文档库 最新最全的文档下载
当前位置:文档库 › 分子模拟设计实验

分子模拟设计实验

分子模拟设计实验
分子模拟设计实验

分子模拟实验设计实验

杨平

化基一班

2012301040010

星期三下午

指导老师:侯华

利用量子化学知识模拟Ritter reaction的机理

背景

Ritter反应,即腈类和容易形成碳正离子的化合物,诸如烯、醇、羧酸、酯、酮等在强酸存在的条件下发生的一类反应,该反应能生成N-取代的酰胺或胺类化合物(将N-取代的酰胺水解即得),是构筑C-N键最为重要的方法之一。Ritter反应是一类重要的有机合成反应,可通过烯烃或醇与腈的直接反应制备酰胺。该反应不但具有原子经济性,而且有很好的应用前景。本反应广泛应用于精细有机合成中,包括药品、农药、高分子行业用的功能单体的合成,诸如高分子功能单体N- 异丙基丙烯酰胺的合成。所以弄清楚该反应的机理显得十分有必要。而经过一学期分子模拟实验的学习,特别是化学反应模拟章节的学习让我对通过Chem3D软件模拟反应过渡态从而得出反应机理有了初步了解。Chem3D软件模拟是一种很好的模拟反应进行过渡态及中间体的方法。

当然对于Ritter reaction的机理研究已经非常成熟,下图为反应的机理图:

首先形成碳正离子,任何能够形成稳定碳正离子的反应物都可以成为起始原料。然后碳正离子进攻氰基氮原子,生成的正离子迅速加水,转变为N- 烃基取代酰胺。

还有相似的反应

实验部分

下面用分子模拟实验课堂上学到的相关化学反应模拟的知识来进行模拟。之所以想用Chem3D进行模拟计算,是因为通过模拟计算可以从能量的角度出发来更好地理解Ritter reaction.

1.分子结构优化

对分子结构的优化采用HF/6-31G(d)基组,计算出反应物与产物的能量

叔丁醇

乙腈

酰胺

2.根据反应的机理图,得到反应中间体,并计算能量(HF/6-31G(d))

(1)碳正离子的形成

(2)

(3)水进攻叁键碳原子,经过质子转移即得N-取代酰胺

3.通过计算的能量得到反应能量途径

通过origin9.0软件做出反应的能量途径

由于在个人电脑上安装的Chem3D软件很多功能用不了,用HF/6-31G(d)计算出的能量也与实验室机房中计算的有很大出入,所以所有关于实验数据部分

的内容均没有附上,敬请老师原谅。

实验结论

通过利用Chem3D和origin软件计算有关Ritter reaction中的能量变化,我们可以总结出该反应大概有以下几步组成。以叔醇为例,①叔醇在强酸性溶液中生成稳定的三级碳正离子,②该碳正离子受到腈氮原子的亲核进攻,生成一个腈鎓离子(Nitrilium ion)。③第一步中生成的水进攻叁键碳原子,经过质子转移即得N-取代酰胺,水解可以得胺。

实验感悟

通过对Ritter reaction用量子化学的方法进行模拟,通过比较能量大小这种非常直观的方法可以帮助我们更好地理解和掌握该反应。为我们以后使用该反应打下良好的基础。当然我们也还可以用Chem3D软件对该反应过程进行更加详细的描述。例如可以通过改变两反应物分子之间的距离来计算不同距离时的能量值,通过势能曲线的绘制得到能量最低时两者之间的距离,并计算出势垒高度;还可以通过Mopac中的COSMO溶剂模型,计算该反应在一些有机溶剂中的反应热和活化能,并分析溶剂是否对该反应有利。

总之,通过分子模拟的辅助可以让我们对一个反应有更深更好的理解和掌握,将对我们下一阶段的学习研究打下坚实的基础。

参考文献

1. (a) Ritter, J. J.; Minieri, P. P. J. Am. Chem. Soc. 1948, 70, 4045?4048.

(b) Ritter, J. J.; Kalish, J. J. Am. Chem. Soc. 1948, 70, 4048?4050.

2. Krimen, L. I.; Cota, D. https://www.wendangku.net/doc/4a11586642.html,. React. 1969, 17, 213–329. (Review).

3. Top, S.; Jaouen, G. J. Org. Chem.1981, 46, 78?82.

4. Jie Jack Li.《Name Reaction》.2010,486-487.

仿真实验报告

上海电力学院 本科课程设计 电路计算机辅助设计 院系:电力工程学院 专业年级(班级):电力工程与管理2011192 班 学生姓名:学号: 201129 指导教师:杨尔滨、杨欢红 成绩: 2013年07 月 06 日教师评语:

目录仿真实验一 仿真实验二仿真实验三仿真实验四仿真实验五仿真实验六仿真实验七仿真实验八仿真实验九节点电压法分析直流稳态电路..........................1 戴维宁定理的仿真设计................................5 叠加定理的验证.. (8) 正弦交流电路——谐振电路的仿真......................11 两表法测量三相电路的功率............................14 含受控源的RL 电路响应的研究........................18含有耦合互感的电路的仿真实验........................21 二阶电路零输入响应的三种状态轨迹....................27 二端口电路的设计与分析 (32)

实验一节点电压法分析电路 一、电路课程设计目的 ( 1)通过较简易的电路设计初步接触熟悉Multisim11.0 。 (2)学会用 Multisim11.0 获取某电路元件的某个参数。 (3)通过仿真实验加深对节点分析法的理解及应用。 二、实验原理及实例 节点分析法是在电路中任意选择一个节点为非独立节点,称此节点为参考点。其它独立节点与参考点之间的电压,称为该节点的节点电压。 节点分析法是以节点电压为求解电路的未知量,利用基尔霍夫电流定律和欧姆定律导出(n – 1)个独立节点电压为未知量的方程,联立求解,得出各节点电压。然后进一步求出 各待求量。 下图所示是具有三个节点的电路,下面以该图为例说明用节点分析法进行的电路分析方 法和求解步骤,导出节点电压方程式的一般形式。 图1— 1 首先选择节点③为参考节点,则u3 = 0 。设节点①的电压为u1、节点②的电压为u2,各支 路电流及参考方向见图中的标示。应用基尔霍夫电流定律,对节点①、节点②分别列出节点电 流方程: 节点①i S1i S2i1i 20 节点②i S2i S 3i 2i30 用节点电压表示支路电流: u1 i1G1u1 R 1 u1u2 i 2R G 2(u1u2 ) 2 u2 i3G 3u2 R 3

