文档库 最新最全的文档下载
当前位置:文档库 › 渗透蒸馏、渗透汽化、分子蒸馏的异同

渗透蒸馏、渗透汽化、分子蒸馏的异同

渗透蒸馏、渗透汽化、分子蒸馏的异同
渗透蒸馏、渗透汽化、分子蒸馏的异同

渗透蒸馏、渗透汽化、分子蒸馏的异同

渗透蒸馏,又称为等温膜蒸馏,是基于渗透与蒸馏概念而开发的一种渗透过程与蒸馏过程耦合的新型膜分离技术,它具有一般膜分离技术投资省、能耗低的优点,同时又能在常温常压下使被处理物料实现高倍浓缩,克服常规分离技术所引起的被处理物料的热损失与机械损失,特别适合处理热敏性物料及对剪应力敏感性物料,从而使渗透蒸馏在食品、医药及生化领域展示出广阔的应用前景。

分子蒸馏亦称短程蒸馏,其应用能解决大量常规蒸馏技术所不能解决的问题。分子蒸馏是一种特殊的液—液分离技术,依据分子运动平均自由程的差别,能使液体在远低于其沸点的温度下将其分离,特别适用于高沸点、热敏性及易氧化物质的分离。分子蒸馏进行时,液体混合物被加热,能量足够的分子逸出液面,轻分子的平均自由程大,重分子的平均自由程较小,若在离液面小于轻分子平均自由程而大于重分子平均自由程处设置一冷凝面,轻分子达到冷凝面后被冷凝,从而使其不断逸出;重分子达不到冷凝面,很快趋于动态平衡,这样就将混合物分离了。分子蒸馏技术的主要特点是其操作是在远低于沸点温度和很低的压强下进行操作的。

渗透汽化是以混合物中组分蒸汽压差为推动力,依靠各组分在膜中的溶解与扩散速率不同的性质来实现混合物分离的过程。渗透汽化装置包括预热器、膜分离器、冷凝器和真空泵等四个主要设备。料液进入渗透汽化膜分离器后,在膜两侧蒸汽压差的驱动下,扩散快的组分较多透过膜进入膜后侧,经冷凝后达到分离目的。

从诞生时间上说,渗透蒸馏、渗透汽化、分子蒸馏这三种技术均是新型的蒸馏分离技术,其中的分子蒸馏技术甚至是一项较新的尚未广泛应用于工业化生产的分离技术。其基本原理都是将沸点不同的液体气化从而达到液-液分离的目的,并利用了表面化学的原理,利用膜分离技术,增大了蒸馏分离的效率和分离出物质的纯度,节约了能源,提高了生产效率。

但是,这三种蒸馏技术也是有其独特特点和适用范围的。

一、渗透蒸馏过程及其特点

渗透蒸馏是指被处理物料中易挥发性组分选择性的透过疏水性的膜,在膜的另一侧被脱除剂吸收的膜分离操作,在通常情况下,被处理物料与脱除剂均为水溶液,渗透蒸馏过程能够

顺利进行是由于被处理物料中的易挥发组分在疏水膜的两侧存在渗透活度差,被处理液中的易挥发组分在疏水膜两侧的渗透活度相等,即蒸汽压力差不再存在时,则渗透蒸馏过程将停止进行。渗透蒸馏包括三个连续的过程:被处理物料中易挥发组分的汽化;易挥发组分选择的通过疏水性膜;透过疏水性膜的易挥发性组分被脱除剂所吸收。渗透蒸馏除了一般膜分离技术所具有的投资省、能耗低的特点以外,还具有优良的导热性能、适宜高倍浓缩及良好的选择性等。

二、分子蒸馏技术的特点:

分子蒸馏技术作为一种与国际同步的高新分离技术,具有其它分离技术无法比拟的优点:

1、操作温度低(远低于沸点)、真空度高(空载≤1Pa)、受热时间短(以秒计)、分离效率高等,特别适宜于高沸点、热敏性、易氧化物质的分离;

2、可有效地脱除低分子物质(脱臭)、重分子物质(脱色)及脱除混合物中杂质;

3、其分离过程为物理分离过程,可很好地保护被分离物质不被污染,特别是可保持天然提取物的原来品质;

