文档库 最新最全的文档下载
当前位置:文档库 › 线性代数第五章答案解析

线性代数第五章答案解析

线性代数第五章答案解析
线性代数第五章答案解析

第五章 相似矩阵及二次型

1. 试用施密特法把下列向量组正交化:

(1)???

?

??=931421111) , ,(321a a a ;

解 根据施密特正交化方法,

???

? ??==11111a b , ???

? ??

-=-=101]

,[],[1112122b b b a b a b ,

?

??

? ??-=--=12131],[],[],[],[222321113133b b b a b b b b a b a b .

(2)???

?

? ??---=011101110111) , ,(321a a a .

解 根据施密特正交化方法,

???

?

? ??-==110111a b ,

?

???

? ??-=-=123131],[],[1112122b b b a b a b ,

?

???

? ??-=--=433151],[],[],[],[222321113133b b b a b b b b a b a b .

2. 下列矩阵是不是正交阵:

(1)??

????

?

??---121312112131211; 解 此矩阵的第一个行向量非单位向量, 故不是正交阵.

(2)????

??

? ??----

--979494949198949891. 解 该方阵每一个行向量均是单位向量, 且两两正交, 故为正交阵.

3. 设x 为n 维列向量, x T x =1, 令H =E -2xx T , 证明H 是对称的正交阵. 证明 因为

H T =(E -2xx T )T =E -2(xx T )T =E -2(xx T )T =E -2(x T )T x T =E -2xx T , 所以H 是对称矩阵. 因为

H T H =HH =(E -2xx T )(E -2xx T ) =E -2xx T -2xx T +(2xx T )(2xx T ) =E -4xx T +4x (x T x )x T =E -4xx T +4xx T

=E , 所以H 是正交矩阵.

4. 设A 与B 都是n 阶正交阵, 证明AB 也是正交阵. 证明 因为A , B 是n 阶正交阵, 故A -1=A T , B -1=B T ,

(AB )T (AB )=B T A T AB =B -1A -1AB =E ,

故AB 也是正交阵.

5. 求下列矩阵的特征值和特征向量:

(1)???

? ??----201335212;

解 3)1(2013352

12||+-=-------=-λλ

λλλE A ,

故A 的特征值为λ=-1(三重). 对于特征值λ=-1, 由

???

? ?????? ??----=+000110101101325213~E A ,

得方程(A +E )x =0的基础解系p 1=(1, 1, -1)T , 向量p 1就是对应于特征值λ=-1的特征值向量.

(2)???

?

??633312321;

解 )9)(1(6333123

21||-+-=---=-λλλλ

λλλE A ,

故A 的特征值为λ1=0, λ2=-1, λ3=9. 对于特征值λ1=0, 由

???

? ?????? ??=000110321633312321~A ,

得方程A x =0的基础解系p 1=(-1, -1, 1)T , 向量p 1是对应于特征值λ1=0的特征值向量. 对于特征值λ2=-1, 由

???

? ?????? ??=+000100322733322322~E A ,

得方程(A +E )x =0的基础解系p 2=(-1, 1, 0)T , 向量p 2就是对应于特征值λ2=-1的特征值向量.

对于特征值λ3=9, 由

????

? ??--???? ??---=-00021101113333823289~E A , 得方程(A -9E )x =0的基础解系p 3=(1/2, 1/2, 1)T , 向量p 3就是对应于特征值λ3=9的特征值向量.

(3)????

?

?

?00

01001001001000

.(和书后答案不同,以书后为主,但解题步骤可以参考) 解 22)1()1(0

1

0100101

00

||+-=----=-λλλ

λλλλE A , 故A 的特征值为λ1=λ2=-1, λ3=λ4=1. 对于特征值λ1=λ2=-1, 由

????

? ???????

?

?=+00

00

0000

0110100110

01011001101001~E A , 得方程(A +E )x =0的基础解系p 1=(1, 0, 0, -1)T , p 2=(0, 1, -1, 0)T , 向量p 1和p 2是对应于特征值λ1=λ2=-1的线性无关特征值向量. 对于特征值λ3=λ4=1, 由

????

? ?

?--?????

?

?----=-00

000000

0110100110

01011001101001

~E A , 得方程(A -E )x =0的基础解系p 3=(1, 0, 0, 1)T , p 4=(0, 1, 1, 0)T , 向量p 3和p 4是对应于特征值λ3=λ4=1的线性无关特征值向量.

6. 设A 为n 阶矩阵, 证明A T 与A 的特征值相同. 证明 因为

|A T -λE |=|(A -λE )T |=|A -λE |T =|A -λE |,

所以A T 与A 的特征多项式相同, 从而A T 与A 的特征值相同.

7. 设n 阶矩阵A 、B 满足R (A )+R (B )

证明 设R (A )=r , R (B )=t , 则r +t

若a 1, a 2, ???, a n -r 是齐次方程组A x =0的基础解系, 显然它们是A 的对应于特征值λ=0的线性无关的特征向量.

类似地, 设b 1, b 2, ???, b n -t 是齐次方程组B x =0的基础解系, 则它们是B 的对应于特征值λ=0的线性无关的特征向量.

由于(n -r )+(n -t )=n +(n -r -t )>n , 故a 1, a 2, ???, a n -r , b 1, b 2, ???, b n -t 必线性相关. 于是有不全为0的数k 1, k 2, ???, k n -r , l 1, l 2, ???, l n -t , 使

k 1a 1+k 2a 2+ ??? +k n -r a n -r +l 1b 1+l 2b 2+ ??? +l n -r b n -r =0.