分子动力学的模拟过程

分子动力学的模拟过程 分子动力学模拟作为一种应用广泛的模拟计算方法有其自身特定的模拟步骤,程序流程也相对固定。本节主要就分子动力学的模拟步骤和计算程序流程做一些简单介绍。 1. 分子动力学模拟步驟 分子动力学模拟是一种在微观尺度上进行的数值模拟方法。这种方法既可以得到一些使用传统方法,热力学分析法等无法获得的微观信息,又能够将实际实验研究中遇到的不利影响因素回避掉,从而达到实验研宄难以实现的控制条件。 分子动力学模拟的步骤为: (1)选取所要研究的系统并建立适当的模拟模型。 (2)设定模拟区域的边界条件,选取粒子间作用势模型。 (3)设定系统所有粒子的初始位置和初始速度。 (4)计算粒子间的相互作用力和势能,以及各个粒子的位置和速度。 (5)待体系达到平衡,统计获得体系的宏观特性。 分子动力学模拟的主要对象就是将实际物理模型抽象后的物理系统模型。因此,物理建模也是分子动力学模拟的一个重要的环节。而对于分子动力学模拟,主要还是势函数的选取,势函数是分子动力学模拟计算的核心。这是因为分子动力学模拟主要是计算分子间作用力,计算粒子的势能、位置及速度都离不开势函数的作用。系统中粒子初始位置的设定最好与实际模拟模型相符,这样可以使系统尽快达到平衡。另外,粒子的初始速度也最好与实际系统中分子的速度相当,这样可以减少计算机的模拟时间。 要想求解粒子的运动状态就必须把运动方程离散化,离散化的方法有经典Verlet算法、蛙跳算法(Leap-frog)、速度Veriet算法、Gear预估-校正法等。这些算法有其各自的优势,选取时可按照计算要求选择最合适的算法。 统计系统各物理量时,便又涉及到系统是选取了什么系综。只有知道了模拟系统采用的系综才能釆用相对应的统计方法更加准确,有效地进行统计计算,减少信息损失。 2. 分子动力学模拟程序流程 具体到分子动力学模拟程序的具体流程,主要包括: (1)设定和模拟相关的参数。 (2)模拟体系初始化。 (3)计算粒子间的作用力。 (4)求解运动方程。 (5)循环计算,待稳定后输出结果。 分子动力学模拟程序流程图如2.3所示。

分子模拟

分子模拟 编辑 分子模拟,是指利用理论方法与计算技术,模拟或仿真分子运动的微观行为,广泛的应用于计算化学,计算生物学,材料科学领域,小至单个化学分子,大至复杂生物体系或材料体系都可以是它用来研究的对象。 计算机分子模拟技术Computer Molecular Simulation,CMS 目录 1分类 2计算机分子模拟技术 3应用 1分类编辑 分子模拟的工作可分为两类:预测型和解释型。 预测型工作是对材料进行性能预测、对过程进行优化筛选,进而为实验提供可行性方案设计。解释型工作即通过模拟解释现象、建立理论、探讨机理,从而为实验奠定理论基础。 2计算机分子模拟技术编辑 这是随着计算机在科研中的应用而发展起来的一门新的科学,是计算机科学与基础科学相结合的产物。在药物研究方面通过分析和计算一系列活性药物分子的三维构象并将其叠合,可以了解某一类药物分子所应具有的药物构象,这一信息给予新药研究很大帮助,药效构象的计算为今后的药效基团方法以及数据库虚拟筛选的方法打下了基础。 3应用编辑 近年来分子模拟技术发展迅速并在多个学科领域得到了广泛的应用。在药物设计领域,可用于研究病毒、药物的作用机理等;在生物科学领域,可用于表征蛋白质的多级结构与性质;在材料学领域,可用于研究结构与力学性能、材料的优化设计等;在化学领域,可用于研究表面催化及机理等;在石油化工领域,可用于分子筛催化剂结构表征、合成设计、吸附扩散,可构建和表征高分子链以及晶态或非晶态本体聚合物的结构,预测包括共混行为、机械性质、扩散、内聚与润湿以及表面粘接等在内的重要性质。 生物化学与分子生物学总论 ?生物化学?生物无机化学?原始生物化学?古生物化学?前生命化学 ?地球生物化学?放射生物化学?低温生物化学?制备生物化学?反向生物化学 ?生命科学?分子生物学?结构分子生物学?分子遗传学?生物信息学 ?反向生物学?结构生物学?生物能学?生物物理化学?生物物理学 ?酶学?糖生物学?基因组学?结构基因组学?功能基因组学 ?比较基因组学?药物基因组学?转基因学?蛋白质组学?RNA组学 ?糖组学?相互作用物组学?代谢物组学?代谢组学?表型组学 其他科技名词 ?转录物组学?基因组?功能基因组?蛋白质组?转基因组 ?转录物组?表型组?代谢物组?RNA组?糖组 ?相互作用物组?生物大分子?生物多聚体?单体?多体 ?寡聚体?多聚体?残基?一级结构?二级结构

