如图,在△ABC 中,AB =15 m ,AC =12 m ,AD 是∠BAC 的外角平分线,DE ∥ AB 交AC 的延长线于点E ,那么CE =________. 2. 在△ABC 中,AB =12,AC =10,BC =9,AD 是BC 边上的高.将△ABC 按如图所 示的方式折叠,使点A 与点D 重合,折痕为EF ,则△DEF 的周长为________. D B A 3. 如图,矩形EFGD 的边EF 在△ABC 的BC 边上,顶点D ,G 分别在边AB ,AC 上.已知AB =AC=5,BC=6,设BE =x ,EFGD S y 矩形,则y 关于x 的函数关系式为________________. (要求写出x 的取值范围) G F E D C B A N M G F E D C B A 第3题图 第4题图 4. 如图,在△ABC 中有一正方形DEFG ,其中D 在AC 上,E ,F 在AB 上,直线 AG 分别交DE ,BC 于M ,N 两点.若∠B =90°,AB =4,BC =3,EF =1,则BN 的长度为( ) A .43 B .32 C .85 D .127 5. 如图,在△ABC 中,AB =BC =10,AC =12,BO ⊥AC ,垂足为O ,过点A 作射线 AE ∥BC ,点P 是边BC 上任意一点,连接PO 并延长与射线AE 相交于点Q ,设B ,P 两点之间的距离为x ,过点Q 作直线BC 的垂线,垂足为R .小明同学思考后给出了下面五条结论:①△AOB ≌△COB ; ②当0<x <10时,△AOQ ≌△COP ;

初中数学代数几何解题技巧

如何用好题目中的条件暗示 有一类题目,我们在解前面几小题时,其解题思路和方法往往对解后面问题起着很好的暗示作用,现以一次函数中出现的两道题目为例予以说明,供同学们在学习过程中参考。 【例1】直线与x轴、y轴分别交于B、A两点,如图1。 图1 (1)求B、A两点的坐标; (2)把△AOB以直线AB为轴翻折,点O落在平面上的点C处,以BC为一边作等边△BCD。求D点的坐标。 解析:(1)容易求得,A(0,1)。 (2)如图2, 图2 ∵,A(0,1), ∴OB=,OA=1。 ∴在Rt△AOB中,容易求得∠OBA=30° ∵把△AOB以直线AB为轴翻折, ∴∠OBC=2∠OBA=60°,BO=BC。 ∴△OBC是等边三角形 以BC为一边作等边△BCD,则D的落点有两种情形,可分别求得D的坐标为(0,0),。 反思:在求得第(1)小题中B、A两点的坐标分别为B(,0),A(0,1),实质上暗示着Rt△AOB中,OA=1,OB=,即暗示着∠OBA=30°,为解第(2)小题做了很好的铺垫。

【例2】直线与x轴、y轴分别交于A、B,以线段AB为直角边在第一象限内作等腰Rt△ABC,∠BAC=90°,且点P(1,a)为坐标系中的一个动点,如图3。 图3 (1)求三解形ABC的面积。 (2)证明不论a取任何实数,三角形BOP的面积是一个常数; (3)要使得△ABC和△ABP的面积相等,求实数a的值。 解析:(1)容易求得:A(,0),B(0,1), ∴。 (2)如图4,连接OP、BP,过点P作PD垂直于y轴,垂足为D,则三角形BOP的面积为,故不论a取任何实数,三角形BOP的面积是一个常数。 图4 (3)如图4,①当点P在第四象限时由第(2)小题中的结果:,和第(3)小题的条件可得: ∴, ∵,

初中数学几何证明经典题(含答案)

初中几何证明题 经典题(一) 1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO. 求证:CD=GF.(初二) .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150. 求证:△PBC是正三角形.(初二) .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 A P C D B A F G C E B O D

3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、 CC 1、DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 经典题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 B

