文档库 最新最全的文档下载
当前位置:文档库 › 论文题目 循环流化床锅炉旋风分离器分析循环流化床锅炉旋风分离器分析

论文题目 循环流化床锅炉旋风分离器分析循环流化床锅炉旋风分离器分析

论文题目  循环流化床锅炉旋风分离器分析循环流化床锅炉旋风分离器分析
论文题目  循环流化床锅炉旋风分离器分析循环流化床锅炉旋风分离器分析

自循环流化床燃烧技术出现以来,循环床锅炉在世界范围内得到广泛的应用,大容量的循环床锅炉已被发电行业所接受。循环流化床低成本实现了严格的污染排放指标,同时燃用劣质燃料,在负荷适应性和灰渣综合利用等方面具有综合优势,为煤粉炉的节能环保改造提供了一条有效的途径主循环回路是循环流化床锅炉的关键,其主要作用是将大量的高温固体物料从气流中分离出来,送回燃烧室,以维持燃烧室稳定的流态化状态,保证燃料和脱硫剂多次循环、反复燃烧和反应,以提高燃烧效率和脱硫效率。主循环回路是循环流化床锅炉的关键,其主要作用是将大量的高温固体物料从气流中分离出来,送回燃烧室,以维持燃烧室的稳定的流态化状态,保证燃料和脱硫剂多次循环、反复燃烧和反应,以提高燃烧效率和脱硫效率。主循环回路不仅直接影响整个循环流化床锅炉的总体设计、系统布置,而且与其运行性能有直接关系。分离器是主循环回路的主要部件,因而人们通常把分离器的形式,工作状态作为循环流化床锅炉的标志。分离器是主循环回路的关键部件,其作用是完成含尘气流的气固分离,并把收集下来的物料回送至炉膛,实现灰平衡及热平衡,保证炉内燃烧的稳定与高效。从某种意义上讲,CFB 锅炉的性能取决于分离器的性能,所以循环床技术的分离器研制经历了三代发展,而分离器设计上的差异标志了 CFB 燃烧技术的发展历程。循环流化床循环流化床循环流化床循环流化床 1.1 循环流化床锅炉简介循环流化床(CFB)燃烧技术是一项近二十年发展起来的清洁煤燃烧技术。流化床燃烧是床料在流化状态下进行的一种燃烧,其燃料可以

是化石燃料(如煤、煤矸石)、工农业废弃物(如可燃垃圾、高炉煤气)和各种生物质燃料(如秸秆)。流化燃烧是一种介于层状燃烧与悬浮燃烧之间的燃烧方式。煤预先经破碎加工成一定大小的颗粒(一般为<8mm)后置于布风板上,煤经给煤机进入燃烧室,燃烧室内料层的静止高度约在 350~500mm,空气则通过布风板由下向上吹送。当空气以较高的气流速度通过料层时,煤粒间的空隙加大,料层膨胀增高,所有的煤粒、灰渣纷乱混杂,上下翻腾不已,颗粒和气流之间的相对运动十分强烈。这种处于沸腾状态的料床,称为流化床。这种燃烧方式即为流化燃烧。流化燃烧后的细小颗粒燃料随高温烟气飞出炉膛,大部分被固态物料分离器捕捉,经返料器送回炉膛循环燃烧,这就是循环流化燃烧技术,采用循环流化燃烧技术生产的锅炉即为循环流化床锅炉。从已投运流化床锅炉分折,流化床锅炉具有独特的优越性:(1)燃烧效率高:国外循环流化床锅炉,燃烧效率高达 99%;我国设计,投运流化床锅炉效率也高达 95-98%。该炉型燃烧效率高的主要原因是煤燃烬率高。煤粒燃烬率分三种情况分析:较小的颗粒(小于 0.04mm),随烟气速度进行流动,它们未达到对流受热面就完全燃烬了,在炉膛高度有效范围内,它们燃烬时间是足够的;对于较大一些煤粒(大于 0.6mm),其沉降速度高,只有当其直径进一步燃烧或相互磨擦碎裂而减小时,才能随烟气逸出,较大颗粒经分离器分离返回炉膛循环燃烧;对于中等粒度煤,其燃烧时间要比停留时间长,这给颗粒燃烬提供了足够时间,未燃烬颗粒循环燃烧,达到燃烬的目的。(2)、煤种适应性强:流

化床炉可燃用低热值的劣质烟煤、页炭、炉渣矸石甚至垃圾、秸秆等,对煤种适应性比煤粉炉、层燃炉好。在循环床锅炉中,通过粒子的循环回燃,炉膛温度能被控制,煤粒着火和燃烬较好。流化床锅炉设计特点是炉膛高,给煤、布风、出渣等设计都适应劣质煤的燃烧,布风装置将空气分别送入一次风的风室及分布板,送入二次风的风道喷咀。一次风约占总风量 60%,由燃烧室底部送入,二次风由密相区的不同高度送入,给高效燃烧提供了条件。由于采用了分离回料装置,为劣煤分级燃烧、回燃提供了条件,循环流化床锅炉有两种类型分离装置,一种是惯性分离,一种是旋风分离;现在生产的锅炉多采用一级高温分离器。国产循环流化床锅炉采用较低流化速度(一般 4.5m/s -5.5m/s)、较低循环倍率约(10-20),因此,分离受热面磨损较小。(3)、添加石灰石,有较高脱硫效果:流化床锅炉脱硫原理是:煤燃烧过程中产生氧化硫与流化床炉燃烧添加剂一氧化钙发生反应,产生的硫酸钙随炉渣排出,脱硫效果可800-900低温下燃烧,可控制NOx 生成。流化床炉 NOx 生成原理是空气中氮气和氧气,在燃烧时产生 NO。在流化床炉燃烧过程中,燃料中 90%的氮原素转化成 NO2,大约 10%的氮元素反应生成 NO。在燃烧过程中,生成的 NOx CaO还原,减少了 NOx 排放。(5)、系统简单、运行操作方便。(6)、灰渣综合利用,前途广泛:由于流化床炉渣可燃物极低(约 1-1.5%),而且具有较经济的脱硫效果,增加了灰中硫酸钙含量,这对综合利用提供了有利条件。灰渣可做各种建材的最好掺合料,水泥行业、制砖行业利用灰渣前途最

广泛该炉型推广应用,可减少除灰渣场地,对无灰场条件的中,小城市而言不仅可以大大改善环境条件,而且可以推进建材行业发展,变废为宝,使煤碳发挥综合效益。 1.1.1 循环流化床锅炉结构锅炉采用单锅筒,自然循环方式,总体上分为前部及尾部两个竖井。前部竖井为总吊结构,四周有膜式水冷壁组成。自下而上,依次为一次风室、浓相床、悬浮段、蒸发管、高温过热器、低温过热器及高温省煤器。尾部竖井采用支撑结构,由上而下布置低温省煤器及管式空气预热器。两竖井之间由立式旋风分离器相连通,分离器下部联接回送装置及灰冷却器。燃烧室及分离器内部均设有防磨内衬,前部竖井用敖管炉墙,外置金属护板,尾部竖井用轻型炉墙,由八根钢柱承受锅炉全部重量。锅炉采用床下点火(油或煤气),分级燃烧,一次风率占 50—60%飞灰循环为低倍率,中温分离灰渣排放采用干式,分别由水冷螺旋出渣机、灰冷却器及除尘器灰斗排出。炉膛是保证燃料充分燃烧的关键,采用湍流床,使得流化速度在 3.5—4.5m/s,并设计适当的炉膛截面,在炉膛膜式壁管上铺设薄内衬(高铝质砖),即使锅炉燃烧用不同燃料时,燃烧效率也可保持在 98—99%以上。分离器入口烟温在 450 度左右,旋风筒内径较小,结构简化,筒内仅需一层薄薄的防磨内衬(氮化硅砖)。其使用寿命较长。循环倍率为 10—15 左右。循环灰输送系统主要由回料管、回送装置,溢流管及灰冷却器等几部分组成。床温控制系统的调节过程是自动的。在整个负荷变化范围内始终保持浓相床床 860度的恒定值,这个值是最佳的脱硫温度。当自控制不投入时,靠手动也能

维持恒定的温床。保护环境,节约能源是各个国家长期发展首要考虑的问题,循环流化床锅炉正是基于这一点而发展起来,其高可靠性,高稳定性,高可利用率。最佳的环保特性以及广泛的燃应性,越来越受到广泛关注,完全适合我国国情及发展优势。 1.1.2 当固体颗粒中有流体通过时,随着流体速度逐渐增大,固体颗粒开始运动,且固体颗粒之间的摩擦力也越来越大,当流速达到一定值时,固体颗粒之间的摩擦力与它们的重力相等,每个颗粒可以自由运动,所有固体颗粒表现出类似流体状态的现象,这种现象称为流态化。对于液固流态化的固体颗粒来说,颗粒均匀地分布于床层中,称为“散式”流态化。而对于气固流态化的固体颗粒来说,气体并不均匀地流过床层,固体颗粒分成群体作紊流运动,床层中的空隙率随位置和时间的不同而变化,这种流态化称为“聚式”流态化。循环流化床锅炉属于“聚式”流态化。固体颗粒(床料)、流体(流化风)以及完成流态化过程的设备称为流化床。 1.1.3 临界流化速度对于由均匀粒度的颗粒组成的床层中,在固定床通过的气体流速很低时,随着风速的增加,床层压降成正比例增加,并且当风速达到一定值时,床层压降达到最大值,该值略大于床层静压,如果继续增加风速,固定床会突然解锁,床层压降降至床层的静压。如果床层是由宽筛分颗粒组成的话,其特性为:在大颗粒尚未运动前,床内的小颗粒已经部分流化,床层从固定床转变为流化床的解锁现象并不明显,而往往会出现分层流化的现象。颗粒床层从静止状态转变为流态化进所需的最低速度,称为临界流化速度。随着风速的进一步增大,床层