4 、分离程度高,高于传统蒸馏及普通的薄膜蒸发器。

三、渗透汽化过程特点。

渗透汽化与反渗透、超滤及气体分离等膜分离技术的最大区别在于物料透过膜时将产生

相变。因此在操作过程中必须不断加入至少相当于透过物气化潜热的热量,才能维持一定的操作温度。

(一)渗透汽化特点:

1.分离系数大。针对不同物系的性质,选用适当的膜材料与制膜方法可以制得分离系数很大的膜,一般可达几十、几百、几千、甚至更高。因此只用单极即可达到很高的分离效果。

2.渗透汽化虽以组分的蒸汽压差为推动力,但其分离作用不受组分汽-液平衡的限制,而主要受组分在膜内渗透速率控制。各组分分子结构和极性等的不同,均可成为其分离依据。因此,渗透汽化适合于用精馏方法难以分离的近沸物和恒沸物的分离。

3.过程中不引入其它试剂,产品不会受到污染。

4.过程简单,附加的处理过程少,操作比较方便。

5.过程中透过物有相变,但因透过物量一般较少,汽化与随后的冷凝所需能量不大。

6.渗透通量小,一般小于1000g/m2?h,而选择性高的膜,其通量往往只有100g/m2?h 左右,甚至更低。

7.膜后侧需抽真空,但通常采用冷凝加抽真空法,需要由真空泵抽出的主要是漏入系统的惰性气体,抽气量不大。

(二)渗透汽化适用的分离过程

1.具有一定挥发性的物质的分离,这是应用渗透汽化法进行分离的先决条件。

2.从混合液中分离出少量物质,例如有机物中少量水的脱除,可以充分利用渗透汽化分离系数大的优点,又可少受透过物汽化耗能与渗透通量小的不利影响。

3.恒沸物的分离,当恒沸液中一种组分的含量较小时,可以直接用渗透汽化法得到纯产品。当恒沸物中两组分含量接近时,可以用渗透汽化与精馏联合的集成过程。

4.精馏难以分离的近沸物的分离。

5.与反应过程结合。利用其分离系数高,单极分离效果好的特点,选择性的移走反应产物,促进化学反应的进行。

分子蒸馏技术和应用

分子蒸馏技术及其应用 摘要 分子蒸馏又称短程蒸馏,是一种新型的液-液分离技术,与常规蒸馏相比具有许多优点,本文对分子蒸馏的基本原理、设备、特点以及在食品、医药、化工工业中的应用进行了阐述。 关键词:分子蒸馏、食品工业。 分子蒸馏是在高真空度下进行的非平衡蒸馏技术(真空度可达 0.01Pa),是以气体扩散为主要形式、利用不同物质分子运动自由程的差异来实现混合物的分离。由于蒸发面和冷凝面的间距小于或等于被分离物料的蒸气分子的平均自由程,所以也称短程蒸馏。由于分子蒸馏过程中。待分离物质组分可以在远低于常压沸点的温度下挥发,并且各组分的受热过程很短,因此分子蒸馏已成为对高沸点和热敏性物质进行分离的有效手段。目前已广泛应用于食品、医药、油脂加工、石油化工等领域,用于浓缩或纯化低挥发度、高分子量、高沸点、高黏度、热敏性、具有生物活性的物料。 一、分子蒸馏的概念原理和过程 1.1分子蒸馏的基本概念分子有效直径:分子在碰撞过程中,两分子质心的最短距离,即发生斥离的质心距离。分子运动自由程:指一个分子与其他气体分子相邻两次分子碰撞之间所走的路程。分子运动平均自由程:在一定的外界条件下,不同物质中各个分子的自由程各不相同。就某一种分子来说在某时间间隔自由程的平均值称为平均自由程。 1.2分子蒸馏的基本原理分子蒸馏的分离是建立在不同物质挥发度不同的基础上,其操作是在低于物质沸点下进行,当冷凝表面的温度与蒸发物质的表面温度有差别时就能进行分子蒸馏。根据分子运动理论,液体混合物中各个分子受热后会从液面逸出,不同种类的分子,由于其有效直径不同,逸出液面后直线飞行距离是不相同的。轻分子的平均自由程大,重分子的平均自由程小,若在离液面小于轻分子平均自由程而大于重分子平均自由程处设置一冷凝面,使得轻分子落在冷凝面上被冷凝,而重分子则因达不到冷凝面,返回原来液面这样就将混合物分离了,分子平均自由程是分子蒸馏基本理论的核心。 1.3分子蒸馏的基本过程根据分子蒸馏的基本理论,可将蒸馏过程分解为 以下5个步骤:①物料在加热面上形成液膜;②分子在液膜表面上自由蒸发;③分子从加热面向冷凝面的运动;④轻分子在冷凝面上被捕获,重分子返回物料液膜;⑤馏出物和残留物的收集。 二、分子蒸馏的特点