虚拟仿真实验方案设计

实用文档 虚拟仿真实验解决方案 华一风景观艺术工程 2017年8月

目录 第一章需求分析 (2) 一、项目背景 (2) 二、实验教学现状 (3) 三、用户需求 (3) 第二章建设原则 (5) 一、建设目标 (5) 二、建设原则 (6) 第三章系统总体解决方案 (7) 一、总体架构 (7) 二、学科简介 (8) 第四章产品优势 (14) 第五章产品服务 (16) 一、服务方式 (16) 二、服务容 (16) 三、故障响应服务流程 (17) 四、故障定义 (18) 五、故障响应时间 (18) 六、故障处理流程 (19) 七、应急预案 (19)

第一章需求分析 一、项目背景 《国家中长期教育改革和发展规划纲要(2010-2020年)》明确指出:把教育信息化纳入国家信息化发展整体战略,超前部署教育信息网络。到2020年,基本建成覆盖城乡各级各类学校的教育信息化体系,促进教育容、教学手段和方法现代化。加强优质教育资源开发与应用,建立数字图书馆和虚拟实验室。鼓励企业和社会机构根据教育教学改革方向和师生教学需求,开发一批专业化教学应用工具软件,并通过教育资源平台提供资源服务,推广普及应用。 在“十三五规划”方针政策指引下,各地陆续出台政策,强调数理化实验教学的重要性。 2016年,公布了中高考的新方案,强调义务教育阶段所有科目都设为100分,表示它们在义务教育与学生成长中同等重要,不再人为去区分主次,使学校、老师、家长、社会对每一门学科都很重重视,其中物生化实验部分占分比例为30%,高考不再文理分科。 继重磅发布此消息后,教育厅发布《关于2016年普通高中招生工作的意见》,其中明确要求理化生实验操作考试满分为30分;省初中毕业升学理化实验操作考试分数为15分,考试成绩计入考生中考录取总分;省理化实验操作10分。

分子模拟实验报告分子光谱模拟

分子模拟实验作业——分子光谱模拟 一、 实验部分 1. 红 外 光 谱 : 分 别 用 PM3 , HF/6-31G(d),B3LYP/6-31G(d),MP2/6-31G(d)四种理论方法计算H 2O 分子的红外光谱,并比较结果的优劣。实验上测得的水分子的振动频-1-1 由图像可得四种理论方法得到的振动频率分别为

B3LYP/6-31G(d) 1634 cm-1、3566 cm-1、3662 cm-1 MP2/6-31G(d) 1644 cm-1、3544 cm-1、3684 cm-1 与标准值1594cm-1,3657cm-1,3756cm-1比较,HF/6-31G(d)最为接近标准值; PM3三个频率都偏大,与标准值符合情况不好;B3LYP/6-31G(d)除1634 cm-1与标准值较接近外,其余两个频率均偏小;MP2/6-31G(d) 1644 cm-1与标准值接近,其余两个频率均偏小。 2.拉曼光谱的模拟 HF/6-31G(d)计算的CH4分子的拉曼谱图 图中特征波数为3290 cm-1、3189 cm-1、1705 cm-1 3.紫外可见光谱的模拟 计算甲酸分子5个垂直激发的单重态和三重态,2个绝热激发的单重态和三重态,并确定垂直激发和绝热激发波长。 (1)垂直激发 --------------------------------------------------------------------- CI-SINGLES EXCITATION ENERGIES STATE HARTREE EV KCAL/MOL CM-1 --------------------------------------------------------------------- 1A 0.2550545872 6.9404 160.0492 55978.01

分子荧光光谱法实验报告

分子荧光光谱法实验报告 一、实验目的 1.掌握荧光光度计的基本原理及使用。 2.了解荧光分光光度计的构造和各组成部分的作用。 3.掌握分子荧光光度计分析物质的特征荧光光谱:激发光谱、发射光谱的测定方法。 4.了解影响荧光产生的几个主要因素。 5.学会运用分子荧光光谱法对物质进行定性和定量分析。 二、实验原理 原子外层电子吸收光子后,由基态跃迁到激发态,再回到较低能级或者基态时,发射出一定波长的辐射,称为原子荧光。对于分子的能级激发态称为分子荧光,平时所说的荧光指分子荧光。 具有不饱和基团的基态分子经光照射后,价电子跃迁产生荧光,是当电子从第一激发单重态S1的最低振动能级回到基态S0各振动能级所产生的光辐射。 (1)激发光谱 是指发光的某一谱线或谱带的强度随激发光波长(或频率)变化的曲线。横坐标为激发光波长,纵坐标为发光相对强度。 激发光谱反映不同波长的光激发材料产生发光的效果。即表示发光的某一谱线或谱带可以被什么波长的光激发、激发的本领是高还是低;也表示用不同波长的光激发材料时,使材料发出某一波长光的效

率。荧光为光致发光,合适的激发光波长需根据激发光谱确定——激发光谱是在固定荧光波长下,测量荧光体的荧光强度随激发波长变化的光谱。获得方法:先把第二单色器的波长固定,使测定的λem不变,改变第一单色器波长,让不同波长的光照在荧光物质上,测定它的荧光强度,以I为纵坐标,λex为横坐标所得图谱即荧光物质的激发光谱,从曲线上找出λex,,实际上选波长较长的高波长峰。 (2)发射光谱 是指发光的能量按波长或频率的分布。通常实验测量的是发光的相对能量。发射光谱中,横坐标为波长,纵坐标为发光相对强度。 发射光谱常分为带谱和线谱,有时也会出现既有带谱、又有线谱的情况。发射光谱的获得方法:先把第一单色器的波长固定,使激发的λex不变,改变第二单色器波长,让不同波长的光扫描,测定它的发光强度,以I为纵坐标,λem为横坐标得图谱即荧光物质的发射光谱;从曲线上找出最大的λem。 (3)荧光强度与荧光物质浓度的关系 用强度为I0的入射光,照射到液池内的荧光物质时,产生荧光,荧光强度If用仪器测得,在荧光浓度很稀(A 三、实验试剂和仪器试剂:罗丹明B乙醇溶液;1-萘酚乙醇溶液;3,3’-Diethyloxadicarbocyanine iodide:标准溶液,10μg/ml, 20μg/ml,30μg/ml,40μg/ml和未知浓度;蒸馏水;乙 醇。 仪器:Fluoromax-4荧光分光光度计;1cm比色皿;