压降几乎不变。循环流化床锅炉一般的流化风速是倍的临界流化速度。1.1.4 影响临界流化速度的因素(1)料层厚度对临界流速影响不大。(2)料层的当量平均料径增大则临界流速增加。(3)固体颗粒密度增加时临界流速增加。提高循环流化床锅炉热效率的措施提高循环流化床锅炉热效率的措施提高循环流化床锅炉热效率的措施提高循环流化床锅炉热效率的措施适当提高燃烧温度,碳粒子的燃烬时间与燃烧温度有关,提高燃烧温度能明显的缩短碳粒子的燃烬时间。如下式 16 exp(10 77 其中:τp为碳粒子的燃烬时间s;T 为燃烧温度;dp为碳粒子直径cm。当τp 从800升高到950时,碳粒子的燃烬时间缩短6 倍左右。当燃烧温度从870提高到920,燃烧温度增加50 时,锅炉燃烧效率提高了2 个百分点左右。降低飞灰含碳量提高锅炉燃烧效率,影响飞灰含碳量的因素有如下方面:燃烧温度、煤的种类、分离飞灰的循环倍率、燃烧室上部燃烧偏斜、燃烧氧量的供给、分离器的分离效率、除尘灰再循环燃烧。(1)温度的影响:经试验证明当燃烧温度从900提高到950 时,飞灰含碳量从22.5%降到10%左右,降低了12.5 个百分点。燃烧温度提高1,飞灰含碳量降低0.25 个百分点,这个影响程度的不同是由煤的燃烧反应性差异所决定的。(2)挥发分低的难燃煤种,飞灰含碳量较高,挥发分高的易燃煤种,飞灰含碳量较低,一般无烟煤的飞灰含碳量比烟煤要高5-10 个百分点。(3) 分离灰循环倍率的影响: 1-1从图上可以看出分离灰循环倍率为5 时,飞灰含碳量为12.5%左右,而分离灰循环倍率从提高到4,飞灰含碳量降低约2.5个百分点,7 提

高到8 时,降低了1 个百分点,14 18时,只降低了 0.5 个百分点,离灰循环倍率在 2-6 之间变化,对飞灰含碳量的影响是最有效的。(4)器分离效率:分离器的分离效率与分离灰循环倍率的关系为为分离灰循环倍率,ηc为分离器分离效率,Ay 为燃煤灰分含量,α灰份额。分离效率高,分离灰循环倍率大;煤中灰份含量高,分离灰循环倍率大;燃烧室出口飞灰份额大,分离灰循环倍率高。(5)优化燃烧调整和控制:提高燃烧效果,900 -950;改善脱硫效果,830-880;控制 NOX 的生成量 200mg/Nm3-400 mg/Nm3 间,(830-930);烟气成分包括O2、NO2(NO)、N2O、SO2(SO3)、CO2、CO、N2等,根据O2,CO 和CO2 含量控制空气量,根据SO2 含量控制石灰石加入量,根据NOX 含量控制燃烧温度。降低床底渣含碳量,粗粒子在浓相床内的停留时间: Hb 静止床料高度,m;Fd 布风板面积,m2;ρb--静止床料的堆积密度,kg/m3;为燃煤消耗量,kg/h;δ为燃煤中粗粒子的份额。通过试验和实际运行可以高热值煤的停留时间比低热值煤长很多,这就是 CFB 锅炉烧低热值煤床底渣含碳量高的原因。故需要维持合理燃烧温度,适当提高料层厚度。制备合适粒度及大小分布的燃煤,防止燃烧分层,并注意在烧低热值煤的时候,减少一次风的使用,降低流化的速度。降低排烟温度,减少排烟热损失,影响排烟损失的因素有:排烟温度,包括尾部烟道受热面积灰,烟气含尘量大;过剩空气系数大。而降低排烟温度就可以从提高尾部烟道的受热面;提高分离器效率,降低烟气含尘量;加强尾部烟道的吹灰效率;合理搭配一二次风量,在保证流化和燃烧的情况下,尽

可能减少风的使用。 1.3循环流化床锅炉节能改造技术加装燃油,经燃油节能器处理之碳氢化合物,分子结构发生变化,细小分子增多,分子间距离增大,燃料的粘度下降,结果使燃料油在燃烧前之雾化、细化程度大为提高,喷到燃烧室内在低氧条件下得到充分燃烧,因而燃烧设备之鼓风量可以减少 15%至 20%,避免烟道中带走之热量,烟道温度下降 10。燃烧设备之燃油经节能器处理后,由于燃烧效率提高,故可节油 4.87%至 6.10%,并且明显看到火焰明亮耀眼,黑烟消失,炉膛清晰透明。彻底清除燃烧油咀之结焦现象,并防止再结焦。解除因燃料得不到充分燃烧而炉膛壁积残渣现象,达到环保节能效果。大大减少燃烧设备排放的废气对空气之污染,废气中一氧化碳(CO)、氧化氮(NOx)、碳氢化合物(HC)等有害成分大为下降,排出有害废气降低 50%以上。同时,废 30%—40%。安装位置:装在油泵和燃烧室或喷咀之间,环境温度不宜超过 360。安装冷凝型燃气锅炉节能器,燃气锅炉排烟中含有高达 18%的水蒸气,其蕴含大量的潜热未被利用,排烟温度高,显热损失大。天然气燃烧后仍排放氮氧化物、少量二氧化硫等污染物。减少燃料消耗是降低成本的最佳途径,冷凝型燃气锅炉节能器可直接安装在现有锅炉烟道中,回收高温烟气中的能量,减少燃料消耗,经济效益十分明显,同时水蒸气的凝结吸收烟气中的氮氧化物,二氧化硫等污染物,降低污染物排放,具有重要的环境保护意义。采用冷凝式余热回收锅炉技术,传统锅炉中,排烟温度一般在 160~250,烟气中的水蒸汽仍处于过热状态,不可能凝结成液态的水而放出汽化潜热。众

所周知,锅炉热效率是以燃料低位发热值计算所得,未考虑燃料高位发热值中汽化潜热的热损失。因此传统锅炉热效率一般只能达到87%~91%。而冷凝式余热回收锅炉,它把排烟温度降低到 50~70,充分回收了烟气中的显热和水蒸汽的凝结潜热,提升了热效率;冷凝水还可以回收利用。锅炉尾部采用热管余热回收技术,余热是在一定经济技术条件下,在能源利用设备中没有被利用的能源,也就是多余、废弃的能源。它包括高温废气余热、冷却介质余热、废汽废水余热、高温产品和炉渣余热、化学反应余热、可燃废气废液和废料余热以及高压流体余压等七种。根据调查,各行业的余热总资源约占其燃料消耗总量的 17%~67%,可回收利用的余热资源约为余热总资源的 60%。 1.4 循环流化床的脱硫脱硝技术烟气脱硫是世界上唯一大规模商业化应用的脱硫方法,是控制酸雨和二氧化硫污染的最为有效的和主要的技术手段。目前,世界上各国对烟气脱硫都非常重视,已开发了数十种行之有效的脱硫技术,但是,其基本原理都是以一种碱性物质作为 SO 的吸收剂,即脱硫剂。按脱硫剂的种类划分,烟气脱硫技术可分为如下几种方法。 MgO为基础的镁法;为基础的氨法;(5)以有机碱为基础的有机碱法。世界上普遍使用的商业化技术是钙法,所占比例近 90%。烟气脱硫装置相对占有率最大的国家是日本。日本的燃煤和燃油锅炉基本上都装有烟气脱硫装置。众所周知,日本的煤资源和石油资源都很缺乏,也没有石膏资源,而其石灰石资源却极为丰富。因此,FGD 的石膏产品在日本得到广泛的应用。这便是钙法在日本得到广泛应用的原因。因此,其他发达

国家的火电厂锅炉烟气脱硫装置多数是由日本技术商提供的。在美国,镁法和钠法得到了较深入的研究,但实践证明,它们都不如钙法。在我国,氨法具有很好的发展土壤。我国是一个粮食大国,也是化肥大国。氮肥以合成氨计,我国的需求量目前达到 33Mt/a(百万吨/年),其中近 45%是由小型氮肥厂生产的,而且这些小氮肥厂的分布很广,每个县基本上都有氮肥厂。因此,每个电厂周围 100km 内,都能找到可以提供合成氨的氮肥厂,SO 吸收剂的供应很丰富。更有意义的是,氨法的产品本身就是化肥,就有很好的应用价值。在电力界,尤其是脱硫界,还有两种分类方法,一种方法将脱硫技术根据脱硫过程是否有水参与及脱硫产物的干湿状态分为湿法、干法和半干(半湿)法。另一种分类方法是以脱硫产物的用途为根据,分为抛弃法和回收法。在我国,抛弃法多的工艺。氨法脱硫工艺具有很多别的工艺所没有的特点。氨是一种良好的碱性吸收剂:从吸收化学机理上分析,SO 的吸收是酸碱中和反应,吸收剂碱性越强,越利于吸收,氨的碱性强于钙基吸收剂;而且从吸收物理机理上分析,钙基吸收剂吸收 SO 是一种气-固反应,反映速率慢,反应完全,吸收剂利用率高,可以做到很高的脱硫效率。同时相对钙基脱硫工艺来说系统简单,设备体积小,能耗低。另外,其脱硫副产品硫酸铵在某些特定地区是一种农用肥料,副产品的销售收入能降低一部分因吸收剂价格高造成的高成本。氨法脱硫工艺主要由两部分反应组成:吸收过程,烟气经过吸收塔,其中的 SO 被吸收液吸收,并生成亚硫酸铵与硫酸氢铵;中和结晶,由吸收产生的高浓度亚硫酸铵与硫酸

