文档库 最新最全的文档下载
当前位置:文档库 › 《石灰吟》习题精选

《石灰吟》习题精选

《石灰吟》习题精选
《石灰吟》习题精选

《石灰吟》习题精选

1. 我会填(知诗人)

这首诗的作者是________ 代诗人__________ ,他是钱塘人,即现在的____________ 。他是一位民族_________ ,也是一位政治家。

2. 我会读(读诗句,画出节奏)千锤万凿出深山,烈火焚烧若等闲。

粉骨碎身全不怕,要留清白在人间。

3. 我会思(至少提出两个问题)

4.选择

千锤万凿(:zu 0zco )

烈火焚烧(:h tn fen)

粉骨碎身(:cu 1su1 )

5.比较

吟()锤()

铃()睡()

闲()焚()

闭()楚()

6.理解

①结合诗句写出词义

等闲

清白”本指石灰的颜色,这里指

o

②选择正确的义项打“"”

A. 粉骨碎身

粉末()使破碎(

粉碎,变成粉末()破成零片()

B. 千锤万凿

铁锤,锤子()凿子()

锤凿用锤子敲打()挖掘,打孔()上面两个成语都是用意思相近的字组成的,

请你写三个这样结构的成语

7.明诗意粉骨碎身全不怕,这二句诗的意思是

.悟诗情

①从这首诗中我们明白石灰的形成要经历这些考验:

② __________________________________ 石灰的______________________________________ 这

种精神值得赞颂。

③ _____________________________________ 这首诗表面写________________________________ ,实际是写________________________ ,这种方法叫借物喻人。

读一读,背一背,体会所赞美的人和事竹石

(清)郑燮咬定青山不放松,① 立根原在破岩中。

② 千磨万击还坚劲,③ 任尔东南西北风。④

注:①咬定:比喻竹子牢牢地立在山石之中

②立根:扎根。破岩:岩石缝隙

③坚劲:坚韧刚劲。④尔:你。

计数原理与排列组合经典题型

计数原理与排列组合题型解题方法总结 计数原理 一、知识精讲 1、分类计数原理: 2、分步计数原理: 特别注意:两个原理的共同点:把一个原始事件分解成若干个分事件来完成。 不同点:如果完成一件事情共有n类办法,这n类办法彼此之间相互独立的,无论哪一类办法中的哪一种方法都能单独完成这件事情,求完成这件事情的方法种数,就用分类计数原理。分类时应不重不漏(即任一种方法必须属于某一类且只属于这一类) 如果完成一件事情需要分成n个步骤,各个步骤都是不可缺少的,需要依次完成所有的步骤,才能完成这件事,而完成每一个步骤各有若干种不同的方法,求完成这件事情的方法种数就用分步计数原理。各步骤有先后,相互依存,缺一不可。 3、排列 (1)排列定义,排列数 (2)排列数公式: (3)全排列列: 4.组合 (1)组合的定义,排列与组合的区别; (2)组合数公式: (3)组合数的性质 二、.典例解析 题型1:计数原理 例1.完成下列选择题与填空题 (1)有三个不同的信箱,今有四封不同的信欲投其中,则不同的投法有种。 A.81 B.64 C.24 D.4 (2)四名学生争夺三项冠军,获得冠军的可能的种数是( ) A.81 B.64 C.24 D.4 (3)有四位学生参加三项不同的竞赛, ①每位学生必须参加一项竞赛,则有不同的参赛方法有; ②每项竞赛只许有一位学生参加,则有不同的参赛方法有;

③每位学生最多参加一项竞赛,每项竞赛只许有一位学生参加,则不同的参赛方法有 。 例2(1)如图为一电路图,从A 到B 共有 条不同的线路可通电。 例3: 把一个圆分成3块扇形,现在用5种不同的颜色给3块扇形涂色,要求相邻扇形的颜色互不相同,问有多少钟不同的涂法?若分割成4块扇形呢? 例4、某城在中心广场造一个花圃,花圃分为6个部分(如图).现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有 ________ 种.(以数字作答) 例5、 四面体的顶点和各棱的中点共10个,在其中取4个不共面的点,问共有多少种不同的取法? 例6、(1)电视台在”欢乐今宵”节目中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的观众来信,甲信箱中有30封,乙信箱中有20封.现有主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中各确定一名幸运伙伴,有多少种不同的结果? (2)三边均为整数,且最大边长为11的三角形的个数是 D C B A