记γ=k1a1+k2a2+???+k n-r a n-r=-(l1b1+l2b2+???+l n-r b n-r),

则k1,k2,???,k n-r不全为0,否则l1,l2,???,l n-t不全为0,而

l1b1+l2b2+???+l n-r b n-r=0,

与b1,b2,???,b n-t线性无关相矛盾.

因此,γ≠0,γ是A的也是B的关于λ=0的特征向量,所以A与B有公共的特征值,有公共的特征向量.

8.设A2-3A+2E=O,证明A的特征值只能取1或2.

证明设λ是A的任意一个特征值,x是A的对应于λ的特征向量,则

(A2-3A+2E)x=λ2x-3λx+2x=(λ2-3λ+2)x=0.

因为x≠0,所以λ2-3λ+2=0,即λ是方程λ2-3λ+2=0的根,也就是说λ=1或λ=2.

9.设A为正交阵,且|A|=-1,证明λ=-1是A的特征值.

证明因为A为正交矩阵,所以A的特征值为-1或1.(需要说明)

因为|A|等于所有特征值之积,又|A|=-1,所以必有奇数个特征值为-1,即λ=-1是A 的特征值.

10.设λ≠0是m阶矩阵A m?n B n?m的特征值,证明λ也是n阶矩阵BA的特征值.

证明设x是AB的对应于λ≠0的特征向量,则有

(AB)x=λx,

于是B(AB)x=B(λx),

或BA(B x)=λ(B x),

从而λ是BA的特征值,且B x是BA的对应于λ的特征向量.

11.已知3阶矩阵A的特征值为1, 2, 3,求|A3-5A2+7A|.

解令?(λ)=λ3-5λ2+7λ,则?(1)=3,?(2)=2,?(3)=3是?(A)的特征值,故

线性代数测试试卷及答案

线性代数(A 卷) 一﹑选择题(每小题3分,共15分) 1. 设A ﹑B 是任意n 阶方阵,那么下列等式必成立的是( ) (A)AB BA = (B)222()AB A B = (C)222()2A B A AB B +=++ (D)A B B A +=+ 2. 如果n 元齐次线性方程组0AX =有基础解系并且基础解系含有()s s n <个解向量,那么矩阵A 的秩为( ) (A) n (B) s (C) n s - (D) 以上答案都不正确 3.如果三阶方阵33()ij A a ?=的特征值为1,2,5,那么112233a a a ++及A 分别等于( ) (A) 10, 8 (B) 8, 10 (C) 10, 8-- (D) 10, 8-- 4. 设实二次型11212222(,)(,)41x f x x x x x ?? ??= ? ?-???? 的矩阵为A ,那么( ) (A) 2331A ??= ?-?? (B) 2241A ??= ?-?? (C) 2121A ??= ? -?? (D) 1001A ?? = ??? 5. 若方阵A 的行列式0A =,则( ) (A) A 的行向量组和列向量组均线性相关 (B)A 的行向量组线性相关,列向量组线性无关 (C) A 的行向量组和列向量组均线性无关 (D)A 的列向量组线性相关,行向量组线性无关 二﹑填空题(每小题3分,共30分) 1 如果行列式D 有两列的元对应成比例,那么该行列式等于 ; 2. 设100210341A -?? ? =- ? ?-?? ,*A 是A 的伴随矩阵,则*1()A -= ; 3. 设α,β是非齐次线性方程组AX b =的解,若λαμβ+也是它的解, 那么λμ+= ; 4. 设向量(1,1,1)T α=-与向量(2,5,)T t β=正交,则t = ; 5. 设A 为正交矩阵,则A = ;

线性代数第五章(答案)

第五章 相似矩阵及二次型 一、 是非题(正确打√,错误打×) 1.若线性无关向量组r αα,,1 用施密特法正交化为r ββ,,1 则对任何),1(r k k ≤≤向量组k αα,,1 与向量组r ββ,,1 等价. ( √ ) 2. 若向量组r αα,,1 两两正交,则r αα,,1 线性无关. ( √ ) 3.n 阶正交阵A 的n 个行(列)向量构成向量空间n R 的一个规范正交基. ( √ ) 4.若A 和B 都是正交阵,则AB 也是正交阵. ( √ ) 5.若A 是正交阵, Ax y =,则x y =. ( √ ) 6.若112???=n n n n x x A ,则2是n n A ?的一个特征值. ( × ) 7.方阵A 的特征向量只能对应唯一的特征值,反之亦成立. ( × ) 8.n 阶矩阵A 在复数范围内有n 个不同的特征值. ( × ) 9. 矩阵A 有零特征值的充要条件是0=A . ( √ ) 10.若λ是A 的特征值,则)(λf 是)(A f 的特征值(其中)(λf 是λ的多项式). ( √ ) 11.设1λ和)(212λλλ≠是A 的特征值, 1x 和2x 为对应特征向量,则21x x +也是A 的特征向量. ( × ) 12. T A 与A 的特征值相同. ( √ ) 13.n 阶矩阵A 有n 个不同特征值是A 与对角矩阵相似的充分必要条件. ( × )

14.若有可逆矩阵P ,使n 阶矩阵A ,B 满足: B PAP =-1,则A 与B 有相同的特征值. ( √ ) 15.两个对角矩阵的对角元素相同,仅排列位置不同,则这两个对角矩阵相似. ( √ ) 16.设n 阶矩阵A ,B 均与对角阵相似且有相同的特征值,则A 与B 相似. ( √ ) 17.实对称矩阵A 的非零特征值的个数等于它的秩. ( √ ) 18. 若k ααα,,,21 线性无关且都是A 的特征向量,则将它们先正交化,再单位化后仍为A 的特征向量. ( √ ) 19.实对称阵A 与对角阵Λ相似Λ=-AP P 1,这里P 必须是正交阵 。 ( × ) 20.已知A 为n 阶矩阵,x 为n 维列向量,如果A 不对称,则Ax x T 不是二次型. ( √ ) 21.任一实对称矩阵合同于一对角矩阵。 ( √ ) 22.二次型 Ax x x x x f T n =),,,(21 在正交变换Py x =下一定化为 标准型. ( × ) 23.任给二次型 Ax x x x x f T n =),,,(21 ,总有正交变换Py x =,使f 化 为规范型。 ( × )