分子蒸馏技术

分子蒸馏技术 X Y Zhou 化学工程110427001 摘要分子蒸馏是一种新型的液-液分离技术,与传统的蒸馏技术相比:操作温度远低于液体沸点,蒸馏压力在极高真空度下,受热时间短,能最大限度地保证物系中的有效成分。本文分析了分子蒸馏技术的原理、过程,介绍了目前分子蒸馏技术的特点、分子蒸馏设备及其特点,以及分子蒸馏技术在食品、医药、化工等行业的应用。 关键词分子蒸馏;分离技术;分子蒸馏器 分子蒸馏技术[1]是一种特殊的液-液分离技术,是新型分离技术中的一个重要分支。液体混合物的分离,一般是通过蒸馏或精馏来实现的。在蒸馏或精馏过程中,存在着两股分子流向:一股是被蒸液体的气化,由液相流向气相的蒸气分子流;另一股是由蒸气返回至液相的分子流。当气液两相达到平衡时,表观上蒸气分子不再从液面逸出。若果利用某种措施,使蒸气分子不再返回(或减少返回)液相,就会大大提高分离效率。分子蒸馏技术正是在蒸馏技术的不断改进发展中而产生的一种特殊的蒸馏分离技术。 1 分子蒸馏的原理、过程及其特点 1.1 分子蒸馏的基本原理 根据分子运动理论,液体混合物的分子受热后运动会加剧,当接受到足够能量时,就会成为气体分子而从液面逸出。而随着液面上方气体分子的增加,有一部分气体分子就会返回液体,在外界温度保持恒定的情况下,最终达到分子运动的动态平衡,此外,不同种类的分子,由于其分子有效直径不同,故其平均自由度也不同,从统计学观点看,不同种类的分子逸出液面后不与其他分子碰撞的飞行距离是不同的[2]。 传统的液体混合物的分离,一般都是利用溶液组分间沸点的差异,通过蒸馏或精馏来实现的,其气液处于平衡状态。而分子蒸馏技术却不同于常规蒸馏,它是利用不同物质分子运动平均自由程的差异,实现液体混合物的分离。具体的分离过程是:经过预热处理的待分离料液从进料口沿加热板自上而下流入,受热的液体分子从加热板逸出,并向冷凝板运动。轻分子由于平均自由程较大,能够到达冷凝板并不断在冷凝板凝集,最后进入轻组分接收罐;重分子因平均自由程较小,不能到达冷凝板,从而顺加热板流入重组分接收罐中,这样就实现了轻重组分的分离[3]。 所谓分子运动平均自由程是指在某一时间间隔内分子自由程的平均值。而分子运动自由程则是一个分子在相邻两次分子碰撞之间所经过的路程。根据热力学原理,分子运动平均自由程可用下式表达: 式中:k:波尔兹曼常数;p:运动分子所处的空间压力;T:运动分子所处的空间温度;d:分子有效直径。 由上式可以看出,压力、温度及分子有效直径是影响分子运动平均自由程的3个主要因素。在蒸馏过程中,物系空间的压力和温度相同,系统中不同物质由于分子有效直径不同,其分子平均自由程也必然存在差异。分子蒸馏的分离作用正是依据分子平均自由程不同这一性质来实现的。其基本原理如图1所示[4]