排列组合练习题及答案精选

排列组合习题精选 一、纯排列与组合问题: 1. 从9人中选派2人参加某一活动,有多少种不同选法? 2. 从9人中选派2人参加文艺活动,1人下乡演出,1人在本地演出,有多少种不同选派方法? 3. 现从男、女8名学生干部中选出2名男同学和1名女同学分别参加全校“资源”、“生态” 和“环保”三个夏令营活动,已知共有 90种不同的方案,那么男、女同学的人数是( ) A.男同学2人,女同学6人 B. 男同学3人,女同学5人 C.男同学5人,女同学3人 D. 男同学6人,女同学2人 4. 一条铁路原有m 个车站,为了适应客运需要新增加n 个车站(n>1),则客运车票增加了58 种(从甲站到乙站与乙站到甲站需要两种不同车票),那么原有的车站有() A.12个 B.13 个 C.14 个 D.15 个 答案:1、 2 2 72 3 、选 B. 设男生n 2 1 3 2 2 9 9 n 8 n3 。、mn m C 362、A 人,则有C C A 904 A A58 选 C. 二、相邻问题: 1. A 、B 、C 、D 、E 五个人并排站成一列,若A 、B 必相邻,则有多少种不同排法? 2. 有8本不同的书,其中3本不同的科技书,2本不同的文艺书,3本不同的体育书,将这 些书竖排在书架上,则科技书连在一起,文艺书也连在一起的不同排法种数为() A.720 B.1440 C.2880 D.3600 答案:1. 2 4 3 2 5 2 4 3 2 5 AA 48(2)选BAAA1440 三、不相邻问题: 1. 要排一个有4个歌唱节目和3个舞蹈节目的演出节目单,任何两个舞蹈节目都不相邻,有多少种不同排法? 1

排列组合问题经典题型解析含答案

排列组合问题经典题型与通用方法 1. 相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列 例1. A,B,C,D,E 五人并排站成一排,如果 A,B 必须相邻且B 在A 的右边,则不同的排法有( ) A 、60 种 B 、48 种 C 、36 种 D 、24 种 2. 相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几 个元素全排列,再把规定的相离的 几个元素插入上述几个元素的空位和两端 ? 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是( ) A 、1440 种 B 、3600 种 C 、4820 种 D 、4800 种 3. 定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法 例3.A,B,C,D,E 五人并排站成一排,如果 B 必须站在A 的右边(A, B 可以不相邻)那么不同的排法有 ( ) 4. 标号排位问题分步法:把元素排到指定位置上, 可 先把某个元素按规定排入, 第二步再排另一个元素, 如 此继续下去,依次即可完成 ? 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所 填数字均不相同的填法有( ) A 、6 种 B 、9 种 C 、11 种 D 、23 种 5. 有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法 例5.( 1 )有甲乙丙三项任务,甲需 2人承担,乙丙各需一人承担,从 10人中选出4人承担这三项任务, 不同的选法种数是( ) A 、1260 种 B 、2025 种 C 、2520 种 D 、5040 种 (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口 6. 全员分配问题分组法: 例6.( 1)4名优秀学生全部保送到 3所学校去,每所学校至少去一名,则不同的保送方案有多少种? A 、24 种 B 、60 种 C 、90 种 D 、 120 种 4人,则不同的分配方案有( 4 4 4 C 12C 8C 4 种 4 4 3C 12C 8C C 、 C 12C 8 A 3 种