微波仿真实验报告(北邮)

北京邮电大学 微波仿真实验报告实验名称:微波仿真实验

姓名:刘梦颉 班级:2011211203 学号:2011210960 班内序号:11 日期:2012年12月20日 一、实验目的 1、熟悉支节匹配的匹配原理。 2、了解微带线的工作原理和实际应用。 3、掌握Smith图解法设计微带线匹配网络。 4、掌握ADS,通过SmithChart和Momentum设计电路并仿真出结果。 二、实验要求 1、使用软件:ADS 2、实验通用参数: FR4基片:介电常数为4.4,厚度为1.6mm,损耗角正切为0.02 特性阻抗:50欧姆 3、根据题目要求完成仿真,每题截取1~3张截图。

三、实验过程及结果 第一、二次实验 实验一: 1、实验内容 Linecal的使用(工作频率1GHz) a)计算FR4基片的50欧姆微带线的宽度 b)计算FR4基片的50欧姆共面波导(CPW)的横截面尺寸(中心信号线 宽度与接地板之间的距离) 2、相关截图 (a)根据实验要求设置相应参数

(b)根据实验要求设置相应参数 实验二 1、实验内容 了解ADS Schematic的使用和设置2、相关截图:

打开ADS软件,新建工程,新建Schematic窗口。 在Schematic中的tools中打开lineCalc,可以计算微带线的参数。 3、实验分析 通过在不同的库中可以找到想要的器件,比如理想传输线和微带线器件。在完成电路图后需要先保存电路图,然后仿真。在仿真弹出的图形窗口中,可以绘制Smith图和S参数曲线图。

实验三 1、实验内容 分别用理想传输线和微带传输线在FR4基片上,仿真一段特性阻抗为50欧姆四分之波长开路线的性能参数,工作频率为1GHz。观察Smith圆图变化。 2、相关截图 (1)理想传输线

3.2模拟集成电路设计-差分放大器版图

集成电路设计实习Integrated Circuits Design Labs I t t d Ci it D i L b 单元实验三(第二次课) 模拟电路单元实验-差分放大器版图设计 2007-2008 Institute of Microelectronics Peking University

实验内容、实验目的、时间安排 z实验内容: z完成差分放大器的版图 z完成验证:DRC、LVS、后仿真 z目的: z掌握模拟集成电路单元模块的版图设计方法 z时间安排: z一次课完成差分放大器的版图与验证 Institute of Microelectronics, Peking University集成电路设计实习-单元实验三Page1

实验步骤 1.完成上节课设计放大器对应的版图 对版图进行、检查 2.DRC LVS 3.创建后仿真电路 44.后仿真(进度慢的同学可只选做部分分析) z DC分析:直流功耗等 z AC分析:增益、GBW、PM z Tran分析:建立时间、瞬态功耗等 Institute of Microelectronics, Peking University集成电路设计实习-单元实验三Page2

Display Option z Layout->Options ->Display z请按左图操作 Institute of Microelectronics, Peking University集成电路设计实习-单元实验三Page3

由Schematic创建Layout z Schematic->Tools->Design Synthesis->Layout XL->弹出窗口 ->Create New->OK >选择Create New>OK z Virtuoso XL->Design->Gen From Source->弹出窗口 z选择所有Pin z设置Pin的Layer z Update Institute of Microelectronics, Peking University集成电路设计实习-单元实验三Page4

Multisim仿真实验报告

Multisim仿真实验报告 实验课程:数字电子技术 实验名称:Multisim仿真实验 姓名:戴梦婷 学号: 13291027 班级:电气1302班 2015年6月11日

实验一五人表决电路的设计 一、实验目的 1、掌握组合逻辑电路——五人表决电路的设计方法; 2、复习典型组合逻辑电路的工作原理和使用方法; 3、提高集成门电路的综合应用能力; 4、学会调试Multisim仿真软件,并实现五人表决电路功能。 二、实验器件 74LS151两片、74LS32一片、74LS04一片、单刀双掷开关5个、+5V直流电源1个、地线1根、信号灯1个、导线若干。 三、实验项目 设计一个五人表决电路。在三人及以上同意时输出信号灯亮,否则灯灭,用8选1数据选择器74LS151实现,通过Multisim仿真软件实现。 四、实验原理 1、输入变量:A B C D E,输出:F;

3、逻辑表达式 F= ABCDE+ABCDE+ABCDE+ABCDE+ ABCDE+ ABCDE+ABC DE+ABCDE+ ABCDE+ ABCDE+ABCDE+ABCDE+ ABCDE+ABCDE+ABCDE+ABCDE =ABCDE+ ABCDE+ABCDE+ ABCD+ABCDE+ABCDE+ABCD+ABCDE+ ABCD+ABCD+ABCD 4、对比16选1逻辑表达式,令A3=A,A2=B,A1=C,A0=D,D3=D5=D6=D9=D10=D12=E, D 7=D 11 =D 13 =D 14 =D 15 =1,D =D 1 =D 2 =D 4 =D 8 =0; 5、用74LS151拓展构成16选1数据选择器。 五、实验成果 用单刀双掷开关制成表决器,同意开关打到上线,否则打到下线。当无人同意时,信号指示灯不亮,如下图:

automod仿真实验设计

1. 实验设计 对于库存系统,管理者往往比较关心供应链的成本和产品满足率的问题。因此将年总成本和产品满足率作为该系统的响应。其中: 产品满足率= 出库总量/订单总量 供应链总成本= 总库存成本+总订货成本 = 年平均库存*单位库存持有成本+单次订货成本*年订货次数 上式中,产品满足率是指以库存来满足的那部分市场需求所占的比率。供应链总成本的计算中,认为供应链不存在缺货损失,因而不考虑缺货成本。 根据上述目标绩效,对模型的输入进行分析可知,参数K,H可能会对绩效指标产生影响。 Q 从上式可以看出,K,H会对最优订货量Q产生影响,则选取K/H来分析。 类型 因子K/H 响应供应链总成本,产品满足率 (正交实验设计) 2. 输出数据分析 该库存系统仿真为非终止型仿真,则选取批均值法进行分析。仿真运行2500天,删除前730天的数据,将剩下的数据分成4批,每批长度为365天。 统计数据 统计项批次粮食销售点企业储备库销区储备库产区储备库 库存均值1 137.5 321.1350.8393.4 2 131.8 312.0 345.7 389.1 3 136.7 320.6 355.8 398.0 4 133.9 308.6 345.4 394.1 订货次数1 58 51 43 35 2 61 5 3 46 39 3 60 52 4 4 36 4 62 5 5 48 40 区间估计

估计项 95%置信区间 均值下限上限 库存均值 销售点135.0 130.8 139.1 企业储备库315.6 305.6 325.5 销区储备库349.4 341.6 357.3 产区储备库393.7 387.8 399.5 订货次数 销售点60 58 63 企业储备库53 50 55 销区储备库45 42 49 产区储备库38 34 41 供应链总成本= 总库存成本+总订货成本=159265 估计项 95%置信区间 均值下限上限 出库量16295 15856 16734 需求16420 15914 16926 产品满足率=99.2%

分子模拟实验报告分子光谱模拟

1.红外光谱:分别用 PM3 ,HF/6-31G(d),B3LYP/6-31G(d),MP2/6-31G(d) 四种理论方法计算 H 2O 分子的红外光谱,并比较结果的优劣。实验 上测得的水分子的振动频率为:1594cm 1, 3657cm -1, 3756cm 1。 k(Lore ntz) B3LYP/6-31G(d) 由图像可得四种理论方法得到的振动频率分别为 PM3 1698 cm -1、3770 cm -1、3880 cm -1 HF/6-31G(d) 1634 cm -1、3662 cm -1、3770 cm -1 B3LYP/6-31G(d) 1634 cm -1、3566 cm -1、3662 cm -1 MP2/6-31G(d) 1644 cm -1、3544 cm -1、 3684 cm -1 与标准值1594cm -1, 3657cm'1,3756cm'1比较,HF/6-31G(d)最为接近标准值; PM3三个频率都偏大,与标准值符合情况不好; B3LYP/6-31G(d)除1634 cm -1与 分子模拟实验作业 一、实验部分 分子光谱模拟 k(Lore ntz) -DrnelPL (. 4000 3000 2000 -1 /cm 1000 '! 0.00 0.01 0.02 0.03 0.04 0.05 0.06 4000 3000 2000 1000 /cm -1 PM3 HF/6-31G(d) ------ k(Lore ntz) k(Lore ntz) 0.00 0.01 r 0.04 0.05 J _______ ! ______ ______ J ______ ______ !_ 4000 3000 2000 -1 /cm 1000 MP2/6-31G(d) 0.000 0.002 _ 0.004 0.006 0.008 0.010 0.012 - 0.014 0.02 0.03 - e /cm

哈工大 计算机仿真技术实验报告 仿真实验四基于Simulink控制系统仿真与综合设计

基于Simulink 控制系统仿真与综合设计 一、实验目的 (1) 熟悉Simulink 的工作环境及其功能模块库; (2) 掌握Simulink 的系统建模和仿真方法; (3) 掌握Simulink 仿真数据的输出方法与数据处理; (4) 掌握利用Simulink 进行控制系统的时域仿真分析与综合设计方法; (5) 掌握利用 Simulink 对控制系统的时域与频域性能指标分析方法。 二、实验内容 图2.1为单位负反馈系统。分别求出当输入信号为阶跃函数信号)(1)(t t r =、斜坡函数信号t t r =)(和抛物线函数信号2/)(2t t r =时,系统输出响应)(t y 及误差信号)(t e 曲线。若要求系统动态性能指标满足如下条件:a) 动态过程响应时间s t s 5.2≤;b) 动态过程响应上升时间s t p 1≤;c) 系统最大超调量%10≤p σ。按图1.2所示系统设计PID 调节器参数。 图2.1 单位反馈控制系统框图

图2.2 综合设计控制系统框图 三、实验要求 (1) 采用Simulink系统建模与系统仿真方法,完成仿真实验; (2) 利用Simulink中的Scope模块观察仿真结果,并从中分析系统时域性能指标(系统阶跃响应过渡过程时间,系统响应上升时间,系统响应振荡次数,系统最大超调量和系统稳态误差); (3) 利用Simulink中Signal Constraint模块对图2.2系统的PID参数进行综合设计,以确定其参数; (4) 对系统综合设计前后的主要性能指标进行对比分析,并给出PID参数的改变对闭环系统性能指标的影响。 四、实验步骤与方法 4.1时域仿真分析实验步骤与方法 在Simulink仿真环境中,打开simulink库,找出相应的单元部件模型,并拖至打开的模型窗口中,构造自己需要的仿真模型。根据图2.1 所示的单位反馈控制系统框图建立其仿真模型,并对各个单元部件模型的参数进行设定。所做出的仿真电路图如图4.1.1所示。

大学物理仿真实验报告概要

大学物理仿真实验报告 姓名: 学号: 班级:

实验-----利用单摆测量重力加速度 实验目的 利用单摆来测量重力加速度 实验原理 单摆的结构参考图1单摆仪,一级近似的周期公式为 由此通过测量周期摆长求重力加速度 实验仪器 单摆仪、摆幅测量标尺、钢球、游标卡尺 实验内容 一.用误差均分原理设计一单摆装置,测量重力加速度g. 设计要求: (1)根据误差均分原理,自行设计试验方案,合理选择测量仪器和方法. (2)写出详细的推导过程,试验步骤.