氢铵吸收液,先经灰渣过滤器滤去烟尘,再在结晶反应器中与氨起中和反应,同时用水间接搅拌冷却,使亚硫酸铵结晶析出。燃烧脱硫+ 尾部增湿活化(半干法),燃烧脱硫+尾部增湿活化系指循环流化床炉内加入石灰石进行燃烧脱硫,然后利用炉内未完全反应的脱硫剂(石灰),在锅炉尾部烟道喷入水或水蒸汽,适当降低烟气温度(高于烟气绝热饱和温度),尾部进一步进行烟气脱硫。脱硫产物呈现干态固体物,易于处理,没有污水处理及腐蚀等问题。该脱硫工艺适合与静电除尘器或布袋除尘器配套。降低排放主要技术措施改变燃烧条件:包括低过量空气燃烧法,空气分级燃烧法,燃料分级燃烧法,烟气再循环法。炉膛喷射脱硝:包括喷氨及尿素,喷入水蒸汽,喷入二次燃料。烟气脱硝:干法脱硝,(烟气催化脱硝,电子束照射烟气脱硝)湿法脱硝。而在燃烧上:凡通过改变燃烧条件来控制燃烧关键参数,以抑制生成或破坏已生成的达到减少排放的技术称为低燃烧技术是采用最广、相对简单、经济并且是有效的方法低过量空气燃烧、空气分级燃烧、燃料分级燃烧、烟气再循环。低过量空气燃烧:使燃烧过程尽可能地在接近理论空气量的条件下进行,随着烟气中过量氧的减少,可以抑制含量的关系如图显示,不过炉内氧的浓度过低,低于 3%以下时,会造成 CO 浓度的急剧增加,从而大大增加化学未完全燃烧热损失。同时,也会引起飞灰含碳量的增加,燃烧效率将会降低;此外,低氧浓度会使炉膛内的某些地区成为还原性气氛,从而降低灰熔点,引起炉壁结渣与腐蚀。空气分级燃烧:基本原理——将燃料的燃烧过程分阶段完成一级燃烧:将供入炉膛的空气量

减少到总燃烧空气量的 70%~75%,使燃料先在缺氧的富燃料燃烧条件下燃烧。过量空气系数 a<1,降低了燃烧区内的燃烧速度和温度水平,而且在还原性气氛中降低了生成的反应率,抑制了NOx 的生成量。二级燃烧:其余空气与一级燃烧区产生的烟气混合,在的条件下完成全部燃烧过程。炉膛喷射脱硝:向炉膛喷射某种物质来还原已生成的放量。包括喷水、喷射二次燃料和喷氨等。1、喷水法,但一氧化氮氧化较困难,需喷入臭氧或高锰酸钾,不现实。2、喷二次燃料:即前述燃料分级燃烧,但二次燃料不会仅选择反应,还会与氧气反应,使烟气温度上升3、喷氨法(尿素等氨基还原剂) 4NH 反应,而一般不和氧反应,这种方法亦称选择性非催化剂吸收(SNCR)法。但不用催化剂,氨还原 ~1050这一狭窄范围内进行,故喷氨点应选择在炉膛上部对应位置。采用炉膛喷射脱硝,喷射点必须在 950 ~1050之间。喷入的氨与烟气良好混合是保证脱硝还原反应充分进行、使用最少量氨达到最好效果的重要条件。若喷入的氨未充分反应,则泄漏的氨会到锅炉炉尾部受热面,不仅使烟气飞灰容易沉积在受热面,且烟气中氨遇到三氧化硫会生成硫酸氨(粘性,易堵塞空气预热器,并有腐蚀危险)。炉内喷氨脱硝优缺点:非催化喷氨脱硝法投资少,运行费用也低.但反应温度范围狭窄;要有良好的混合及反应空间和反应时间的条件;当要求较高的脱除率时,会造成 NH 泄漏量过大等问题。10 循环流化床锅炉分离器 2.1 分离器简介循环流化床(CFB)锅炉要求达到的一系列技术参数,如:循环倍率、燃烧效率、脱琉效率、床温床压以及对燃料的适应性等,都必须通过气

固分离器的可靠性和高效率来实现。目前,我国多采用旋风分离器作气固分离,因为它结构简单,制造技术比较成熟,运行人员也比较熟悉。但多年运行经验表明,旋风分离器用于CFB 锅炉主要存在的问题有:保温材料耐高温和耐磨能力不强,造成旋风分离器内衬磨损严重;常压CFB 锅炉虽规程上不允许有后燃现象,但实际运行中,旋风分离器内经常出现后燃现象,甚至将分离器自身烧坏;对增压CFB 锅炉,因其出口烟气将送到燃气轮机作功,为了燃尽CO 象并非不允许,这对旋风分离器的材料将提出更高的要求;保温材料的热惯性很大,导致启停时间延长,负荷变化适应能力低;旋风分离器自身体积大,不利于CFB 锅炉大型化,超大的体积将给锅炉带来许多不易解决的问题等。气固分离器分离煤燃烧后产物和脱硫剂脱琉后产物的固体颗粒。这两种颗粒的粒度分布不同于入炉煤和入炉石灰石的粒度分布。完全只根据入炉煤粒度分布来选择气固分离器已不甚合理,制造厂按自身习惯,将用于一般煤粉炉的传统产品选作CFB 锅炉的气固分离器则问题会更多。下面介绍几种国内外气固分离器,并提出CFB 锅炉如何选用气固分离器的个人看法。 2.2 炉膛出口几何结构清华大学做了个试验,图2-1 为试验系统示意图。主床面积90mm90mm,有效高 5.25m;试验物料为树脂,其平均粒径为500m,物料真实密度1400kg/m ,终端速度2.7m/s。图1-2 表示试验中采用3 种典型的出口几何结构。H 指凸起部分高度(m)。 ehit 表示炉膛出口面积为44mm88mm,循环颗粒流率为8.46g/m s。光滑形出口如图2-2a 所示,炉膛出口的固体颗粒,由于导向板的作用随

着变向气流而进入水平烟道,在出口附近的颗粒密度保持不变。平直出口结构如图2-2b 所示,气固两相流中的固体颗粒一部分随气流离开炉膛,另一部分在与炉顶碰撞后,将沿炉膛内壁碰回并下降,在内壁面附近形成下降的颗粒层在炉膛内循环,它们不进入气固分离器。当采用图2-2c 的出口结构时,凸起高度在炉膛顶部形成一个空腔。部分颗粒在向上运动过程中由于惯性而从炉膛进入此空腔,在空腔内密集起来形成一个较浓的区域。聚集的颗粒沿内壁回落称之为空腔效应,形成的颗粒在炉膛内循环。与光滑出口相比,实际上减少了气固分离器的负荷。试验的目的是要最大地增加这一炉膛内循环量。上述炉膛内循环量与图2-2c 值有关。如凸起高度(H)小于颗粒惯性能达到的最大高度,则空腔内上升的颗粒将与炉顶相碰撞,碰撞后的颗粒将沿炉膛内壁落下,称之为碰撞效应。也和空腔效应一样,将导致炉膛顶部密度增加。如果H 大于颗粒所能达到的最大高度时,则顶部密度不再增加。图2-3 为炉膛出口几何结构对流化床炉膛密度分布的影响。这种现象不仅可减少流向气固分离器的颗粒量,还有利于增强气固两相的混合。从图 2-3 可看出,H 增至0.15m,两条曲线的距离大于H=0.15m和H=0.35m 之间的间距。也就是说空腔和碰撞的综合效应并非与H 成正比增加。对CFB 锅炉,H 实际取 0.5m 即可,即将炉顶升高0.5m 就够了。 12 2-3 2-4 取H =0.5m,用采样探头法,按各种流率G 测得炉膛顶部的分离效率η,如图2-4所示。该试验仍在A ehit =44mm88mm =5.14m/s下进行。从图2-4 可看出:(1)当H 在0.3~0.4m 之间,3 根曲线都趋向

饱和;(2)随着G 可达70%。这说明出13 口结构作为初级内分离具有很大的应用价值,而且炉顶提高仅0.5m,无论是新建或旧炉改造都不会花太多的钱。这里要说明的是,η并非全炉的效率,也不是气固分离器的效系指炉膛内测出下降颗粒量与上升颗粒量之比。改变炉顶几何结构这一措施除减少炉膛后气固分离器负荷外,还有利于减轻旋风分离器和尾部受热面的磨损。 2.3 槽形分离器槽形分离器属撞击式分离器。图2-5 为埃宾斯别尔格电厂的CFB 锅炉系统图。2-5 CFB 9.10.11.L 12. 13. 14. 15. 16. 17. 18. 埃宾斯别尔格电厂的CFB 锅炉210t/h,510和10.6MPa,满负荷时烟气流速6m /s。槽形分离器的槽形部件交错排列,它们被悬挂在炉膛出口后的炉顶,对烟气和固体颗粒的通道形成迷宫,如图2-6 所示。两排一次除尘器布置在水平烟道入口处,部分固体颗粒撞击槽形部件后沿槽板下落,收集来的灰粒沿后墙返回如图2-5 由水平烟道中另一排分离器(图2-5之10)收集的固体颗粒进入灰斗,见图2-6 之3,再经阀(亦称J阀)即图2-5 之11,返回下部炉膛。 14 2-6 经槽形分离器仍未分离出而进入竖井的固体颗粒,通过布置在省煤器和空气预热器之间的多管式除尘器分离后的灰尘收集在灰斗内,再用气力输送设备从图2-5 之13 部输送到下部炉膛,多余的灰从灰斗经排灰阀(16)排入专用容器。槽形分离器除对比于旋风分离器结构上可降低CFB 锅炉的高度外,还有以下优点: (1)由于分离器的阻力小,风压损失较小,下部炉膛的气流扩散密度甚低,因而减少了厂用电。经测试,风压可降低25%,经计算300t/h 的CFB 锅炉,可降低锅炉厂用电