线性代数第3章习题解答(rr)

1.已知向量:112[5,1,3,2,4],34[3,7,17,2,8],T T ααα=--=-- 求1223αα+ 解: ∵ 21{[3,7,17,2,8][15,3,9,6,12]}4T T α=----- 1[12,4,8,8,4][3,1,2,2,1]4 T T =-----=- ∴ 1223[10,2,6,4,8][9,3,6,6,3][19,1,0,10,11]T T T αα+=-+-= 2.设 12[2,5,1,3],[10,1,5,10],T T αα== 3123[4,1,1,1],3()2()5()0T ααααααα=--++-+=并且 求 α 解: ∵ 1236325αααα=+- [6,15,3,9][20,2,10,20][20,5,5,5][6,12,18,24], T T T T =+--= ∴ [1,2,3,4].T α= 3.判断下列命题是否正确,为什么? (1)如果当 120m k k k ====L 时, 11220m m k k k ααα+++=L 成立, 则向量组12,,m αααK 线性相关 解:不正确.如:[][]121,2,3,4T T αα==,虽然 12000,αα+=但12,αα线性无关。 (2) 如果存在m 个不全为零的数12,,,,m k k k L 使 11220,m m k k k ααα+++≠L 则向量组12,,,m αααL 线性无关。 解: 不正确. 如[][]11121,2,2,4,1,2,T T k αα====存在k 使 121220,,.αααα+≠但显然线性相关 (3) 如果向量组12,,,m αααL 线性无关,则其中任何一个向量都 不能由其余向量线性表出. 解: 正确。(反证)如果组中有一个向量可由其余向量线性表示,则向量组 12,,,m αααL 线性相关,与题没矛盾。 (4) 如果向量组123,,ααα线性相关,则3α一定可由12,αα线性表示。 解:不正确。例如:[][][]1230,0,0,0,1,0,0,0,1,T T T ααα===向量组123,,ααα线性相关,但3α不能由12,αα线性表示。 (5) 如果向量β可由向量123,,ααα线性表示,即: 112233,k k k βααα=++则表示系数 123,,k k k 不全为零。 解:不正确。例如:[][][]120,0,0,1,0,0,0,1,0,T T T βαα=== []31230,0,1,000T αβααα==++,表示系数全为0。 (6) 若向量12,αα线性相关,12,ββ线性无关,则1212,,,ααββ线性相关.

线性代数考试题库及答案(六)

线性代数考试题库及答案 第一部分 客观题(共30分) 一、单项选择题(共 10小题,每小题2分,共20分) 1. 若行列式11 121321 222331 32 33 a a a a a a d a a a =,则212223 11 121331 32 33 232323a a a a a a a a a 等于 ( ) (A) 2d (B) 3d (C) 6d (D) 6d - 2. 设123010111A ?? ? =- ? ??? ,ij M 是A 中元素ij a 的余子式,则313233M M M -+=( ) (A) 0 (B) 1 (C) 2 (D) 3 3. 设A 为n 阶可逆矩阵,则下列各式恒成立的是( ) (A) |2|2||T A A = (B) 11(2)2A A --= (C) *1A A -= (D) 11[()][()]T T T T A A --= 4. 初等矩阵满足( ) (A) 任两个之乘积仍是初等矩阵 (B) 任两个之和仍是初等矩阵 (C) 都是可逆矩阵 (D) 所对应的行列式的值为1 5. 下列不是..n 阶矩阵A 可逆的充要条件为( ) (A) 0≠A (B) A 可以表示成有限个初等阵的乘积 (C) 伴随矩阵存在 (D) A 的等价标准型为单位矩阵 6. 设A 为m n ?矩阵,C 为n 阶可逆矩阵,B AC =,则 ( )。 (A) 秩(A )> 秩(B ) (B) 秩(A )= 秩(B )

(C) 秩(A )< 秩(B ) (D) 秩(A )与秩(B )的关系依C 而定 7. 如果向量β可由向量组12,, ,s ααα线性表示,则下列结论中正确的是( ) (A) 存在一组不全为零的数12,,s k k k ,使得1122s s k k k βααα=+++ 成立 (B) 存在一组全为零的数12,,s k k k ,使得1122s s k k k βααα=++ + 成立 (C) 存在一组数12,, s k k k ,使得1122s s k k k βααα=+++ 成立 (D) 对β的线性表达式唯一 8. 设12,ξξ是齐次线性方程组0AX =的解,12,ηη是非齐次线性方程组AX b =的解,则( ) (A) 112ξη+为0AX =的解 (B) 12ηη+为AX b =的解 (C) 12ξξ+为0AX =的解 (D) 12ηη-为AX b =的解 9. 设110101011A ?? ? = ? ??? ,则A 的特征值是( )。 (A) 0,1,1 (B) 1,1,2 (C) 1,1,2- (D) 1,1,1- 10. 若n 阶方阵A 与某对角阵相似,则 ( )。 (A) ()r A n = (B) A 有n 个互不相同的特征值 (C) A 有n 个线性无关的特征向量 (D) A 必为对称矩阵 二、判断题(共 10小题,每小题1分,共10分 )注:正确选择A,错误选择B. 11. 设A 和B 为n 阶方阵,则有22()()A B A B A B +-=-。( ) 12. 当n 为奇数时,n 阶反对称矩阵A 是奇异矩阵。( )