公务员考试数字推理题50道联附答案

公务员考试数字推理题附答案 【656】5,25,61,113,()A、125;B、181;C、225;D、226 【657】9,1,4,3,40,() A.81;B.80;C.121;D.120; 【658】5,5,14,38,87,() A.167;B. 168;C.169;D. 170; 【659】1,5,19,49,109,( ) A.170;B.180;C.190;D.200; 【660】4/9,1,4/3,( ),12,36 A、2/3;B、2;C、3;D、6 【661】2,7,16,39,94,() A.227 B.237 C.242 D.257 【662】–26,-6,2,4,6,() A.8;B.10;C.12;D.14; 【663】1,128,243,64,() A.121.5;B.1/6;C.5;D.1/3 【664】5,14,38,87,() A.167;B.168;C.169;D.170; 【665】1,2,3,7,46,() A.2109;B.1289;C.322;D.147 【666】0,1,3,8,22,63,()A、121;B、125;C、169;D、185 【667】5,6,6,9,(),90 A.12;B.15;C.18;D.21 【668】2,90,46,68,57,() A.65;B.62.5;C.63;D.62; 【669】20,26,35,50,71,( ) A.95;B.104;C.100;D.102; 【670】18,4,12,9,9,20,( ),43 A.8;B.11;C.30;D.9; 【671】–1,0,31,80,63,( ),5 【672】3,8,11,20,71,() A.168;B.233;C.91;D.304 【673】2,2,0,7,9,9,( ) A.13;B.12;C.18;D.17; 【674】(),36,81,169 A.16;B.27;C.8;D.26; 【675】求32+62+122+242+42+82+162+322 A.2225;B.2025;C.1725;D.2125 【676】18,4,12,9,9,20,(),43 A、9;B、23;C、25;D、36 【677】5,7,21,25,() A.30;B.31;C.32;D.34 【678】1,8,9,4,( ),1/6 A.3;B.2;C.1;D.1/3 【679】16,27,16,( ),1 A.5;B.6;C.7;D.8 【680】2,3,6,9,18,( ) A、27;B、45;C、49;D、56 【681】1,3,4,6,11,19,( ) A、21;B、23;C、25;D、34 【682】1,2,9,121,() A.251;B.441;C.16900;D.960 【683】5,6,6,9,(),90 A.12;B.15;C.18;D.21 【684】1,1,2,6,() A.19;B.27;C.30;D.24; 【685】-2,-1,1,5,( ),29 A、7;B、9;C、11;D、13 【686】3,11,13,29,31,()A、33;B、35;C;47;D、53 【687】5,5,14,38,87,() A.167;B.68;C.169;D.170 【688】102,96,108,84,132,( ) A、144;B、121;C、72;D、36 【689】0,6,24,60,120,()A、125;B、169;C、210;D、216 【690】18,9,4,2,( ),1/6 A.3;B.2;C.1;D.1/3 【691】 4.5,3.5,2.8,5.2,4.4,3.6,5.7,( ) A.2.3;B.3.3;C.4.3;D.5.3 【692】0,1/4,1/4,3/16,1/8,()A、2/9;B、3/17;C、4/49;D、5/64 【693】16,17,36,111,448,( ) A.2472;B.2245;C.1863;D.1679 【694】133/57,119/51,91/39,49/21,( ),7/3 A.28/12;B.21/14;C.28/9;D.31/15 【695】0,4,18,48,100,( ) A.140;B.160;C.180;D.200; 【696】1,1,3,7,17,41,( ) A.89;B.99;C.109;D.119 【697】22,35,56,90,( ),234 A.162;B.156;C.148;D.145 【698】5,8,-4,9,( ),30,18,21 A.14;B.17;C.20;D.26

排列组合知识点汇总及典型例题(全)

排列组合知识点汇总及典型例题(全)

一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -= +---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; (3) 111111 (1)!(1)!(1)!(1)!!(1)! n n n n n n n n n +-+==-=- +++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!!!! 10 =n C 规定: 组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①;②;③;④ 111 12111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=+++ +=++ +=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。 2.解排列、组合题的基本策略 (1)两种思路:①直接法; ②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。这是解决排列组合应用题时一种常用的解题方法。 (2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。注意:分类不重复不遗漏。即:每两类的交集为空集, 所有各类的并集为全集。 (3)分步处理:与分类处理类似,某些问题总体不好解决时,常常分成若干步,再由分步计数原理解决。在处理排列组合问题时,常常既要分 类,又要分步。其原则是先分类,后分步。 (43.排列应用题: (1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2)、特殊元素优先考虑、特殊位置优先考虑; (3).相邻问题:捆邦法: 对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。 (4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空法.即先安排好没有限制条件的元素,然后再将不相 邻接元素在已排好的元素之间及两端的空隙之间插入。 (5)、顺序一定,除法处理。先排后除或先定后插 解法一:对于某几个元素按一定的顺序排列问题,可先把这几个元素与其他元素一同进行全排列,然后用总的排列数除于这几个元素的全排列数。即先全排,再除以定序元素的全排列。 解法二:在总位置中选出定序元素的位置不参加排列,先对其他元素进行排列,剩余的几个位置放定序的元素,若定序元素要求从左到右或从右到左排列,则只有1种排法;若不要求,则有2种排法; (6)“小团体”排列问题——采用先整体后局部策略 对于某些排列问题中的某些元素要求组成“小团体”时,可先将“小团体”看作一个元素与其余元素排列,最后再进行“小团体”内部的排列。 (7)分排问题用“直排法”把元素排成几排的问题,可归纳为一排考虑,再分段处理。 (8).数字问题(组成无重复数字的整数) ① 能被2整除的数的特征:末位数是偶数;不能被2整除的数的特征:末位数是奇数。②能被3整除的数的特征:各位数字之和是3的倍数; ③能被9整除的数的特征:各位数字之和是9的倍数④能被4整除的数的特征:末两位是4的倍数。 ⑤能被5整除的数的特征:末位数是0或5。 ⑥能被25整除的数的特征:末两位数是25,50,75。 ⑦能被6整除的数的特征:各位数字之和是3的倍数的偶数。 4.组合应用题:(1).“至少”“至多”问题用间接排除法或分类法: (2). “含”与“不含” 用间接排除法或分类法: 3.分组问题: 均匀分组:分步取,得组合数相乘,再除以组数的阶乘。即除法处理。 非均匀分组:分步取,得组合数相乘。即组合处理。 混合分组:分步取,得组合数相乘,再除以均匀分组的组数的阶乘。 4.分配问题: 定额分配:(指定到具体位置)即固定位置固定人数,分步取,得组合数相乘。