的15%。 (2)炉膛内的颗粒分离,强化了颗粒内部的再循环,促使沿炉膛高度的浓度变化较均 (3)借助于L阀颗粒一次回收,炉膛内颗粒质量含量的调节范围增大。 (4)新分离器的结构能采用新型耐热材料,由于其热容量小,对加快启停和负荷变化的反应均较快速。 (5)由于配套采用了低温高效小直径的多管式除尘器,能分离颗粒直径小的灰尘,改善炉膛的热交换、燃烧条件和吸附剂的利用。 (6)国外CFB 锅炉多采用外置式灰热交换器以回收灰渣的物理热,并对负荷及床温进行快速控制和调节,故外置式热交换器是形成CFB 锅炉的重要设备。

旋风分离器设计方案

旋风分离器设计方案 用户:特瑞斯信力(常州)燃气设备有限公司 型号: XC24A-31 任务书编号: SR11014 工作令: SWA11298 图号: SW03-020-00 编制:日期:

本设计中旋风分离器属于中压容器,应以安全为前提,综合考虑质量保证的各个环节,尽可能做到经济合理,可靠的密封性,足够的安全寿命。设计标准如下: a. TSG R0004-2009《固定式压力容器安全技术监察规程》 b. GB150-1998《钢制压力容器》 c. HG20584-1998《钢制化工容器制造技术要求》 d. JB4712.2-2007《容器支座》 2、旋风分离器结构与原理 旋风分离器结构简单、造价低廉,无运动部件,操作范围广,不受温度、压力限制,分离效率高。一般主要应用于需要高效除去固、液颗粒的场合,不论颗粒尺寸大小都可以应用,适用于各种燃气及其他非腐蚀性气体。 说明: 旋风分离器的总体结构主要由:进 料布气室、旋风分离组件、排气室、 集污室和进出口接管及人孔等部分组 成。旋风分离器的核心部件是旋风分 离组件,它由多根旋风分离管呈叠加 布置组装而成。 旋风管是一个利用离心原理的2 英寸管状物。待过滤的燃气从进气口 进入,在管内形成旋流,由于固、液 颗粒和燃气的密度差异,在离心力的 作用下分离、清洁燃气从上导管溜走, 固体颗粒从下导管落入分离器底部, 从排污口排走。由于旋风除尘过滤器 的工作原理,决定了它的结构型式是 立式的。常用在有大量杂物或有大量 液滴出现的场合。

其设计的主要步骤如下: ①根据介质特性,选择合适的壳体材料、接管、法兰等部件材料; ②设计参数的确定; ③根据用户提供的设计条件及参数,根据GB150公式,预设壳体壁厚; ④从连接的密封性、强度等出发,按标准选用法兰、垫片及紧固件; ⑤使用化工设备中心站开发的正版软件,SW6校核设备强度,确定壳体厚度及接管壁厚; ⑥焊接接头型式的选择; ⑦根据以上的容器设计计算,画出设计总设备图及零件图。 4、材料的选择 ①筒体与封头的材料选择: 天然气最主要的成分是甲烷,经过处理的天然气具有无腐蚀性,因此可选用一般的钢材。由操作条件可知,该容器属于中压、常温范畴。在常温下材料的组织性和力学性能没有明显的变化。综合了材料的机械性能、焊接性能、腐蚀情况、强度条件、钢板的耗材量与质量以及价格的要求,筒体和封头的材料选择钢号为Q345R的钢板,使用状态为热轧(设计温度为-20~475℃,钢板标准GB 713-2008 锅炉和压力容器用钢板)。 ②接管的材料选择: 根据GB150《钢制压力容器》引用标准以及接管要求焊接性能较好且塑性好的要求,故选择16Mn号GB6479《高压化肥设备用无缝钢管》作各型号接管。因设备设计压力较高,涉及到开孔补强问题,在后面的强度计算过程中,选择16MnII锻件作为接管材料。 ③法兰的材料选择: 法兰选用ASME B16.5-2009钢制管法兰,材质:16MnII,符合NB/T47008-2009压力容器用碳素钢和低合金钢锻件标准。 ④其他附件用材原则: 与受压件相焊的的垫板,选用与壳体一致的材料:Q345R GB713-2008; 其余非受压件,选用Q235-B GB3274 《碳素结构钢和低合金钢热轧厚钢板和

循环流化床燃烧技术旋风分离器

循环流化床燃烧技术 一、概念 循环流化床(CFB)燃烧技术是一项近二十年发展起来的清洁煤燃烧技术。它具有燃料适应性广、燃烧效率高、氮氧化物排放低、低成本石灰石炉内脱硫、负荷调节比大和负荷调节快等突出优点。 自循环流化床燃烧技术出现以来,循环床锅炉在世界范围内得到广泛的应用,大容量的循环床锅炉已被发电行业所接受。 循环流化床低成本实现了严格的污染排放指标,同时燃用劣质燃料,在负荷适应性和灰渣综合利用等方面具有综合优势,为煤粉炉的节能环保改造提供了一条有效的途径。 二、循环流化床燃烧技术发展历史回顾 主循环回路是循环流化床锅炉的关键,其主要作用是将大量的高温固体物料从气流中分离出来,送回燃烧室,以维持燃烧室稳定的流态化状态,保证燃料和脱硫剂多次循环、反复燃烧和反应,以提高燃烧效率和脱硫效率。 分离器是主循环回路的关键部件,其作用是完成含尘气流的气固分离,并把收集下来的物料回送至炉膛,实现灰平衡及热平衡,保证炉内燃烧的稳定与高效。从某种意义上讲,CFB锅炉的性能取决于分离器的性能,所以循环床技术的分离器研制经历了三代发展,而分离器设计上的差异标志了CFB燃烧技术的发展历程。 ●(一)绝热旋风筒分离器 德国Lurgi公司较早地开发出了采用保温、耐火及防磨材料砌装成筒身的高温绝热式旋风分离器的CFB锅炉[1]。分离器入口烟温在850℃左右。应用绝热旋风筒作为分离器的循环流化床锅炉称为第一代循环流化床锅炉,目前已经商业化。Lurgi公司、Ahlstrom公司、以及由其技术转移的Stein、ABB-CE、AEE、EVT等设计制造的循环流化床锅炉均采用了此种形式。 这种分离器具有相当好的分离性能,使用这种分离器的循环流化床锅炉具有较高的性能。但这种分离器也存在一些问题,主要是旋风筒体积庞大,因而钢耗较高,锅炉造价高,占地较大,旋风筒内衬厚、耐火材料及砌筑要求高、用量大、费用高启动时间长、运行中易出现故障;密封和膨胀系统复杂;尤其是

旋风分离器计算

作成 作成::时间时间::2009.5.14 一、問題提出 PHLIPS FC9262/01 這款吸塵器不是旋風除塵式的,現在要用這款吸塵器測參數選擇旋風分離裝置。二、計算過程 1.選擇工作狀況選擇工作狀況:: 根據空氣曲線選擇吸入效率最高點的真空度和流量作為旋風分離器的工作狀態。 吸塵器旋風分離器選擇 Bryan_Wang

已知最大真空度h和最大流量Q,則H-Q曲線的兩個軸截距已知,可確H-Q直線的方程。 再在這個直線上求得吸入功率H*Q最高點(求導數得)。求解過程不再詳述。求得最大吸入功率時真空度H=16.5kPa;流量Q=18.5L/s;吸入功率P2=305.25w 現將真空度及流量按照吸入功率計算值與實際值的比例放大,得真空度H=18.3kPa;流量Q=20.5L/s;2.選擇旋風分離器 為使旋風分離裝置體積最小,選擇允許的最小旋風分離器尺寸。一般旋風分離器筒體直徑不小于50mm,故選擇筒體直徑為50mm。按照標準旋風分離器的尺寸比例,確定旋風除塵器的結構尺寸。 D0=50mm b=12.5mm a=25mm de=25mm h0=20mm h=75mm H-h=100mm D2=12.5mm 計算α約為11度 發現計算得到的吸入功率最大值與產品標稱值375W相差一些,可能是由于測量誤差存在以及壓力損失的原因。

一般要求旋風分離器進氣速度不超過25m/s,這里取旋風分離器進氣速度為22m/s. 計算入口面積為S=3.125e-4平方米。 則單個旋風除塵器流量為Q=6.9e-3平方米/秒則所需旋風除塵器個數為3個計算分級效率 根據GB/T 20291-2006吸塵器標準,這里使用標準礦物灰塵,為大理石沙。进气粒径分布 103058 10019037575015002010 10102016113 顆粒密度ρp=2700kg/m3 進口含塵濃度取為10g/Nm3,大致選取空氣粘度μ=1.8e-6Pa*s 按照以下公式計算顆粒分級效率: 平均粒徑(μm)比重(%)

旋风分离器的设计(苍松参考)

旋风分离器的设计 姓名:顾一苇 班级:食工0801 学号:2008309203499 指导老师:刘茹 设计成绩:

华中农业大学食品科学与技术学院 食品科学与工程专业 2011年1月14日 目录 第一章、设计任务要求与设计条件 (3) 第二章、旋风分离器的结构和操作 (4) 第三章、旋风分离器的性能参数 (6) 第四章、影响旋风分离器性能的因素 (8) 第五章、最优类型的计算 (11) 第六章、旋风分离器尺寸说明 (19) 附录 1、参考文献 (20)

任务要求 1.除尘器外筒体直径、进口风速及阻力的计算 2.旋风分离器的选型 3.旋风分离器设计说明书的编写 4.旋风分离器三视图的绘制 5.时间安排:2周 6.提交材料含纸质版和电子版 设计条件 风量:900m3/h ; 允许压强降:1460Pa 旋风分离器类型:标准型 (XLT型、XLP型、扩散式) 含尘气体的参数: ?气体密度:1.1 kg/m3 ?粘度:1.6×10-5Pa·s ?颗粒密度:1200 kg/m3 ?颗粒直径:6μm