线性代数第五章 课后习题及解答

第五章课后习题及解答 1. 求下列矩阵的特征值和特征向量: (1) ;1332??? ? ??-- 解:,0731332 2=--=--=-λλλλλA I 2 373,237321-=+=λλ ,00133637123712137 1??? ? ??→→???? ??=-++- A I λ 所以,0)(1=-x A I λ的基础解系为:.)371,6(T - 因此,A 的属于1λ的所有特征向量为:).0()371,6(11≠-k k T ,001336371237123712??? ? ??→→???? ??-=---+ A I λ 所以,0)(2=-x A I λ的基础解系为:.)371,6(T +

因此,A 的属于2λ的所有特征向量为:).0()371,6(22≠+k k T (2) ;211102113???? ? ??-- 解:2)2)(1(2 111211 3--==------=-λλλλ λλ A I 所以,特征值为:11=λ(单根),22=λ(二重根) ???? ? ??-→→????? ??------=-0001100011111121121 A I λ 所以,0)(1=-x A I λ的基础解系为:.)1,1,0(T 因此,A 的属于1λ的所有特征向量为:).0()1,1,0(11≠k k T ???? ? ??-→→????? ??-----=-0001000110111221112 A I λ 所以,0)(2=-x A I λ的基础解系为:.)0,1,1(T 因此,A 的属于2λ的所有特征向量为:).0()0,1,1(22≠k k T

2010-2011-2线性代数试卷及答案

东 北 大 学 考 试 试 卷(A 卷) 2010 — 2011学年 第二学期 课程名称:线性代数 (共2页) ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ (15分) 设三阶矩阵()321,,ααα=A , ()3323214,3,32αααααα+-+=B , 且A 的行列式1||=A ,求矩阵B 的行列式||B . 解 因为()3323214,3,32αααααα+-+=B =? ???? ??-413031002),,(321ααα, 所以,24413031002||||=-=A B 分) 设向量组????? ??-=2111α,????? ??=1122α,????? ??=a 213α线性相关,向量 ???? ? ??=b 13β可由向量组321,,ααα线性表示,求b a ,的值。 解 由于 ????? ??-=b a 1212113121),,,(321βααα????? ??---→62304330312 1b a ? ???? ??-+→210043303121b a 所以,.2,1=-=b a 三分) 证明所有二阶实对称矩阵组成的集合V 是R 2? 2 的子空间,试在 V 上定义内积运算,使V 成为欧几里得空间,并给出V 的一组正交基. 解 由于任意两个二阶实对称矩阵的和还是二阶实对称矩阵,数乘二阶实对称矩阵还是 二阶实对称矩阵,即V 对线性运算封闭,所以V 是R 2? 2 的子空间。 对任意V b b b b B a a a a A ∈??? ? ??=???? ??=2212121122121211,,定义内积:[A,B]=222212121111b a b a b a ++, 显然满足:[A,B]=[B,A], [kA,B]=k[A,B], [A,A]≥0且[A,A]=0当且仅当A=0. ???? ??=00011A ,???? ??=01102A ,???? ??=10003A 就是V 的一组正交基. 注:内积和正交基都是不唯一的. 2-1

线性代数练习册第五章题目及答案(本)复习进程

第五章 相似矩阵与二次型 §5-1 方阵的特征值与特征向量 一、填空题 1.已知四阶方阵A 的特征值为0,1,1,2,则||A E λ-= 2(1)(2)λλλ-- 2.设0是矩阵??? ? ? ??=a 01020101A 的特征值,则=a 1 3.已知三阶方阵A 的特征值为1,-1,2,则2 32B A A =-的特征值为 1,5,8 ;||A = -2 ;A 的对角元之和为 2 . 4.若0是方阵A 的特征值,则A 不可逆。 5. A 是n 阶方阵,||A d =,则*AA 的特征值是,,,d d d ???(共n 个) 二、选择题 1.设1λ,2λ为n 阶矩阵A 的特征值,1ξ,2ξ分别是A 的属于特征值1λ,2λ的特征向量,则( D ) (A )当1λ=2λ时,1ξ,2ξ必成比例 (B )当1λ=2λ时,1ξ,2ξ必不成比例 (C )当1λ≠2λ时,1ξ,2ξ必成比例 (D )当1λ≠2λ时,1ξ,2ξ必不成比例 2.设a=2是可逆矩阵A 的一个特征值,则1 A -有一个特征值等于 ( C ) A 、2; B 、-2; C 、 12; D 、-1 2 ; 3.零为方阵A 的特征值是A 不可逆的( B ) A 、充分条件; B 、充要条件; C 、必要条件; D 、无关条件;

三、求下列矩阵的特征值和特征向量 1.1221A ?? = ??? 解:A 的特征多项式为12(3)(1)2 1A E λλλλλ --==-+- 故A 的特征值为123,1λλ==-. 当13λ=时,解方程()30A E x -=. 由221132200r A E --???? -= ? ?-???? : 得基础解系111p ?? = ??? ,故1(0)kp k ≠是13λ=的全部特征向量. 当21λ=-时,解方程()0A E x +=.由22112200r A E ???? += ? ????? : 得基础解系211p -?? = ??? ,故2(0)kP k ≠是21λ=-的全部特征向量. 2.100020012B ?? ?= ? ??? 解:B 的特征多项式为 2100020(1)(2)0 1 2B E λ λλλλλ --= -=--- 故B 的特征值为1231,2λλλ===. 当11λ=时,解方程()0B E x -=. 由000010010001011000r B E ???? ? ? -= ? ? ? ????? :