排列组合的21种例题

高考数学复习 解排列组合应用题的21种策略 排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略. 1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 例 1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有 A 、60种 B 、48种 C 、36种 D 、24种 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 A 、1440种 B 、3600种 C 、4820种 D 、4800种 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法. 例 3.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法种数是 A 、24种 B 、60种 C 、90种 D 、120种 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成. 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有 A 、6种 B 、9种 C 、11种 D 、23种 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是 A 、1260种 B 、2025种 C 、2520种 D 、5040种 (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有 A 、44412 8 4 C C C 种 B 、44412 8 4 3C C C 种 C 、44312 8 3 C C A 种 D 、4441284 3 3 C C C A 种 6.全员分配问题分组法: 例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种? (2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为 A 、480种 B 、240种 C 、120种 D 、96种 7.名额分配问题隔板法: 例7.10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案? 8.限制条件的分配问题分类法: 例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?

排列组合知识点总结+典型例题及答案解析

排列组合知识点总结+典型例题及答案解析 一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -=+---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; (3) 111111 (1)!(1)!(1)!(1)!!(1)! n n n n n n n n n +-+==-=- +++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!! !! 10 =n C 规定: 组合数性质: .2 n n n n n m n m n m n m n n m n C C C C C C C C 21011 =+++=+=+--…… ,, ①;②;③;④ 111 12111212211 r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-++++ +=+++ +=++ +=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。

行测:数字推理题100道

【1】7,9,-1,5,( ) A、4; B、2; C、-1; D、-3 分析:选D,7+9=16; 9+(-1)=8;(-1)+5=4;5+(-3)=2 , 16,8,4,2等比 【2】3,2,5/3,3/2,( ) A、1/4; B、7/5; C、3/4; D、2/5 分析:选B,可化为3/1,4/2,5/3,6/4,7/5,分子3,4,5,6,7,分母1,2,3,4,5 【3】1,2,5,29,() A、34; B、841; C、866; D、37 分析:选C,5=12+22;29=52+22;( )=292+52=866 【4】2,12,30,() A、50; B、65; C、75; D、56; 分析:选D,1×2=2; 3×4=12; 5×6=30; 7×8=()=56 【5】2,1,2/3,1/2,() A、3/4; B、1/4; C、2/5; D、5/6; 分析:选C,数列可化为4/2,4/4,4/6,4/8,分母都是4,分子2,4,6,8等差,所以后项为4/10=2/5, 【6】 4,2,2,3,6,() A、6; B、8; C、10; D、15; 分析:选D,2/4=;2/2=1;3/2=; 6/3=2;,1,, 2等比,所以后项为×6=15 【7】1,7,8,57,() A、123; B、122; C、121; D、120; 分析:选C,12+7=8; 72+8=57; 82+57=121; 【8】 4,12,8,10,() A、6; B、8; C、9; D、24; 分析:选C,(4+12)/2=8;(12+8)/2=10; (8+10)/2=9 【9】1/2,1,1,(),9/11,11/13 A、2; B、3; C、1; D、7/9; 分析:选C,化成 1/2,3/3,5/5 ( ),9/11,11/13这下就看出来了只能是(7/7)注意分母是质数列,分子是奇数列。 【10】95,88,71,61,50,() A、40; B、39; C、38; D、37; 分析:选A, 思路一:它们的十位是一个递减数字 9、8、7、6、5 只是少开始的4 所以选择A。 思路二:95 - 9 - 5 = 81;88 - 8 - 8 = 72;71 - 7 - 1 = 63;61 - 6 - 1 = 54;50 - 5 - 0 = 45;40 - 4 - 0 = 36 ,构成等差数列。 【11】2,6,13,39,15,45,23,( ) A. 46; B. 66; C. 68; D. 69; 分析:选D,数字2个一组,后一个数是前一个数的3倍 【12】1,3,3,5,7,9,13,15(),() A:19,21;B:19,23;C:21,23;D:27,30; 分析:选C,1,3,3,5,7,9,13,15(21),( 30 )=>奇偶项分两组1、3、7、13、21和3、5、9、15、23其中奇数项1、3、7、13、21=>作差2、4、6、8等差数列,偶数项3、5、9、15、23=>作差2、4、6、8等差数列 【13】1,2,8,28,() ;;;; 分析:选B, 1×2+2×3=8;2×2+8×3=28;8×2+28×3=100