分子蒸馏讲义

实验10 脂肪酸的分子蒸馏与分离实验 1 实验目的 1.了解分子蒸馏的原理、装置及基本流程和操作方法; 2.研究进料量、真空度、刮膜速度以及冷却水温度对分离效率的影响。 2 实验原理及要点 分子蒸馏是一种高新分离技术,广泛应用于食品行业、日用化工行业、制药行业以及石油化工行业。对于相对分子质量大的物质的分离、提纯以及传统方法无法进行分离的挥发性小的高沸点、高粘度的热敏性物质的分离具有很好的效果。分子蒸馏是一种不同于一般常规的蒸馏,它是没有达到气—液相平衡的蒸馏,分子蒸馏的分离是建立在不同物质挥发度不同的基础上,分离操作在低于物料正常沸点下进行,首先物料先进行加热,液面的分子受热后接受足够的能量时,就会从液面逸出而成为气体分子。逸出的气体分子在气相中会发生碰撞,碰撞结果是有一部分气体分子返回液面,在外界温度保持恒定的情况下,最终达到动态平衡。气相中一分子相邻两次碰撞之间所走的路线,称为分子运动自由程,任一个分子在运动过程中其自由程都在不断变化, 在某时间间隔内自由程的 平均值称为平均自由程。对 于不同的物质分子,运动平 均自由程大,其挥发度也 大,分子运动平均自由程可 用以下函数表示: (1) 式中: k ——波耳兹曼常 数,1.381×10-23 J/K; d ——分子的有效直径,m; T ——运动分子所处的空间温度,K ; P ——运动分子所处的空间压强,Pa 。 2.1蒸馏速度 所谓分子蒸馏,就是指物料分子在蒸发液面挥发出来,直接在冷凝面冷凝下来所走过的行程小于其分子运动平均自由程的单元操作。一般蒸发面与冷凝面的距离可在1—20cm 之间,最常见的是l 一5cm 。在进行蒸馏操作时,要求蒸发面的真空度低于100Pa 。分子蒸馏的速度完全由物质分子自蒸发面的挥发速度决定,同气—液相平衡无关。Langmuir-Kundsen 从理想气体动力学理论推导出一个描述物质分子理想蒸馏速度: (2) 式中:G ——蒸馏速度,kg/(m 2·h); p T d k l m ?=22πT M p G 15=图1 分子蒸馏原理示意图

分子蒸馏技术的原理和应用(精)

分子蒸馏技术的原理和应用 分子蒸馏技术简介 分子蒸馏是一项较新的尚未广泛应用于产业化生产的分离技术,能解决大量常规蒸馏技术所不能解决的题目。分子蒸馏是一种特殊的液-液分离技术,能在极高真空下操纵,它依据分子运动均匀自由程的差别,能使液体在远低于其沸点的温度下将其分离,特别适用于高沸点、热敏性及易氧化物系的分离。由于其具有蒸馏温度低于物料的沸点、蒸馏压强低、受热时间短、分离程度高等特点,因而能大大降低高沸点物料的分离本钱,极好地保护了热敏性物质的特点品质,该项技术用于纯自然保健品的提取,可摆脱化学处理方法的束缚,真正保持了纯自然的特性,使保健产品的质量迈上一个新台阶。 分子蒸馏技术,作为一种对高沸点、热敏性物料进行有效的分离手段,自本世纪三十年代出现以来,得到了世界各国的重视。到本世纪六十年代,为适应浓缩鱼肝油中维生素A的需要,分子蒸馏技术得到了规模化的产业应用。在日、美、英、德、苏相继设计制造了多套分子蒸馏装置,用于浓缩维生素A,但当时由于各种原因,应用面太窄,发展速度很慢。但是,在过往地三十多年中,人们一直在不断地重视着这项新的液-液分离技术的发展,对分离装置精益求精、完善,对应用领域不断探索、扩展,因而一直有新的专利和新的应用出现。特别是从八十年代末以来,随着人们对自然物质的青睐,回回自然潮流的兴起,分子蒸馏技术得到了迅速的发展。 对分子蒸馏的设备,各国研制的形式多种多样。发展至今,大部分已被淘汰,目前应用较广的为离心薄膜式和转子刮膜式。这两种形式的分离装置,也一直在精益求精和完善,特别是针对不同的产品,其装置结构与配套设备要有不同的特