几何综合专题复习教学设计

几何综合专题复习 —直线型中与相似有关的基本图形(一) 一、学情分析 本节课之前学生学习了相似的相关知识,对相似三角形中的一些基本图形有一定的了解,对探究三条线段之间的关系及求线段长度有一定的经验,具有初步解决相似类问题的能力。但在解决问题的能力上还存在一些不足:一是不能从复杂图形中抽出基本图形;二是不能灵活运用线段、角之间的转化策略来解决问题等。 二、教学目标 1、熟练掌握相似中的基本图形,学会运用基本图形解决复杂的几何问题,进而熟练运用相似三角形的判定和性质。 2、在相似图形的探究过程中,让学生学会运用“观察—比较—总结”分析问题。 3、在探究相似图形的过程中,培养学生与他人交流、合作的意识和品质。 三、重点难点 1、重点:利用基本图形探究线段之间的关系,计算线段的长度。 2、难点:在解决复杂问题时能抽出相似的基本图形。 四、教学过程 同学们,几何压轴题综合性强,对有些同学来说也有一定的难度。但是万丈高楼平地起,今天让我们一起来揭开这类题的神秘面纱。接下来请同学们完成学案中的基础练习。 (一)、基础练习 1.如图,AB 与CD 相交于点0,∠A=∠D ,则△AOC ∽ . 设计意图:既熟悉“8”字型的基本图形,也总结这类图形的特性是“含有对顶角”。 2.如图,在△ABC 中,D 是BC 上一点,∠BAD=∠C ,则线段AB 、BD 、BC 之间的关系是 . 设计意图:既熟悉斜截型的基本图形,也总结这类图形的特性是“具有公共角”。 3.如图,AB ⊥BC 于B ,EC ⊥BC 于C ,D 是线段BC 的中点,且AD ⊥DE ,EC=1,AB=4,,则BC= . 教师板书求线段长度的方法,以加深学生的印象。 设计意图:既熟悉“K ”字型的基本图形,也总结这类图形的特性是“利用等角的余角相等”来换角。总结这个题利用相似得到等量关系设未知数,运用了方程思想解决问题,并总结求解线段长度的常用方法。 4.在等边△ABC 中,点D 是边BC 上一点,连接AD ,将△ABD 绕点A 逆时针旋转,使AB 与AC 重合,得到△ACE ,则∠DAE= °. 设计意图:既熟悉旋转型的基本图形,也总结了旋转之后能形成新的相似图形,复习相似的第二条判定定理。总结出“所有等边三角形相似”这一经验。并为例1提供图形背景和方法指引。 请同学们利用这些小结论独立完成例1的第(1)问。 第2题 第1题

初二数学几何综合训练题及答案

初二几何难题训练题 1,如图矩形ABCD对角线AC、BD交于O,E F分别是OA、OB的中点(1)求证△ADE≌△BCF:(2)若AD=4cm,AB=8cm,求CF的长。 2,如图,在直角梯形ABCD中,AB∥DC,∠ABC=90°,AB=2DC,对角线AC⊥BD,垂足为F,过点F作EF∥AB,交AD于点E,CF=4cm. (1)求证:四边形ABFE是等腰梯形; (2)求AE的长.

3,如图,用三个全等的菱形ABGH、BCFG、CDEF拼成平行四边形ADEH,连接AE与BG、CF分别交于P、Q, (1)若AB=6,求线段BP的长; (2)观察图形,是否有三角形与△ACQ全等?并证明你的结论 4,已知点E,F在三角形ABC的边AB所在的直线上,且AE=BF,FH//EG//AC,FH、EC分别交边BC所在的直线于点H,G 1 如果点E。F在边AB上,那么EG+FH=AC,请证明这个结论 2 如果点E在AB上,点F在AB的延长线上,那么线段EG,FH,AC的长度关系是什么? 3 如果点E在AB的反向延长线上,点F在AB的延长线上,那么线段EG,FH,AC的长度关系是什么? 4 请你就1,2,3的结论,选择一种情况给予证明 5,如图是一个常见铁夹的侧面示意图,OA,OB表示铁夹的两个面,C是轴,CD⊥OA于点D,已知DA=15mm,DO=24mm,DC=10mm,我们知道铁夹的侧面是轴对称图形,请求出A、B两点间的距离.

6,如图,在平行四边形ABCD中,过点B作BE⊥CD,垂足为E,连接AE,F为AE上一点,且∠BFE=∠C,(1)求证:△ABF∽△EAD ;(2)若AB=5,AD=3,∠BAE=30°,求BF 的长 7,如图,AB与CD相交于E,AE=EB,CE=ED,D为线段FB的中点,GF与AB相交于点G,若CF=15cm,求GF之长。 8, 如图1,已知四边形ABCD是菱形,G是线段CD上的任意一点时,连接BG交AC于F,过F作FH∥CD交BC于H,可以证明结论FH/AB =FG /BG 成立.(考生不必证明)(1)探究:如图2,上述条件中,若G在CD的延长线上,其它条件不变时,其结论是否成立?若成立,请给出证明;若不成立,请说明理由; (2)计算:若菱形ABCD中AB=6,∠ADC=60°,G在直线CD上,且CG=16,连接BG 交AC所在的直线于F,过F作FH∥CD交BC所在的直线于H,求BG与FG的长.(3)发现:通过上述过程,你发现G在直线CD上时,结论FH /AB =FG /BG 还成立吗?

相关文档
相关文档 最新文档