旋风分离器的结构和操作 原理: ?含尘气体从圆筒上部长方形切线进口进入,沿圆筒内壁作旋转流动。 ?颗粒的离心力较大,被甩向外层,气流在内层。气固得以分离。 ?在圆锥部分,旋转半径缩小而切向速度增大,气流与颗粒作下螺旋运动。 ?在圆锥的底部附近,气流转为上升旋转运动,最后由上部出口管排出; ?固相沿内壁落入灰斗。 旋风分离器不适用于处理粘度较大,湿含量较高及腐蚀性较大的粉尘,气量的波动对除尘效果及设备阻力影响较大。 旋风分离器结构简单,造价低廉,无运动部件,操作范围广,不受温度、压力限制,分离效率高。一般用于除去直径5um以上的尘粒,也可分离雾沫。对于直径在5um以下的烟尘,一般旋风分离器效率已不高,需用袋滤器或湿法捕集。其最大缺点是阻力大、易磨损。

循环流化床锅炉旋风分离器改造

循环流化床锅炉旋风分离器改造 俞信福 (宁波热电股份有限公司,浙江宁波 315800) [摘要]通过对我公司6#炉主蒸汽流量长期达不到额定出力的分析,首先从运行的角度入手,查阅相关资料分析入口烟速、飞灰浓度和粒 径、烟气温度等因素对分离器的影响不致于使其阻力严重偏低;然后从结构上对照设计图纸,实地观察为分离器短路造成其压差偏少,因此有针对性地对旋风分离器进行了改造,取得了较好的效果,为以后类似问题的解决提供了一定的思路。[关键词]循环流化床锅炉;旋风分离器;中心筒;短路 分离器是循环流化床锅炉的主要部件之一,它的分离性能对整个锅炉设计与稳定运行起着至关重要的作用。旋风分离器是目前循环流化床锅炉中应用最为广泛的一种分离装置,其结构简单,且分离效率较高,问题主要是体积较大。 1设备介绍 我公司6#炉为次高压循环流化床锅炉,由杭州锅炉集团有限公司制造生产的,型号为:NG-130/5.3-M7,在炉膛与尾部烟道之间布置有两台蜗壳式旋风分离器。旋风分离器的上半部分为蜗壳式入口,下半部分为锥形。烟气出口为圆筒形,由防磨耐热铸件拼接而成。颗粒和烟气先旋转下流至圆柱体的底部,粗颗粒将被分离,洁净烟气向上流动,离开旋风分离器。粗颗粒进入回料器。 旋风分离器为膜式包墙过热器结构,其顶部与底部均与环形集箱相连,墙壁管子在顶部向内弯曲,使得在旋风分离器管子和烟气出口圆筒之间形成密封结构。旋风分离器中心筒由5排筒板构成,每排筒板由24块ZG8Cr26Ni4Mn3Nre 组成,筒体进口内径Φ1470mm ,出口内径1662mm ,中心筒伸出长度1545mm ,并要求满焊,中心筒上部与耐磨浇注料相接并采用密封套结构,密封套用不锈钢丝网将硅酸铝棉板裹住,并用不锈钢丝将其缝牢,不锈钢丝和不锈钢丝网材料均为1Cr18Ni9Ti ,在密封套与耐磨浇注料之间用硅酸铝棉板塞实,以防气流短路。 2问题的提出及分析 我公司6#炉2005年1月投入运行以来,流量只能达到110t/h ,再带高就出现主蒸汽超温,减温水每只6t/h 全开主蒸汽温度还在455℃以上。从运行的角度对影响旋风分离器分离效率的因素进行分析,由于主蒸汽超温,首先想到温度对旋风分离器分离效率的影响,通过查阅资料,烟气温度影响着烟气的粘度,随着温度的升高,烟气的粘度随之增加,因而作用在运动颗粒的粘性阻力也会增加,从而使其分离效率下降。但是烟气的密度随着温度的增加而减少,从而使粘性阻力减少,因此烟气的温度对旋风分离器分离效率的作用并不明显。 旋风分离器进口烟速对其分离效率的影响,分离器的效率随着进口烟速的增大而增大,虽然当进口烟速过高时,由于紊流增加和尘粒反弹等因素使分离器的效率有所下降,按运行锅炉炉膛出口的压力和高温过热器进口压力比较,进口烟速不可能过高。最后是灰粒,灰粒的许多物理化学性能都对旋风分离器性能有影响,其中飞灰的浓度和粒径影响较大,分离效率随着飞灰的浓度的增加而增大,同时也随着飞灰的粒径增加而增大,而运行中5#炉和6#炉在用同一种煤时颗粒也一样,既使燃用不同的煤种锅炉负荷还是不会上来。从结构上分析旋风分离器为锅炉厂整体制造提供,与其进口烟道接口的支吊架位置材料都由锅炉厂提供,现场只是整体拼装,不可能出现大的偏差。从运行的参数比较分析,主要为分离器阻力偏低,主蒸汽超温,锅炉流量带不上。运行时分析是否为旋风分离器保温有问题,但保温问题也不应该影响分离器的效率,也考虑筒板少装,但4#炉的中心筒只有4排比三期少一排,也未出现炉膛灰浓度提不上,锅炉流量带不上情况。因此问题还是出在旋风分离器本身,5月下旬6#炉停炉时,经检查旋风分离器保温完好,从旋风分离器出口烟道处检查发现中心筒上部筒板开裂严重,大的裂缝有20mm ,长度大的为300mm 以上(一块筒板的有效高度为525mm ),中心筒上部耐磨浇注料与密封套之间的硅酸铝棉板已大部分 被短路的烟气拉走,因此在中心筒上部第二块筒板处均匀地割了4块,高度为300mm ,塞入用不锈钢丝网将硅酸铝棉板裹住缝牢的密封套,并在密封套与耐磨浇注料之间通过4个孔用硅酸铝棉板塞实,再用原筒板把4个孔补回,用专用焊条( 奥407铬26镍21不锈钢焊条)焊接,较大的缝采取耐热钢筋衬,并且满焊。投入运行的初期,主蒸汽流量曾到过120t/h ,以后一直在100t/h 以内。经过分析可能为焊缝为表面成形,且从4个孔塞棉的难度较大,中心筒出现裂缝后把部分硅酸铝棉板拉走,重新形成短路。8月份6#炉停炉后,与有关技术老师傅探讨后,对旋风分离器中心筒与分离器的密封进行了改造,见图1。 图1分离器中心改造图 保温层与分离器中心筒之间用硅酸铝棉板塞实后,用4mm 的SUS309密封,密封板外径Φ1770mm 内径Φ1610mm 的圆环分成若干段安装,每隔100mm 加一块4mm 的SUS309尺寸为40mm ×80mm 的筋板,并要求满焊,对旋风分离器中心筒出现的裂缝再次进行满焊,焊条仍为奥407铬26镍21不锈钢焊条。 3分离器改造前后运行参数比较 旋风分离器改造前主蒸汽流量长期不超过100t/h ,炉膛顶部P16/P19差压不超过1kPa (一般在0.75kPa 左右),(下转第144页)

实验室气流粉碎机的正确使用方法

实验室气流粉碎机顾名思义就是一种能够用气流来对物料进行粉碎的大型产品,因为实验室气流粉碎机是由引风机、除尘器、旋风分离器等部分组成的,所以说它的功能相对来说也是更加完善的,尤其是在实验室的废料清理时我们都能看到实验室气流粉碎机的身影。 实验室气流粉碎机生产厂家介绍说,实验室气流粉碎机的是通过将空气压缩后进行过滤且干燥的处理之后,再由特殊的喷嘴对其进行喷射,而经过多股高压气流喷射则会形成一个交汇处,交汇处便是物料的主要粉碎点。因为其内部是光滑且无死角的,所以实验室气流粉碎机的拆洗是十分方便的。所以我们要对其进行定期的保养和维护。 实验室气流粉碎机的应用比较频繁。在使用过程中需要注意一些事项,包括启动和打开过程前的准备工作,维护工作等。下面的实验室气流粉碎机制造商将详细介绍实验室气流粉碎机的操作方法,希望能给大家提供帮助。 1、开机前的准备 检查主机,连接器,管道和阀门是否处于良好状态并正常运行。

2、开机 (1)、打开压缩机电源,除尘器压力阀和主空气阀,打开实验室气流粉碎机的电源开关,打开电源开关。 (2)、从零开始并逐渐将其调整到指定的速度。 (3)、打开风扇,旋风,灰尘,给电机充电,打开总电源箱,设置变频器的频率,然后开始充电。 (4)、可根据分级轮的频率和负载调整成品的粒度。 3、停机和停止的顺序是:变频器- 馈线- 主空气阀- 压缩机- 级叶轮电机- 旋风材料,灰尘开关- 风扇- 总功率- 空气压缩机。 4、维护保养 (1)、电机应定期润滑,但油不应过多,以免轴承温度过高。 (2)、检查叶轮,螺旋输送机和破碎喷嘴的磨损非常重要。

(3)、材料破碎后,应清洗机器内的橡胶粉末,以免堵塞,从而影响破碎效果。 (4)、过滤袋使用一段时间后,应进行清洁或更换。 5、注意事项 (1)、当卸载设备运行时,无法到达卸载出口以避免发生事故。 (2)、叶轮的速度不应超过规定,否则温度过高,叶轮和电机会损坏。 (3)、应定期检查阀门以确保可靠性。