线性代数第四版答案

第一章行列式 1利用对角线法则计算下列三阶行列式 (1) 解 2(4)30(1)(1)118 0132(1)81(4)(1) 2481644 (2) 解 acb bac cba bbb aaa ccc 3abc a3b3c3 (3) 解 bc2ca2ab2ac2ba2cb2

(a b)(b c)(c a) (4) 解 x(x y)y yx(x y)(x y)yx y3(x y)3x3 3xy(x y)y33x2y x3y3x3 2(x3y3) 2按自然数从小到大为标准次序求下列各排列的逆序数 (1)1 2 3 4 解逆序数为0 (2)4 1 3 2 解逆序数为441 43 42 32 (3)3 4 2 1 解逆序数为5 3 2 3 1 4 2 4 1, 2 1 (4)2 4 1 3 解逆序数为3 2 1 4 1 4 3 (5)1 3 (2n1) 2 4 (2n) 解逆序数为 3 2 (1个) 5 2 5 4(2个)

7 2 7 4 7 6(3个) (2n1)2(2n1)4(2n1)6 (2n1)(2n2) (n1个) (6)1 3 (2n1) (2n) (2n2) 2 解逆序数为n(n1) 3 2(1个) 5 2 5 4 (2个) (2n1)2(2n1)4(2n1)6 (2n1)(2n2) (n1个) 4 2(1个) 6 2 6 4(2个) (2n)2 (2n)4 (2n)6 (2n)(2n2) (n1个) 3写出四阶行列式中含有因子a11a23的项 解含因子a11a23的项的一般形式为 (1)t a11a23a3r a4s 其中rs是2和4构成的排列这种排列共有两个即24和42所以含因子a11a23的项分别是 (1)t a11a23a32a44(1)1a11a23a32a44a11a23a32a44 (1)t a11a23a34a42(1)2a11a23a34a42a11a23a34a42 4计算下列各行列式

线性代数第五章答案

第五章 相似矩阵及二次型 1. 试用施密特法把下列向量组正交化: (1)??? ? ??=931421111) , ,(321a a a ; 解 根据施密特正交化方法, ??? ? ??==11111a b , ??? ? ?? -=-=101] ,[],[1112122b b b a b a b , ? ?? ? ??-=--=12131],[],[],[],[222321113133b b b a b b b b a b a b . (2)??? ? ? ??---=011101110111) , ,(321a a a . 解 根据施密特正交化方法, ??? ? ? ??-==110111a b , ? ???? ??-=-=123131],[],[1112122b b b a b a b , ? ??? ? ??-=--=433151],[],[],[],[222321113133b b b a b b b b a b a b .

2. 下列矩阵是不是正交阵: (1)?????? ? ??-- -1 21312112131211; 解 此矩阵的第一个行向量非单位向量, 故不是正交阵. (2)???? ?? ? ??---- --979494949198949891. 解 该方阵每一个行向量均是单位向量, 且两两正交, 故为正交阵. 3. 设x 为n 维列向量, x T x =1, 令H =E -2xx T , 证明H 是对称的正交阵. 证明 因为 H T =(E -2xx T )T =E -2(xx T )T =E -2(xx T )T =E -2(x T )T x T =E -2xx T , 所以H 是对称矩阵. 因为 H T H =HH =(E -2xx T )(E -2xx T ) =E -2xx T -2xx T +(2xx T )(2xx T ) =E -4xx T +4x (x T x )x T =E -4xx T +4xx T =E , 所以H 是正交矩阵. 4. 设A 与B 都是n 阶正交阵, 证明AB 也是正交阵. 证明 因为A , B 是n 阶正交阵, 故A -1=A T , B -1=B T , (AB )T (AB )=B T A T AB =B -1A -1AB =E ,

线性代数第四版同济大学课后习题答案04

第四章 向量组的线性相关性 1. 设v 1=(1, 1, 0)T , v 2=(0, 1, 1)T , v 3=(3, 4, 0)T , 求v 1-v 2及3v 1+2v 2-v 3. 解 v 1-v 2=(1, 1, 0)T -(0, 1, 1)T =(1-0, 1-1, 0-1)T =(1, 0, -1)T . 3v 1+2v 2-v 3=3(1, 1, 0)T +2(0, 1, 1)T -(3, 4, 0)T =(3?1+2?0-3, 3?1+2?1-4, 3?0+2?1-0)T =(0, 1, 2)T . 2. 设3(a 1-a )+2(a 2+a )=5(a 3+a ), 求a , 其中a 1=(2, 5, 1, 3)T , a 2=(10, 1, 5, 10)T , a 3=(4, 1, -1, 1)T . 解 由3(a 1-a )+2(a 2+a )=5(a 3+a )整理得 )523(6 1 321a a a a -+= ])1 ,1 ,1 ,4(5)10 ,5 ,1 ,10(2)3 ,1 ,5 ,2(3[61 T T T --+= =(1, 2, 3, 4)T . 3. 已知向量组 A : a 1=(0, 1, 2, 3)T , a 2=(3, 0, 1, 2)T , a 3=(2, 3, 0, 1)T ; B : b 1=(2, 1, 1, 2)T , b 2=(0, -2, 1, 1)T , b 3=(4, 4, 1, 3)T , 证明B 组能由A 组线性表示, 但A 组不能由B 组线性表示. 证明 由 ????? ??-=3121 23111012421301 402230) ,(B A ??? ? ? ??-------971820751610402230 421301 ~r ???? ? ? ?------531400251552000751610 421301 ~r ??? ? ? ? ?-----000000531400751610 421301 ~r 知R (A )=R (A , B )=3, 所以B 组能由A 组线性表示.