(3)用自制的单摆装置测量重力加速度g,测量精度要求△g/g < 1%. 可提供的器材及参数: 游标卡尺、米尺、千分尺、电子秒表、支架、细线(尼龙线)、钢球、摆幅测量标尺(提供硬白纸板自制)、天平(公用). 假设摆长l≈70.00cm;摆球直径D≈2.00cm;摆动周期T≈1.700s; 米尺精度△米≈0.05cm;卡尺精度△卡≈0.002cm;千分尺精度△千≈0.001cm;秒表精度△秒≈0.01s;根据统计分析,实验人员开或停秒表反应时间为0.1s左右,所以实验人员开,停秒表总的反应时间近似为△人≈0.2s. 二.对重力加速度g的测量结果进行误差分析和数据处理,检验实验结果是否达到设计 要求. 三.自拟实验步骤研究单摆周期与摆长,摆角,悬线的质量和弹性系数,空气阻力等因素 的关系,试分析各项误差的大小. 四.自拟试验步骤用单摆实验验证机械能守恒定律. 实验数据 摆线长+小球直径L=91.50cm

D(平均)=(1.750+1.752+1.744+1.740+1.749+1.748)÷6=1.7 47m R=D/2=0.850cm l=L-R=91.05cm t=95.91s,周期数n=50,周期T=1.92s 所以g=9.751 2ΔT/t=0.0022,ΔL/l=0.0005,所以Δg/g=0.27%,Δg=0.026 所以: g=(9.751±0.026) 实验结论与误差分析: 结论:g=(9.751±0.026),Δg/g=0.27%<1%,所以达到设计要求。 误差分析: 1.若θ>5°(即角度过大)因为T 与θ相关,当θ越大时T也越大,所以θ偏大,测量 值比值偏小。

模拟集成电路设计经典教材

1、 CMOS analog circuit design by P.E.ALLEN 评定:理论性90 实用性70 编写 100 精彩内容:运放的设计流程、比较器、 开关电容 这本书在国内非常流行,中文版也 翻译的很好,是很多人的入门教材。 建议大家读影印版,因为ic 领域 的绝大部分文献是以英文写成的。 如果你只能读中文版,你的学习资料 将非常有限。笔者对这本书的评价 并不高,认为该书理论有余,实用性 不足,在内容的安排上也有不妥的地 方,比如没有安排专门的章节讲述反 馈,在小信号的计算方面也没有巧方法。本书最精彩的部分应该就是运放的设计流程了。这是领域里非常重要的问题,像Allen 教授这样将设计流程一步一步表述出来在其他书里是没有的。这正体现了Allen 教授的治学风格:苛求理论的完整性系统性。但是,作为一项工程技术,最关键的是要解决问题,是能够拿出一套实用的经济的保险的方案。所以,读者会发现,看完最后一章关于ADC/DAC 的内容,似乎是面面俱到,几种结构的ADC 都提到了,但是当读者想要根据需求选择并设计一种ADC/DAC 时,却无从下手。书中关于比较器的内容也很精彩,也体现了Allen 教授求全的风格。不过,正好其它教科书里对比较器的系统讲述较少,该书正好弥补了这一缺陷。Allen 教授是开关电容电路和滤波器电路的专家。书中的相关章节很适合作为开关电容电路的入门教材。该书的排版、图表等书籍编写方面的工作也做的很好。像Allen 这样的理论派教授不管在那所大学里,大概都会很快的获得晋升吧。另外,Allen 教授的学生Rincon Moca 教授写的关于LDO 的书非常详尽,值得一读。 2、 CMOS Circuit Design Layout and Simulation CMOS Mixed-Signal Circuit Design by R.J.Baker 评定:理论性80 实用性100 编写80 精彩内容:数据转换器的建模和测量、hspice 网表这本书的风格和Allen 的书刚好相反: 理论的系统性不强,但是极为实用,甚至给出 大量的电路仿真网表和hspice 仿真图线。 这本书的中文版翻译的也很好。最近出了第二 版,翻译人员换了,不知道翻译的水平如何。 不过,第二版好贵啊~~ Baker 教授在工业界 的实战经验丰富,曾经参加过多年的军方项目 的研发,接收器,锁相环,数据转换器,DRAM 等曾设计过。所以,书中的内容几乎了包含 了数字、模拟的所有重要电路,Baker 教授

分子模拟实验实验报告设计实验二氯卡宾

分子模拟实验作业——设计实验 -----------二氯卡宾与甲醛环加成反应的理论研究 一、实验背景 在大二的有机实验中,我接触到了连续合成实验,其中有一类反应为相转移催化合成·卡宾及其反应。卡宾(Carbene)亦称为碳烯,是一类具有六个加点字的两价碳原子活性中间体,构造式为:CH2。其中的氢原子可以被其他原子或基团所取代,这类取代物称为卡宾体或取代卡宾。卡宾是缺电子的,具有很强的亲电性,可发生多种反应。在有机合成中常使之与烯烃反应以制取环丙烷衍生物,上网查阅资料后,我想到了可以结合本学期所学的分子模拟理论计算方法来模拟二氯卡宾与甲醛环加成反应。(题目来源于有机化学实验和查阅到的文献)二氯卡宾是一种取代卡宾,通常由氯仿与强碱作用产生: CHCl3 + Base :CH2 + HB + Cl- 为了进一步探讨卤代卡宾与含有不对称π键物质环加成反应的机理,本文对单重态二氯卡宾与甲醛加成生成二氯环氧丙烷反应: 进行了量子化学从头算的研究,得到了该反应的反应机理,并对其反应机理作了理论分析说明.同时计算了该反应在不同温度下的热力学函数和动力学性质,并作了讨论。 二、实验内容 ①用分子轨道理论分析二氯卡宾与甲醛环加成的机理 用Chem3D软件做出二氯卡宾与甲醛的分子轨道能级图,计算分子轨道,并图示二氯卡宾和甲醛的HOMO和LUMO轨道的形状和能量。将所有分子轨道按能级排列次序,并以此分析两反应物的轨道匹配情况。(优化条件:Gamess Interface,HF/6-31G(d))