排列组合典型例题(带详细答案)

例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数? 例2三个女生和五个男生排成一排 (1)如果女生必须全排在一起,可有多少种不同的排法? (2)如果女生必须全分开,可有多少种不同的排法? (3)如果两端都不能排女生,可有多少种不同的排法? (4)如果两端不能都排女生,可有多少种不同的排法? 例3 排一张有5个歌唱节目和4个舞蹈节目的演出节目单。 (1)任何两个舞蹈节目不相邻的排法有多少种? (2)歌唱节目与舞蹈节目间隔排列的方法有多少种? 例4某一天的课程表要排入政治、语文、数学、物理、体育、美术共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同的排课程表的方法. 例5现有3辆公交车、3位司机和3位售票员,每辆车上需配1位司机和1位售票员.问车辆、司机、售票员搭配方案一共有多少种? 例6下是表是高考第一批录取的一份志愿表.如果有4所重点院校,每所院校有3个专业是你较为满意的选择.若表格填满且规定学校没有重复,同一学校的专业也没有重复的话,你将有多少种不同的填表方法? 例77名同学排队照相. (1)若分成两排照,前排3人,后排4人,有多少种不同的排法?

(2)若排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法? (3)若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法? (4)若排成一排照,7人中有4名男生,3名女生,女生不能相邻,有多少种不面的排法? 例8计算下列各题: (1) 215 A ; (2) 66 A ; (3) 1 1 11------?n n m n m n m n A A A ; 例9 f e d c b a ,,,,,六人排一列纵队,限定a 要排在b 的前面(a 与b 可以相邻,也可以不相邻),求共有几种排法. 例10 八个人分两排坐,每排四人,限定甲必须坐在前排,乙、丙必须坐在同一排,共有多少种安排办法? 例11 计划在某画廊展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且不彩画不放在两端,那么不同陈列方式有 例12 由数字5,4,3,2,1,0组成没有重复数字的六位数,其中个位数字小于十位数的个数共有( ). 例13 用5,4,3,2,1,这五个数字,组成没有重复数字的三位数,其中偶数共有( ). 例14 用543210、、、、、共六个数字,组成无重复数字的自然数,(1)可以组成多少个无重 复数字的3位偶数?(2)可以组成多少个无重复数字且被3整除的三位数?

数字推理专项习题50道(附答案)

A.186 B.208 C.158 D.132 2. 1, 5, 19, 81, 411,()A.2473 B.2485 C.1685 D.1857 3. 3, 3, 12, 21, 165,()A.649 B.606 C.289 D.343 4. 0,,,,,()A.B.C.D. 5. 7, 11, 16, 25, 54,()A.98 B.127 C.172 D.203 6. 3, 7, 16, 41, 90,()A.121 B.211 C.181 D.256 7. 3, 12, 30, 63, 117,()A.187 B.198 C.193 D.196 8. 3, 8, 22, 62, 178,()A.518 B.516 C.548 D.546 9. 3, 2,,,,()A.B.C.D. 10. 1, 3, 8, 33, 164,()A.999 B.985 C.1024 D.1048

A.12 B.16 C.20 D.24 12. 4, -6, 6, -8, 7.5,() A.-7.5 B.-8 C.-8.5 D.-9.6 13. 16, 8, 12, 30, 105,() A.215 B.365.5 C.425 D.472.5 14. -3, 5, 7, 4, 14, 18,() A.29 B.23 C.21 D.17 15. 1234, 1360, 1396, 2422, 2458,() A.2632 B.2584 C.2864 D.2976 16. -2, 2, 6, 10, 46,() A.78 B.86 C.124 D.146 17. 4, 12, 40, 112, 352,() A.625 B.784 C.832 D.996 18. -32, 36, -30, 38, -29,() A.39 B.45 C.51 D.63 19. 1, 5, 11, 20, 34, 56,() A.68 B.71 C.82 D.91 20. , 3, 2, 10, 9, 31, 37,() A.94 B.72 C.56 D.48