线性代数练习册第三章答案(本)

第三章 行列式及其应用 §3-1 行列式的定义 一、填空题。 1、行列式a b c d =__ad bc -___;112 2 13141 ---=____-24____. 2、行列式 1 111 1 21 21 2 00 000 a a a a b b c c d d =______0_____. 3、已知行列式1111111 1 11111111 D -= -----,则32M =___4__;32A =___-4__. 4、已知排列2145697m n 为奇排列,则m =__8_;n =__3_. 5、4阶行列式中含1331a a 且符号为负的项是____ 13223144a a a a -____. 二、选择题。 1、方程01 1 0001x x x =的实根为__C___. (A )0; (B )1; (C )-1; (D )2. 2、若n 阶行列式中零元素的个数大于2n n -,则此行列式的值为__A__. (A )0; (B )1; (C )-1; (D )2. 3、排列396721584的逆序数为__C__. (A )18; (B )19; (C )20; (D )21 4、n 阶行列式001 020 00 D n = 的值为__D ___. (A )!n ; (B )!n -; (C )(1)!n n -; (D )(1)2 (1) !n n n --.

5、行列式312111321111x x x x x --中4 x 的系数为__A____. (A )-1; (B )1; (C )2; (D )3. 三、计算下列行列式 1、12 1 10001- 解:33 312 121 10(1)(1)1 11 001 r +--=-按展开 2、 1010120012301234 解:444321010 101 1200 4(1)120 1230 123 1234101 412024 003 r r +--=按c 展开 3、 11321011 23011 002 -- 解:

线性代数试题和答案(精选版)

线性代数习题和答案 第一部分选择题(共28分) 一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有 一个是符合题目要求的,请将其代码填在题后的括号内。错选或未选均无分。 1.设行列式a a a a 1112 2122 =m, a a a a 1311 2321 =n,则行列式 a a a a a a 111213 212223 + + 等于() A. m+n B. -(m+n) C. n-m D. m-n 2.设矩阵A= 100 020 003 ? ? ? ? ? ? ? ,则A-1等于() A. 1 3 00 1 2 001 ? ? ? ? ? ? ? ? ? ? B. 100 1 2 00 1 3 ? ? ? ? ? ? ? ? ?? C. 1 3 00 010 00 1 2 ? ? ? ? ? ? ? ?? D. 1 2 00 1 3 001 ? ? ? ? ? ? ? ? ? ? 3.设矩阵A= 312 101 214 - - - ? ? ? ? ? ? ? ,A*是A的伴随矩阵,则A *中位于(1,2)的元素是() A. –6 B. 6 C. 2 D. –2 4.设A是方阵,如有矩阵关系式AB=AC,则必有() A. A =0 B. B≠C时A=0 C. A≠0时B=C D. |A|≠0时B=C 5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于() A. 1 B. 2 C. 3 D. 4 6.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则() A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0 B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0 C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0 D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+ λsαs=0和μ1β1+μ2β2+…+μsβs=0 7.设矩阵A的秩为r,则A中() A.所有r-1阶子式都不为0 B.所有r-1阶子式全为0 C.至少有一个r阶子式不等于0 D.所有r阶子式都不为0 8.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是() A.η1+η2是Ax=0的一个解 B.1 2 η1+ 1 2 η2是Ax=b的一个解

线性代数第五章作业参考答案(唐明)

第五章作业参考答案 5-2试证:()()()1231,1,0,2,1,3,3,1,2T T T ααα=-== 是3R 的一组基,并求向量()()125,0,7,9,8,13T T v v ==--- 在这组基之下的坐标。 证明:要证123,,ααα 线性无关,即证满足方程1122330k k k ααα++= 的123,,k k k 只能均是0.联立方程得 1231232 32300320k k k k k k k k ++=?? -++=??+=? 计算此方程系数的行列式123 1116003 2 -=-≠ 故该方程只有零解,即1230k k k ===,因此,123,,ααα 是3R 的一组基 设1v 在这组基下的坐标为()123,,x x x ,2v 在这组基下的坐标为()123,,y y y ,由已知得 ()()1111232 212323 3,,,,,x y v x v y x y αααααα???? ? ? == ? ? ? ? ???? 代入易解得112233233,312x y x y x y ???????? ? ? ? ?==- ? ? ? ? ? ? ? ?--????????即为1v ,2v 在这组基下的坐标。 5-5设()()()1,2,1,1,2,3,1,1,1,1,2,2T T T αβγ=-=-=--- ,求: (1 ),,,αβαγ 及,,αβγ 的范数;(2)与,,αβγ 都正交的所有向量。 解(1 ),1223111(1)6αβ=?+?-?+?-= ()()(),112112 121 αγ=?-+?--?-+?= α= = β== γ= = (2)设与,,αβγ 都正交的向量为()1234,,,T x x x x x =,则 123412341234,20 ,230,220x x x x x x x x x x x x x x x αβγ?=+-+=??=++-=??=---+=?? 解得1 43243334 4 5533x x x x x x x x x x =-?? =-+?? =??=? 令340,1x x ==得()()1234,,,5,3,0,1x x x x =- 令341,0x x ==得()()1234,,,5,3,1,0x x x x =-

线性代数与概率统计及答案

线性代数部分 第一章 行列式 一、单项选择题 1.=0 001001001001000( ). (A) 0 (B)1- (C) 1 (D) 2 2. =0 001100000100100( ). (A) 0 (B)1- (C) 1 (D) 2 3.若 a a a a a =22 2112 11,则 =21 11 2212ka a ka a ( ). (A)ka (B)ka - (C)a k 2 (D)a k 2- 4. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ). (A) 0 (B)3- (C) 3 (D) 2 5. k 等于下列选项中哪个值时,齐次线性方程组??? ??=++=++=++0 00321 321321x x kx x kx x kx x x 有非零解. ( ) (A)1- (B)2- (C)3- (D)0 6.设行列式 n a a a a =22 2112 11 , m a a a a =21 2311 13 ,则行列式 23 2221131211--a a a a a a 等于() A. m n - B.)(-n m + C. n m + D.n m - 二、填空题 1. 行列式=0 100111010100111.