对于该环加成反应的机理可借助于分子轨道图进行分析。根据轨道对称匹配条件,在反应过程中,应首先是C1的2p 空轨道插入甲醛的成键π轨道,但因甲醛中的羰基是一极性基团,π键电子云密集于氧端,故C1的2p 空轨道将从氧端插入其π轨道.因π电子向C1的2p 空轨道中的迁移,从而使二者首先生成了一半环状的中间配合物。由于二氯卡宾的?孤对电子与甲醛C 端的反键π轨道之间有着较强的成键作用,故随着反应的进行,二氯卡宾将在C1C20平面内按逆时针方向发生旋转.同时H1-C2和H2-C2键也由在中间配合物中与C1C20的共

模拟集成电路设计期末试卷..

《模拟集成电路设计原理》期末考试 一.填空题(每空1分,共14分) 1、与其它类型的晶体管相比,MOS器件的尺寸很容易按____比例____缩小,CMOS电路被证明具有_ 较低__的制造成本。 2、放大应用时,通常使MOS管工作在_ 饱和_区,电流受栅源过驱动电压控制,我们定义_跨导_来 表示电压转换电流的能力。 3、λ为沟长调制效应系数,对于较长的沟道,λ值____较小___(较大、较小)。 4、源跟随器主要应用是起到___电压缓冲器___的作用。 5、共源共栅放大器结构的一个重要特性就是_输出阻抗_很高,因此可以做成___恒定电流源_。 6、由于_尾电流源输出阻抗为有限值_或_电路不完全对称_等因素,共模输入电平的变化会引起差动输 出的改变。 7、理想情况下,_电流镜_结构可以精确地复制电流而不受工艺和温度的影响,实际应用中,为了抑制 沟长调制效应带来的误差,可以进一步将其改进为__共源共栅电流镜__结构。 8、为方便求解,在一定条件下可用___极点—结点关联_法估算系统的极点频率。 9、与差动对结合使用的有源电流镜结构如下图所示,电路的输入电容C in为__ C F(1-A)__。 10、λ为沟长调制效应系数,λ值与沟道长度成___反比__(正比、反比)。 二.名词解释(每题3分,共15分) 1、阱 解:在CMOS工艺中,PMOS管与NMOS管必须做在同一衬底上,其中某一类器件要做在一个“局部衬底”上,这块与衬底掺杂类型相反的“局部衬底”叫做阱。 2、亚阈值导电效应 解:实际上,V GS=V TH时,一个“弱”的反型层仍然存在,并有一些源漏电流,甚至当V GS

分子模拟实验实验报告二

分析模拟实验实验报告(二) 武汉大学化学与分子科学学院 一、实验结果

2.问题7-1-2 画“三键链”的结果是什么? 答: “三键链”画不出来 3.问题7-1-3 画出多个联苯环的共轭结构 答:画不出“多联苯环的共轭结构” 5.问题7-3-1 计算H2O的二聚体的结构

6.问题7-4-1 7.问题7-4-2 简介:IUPAC名称为 benzylidene[1,3-bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene]dichloro(tricy clohexylphosphine)ruthenium——苯亚甲基·[1,3-双(三甲基苯基)-2-咪唑啉亚基]·二氯·(三环己基膦)合钌。它具有比原催化剂更高的活性和选择性以及相似的稳定性,但对空气和水敏感,因此需要在氮气或氩气惰性气氛中使用。其催化活性比第一代催化剂提高了两个数量级,在开环复分解聚合反应中的用量可以降低到百万分之一,在某些关环复分解反应中的用量也仅为万分之五。特别适用于低张力的环状烯烃及位阻较大的多取代烯烃的合成。

原因:1.表现中心金属原子钌(Ru)与各配体之间在空间结构上的关系,包括两个卡宾基团和一个膦配体以及两个氯原子。 2.凸显催化剂中的杂原子 二、实验收获 相较于第一次这两次对于Chem3D使用才真正感觉到Chem3D的实用与方便。 学习到了三种不同的分子结构模型创建方法,经过自己的实践操作深刻体会到各个方法之间的差别,基本可以在应用时做到根据需求与情况选择合适的建模方法。 了解了4种分子结构最优化计算方法Hartree-Fock、MP2、B3LYP和PM3,并分别使用这四种计算方法计算H2O的二聚体的结构。体会不同的理论方法的计算结果的差异。进行计算时应该遵从从简单到复杂的原则,对于不同的分子与反应选择合适的计算方法,既保证计算结果的准确性又要能够提高计算速度。

分子动力学实验报告

分子动力学实验报告 实验名称平衡晶格常数和体弹模量 实验目的 1、学习Linux系统的指令 2、学习lammps脚本的形式和内容 实验原理 原子、离子或分子在三维空间做规则的排列,相同的部分具有直线周期平移的特点。为了描述晶体结构的周期性,人们提出了空间点阵的概念。为了说明点阵排列的规律和特点,可以在点阵中去除一个具有代表性的基本单元作为点阵的组成单元,称为晶胞。晶胞的大小一般是由晶格常数衡量的,它是表征晶体结构的一个重要基本参数。 在本次模拟实验中,给定Si集中典型立方晶体结构:fcc,bcc,sc,dc。根据 可判定dc结构是否能量最低,即是否最稳定 材料在弹性变形阶段,其应力和应变成正比例关系(即符合胡克定律),其比例系数称为弹性模量。弹性模量是描述物质弹性的一个物理量,是一个总称,包括杨氏模量、剪切模量、体积模量等。在弹性变形范围内,物体的体应力与相应体应变之比的绝对值称为体弹模量。表达式为 B=? dP dV V 式中,P为体应力或物体受到的各向均匀的压强,dV V为体积的相对变化。对于立方晶胞,总能量可以表示为ε=ME,E为单个原子的结合能,M 为单位晶胞内的原子数。晶胞体积可以表示为V=a3,那么压强P为 P=?dε dV =? M 3a2 dE da 故体积模量可以表示为 根据实验第一部分算出的平衡晶格常数,以及能量与晶格间距的函数关系,可以求得对应晶格类型的体积模量。并与现有数据进行对比。 实验过程 (1)平衡晶格常数