简述旋风分离器性能的优化

简述旋风分离器性能的优 化 摘要:综合了国内众多优秀论文的观点,从旋风分离器的结构设计、故障排除等角度讲述了提高旋风分离器工作效率,减少压降、阻力(延长使用寿命)的优化措施。阐述了工艺优化后旋风分离器性能上的改善,为进一步扩展其应用领域提供了必要的依据。 关键词:旋风分离器:分离效率;压降;使用寿命;性能优化 0 引言 旋风分离器作为一种重要的除尘设备,在石油化工、燃煤发电等许多行业都得到广泛应用。但是,由于其除尘效率一般多在90%左右,同时对粉尘粒径较小的粉尘除去效果一般,故对于除尘要求较高的生产场合,它一般只作为多级除尘中的一级除尘使用。这就使得旋风除尘器的使用条件受到了很大的限制。本文综合了国内众多优秀论文的观点,从旋风分离器的结构设计、故障排除等角度论述其性能优化的方法措施,使旋风分离器能适用于更广阔的应用领域。 1 旋风分离器结构设计对其性能优化的影响 1.1 旋风分离器与多孔材料的组合 人们为提高旋风分离器的效率,做了许多努力:将金属多孔材料安置于旋风分离器中,组合成的旋风—过滤复合式除尘器就是其中之一。这种结构设计在锥筒底部加了一段直管,机器到了增加分离的目的,又起到减缓旋流的目的,以避免二次扬尘的产生。 为此,实验人员做了相关的测定实验,选取了铁合金冶炼粉尘等4种直径大小从0.05μm~10μm的不等的颗粒(基本上涵盖了所有常见粉尘的粒径范围),让实验更具有广泛的实用性,分离效率可大幅提高至近100%。实验结束后,用氮气反吹滤管后,得到的结果非常理想,可进行再次实验,即实验的再生效果好。 1.2 改变入口切入角及外筒直径对旋风分离器性能的影响

影响旋风分离器性能的因素有很多,可以从改变其入口切入角和外筒直径这两个方面考虑工艺的优化。根据模拟结果显示,r=6000mm、θ=7.5°构造的旋风分离器效率接近95%,分离效果较好。现实验人员研究的就是在此基础上的设计优化。 首先,把入口切入角θ改为θ=9°及θ=6°两组,发现θ=9°比θ=6°入口速度高,但速度衰减慢,速度场分布均匀,速度偏差小,减少了对颗粒的二次卷吸,在外筒壁面处速度高,分离效率提高了。 其次,实验人员将外筒直径由6000mm变更为5600mm、5800mm、6200mm、6400mm,发现当直径增大,离心力作用小,分离效率降低;直径减少后,分离效果好,但由于在下部形成内旋涡卷吸了一些下沉颗粒,分离效果下降。故可利用此外筒直径与分离效率的变化关系,寻找最合适的外筒直径大小,以达到最佳的分离效率。 1.3加装循环管和防液罩对旋风分离器性能的影响 对旋风分离器加装循环管前后进行实验对比分析可知,加装循环管的旋风分离器压降小于不带循环管的分离器,这就是说,带循环管的旋风分离器在入口摩擦损失、器内气流旋转的动能损失等方面均要小于不带循环管的分离器。 防液罩的存在对分离器压降影响不大,但带防液罩的分离器在不同高度剖面上的切向速度明显大于不带防液罩的分离器,那么他的分离效率就会相应提高。因此,防液罩可以在不增加压降损失的同时,进一步提高切向速度,从而提高气、液相的分离效率。 1.4新设计样式的旋风分离器与旋风分离器性能的影响 已有许多研究人员着手于新型旋风分离器的设计与研究,新型双蜗壳旋风分离器就是新设计出的一种新型旋风分离器。他的上行流区的静压变化为顺压梯度,有利于气体的顺利排出,减少旋风分离器的压力损失。 另外,循环式旋风分离器也有着提高分离效率,降低系统能耗的作用。 2 排除故障以优化旋风分离器的效率 2.1 消除三旋单管堵塞 笔者以比较常见的三级旋风分离器为例,简述通过工艺手段,消除由于

旋风分离器工作原理

旋风分离器的作用 旋风分离器设备的主要功能是尽可能除去输送介质气体中携带的固体颗粒杂质和液滴,达到气固液分离,以保证管道及设备的正常运行。 工作原理 净化天然气通过设备入口进入设备内旋风分离区,当含杂质气体沿轴向进入旋风分离管后,气流受导向叶片的导流作用而产生强烈旋转,气流沿筒体呈螺旋形向下进入旋风筒体,密度大的液滴和尘粒在离心力作用下被甩向器壁,并在重力作用下,沿筒壁下落流出旋风管排尘口至设备底部储液区,从设备底部的出液口流出。旋转的气流在筒体内收缩向中心流动,向上形成二次涡流经导气管流至净化天然气室,再经设备顶部出口流出。 性能指标 分离精度旋风分离器的分离效果:在设计压力和气量条件下,均可除去≥10μm的固体颗粒。在工况点,分离效率为99%,在工况点±15%范围内,分离效率为97%。压力降正常工作条件下,单台旋风分离器在工况点压降不大于0.05MPa。设计使用寿命旋风分离器的设计使用寿命不少于20年。 结构设计 旋风分离器采用立式圆筒结构,内部沿轴向分为集液区、旋风分离区、净化室区等。内装旋风子构件,按圆周方向均匀排布亦通过上下管板固定;设备采用裙座支撑,封头采用耐高压椭圆型封头。设备管口提供配对的法兰、螺栓、垫片等。通常,气体入口设计分三种形式:a) 上部进气b) 中部进气c) 下部进气对于湿气来说,我们常采用下部进气方案,因为下部进气可以利用设备下部空间,对直径大于300μm或500μm 的液滴进行预分离以减轻旋风部分的负荷。而对于干气常采用中部进气或上部进气。上部进气配气均匀,但设备直径和设备高度都将增大,投资较高;而中部进气可以降低设备高度和降低造价。 应用范围及特点

循环流化床锅炉旋风分离器返料器设计运行

循环流化床锅炉旋风分离器返料器设计运行 作者:华升加油枪加油机日期:2010-9-10 22:58:2 字体大小: 小中大 永嘉县华升阀门厂:滑过渡造成旋风分离器内壁不光滑,施工后应采取措施保证内壁光滑,在直段和锥段结合处也要保证光滑过渡。1.2.2保证返料器和旋风分离器之间密封良好如果密封不严,则会破坏炉膛、旋风分离器及返料器之间的压力平衡,造成返料间断或不返料,导致旋风分离器因堵灰而结焦。施工过程中,在保证整个锅炉密封的同时,要更加注意旋风分离器和返料器之间的密封。不要在旋风分离器上随意开一些检修孔和观察孔,开孔过多会影响旋风分离器的性能,也会导致旋风分离器因密封不严而漏风。1.2.3保证返料器各处尺寸在施工过程中,要保证返料器各处的尺寸,特别要注意返料器尺寸中的A、B两个尺寸(见图1),以防偏大或偏小。由于各地的煤质不同,其颗粒度的大小也不同,特别是低位发热量较低且小颗粒所占比例较大的无烟煤,运行时循环灰量比较大。锅炉运行一定时间后,尺寸A因磨损而不断减小,要经常检查耐火砖的损坏情况,避免尺寸A的数值为零或负值。这样将会导致呈正压的炉膛密相区热烟气反窜进入旋风分离器内,破坏旋风分离器的工作条件,使返料被迫中止。在安装时,尺寸B过小会使返料阻力增大,过大则会影响返料器位置的物料充满度,均不利于返料,应严格按图纸施工。图1U型返料器1.2.4采用冷却套管结构,控制返料器的温度当今国内已经研制出包敷整个旋风分离器的鳍片式及单管式旋风分离器,分为水冷与汽冷两种型式。由于水冷式旋风分离器在边壁处对热灰的温降较大,不利于煤的燃尽,使飞灰含碳量较高,目前多采用绝热分离器与汽冷分离器。在绝热分离器的料腿位置加设水冷套,以防止此位置因温度过高而结焦。加设水冷套装置的绝热分离器,运行十分稳定,飞灰含碳量较低。汽冷分离器的使用不但缩短了锅炉启动时间,还保持分离器内壁处于较高温度,且能有效地防止结焦的发生,倍受用户的青睐。1.2.5采取合适的风管结构风量和风压是返料器正常运行的基础,风量和风压只有同时达到要求,才能使返料器正常工作,任何一项达不到,返料器都不能正常工作。随着循环流化床锅炉的发展,返料器位置当前的送风方式大致分为集中送风和分配送风两种。集中送风大多应用于75t/h以下锅炉中,返料量少,返料器位置的流化风与返料风共用一个风箱(见图2),两者的风量分配通过彼此的风帽开孔率来达到,风箱接于一次风入口(或出口)处,风箱前的阀门保持一定开度就能达到运行需要。分配送风大多应用于130t/h以上锅炉中,返料量大,返料器位置的流化风与返料风各有一个风箱,通过支管接于返料专用风机母管上,在支管上设置调节阀。母管上设置流量计(见图3),从而较好地分配风量和控制总风量,达到控制返料量和返料温度的目的。如果返料风量达到最大但仍达不到运行要求,说明返料风压衰降过多,多为返料风管的沿程阻力过大所致,可通过增粗返料风管的途径来达到提高返料风压的目的。图2U型返料器1一返料器;2一风室;3一调节阀;4一风管;5~放渣管图3U型返料器1一返料器;2一返料风室;3一流化风室;4一调节阀;5一流

旋风分离器设计

旋风分离器设计中应该注意的问题 旋风分离器被广泛的使用已经有一百多年的历史。它是利用旋转气流产生的离心力将尘粒从气流中分离出来。旋风分离器结构简单,没有转动部分。但人们还是对旋风分离器有一些误解。主要是认为它效率不高。还有一个误解就是认为所有的旋风分离器造出来都是一样的,那就是把一个直筒和一个锥筒组合起来,它就可以工作。旋风分离器经常被当作粗分离器使用,比如被当做造价更高的布袋除尘器和湿式除尘器之前的预分离器。 事实上,需要对旋风分离器进行详细的计算和科学的设计,让它符合各种工艺条件的要求,从而获得最优的分离效率。例如,当在设定的使用范围内,一个精心设计的旋风分离器可以达到超过99.9%的分离效率。和布袋除尘器和湿式除尘器相比,旋风分离器有明显的优点。比如,爆炸和着火始终威胁着布袋除尘器的使用,但旋风分离器要安全的多。旋风分离器可以在1093 摄氏度和500 ATM的工艺条件下使用。另外旋风分离器的维护费用很低,它没有布袋需要更换,也不会因为喷水而造成被收集粉尘的二次处理。 在实践中,旋风分离器可以在产品回收和污染控制上被高效地使用,甚至做为污染控制的终端除尘器。 在对旋风分离器进行计算和设计时,必须考虑到尘粒受到的各种力的相互作用。基于这些作用,人们归纳总结出了很多公式指导旋风分离器的设计。通常,这些公式对具有一致的空气动力学形状的大粒径尘粒应用的很好。在最近的二十年中,高效的旋风分离器技术有了很大的发展。这种技术可以对粒径小到5微米,比重小于1.0的粒子达到超过99%的分离效率。这种高效旋风分离器的设计和使用很大程度上是由被处