2.行列式010...0002... 0......... 00 0 (10) 0 0 n n = -. 3.如果M a a a a a a a a a D ==333231 232221 131211 ,则=---=32 32 3331 2222232112121311133333 3a a a a a a a a a a a a D . 4.行列式= --+---+---1 1 1 1 111111111111x x x x . 5.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3,2,1,则该行列式的值为 . 6.齐次线性方程组??? ??=+-=+=++0 0202321 2 1321x x x kx x x x kx 仅有零解的充要条件是. 7.若齐次线性方程组?? ? ? ?=+--=+=++0 230520232132321kx x x x x x x x 有非零解,则k =. 三、计算题 2.y x y x x y x y y x y x +++; 3.解方程 00 11 01110111 0=x x x x ; 6. 111...1311...1112... 1 ... ...... 1 1 1 ...(1)b b n b ----

昆明理工大学 线性代数 第4章 习题册答案

1 习题4.1(线性方程组解的结构) 一、下列齐次线性方程组是否有非零解? 分析:n 阶方阵A ,AX=0有非零解0()A R A n ?=?<;仅有零解0()A R A n ?≠?= (1)1234123412341 23442020372031260 x x x x x x x x x x x x x x x x -+-=?? --+=??++-=??--+=? ; 解:1142111231 7 21 312 6 A ----= ---21 3241 31142005404540 2 16 8 r r r r r r ---=-------21 054054544544004016 8 2 16 8 2 16 8 r r -= ---=-=-≠-------- 仅有零解。 (2)12451234123453020426340 x x x x x x x x x x x x x +--=?? -+-=?? -++-=? . 分析:n 元齐次线性方程组有非零解()R A n ?≤;仅有零解()R A n ?= 解:()35R A n ≤<=,有非零解(即有无穷多解)。 二、求齐次线性方程组12341234123420 363051050 x x x x x x x x x x x x ++-=?? +--=?? ++-=?的一个基础解系。 解:32 21 12 31 412351 21101 2110120103 61300 04000 0100 510 1 5000 4 000 00r r r r r r r r r A --------=--→-→--?? ???? ?? ???? ????????????? ?? ??? 所以原方程组等价于1243 20 0x x x x +-=??=?(24,x x 可取任意实数) 原方程组的通解为1 122 1342 20x k k x k x x k =-+??=??=??=?(12,k k R ∈)

线性代数试卷及答案

《 线性代数A 》试题(A 卷) 试卷类别:闭卷 考试时间:120分钟 考试科目:线性代数 考试时间: 学号: 姓名: 题号 一 二 三 四 五 六 七 总 分 得分 阅卷人 一.单项选择题(每小题3分,共30分) 1.设A 经过初等行变换变为B ,则( ).(下面的(),()r A r B 分别表示矩阵,A B 的秩)。 () A ()()r A r B <; () B ()()r A r B =; ()C ()()r A r B >; () D 无法判定()r A 与()r B 之间的关系。 2.设A 为 (2)n n ≥阶方阵且||0A =,则( )。 () A A 中有一行元素全为零; () B A 有两行(列)元素对应成比例; () C A 中必有一行为其余行的线性组合; () D A 的任一行为其余行的线性组合。 3. 设,A B 是n 阶矩阵(2n ≥), AB O =,则下列结论一定正确的是: ( ) () ;A A O B O ==或 ()AX B B 的每个行向量都是齐次线性方程组=O 的解. ();C BA O = ()()().D R A R B n +≤ 4.下列不是n 维向量组12,,...,s ααα线性无关的充分必要条件是( ) () A 存在一组不全为零的数12,,...,s k k k 使得1122...s s k k k O ααα+++≠;

() B 不存在一组不全为零的数12,,...,s k k k 使得1122...s s k k k O ααα+++= 12(),,...,s C ααα的秩等于s ; 12(),,...,s D ααα中任意一个向量都不能用其余向量线性表示 5.设n 阶矩阵(3)n ≥1...1................1a a a a a a A a a a ?? ? ? ?= ? ? ???,若矩阵A 的秩为1n -,则a 必为( )。 ()A 1; () B 11n -; () C 1-; () D 11 n -. 6.四阶行列式 1 1 2 2334 4 0000 000 a b a b b a b a 的值等于( )。 ()A 12341234a a a a b b b b -; ()B 12341234a a a a b b b b +; () C 12123434()()a a b b a a b b --; () D 23231414()()a a b b a a b b --. 7.设A 为四阶矩阵且A b =,则A 的伴随矩阵* A 的行列式为( )。 ()A b ; () B 2b ; () C 3b ; () D 4b 8.设A 为n 阶矩阵满足23n A A I O ++=,n I 为n 阶单位矩阵,则1 A -=( ) () n A I ; ()3n B A I +; ()3n C A I --; ()D 3n A I + 9.设A ,B 是两个相似的矩阵,则下列结论不正确的是( )。 ()A A 与B 的秩相同; ()B A 与B 的特征值相同; () C A 与B 的特征矩阵相同; () D A 与B 的行列式相同;