高考排列组合典型例题

高考排列组合典型例题 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

排列组合典型例题 例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数 分析:这一问题的限制条件是:①没有重复数字;②数字“0”不能排在千位数上;③个位数字只能是0、2、4、6、8、,从限制条件入手,可划分如下: 如果从个位数入手,四位偶数可分为:个位数是“0”的四位偶做,个位数是 2、4、6、8的四位偶数(这是因为零不能放在千位数上).由此解法一与二. 如果从千位数入手.四位偶数可分为:千位数是1、3、5、7、9和千位数是2、4、6、8两类,由此得解法三. 如果四位数划分为四位奇数和四位偶数两类,先求出四位个数的个数,用排除法,得解法四. 解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有39A 个; 当个位上在“2、4、6、8”中任选一个来排,则千位上从余下的八个非零数字中任选一个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有281814A A A ??(个). ∴ 没有重复数字的四位偶数有 2296179250428181439 =+=??+A A A A 个. 解法2:当个位数上排“0”时,同解一有39A 个;当个位数上排2、4、6、8中之一时,千位,百位,十位上可从余下9个数字中任选3个的排列数中减去千 位数是“0”排列数得:)(283914 A A A -?个 ∴ 没有重复数字的四位偶数有 22961792504)(28391439 =+=-?+A A A A 个.

排列组合专题复习与经典例题详解

排列组合专题复习及经典例题详解 1. 学习目标 掌握排列、组合问题的解题策略 2.重点 (1)特殊元素优先安排的策略: (2)合理分类与准确分步的策略; (3)排列、组合混合问题先选后排的策略; (4)正难则反、等价转化的策略; (5)相邻问题捆绑处理的策略; (6)不相邻问题插空处理的策略. 3.难点 综合运用解题策略解决问题. 4.学习过程: (1)知识梳理 1.分类计数原理(加法原理):完成一件事,有几类办法,在第一类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法……在第n 类型办法中有n m 种不同的方法,那么完成这件事共有n m m m N +++=...21种不同的方法. 2.分步计数原理(乘法原理):完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法……,做第n 步有n m 种不同的方法;那么完成这件事共有n m m m N ???=...21种不同的方法. 特别提醒: 分类计数原理与“分类”有关,要注意“类”与“类”之间所具有的独立性和并列性; 分步计数原理与“分步”有关,要注意“步”与“步”之间具有的相依性和连续性,应用这两个原理进行正确地分类、分步,做到不重复、不遗漏. 3.排列:从n 个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,n m <时叫做选排列,n m =时叫做全排列. 4.排列数:从n 个不同元素中,取出m(m≤n)个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号m n P 表示. 5.排列数公式:)、(+∈≤-= +---=N m n n m m n n m n n n n P m n ,)! (!)1)...(2)(1( 排列数具有的性质:11-++=m n m n m n mP P P 特别提醒: 规定0!=1