理气体和尘粒的特性以及旋风分离器的形状决定的。同时,对进入和离开旋风分离器的管道和粉尘排放系统都必须进行正确的设计。工艺过程中气体和尘粒的特性的变化也必须在收集过程中被考虑。当然,使用过程中的维护也是不能忽略的。 1、进入旋风分离器的气体 必须确保用于计算和设计的气体特性是从进入旋风分离器的气体中测量得到的,这包括它的密度,粘度,温度,压力,腐蚀性,和实际的气体流量。我们知道气体的这些特性会随着工艺压力,地理位置,湿度,和温度的变化而变化。 2、进入旋风分离器的尘粒 和气体特性一样,我们也必须确保尘粒的特性参数就是从进入旋风分离器的尘粒中测量获得的。很多时候,在想用高效旋风分离器更换低效旋风分离器时,人们习惯测量排放气流中的尘粒或已收集的尘粒。这种做法值得商榷,有时候是不对的。 获得正确的尘粒信息的过程应该是这样的。首先从进入旋风分离器的气流中获得尘粒样品,送到专业实验室决定它的空气动力学粒径分布。有了这个粒径分布就可以计算旋风分离器总的分离效率。 实际生产中,进入旋风分离器的尘粒不是单一品种。不同种类的尘粒比重和物理粒径分布都不相同。但空气动力学粒径分布实验有机地将它们统一到空气动力学粒径分布中。 3、另外影响旋风分离器的设计的因素包括场地限制和允许的压降。例如,效率和场地限制可能会决定是否选用并联旋风分离器,或是否需要加大压降,或两者同时采用。 4、旋风分离器的形状 旋风分离器的形状是影响分离效率的重要因素。例如,如果入口

旋风分离器的设计

旋风分离器的设计公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

旋风分离器的设计 姓名:顾一苇 班级:食工0801 指导老师:刘茹 设计成绩: 华中农业大学食品科学与技术学院 食品科学与工程专业 2011年1月14日 目录 第一章、设计任务要求与设计条件 (3) 第二章、旋风分离器的结构和操作 (4) 第三章、旋风分离器的性能参数 (6) 第四章、影响旋风分离器性能的因素 (8) 第五章、最优类型的计算 (11) 第六章、旋风分离器尺寸说明 (19) 附录 1、参考文献 (20) 任务要求 1.除尘器外筒体直径、进口风速及阻力的计算 2.旋风分离器的选型 3.旋风分离器设计说明书的编写 4.旋风分离器三视图的绘制

5.时间安排:2周 6.提交材料含纸质版和电子版 设计条件 风量:900m3/h ; 允许压强降:1460Pa 旋风分离器类型:标准型 (XLT型、XLP型、扩散式) 含尘气体的参数: 气体密度: kg/m3 粘度:×10-5Pa·s 颗粒密度:1200 kg/m3 颗粒直径:6μm 旋风分离器的结构和操作 原理: 含尘气体从圆筒上部长方形切线进口进入,沿圆筒内壁作旋转流动。 颗粒的离心力较大,被甩向外层,气流在内层。气固得以分离。 在圆锥部分,旋转半径缩小而切向速度增大,气流与颗粒作下螺旋运动。 在圆锥的底部附近,气流转为上升旋转运动,最后由上部出口管排出; 固相沿内壁落入灰斗。 旋风分离器不适用于处理粘度较大,湿含量较高及腐蚀性较大的粉尘,气量的波动对除尘效果及设备阻力影响较大。 旋风分离器结构简单,造价低廉,无运动部件,操作范围广,不受温度、压力限制,分离效率高。一般用于除去直径5um以上的尘粒,也可分离雾沫。对于

循环流化床锅炉旋风分离器的最新发展与高效运行 刘佳斌资料

循环流化床锅炉旋风分离器的最新发展与高效运行 刘佳斌 (山东大学能源与动力工程学院济南250010) 摘要:循环流化床的分离机构是循环流化床的关键部件之一,其主要作用是将大量高温固体物料从气流中分离出来,送回燃烧室,以维持燃烧室的快速流态化状态,保证燃料和脱硫剂多次循环、反复燃烧和反应。这样,才有可能达到理想的燃烧效率和脱硫效率。 关键词: 旋风分离器、循环流化床锅炉、循环效率、发展。 图1 75t/h循环流化床锅炉简图 1.循环流化床旋风分离器的工作原理 如图2、3为普遍采用的高温旋风分离器结构。此类分离器的体积庞大,占地面积与炉膛基本相当,它是利用旋转的含尘气体所产生的离心力,将颗粒从气流中分离出的一种干式气固分离装置。含灰烟气在炉膛出口处分进入旋风分离器,旋风分离器的圆形筒体和气体的切向入口使气固混合物进入围绕旋风分离器的2个同心涡流,外部涡流向下,内部涡流向上。由于固体密度比烟气密度大,在离心力作用下固体离开外部涡流移向壁面, 再沿旋风分离器的循环流化床的分离机构是循环流化床的关键部件 之一,其主要作用是将大量高温固体物料从气流中分 离出来,送回燃烧室,以维持燃烧室的快速流态化状态, 保证燃料和脱硫剂多次循环、反复燃烧和反应。这样, 才有可能达到理想的燃烧效率和脱硫效率。因此,循环 流化床分离机构的性能优劣,将直接影响整个循环流 化床锅炉的出力、效率及运行寿命。 随着循环流化床锅炉大型化的发展,对分离器提出 了更高的要求,它不但要能处理大容量的烟气,还要求 能在恶劣的环境中可靠、稳定运行。多年的商业运行 经验表明,高温旋风分离器目前仍是最适合(大型)循 环流化床锅炉的分离器之一。 图 3 高温旋风分离

化工原理实验教材

雷诺演示实验 一、 实验目的 1观察流体流动时的不同流动型态 2观察层流状态下管路中流体的速度分布状态 3熟悉雷诺准数(Re )的测定与计算 4测定流动型态与雷诺数(Re )之间的关系及临界雷诺数 二、 实验原理 流体在流动过程中由三种不同的流动型态, 即层流、过渡流和湍 流。主要取决于流体流动时雷诺数 Re 的大小,当Re 大于4000时为 湍流,小于2000时为层流,介于两者之间为过渡流。影响流体流动 型态的因素,不仅与流体流速、密度、粘度有关,也与管道直径和管 三、实验装置 雷诺演示实验装置如图1.1所示,其中管道直径为20 mm 型有关,其定义式如下: Re 二 dap 式中:d 管子的直径 m u 流体的速度 m/s p 流体的密度 3 kg/m 流体的粘度 Pa ? s i.i-i

图1.1雷诺演示实验装置图 1 —有机玻璃水槽; 2 —玻璃观察管; 3 —指试液; 4 , 5 —阀门; 6 —转子流量计 四、实验步骤 1 了解实验装置的各个部件名称及作用,并检查是否正常。 2打开排空阀排气,待有机玻璃水槽溢流口有水溢出后开排水阀调节红色指示液,消去原有的残余色。 3打开流量计阀门接近最大,排气后再关闭。 4打开红色指示液的针形阀,并调节流量(由小到大),观察指示液流动形状,并记录指示液成稳定直线,开始波动,与水全部混合时流量计的读数。 5重复上述实验3?5次,计算Re临界平均值。 6关闭阀1、11,使观察玻璃管6内的水停止流动。再开阀1,让指示液流出1?2 cm后关闭1,再慢慢打开阀9,使管内流体作层流流动,观察此时速度分布曲线呈抛物线形状。 7关闭阀1、进水阀,打开全开阀9排尽存水,并清理实验现场。 五、数据处理及结果分析 1实验原始数据记录见下表:

伯努利方程实验

化工原理实验(2010年国防工业出版社出版的图书): 本书为化工原理实验教材,内容包括化工实验数据的测量及处理、化工实验常用参数测量技术、化工原理基础实验、演示实验、计算机处理实验数据及实验仿真、化工原理实验常用仪器仪表这六部分。其中,化工原理基础实验包括流体阻力测定实验、流量计标定实验、离心泵性能测定实验、过滤实验、传热实验、精馏实验、气体的吸收与解析实验、干燥实验。演示实验包括伯努利方程实验、雷诺实验、旋风分离器性能演示实验、边界层演示实验和筛板塔流体力学性能演示实验。计算机处理实验数据及实验仿真,包括应用Excel 进行数据和图表处。 目录: 绪论1 第一章化工实验数据误差分析及数据处理3 1. 1实验数据的误差分析3 1. 1. 1测量误差的基本概念3 1. 1. 2间接测量值的误差传递6 1. 1. 3实验数据的有效数字与记数法10 1. 2实验数据处理11 1. 2. 1列表法12 1. 2. 2图示(解)法13 1. 2. 3数学模型法15 第二章化工参数测量及常用仪器仪表29