(完整版)线性代数(经管类)考试试卷及答案(一)

高等教育自学考试全国统一命题考试 线性代数(经管类)优化试卷(一) 说明:在本卷中,A T表示矩阵A的转置矩阵,A*表示矩阵A的伴随矩阵,E是单位矩阵,|A|表示方阵A的行列式. 一、单项选择题(本大题共10小题。每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内.错选、多选或未选均无分. 1.设A为3阶方阵,且|A|=2,则| 2A-l | ( ) A.-4 B.-1 C.1 D.4 2.设矩阵A=(1,2),B=,C=,下列矩阵运算中有意义的是( ) A.ACB B.ABC C.BAC D.CBA 3.设A为任意n阶矩阵,下列矩阵中为反对称矩阵的是( ) A.A+A T B.A - A T C.A A T D.A T A 4.设2阶矩阵A= ,则A*= ( ) 5.矩阵的逆矩阵是()

6.设矩阵A=,则A中( ) A.所有2阶子式都不为零 B.所有2阶子式都为零 C.所有3阶子式都不为零 D.存在一个3阶子式不为零 7.设A为m×n矩阵,齐次线性方程组Ax=0有非零解的充分必要条件是( ) A.A的列向量组线性相关 B.A的列向量组线性无关 C.A的行向量组线性相关 D.A的行向量组线性无关 8.设3元非齐次线性方程组Ax=b的两个解为,且系数矩阵A的秩r(A)=2,则对于任意常数k,k1,k2,方程组的通解可表为( ) 9.矩阵的非零特征值为( ) A.4 B.3 C.2 D.l

10.4元二次型的秩为( ) A.4 B.3 C.2 D.l 二、填空题(本大题共10小题.每小题2分.共20分) 请在每小题的空格中填上正确答案.错填、不填均无分. 11.若i=1,2,3,则行列式=_________________。 12.设矩阵A= ,则行列式|A T A|=_______________。 13.若齐次线性方程组有非零解,则其系数行列式的值为__________________。 14.设矩阵A= ,矩阵B=A – E,则矩阵B的秩r(B)=______________。15.向量空间的维数为_______________。 16.设向量,则向量的内积=_______________。 17.设A是4×3矩阵,若齐次线性方程组Ax=0只有零解,则矩阵A的秩r(A)=____________。 18.已知某个3元非齐次线性方程组Ax=b 的增广矩阵经初等行变换化为: ,若方程组无解,则a的取值为___________。19.设3元实二次型f ( x1 , x2 , x3 ) 的秩为3,正惯性指数为2,则此二次型的规范形式_____________。 20.设矩阵A= 为正定矩阵,则a的取值范围是_______________。三、计算题(本大题共6小题,每小题9分.共54分)

线性代数习题及答案4

一、选择题(每小题5分,共25分。) 1.已知四阶行列式4D 第一行的元素依次为1,2,-1,-1,它们的余子式为2, -2,1,0,则4 D 的值为【 】A .3-; B.;5- C.3; D.5. 2.已知n 阶矩阵????? ?? ? ? ?=1. .00... 1. 1. . 101..11A ,则A 的所有元素的代数余子式之和等于 【】A .0; B .1;C .-1; D .2. 3.设A 是n m ?矩阵,C 是n 阶可逆矩阵,矩阵A 的秩为r ,矩阵AC B =的秩 1r ,则【 】A .1r r >; B .1r r <; C .1r r =; D .r 与1r 的关系依C 而定. 4.设A 为n m ?矩阵,齐次线性方程组0=Ax 仅有零解的充分必要条件是【】A .A 的列向量组线 性无关; B .A 的列向量组线性相关; C .A 的行向量组线性无关; D 。A 的行向量组线性相关. 5.设λ是n 阶可逆矩阵A 的特征值,ξ是A 的对应于λ的特征向量,P 是n 阶可逆矩阵, 则P A P * 1 -的对应于特征值 λ A 的特征向量是【 】A .ξ1-P ; B .ξP ; C .ξT P ; D .ξ1)(-T P . 二、填空题(将答案写在该题横线上。每小题5分,共25分。) 1.设B A ,都是n 阶正交矩阵,若0=+B A ,则___________=+B A .2.已知A B AB =-, 其中??? ?? ??-=20001 2021B ,则___________=A .3.已知向量组.,,,4321a a a a 线性无关,若向量组14433221,,,a a a a a a ka a ++++线性相关,则____________ =k . 4. 若线性方程组??? ??=---=+++=+-+b x x x x x ax x x x x x x 2617230324321 43214321无解,则常数b a ,应满足的条件是_____________. 5.若4阶矩阵A 与B 相似,且A 的特征值为1,2,3,4,则矩阵E B -* 的全部特征值为 ___________________. 三 、 计 算 证 明 题 ( 50 分 ) 1 (12 分 ) 求 向 量 组 )1,6,3,1(),3,2,1,1(),4,1,2,1(),5,0,3,1(4321--====a a a a 的一个极大线性无关组和秩. 2.(15分)设A 为三阶实对称矩阵,且满足条件022 =+A A ,已知A 的秩2)(=A r (1)求A 的全部特征值; (2)当k 为何值时,矩阵kE A +为正定矩阵,其中E 为三阶单位矩阵. 3.(15分)已知二次型)0(233232232 22 1>+++=a x ax x x x f 通过正交变换可化为标准形 2 3222152y y y f ++=,求参数a 及所用的正交变换. 4.(8分)设A 是n 阶矩阵,且满足E A =2 ,证明:n E A r E A r =++-)()(.

相关文档
相关文档 最新文档