将share文件夹中关于第一次实验的文件夹拷贝到本地,其中包含势函数文件和input文件。 $ cp□-r□share/md_1□. $ cd□md_1 $ cd□1_lattice 通过LAMMPS执行in.diamond文件,得到输出文件,包括体系能量和cfg文件,log文件。 $ lmp□-i□in.diamond 用gnuplot画图软件利用输出数据作图,得到晶格长度与体系能量的关系,能量最低处对应的晶格长度即是晶格常数。 Si为diamond晶格结构时晶格长度与体系能量关系图如图, 由图可得能量最小处对应取a0=5.43095。 Si为fcc晶格结构时晶格长度与体系能量关系图如图, a0=4.15。 改写后的sc、bcc脚本文件分别如图所示

设计性实验(MATLAB仿真实验)

设计性实验(MATLA仿真实验) 3.1 MATALAB语言概述 3.1.1 MATALAB 语言的发展 MATALAB 是一种科学计算软件,主要适用于矩阵运算及控制和信息处理领域的分析设计。它使用方便,输入简洁,运算高效,内容丰富,并且很容易由用户自行扩展,因此,当前已成为美国和其他发达国家大学教学和科学研究中最常用而必不可少的工具。 MATLAB 是由美国Mathworks 公司与 1 984年正式推出的,从那时到现在已升级到7.x 版本。随着版本的升级,内容不断扩充,功能更强大。特别是在系统仿真和实时运行等方面,有很多新进展,更扩大了它的应用前景。 MATLAB 是“矩阵实验室”( MATrix Laboratoy )的缩写,它是一种以矩阵运算为基础的交互式程序语言,专门针对科学、工程计算及绘图的需求。它用解释方式工作,键入程序立即得出结果,人机交互性能好,适应于多种平台。MATLAB 语言在国外的大学工学院中,特别是数值计算用的最频繁的电子信息类学科中,已成为每个学生都掌握的工具了。它大大提高了课程教学、解题作业、分析研究的效率。 MATLAB 语言比较好学,因为它只有一种数据类型,一种标准的输入输出语句,不用“指针”,不需编译,比其他语言少了很多内容听三、四个小时课,上机练几个小时,就可入门了。以后自学也十分方便,通过它的演示(dem0)和求助(help)命令,人们可以方便地在线学习各种函数的用法及其内涵MATLAB 语言的难点是函数较多,仅基本部分就有700多个,其中常用的有二三百个,要尽量多记少查,可以提高编程效率。 3.1.2MATLAB 语言的特点 1.矩阵运算:每个变量代表一个矩阵,它以矩阵运算见长;每个元素都看作复数,所有的运算都对矩阵和复数有效。(虚部符号可用i 或j) clear %清除内存变量format short % c1=1-2i,c2=3*(2-sqrt(-1)*3),c3=6+sin(.5)*1j c4=complex(1,2) %建立复数 c1 = 1.0000 - 2.0000i

模拟集成电路设计软件使用教程

模拟集成电路设计软件实验教程 月4年2006

1 目录 实验一自上而下(Top-Down)的电路设计 (3) Lab 1.1 启动软件 (3) Lab 1.2 自上而下的系统级仿真 (3) Lab 1.3 电路图输入 (7) Lab 1.4 模块的创建 (10) Lab 1.5 电源的创建 (12) Lab 1.6 建立运放测试电路 (14) 实验二使用Spectre Direct进行模拟仿真 (17) Lab 2.1 运行仿真 (17) Lab 2.2 使用激励模板 (28) Lab 2.3 波形窗的使用 (32) Lab 2.4 保存仿真状态 (36) Lab 2.5 将仿真结果注释在电路图窗口 (37) 2 实验一自上而下(Top-Down)的电路设计Lab 1.1 启动软件 实验目的: 掌握如何启动模拟电路设计环境.

实验步骤: 1.进入Linux界面后,点击鼠标右键,选中New Terminal,则会弹出一个交互终端. 2.进入教程所在目录后,输入命令cd Artist446 (注意:cd后必须有空格;命令行大小写敏感) 3.在同一个交互终端内,输入命令icms &,在屏幕底部会出现一个命令交互窗(Command Interpreter Window,CIW).如果出现What's New窗口,可使用File-Close命令关闭. Lab 1.2 自上而下的系统级仿真 实验目的: 掌握如何对含AHDL模块的模块级设计进行仿真. 实验步骤: 1.在CIW中选择Tool-Library Manager,会弹出库管理器(Library Manager). 2.在库管理器中,用鼠标左键选中training,则cell中会显示出training库中所有的cell;在training 的所有cell中用左键选中peakTestv;用鼠标中键(或右键)打开(open)view中的schematic.将会出现如下图所示的测试电路: 3 点击左当该模块四周出现一高亮黄色虚线框时,将鼠标置于图中peakDetectv模块上,3. . ,则模块四周线框变为白色实线框键选中该模块EditDesign-Hierarchy-Descend 设置Name将View ,,弹出Descend对话框4.选择: peakDetectv模块的电路图OK.为schematic,然后点击则出现

相关文档
相关文档 最新文档