2015年国家公务员考试--行测数字推理题解题技巧大全及经典题型概况总结

2015年国家公务员考试--行测数字推理题解题技巧大全及经典题型概况总结 第一部分:数字推理题的解题技巧 行政能力倾向测试是公务员(civil servant)考试必考的一科,数字推理题又是行政测试中一直以来的固定题型。如果给予足够的时间,数字推理并不难;但由于行政试卷整体量大,时间短,很少有人能在规定的考试时间内做完,尤其是对于文科的版友们来说,数字推理、数字运算(应用题)以及最后的资料分析是阻碍他们行政拿高分的关卡。并且,由于数字推理处于行政A类的第一项,B类的第二项,开头做不好,对以后的考试有着较大的影响。应广大版友,特别是MM版友的要求,甘蔗结合杨猛80元书上的习题,把自己的数字推理题解题心得总结出来。如果能使各位备考的版友对数字推理有所了解,我在网吧花了7块钱打的这篇文章也就值了。 数字推理考察的是数字之间的联系,对运算能力的要求并不高。所以,文科的朋友不必担心数学知识不够用或是以前学的不好。只要经过足够的练习,这部分是可以拿高分的,至少不会拖你的后腿。抽根烟,下面开始聊聊。 一、解题前的准备 1.熟记各种数字的运算关系。 如各种数字的平方、立方以及它们的邻居,做到看到某个数字就有感觉。这是迅速准确解好数字推理题材的前提。常见的需记住的数字关系如下: (1)平方关系:2-4,3-9,4-16,5-25,6-36,7-49,8-64,9-81,10-100,11-121,12-144 13-169,14-196,15-225,16-256,17-289,18-324,19-361,20-400 (2)立方关系:2-8,3-27,4-64,5-125,6-216,7-343,8-512,9-729,10-1000 (3)质数关系:2,3,5,7,11,13,17,19,23,29...... (4)开方关系:4-2,9-3,16-4...... 以上四种,特别是前两种关系,每次考试必有。所以,对这些平方立方后的数字,及这些数字的邻居(如,64,63,65等)要有足够的敏感。当看到这些数字时,立刻就能想到平方立方的可能性。熟悉这些数字,对解题有很大的帮助,有时候,一个数字就能提供你一个正确的解题思路。如216 ,125,64()如果上述关系烂熟于胸,一眼就可看出答案但一般考试题不会如此弱智,实际可能会这样215,124,63,()或是217,124,65,()即是以它们的邻居(加减1),这也不难,一般这种题5秒内搞定。 2.熟练掌握各种简单运算,一般加减乘除大家都会,值得注意的是带根号的运算。根号运算掌握简单规律则可,也不难。 3.对中等难度以下的题,建议大家练习使用心算,可以节省不少时间,在考试时有很大效果。 二、解题方法 按数字之间的关系,可将数字推理题分为以下十种类型: 1.和差关系。又分为等差、移动求和或差两种。 (1)等差关系。这种题属于比较简单的,不经练习也能在短时间内做出。建议解这种题时,用 口算。 12,20,30,42,()

排列组合典型例题

排列组合典型例题

典型例题一 例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数? 分析:这一问题的限制条件是:①没有重复数字;②数字“0”不能排在千位数上;③个位数字只能是0、2、4、6、8、,从限制条件入手,可划分如下: 如果从个位数入手,四位偶数可分为:个位数是“0”的四位偶做,个位数是 2、4、6、8的四位偶数(这是因为零不能放在千位数上).由此解法一与二. 如果从千位数入手.四位偶数可分为:千位数是1、3、5、7、9和千位数是2、4、6、8两类,由此得解法三. 如果四位数划分为四位奇数和四位偶数两类,先求出四位个数的个数,用排除法,得解法四. 解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有3 A个; 9 当个位上在“2、4、6、8”中任选一个来排,

则千位上从余下的八个非零数字中任选一个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有2 8181 4 A A A ??(个). ∴ 没有重复数字的四位偶数有 2296 179250428181439=+=??+A A A A 个. 解法2:当个位数上排“0”时,同解一有3 9 A 个;当个位数上排2、4、6、8中之一时,千位,百位,十位上可从余下9个数字中任选3个的排列数中减去千位数是“0”排列数得:) (28391 4 A A A -?个 ∴ 没有重复数字的四位偶数有 2296 1792504)(28391439=+=-?+A A A A 个. 解法3:千位数上从1、3、5、7、9中任选一个,个位数上从0、2、4、6、8中任选一个,百位,十位上从余下的八个数字中任选两个作排列有 2 81 515A A A ??个 干位上从2、4、6、8中任选一个,个位数上从余下的四个偶数中任意选一个(包括0在内),百位,十位从余下的八个数字中任意选两个作排列,有 2 81414A A A ??个 ∴ 没有重复数字的四位偶数有

高中数学排列组合经典题型全面总结版

高中数学排列与组合 (一)典型分类讲解 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有1 4C 最后排其它位置共有 34A 由分步计数原理得1 1 3 434 288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元 素内部进行自排。由分步计数原理可得共有 522522480A A A =种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种, 第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种 46 A 不同的方法,由分步计数原理,节目的不同顺序共有54 56A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略 例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素 之间的全排列数,则共有不同排法种数是: 73 73/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有 47 A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有4 7A 种方法。 思考:可以先让甲乙丙就坐吗? (插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法 练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? 5 10C 五.重排问题求幂策略 例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原 理共有6 7种不同的排法 练习题: 1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插 法的种数为 42 4 4 3 允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为n m 种