2. 1温度测量29 2. 1. 1热膨胀式温度计29 2. 1. 2热电偶式温度计33 2. 1. 3热电阻式温度计35 2. 1. 4温度计的校验和标定36 2. 2压力测量37 2. 2. 1液柱压力计38 2. 2. 2弹性压力计40 2. 2. 3压强(或压强差)的电测方法42 2. 2. 4压力计的校验和标定43 2. 3流量测量43 2. 3. 1差压式流量计43 2. 3. 2转子流量计46 2. 3. 3涡轮流量计48 2. 3. 4流量计的校验和标定50 第三章化工原理基础实验51 实验一流体阻力测定实验51 实验二流量计标定实验60 实验三离心泵性能测定实验65 实验四过滤实验71 实验五传热实验77 实验六精馏实验86

旋风分离器的工艺计算

旋风分离器的工艺计算 》 : *

目录 一.前言 (3) 应用范围及特点 (3) 分离原理 (3) 分离方法 (4) ) 性能指标 (4) 二.旋风分离器的工艺计算 (4) 旋风分离器直径的计算 (5) 由已知求出的直径做验算 (5) 计算气体流速 (5) < 计算旋风分离器的压力损失 (5) 旋风分离器的工作范围 (6) 进出气管径计算 (6) 三.旋风分离器的性能参数 (6) 分离性能 (6) ~ 临界粒径d pc (7) 分离效率 (8) 旋风分离器的压强降 (8) 四.旋风分离器的形状设计 (9) 五.入口管道设计 (10) $ 六.尘粒排出设计 (10) 七.算例(以天然气作为需要分离气体) (11) 工作原理 (11) 基本计算公式 (12) 算例 (13) ( 八.影响旋风分离器效率的因素 (14) 气体进口速度 (14) 气液密度差 (14) 旋转半径 (14) 参考文献 (15) …

' 旋风分离器的工艺计算 摘要:分离器已经使用十分广泛无论在家庭生活中还是工业生产,而且种类繁多每种都有各自的优缺点。现阶段旋风分离器运用比较广泛,它的性能的好坏主要决定于旋风分离器性能的强弱。这篇文章主要是讨论旋风分离器工艺计算。旋风分离器是利用离心力作用净制气体,主要功能是尽可能除去输送介质气体中携带的固体颗粒杂质和液滴,以达到气固液分离,以保证管道及设备的正常运行。在本篇文章中,主要是对旋风分离器进行工艺计算。 [ 关键字:旋风分离器、工艺计算 一.前言 旋风分离器设备的主要功能是尽可能除去输送介质气体中携带的固体颗粒杂质和液滴,达到气固液分离,以保证管道及设备的正常运行。它是利用旋转气流产生的离心力将尘粒从气流中分离出来。旋风分离器结构简单,没有转动部分制造方便、分离效率高,并可用于高温含尘气体的分离,而得到广泛运用。 ' 旋风分离器采用立式圆筒结构,内部沿轴向分为集液区、旋风分离区、净化室区等。内装旋风子构件,按圆周方向均匀排布亦通过上下管板固定;设备采用裙座支撑,封头采用耐高压椭圆型封头。设备管口提供配对的法兰、螺栓、垫片等。 通常,气体入口设计分三种形式: a) 上部进气 b) 中部进气 c) 下部进气 对于湿气来说,我们常采用下部进气方案,因为下部进气可以利用设备下部空间,对直径大于300μm或500μm的液滴进行预分离以减轻旋风部分的负荷。而对于干气常采用中部进气或上部进气。上部进气配气均匀,但设备直径和设备高度都将增大,投资较高;而中部进气可以降低设备高度和降低造价。 应用范围及特点 旋风分离器适用于净化大于1-3微米的非粘性、非纤维的干燥粉尘。它是一种结构简单、

蜗壳式旋风分离器的原理与设计说明书

蜗壳式旋风分离器的原理与设计 l0余热锅炉2007.4 蜗壳式旋风分离器的原理与设计 杭州锅炉集团股份有限公司王天春徐亦芳 1前言 循环流化床锅炉的分离机构是循环流化床锅炉的关键部件之一,其主要作用是 将大量高温,高浓度固体物料从气流中分离出来,送回燃烧室,以维持燃烧室一定 的颗粒浓度,保持良好的流态化状态,保证燃料和脱硫剂在多次循环,反复燃烧和 反应后使锅炉达到理想的燃烧效率和脱硫效率.因此, 循环流化床锅炉分离机构的性能,将直接影响整个循环流化床锅炉的总体设计,系统布置及锅炉运行性能.根 据旋风分离器的入口结构类型可以分为:圆形或圆管形入口,矩形入口,"蜗壳式" 入口和轴向叶片入口结构.本文重点分析在循环流化床锅炉中常用的"蜗壳式"入 口结构. 2蜗壳式旋风分离器的工作原理 蜗壳式旋风分离器是一种利用离心力把固体颗粒从含尘气体中分离出来的静 止机械设备.入口含尘颗粒气体沿顶部切向进入蜗壳式分离器后,在离心力的作用下,在分离器的边壁沿轴向作贴壁旋转向下运动,这时气体中的大于切割直径的颗粒被分离出来, 从旋风分离器下部的排灰口排出.在分离器 锥体段,迫使净化后的气流缓慢进入分离器内部区域,在锥体中心沿轴向逆流 向上运动,由分离器顶部的排气管排出.通常将分离器的流型分为"双旋蜗",即轴 向向下外旋涡和轴向向上运动的内旋涡.这种分离器具有结构简单,无运动部件, 分离效率高和压降适中等优点,常作为燃煤发电中循环流化床锅炉气固分离部件. 图l蜗壳式旋风分离器示意图

蜗壳式旋风分离器的几何尺寸皆被视为分离器的内部尺寸,指与气流接触面的 尺寸.包括以下九个(见图1): a)旋风分离器本体直径(指分离器简体截面的直径),D; b)旋风分离器蜗壳偏心距离,; c)旋风分离器总高(从分离器顶板到排灰口),H; d)升气管直径,D; e)升气管插入深度(从分离器空间顶板算起),s; 余热锅炉2007.4 f)入口截面的高度和宽度,分别为a和 b; g)锥体段高度,H; h)排灰口直径,Dd; 2.1旋风分离器中的气体流动 图2为一种标准的切流式筒锥形逆流旋风分离器的示意图,图中显示了其内部 的流 态状况.气体切向进入分离器后在分离器内部空间产生旋流运动.在旋流的外 部(外旋升气管 涡),气体向下运动,并在中心处向上运动 (内旋涡).旋风分离器外部区域气体 的向下运动是至关重要的.因为,依靠气体的向下运动,把所分离到器壁的颗粒带 到旋风分离器底部.与此同时,气体还存在一个由外旋涡到内旋涡的径向流动,这 个径向流动在升气管下面的分离器沿高度方向的分布并不均匀. 轴向速度 切向速度 / 图2切向旋风分离器及其内部流态示意图图2的右侧给出了气流的轴向速度 和切向速度沿径向位置的分布图.轴向速度图表明气体在外部区域沿轴向向下运

旋风分离器设计

旋风分离器: 旋风分离器,是用于气固体系或者液固体系的分离的一种设备。工作原理为靠气流切向引入造成的旋转运动,使具有较大惯性离心力的固体颗粒或液滴甩向外壁面分开。旋风分离器的主要特点是结构简单、操作弹性大、效率较高、管理维修方便,价格低廉,用于捕集直径5~10μm以上的粉尘,广泛应用于制药工业中。 主要功能: 旋风分离器设备的主要功能是尽可能除去输送气体中携带的固体颗粒杂质和液滴,达到气固液分离,以保证管道及设备的正常运行,在西气东输工程中,旋风分离器是较重要的设备。 机构简介: 旋风分离器,是用于气固体系或者液固体系的分离的一种设备。工作原理为靠气流切向引入造成的旋转运动,使具有较大惯性离心力的固体颗粒或液滴甩向外壁面分开。是工业上应用很广的一种分离设备。 工作原理: 旋风分离器是利用气固混合物在作高速旋转时所产生的离心力,将粉尘从气流中分离出来的干式气固分离设备。由于颗粒所受的离心力远大于重力和惯性力,所以分离效率较高。 常用的(切流)切向导入式旋风分离器的分离原理及结构如图所示。主要结构是一个圆锥形筒,筒上段切线方向装有一个气体入口管,圆筒顶部装有插入筒内一定深度的排气管,锥形筒底有接受细粉的出

粉口。含尘气流一般以12—30m/s速度由进气管进入旋风分离器时,气流将由直线运动变为圆周运动。旋转气流的绝大部分,沿器壁自圆筒体呈螺旋形向下朝锥体流动。此外,颗粒在离心力的作用下,被甩向器壁,尘粒一旦与器壁接触,便失去惯性力,而靠器壁附近的向下轴向速度的动量沿壁面下落,进入排灰管,由出粉口落入收集袋里。旋转下降的外旋气流,在下降过程中不断向分离器的中心部分流入,形成向心的径向气流,这部分气流就构成了旋转向上的内旋流。内、外旋流的旋转方向是相同的。最后净化气经排气管排出器外,一部分未被分离下来的较细尘粒也随之逃逸。自进气管流入的另一小部分气体,则通过旋风分离器顶盖,沿排气管外侧向下流动,当到达排气管下端时,与上升的内旋气流汇合,进入排气管,于是分散在这部分上旋气流中的细颗粒也随之被带走,并在其后用袋滤器或湿式除尘器捕集。 净化天然气通过设备入口进入设备内旋风分离区,当含杂质气体沿轴向进入旋风分离管后,气流受导向叶片的导流作用而产生强烈旋转,气流沿筒体呈螺旋形向下进入旋风筒体,密度大的液滴和尘粒在离心力作用下被甩向器壁,并在重力作用下,沿筒壁下落流出旋风管排尘口至设备底部储液区,从设备底部的出液口流出。旋转的气流在筒体内收缩向中心流动,向上形成二次涡流经导气管流至净化天然气室,再经设备顶部出口流出。 特点: 旋风分离器的主要特点是结构简单、操作弹性大、效率较高、管

相关文档
相关文档 最新文档