数字推理专项习题50道附答案资料全

A.186 B.208 C.158 D.132 2.1,5,19,81,411,()A.2473 B.2485 C.1685 D.1857 3.3,3,12,21,165,()A.649 B.606 C.289 D.343 4.0,,,,,()A.B.C.D. 5.7,11,16,25,54,()A.98 B.127 C.172 D.203 6.3,7,16,41,90,()A.121 B.211 C.181 D.256 7.3,12,30,63,117,()A.187 B.198 C.193 D.196 8.3,8,22,62,178,()A.518 B.516 C.548 D.546 9.3,2,,,,()A.B.C.D. 10.1,3,8,33,164,()A.999 B.985 C.1024 D.1048

A.12 B.16 C.20 D.24 12. 4,-6,6,-8,7.5,() A.-7.5 B.-8 C.-8.5 D.-9.6 13. 16,8,12,30,105,() A.215 B.365.5 C.425 D.472.5 14. -3,5,7,4,14,18,() A.29 B.23 C.21 D.17 15. 1234,1360,1396,2422,2458,() A.2632 B.2584 C.2864 D.2976 16. -2,2,6,10,46,() A.78 B.86 C.124 D.146 17. 4,12,40,112,352,() A.625 B.784 C.832 D.996 18. -32,36,-30,38,-29,() A.39 B.45 C.51 D.63 19. 1,5,11,20,34,56,() A.68 B.71 C.82 D.91 20. ,3,2,10,9,31,37,() A.94 B.72 C.56 D.48

排列组合基础知识及习题分析

排列组合基础知识及习题分析 在介绍排列组合方法之前我们先来了解一下基本的运算公式! C53=(5×4×3)/(3×2×1) C62=(6×5)/(2×1)通过这2个例子看出 n C m n公式是种子数M开始与自身连续的N个自然数的降序乘积做为分子。 以取值N的阶层作 为分母 p53=5×4×3 p66=6×5×4×3×2×1 通过这2个例子 p m n=从M开始与自身连续N个自然数的降序乘积当N=M时即M的阶层排列、组合的本质是研究“从n个不同的元素中,任取m (m≤n)个元素,有序和无序摆放的各种可能性”.区别排列与组合的标志是“有序”与“无序”. 解答排列、组合问题的思维模式有二: 其一是看问题是有序的还是无序的?有序用“排列”,无序用“组合”;其二是看问题需要分类还是需要分步?分类用“加法”,分步用“乘法”. 分类:“做一件事,完成它可以有n类方法”,这是对完成这件事的所有办法的一个分类.分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个标准下进行分类;其次,分类时要注意满足两条基本原则:①完成这件事的任何一种方法必须属于某一类;②分别属于不同两类的两种方法是不同的方法. 分步:“做一件事,完成它需要分成n个步骤”,这是说完成这件事的任何一种方法,都要分成n个步骤.分步时,首先要根据问题的特点,确定一个可行的分步标准;其次,步骤的设置要满足完成这件事必须并且只需连续完成这n个步骤后,这件事才算最终完成. 两个原理的区别在于一个和分类有关,一个与分步有关.如果完成一件事有n类办法,这n 类办法彼此之间是相互独立的,无论那一类办法中的那一种方法都能单独完成这件事,求完成这件事的方法种数,就用加法原理;如果完成一件事需要分成n个步骤,缺一不可,即需要依次完成所有的步骤,才能完成这件事,而完成每一个步骤各有若干种不同的方法,求完成这件事的方法种类就用乘法原理. 在解决排列与组合的应用题时应注意以下几点: 1.有限制条件的排列问题常见命题形式:“在”与“不在”“邻”与“不邻” 在解决问题时要掌握基本的解题思想和方法: ⑴“相邻”问题在解题时常用“合并元素法”,可把两个以上的元素当做一个元素来看,这是处理相邻最常用的方法. ⑵“不邻”问题在解题时最常用的是“插空排列法”. ⑶“在”与“不在”问题,常常涉及特殊元素或特殊位置,通常是先排列特殊元素或特殊位置. ⑷元素有顺序限制的排列,可以先不考虑顺序限制,等排列完毕后,利用规定顺序的实情求出结果. 2.有限制条件的组合问题,常见的命题形式:“含”与“不含”“至少”与“至多”在解题时常用的方法有“直接法”或“间接法”. 3.在处理排列、组合综合题时,通过分析条件按元素的性质分类,做到不重、不漏,按事件的发生过程分步,正确地交替使用两个原理,这是解决排列、组合问题的最基本的,也是最重要的思想方法。. ***************************************************************************** 提供10道习题供大家练习

相关文档
相关文档 最新文档