点,因此,就分子蒸馏装置本身来说,其开发研究的内容尚十分丰富。 在应用领域方面,国外已在数种产品中进行产业化生产。特别是近几年来在自然物质的提取方面应用较为突出,如:从鱼油中提取EPA与DHA、从植物油中提取自然维生素E等。另外,在精细化工中间体方面的提取和分离,品种也越来越多。 我国对分子蒸馏技术的研究起步较晚,八十年代末期,国内引进了几套分子蒸馏生产线,用于硬脂酸单甘酯的生产。国内的科研职员也曾经作过一些研究,但未见产业化应用的报道。 分子蒸馏成套产业化装置具有设计新奇、结构独特、工艺先进,可明显进步分离效率。从小试到产业化生产又到小试的反复循环实验探索中,特别解决了产业化生产中轻易出现的突出题目。如有效地解决了物料返混题目,明显地进步了产品质量,创造性地设计了有补偿功能的消息密封方式;实现了产业装置高真空下的长期稳定运行。该项技术属国内领先、国际先进。 截止目前为止已经开发的产品有二十余种,如:硬脂酸单甘酯、丙二醇酯、玫瑰油、小麦胚芽油、米糠油、谷维素等。并已确定了应用分子蒸馏技术的有关工艺条件,为进行产业化生产奠定了基础。 分子蒸馏的原理和装置的结构决定其有如下特点: 1、分子蒸馏的操纵温度远低于物料的沸点: 由分子蒸馏原理可知,混合物的分离是由于不同种类的分子溢出液面后的均匀自由程不同的性质来实现的,并不需要沸腾,所以分子蒸馏是在远低于沸点的温度下进行操纵的,这一点与常规蒸馏有本质的区别。 2、蒸馏压强低: 由于分子蒸馏装置独特的结构形式,其内部压强极小,可以获得很高的真空,因此分子蒸馏是在很低的压强下进行操纵,一般为×10-1Pa数目级(×10-3为托数目级)。

分子蒸馏技术原理

1、分子蒸馏技术的基本原理 分子蒸馏不同于一般的蒸馏技术。它是运用不同物质分子运动平均自由程的差别而实现物质的分离,因而能够实现在远离沸点下操作。 根据分子运动理论,液体混合物的分子受热后运动会加剧,当接受到足够能量时,就会从液面逸出而成为气相分子,随着液面上方气相分子的增加,有一部分气体就会返回液体,在外界条件保持恒定情况下,就会达到分子运动的动态平衡。从宏观上看达到了平衡。 液体混合物为达到分离的目的,首先进行加热,能量足够的分子逸出液面,轻分子的平均自由程大,重分子平均自由程小,若在离液面小于轻分子的平均自由程而大于重分子平均自由程处设置一冷凝面,使得轻分子不断被冷凝,从而破坏了轻分子的动平衡而使混合液中的轻分子不断逸出,而重分子因达不到冷凝面很快趋于动态平衡,不再从混合液中逸出,这样,液体混合物便达到了分离的目的。 2、分子蒸馏技术的特点 由分子蒸馏的原理可以看出,分子蒸馏有许多常规蒸馏所不具备的特点。 2.1分子蒸馏的操作真空度高。 由于分子蒸馏的冷热面间的间距小于轻分子的平均自由程,轻分子几乎没有压力降就达到冷凝面,使蒸发面的实际操作真空度比传统真空蒸馏的操作真空度高出几个数量级。分子蒸馏的操作残压一般约为0.1~1Pa数量级。 2.2分子蒸馏的操作温度低。 分子蒸馏依靠分子运动平均自由程的差别实现分离,并不需要到达物料的沸点,加之分子蒸馏的操作真空度更高,这又进一步降低了操作温度。 分子蒸馏在蒸发过程中,物料被强制形成很薄的液膜,并被定向推动,使得液体在分离器中停留时间很短。特别是轻分子,一经逸出就马上冷凝,受热时间更短,一般为几秒或十几秒。这样,使物料的热损伤很小,特别对热敏性物质的分离过程提供了传统蒸馏无法比拟的操作条件。 3.4分子蒸馏的分离程度更高。 ,由分子蒸馏的相对挥发度可以看出: x式中:M1————轻分子分子量; M2————重分子分子量 而常规蒸馏相对挥发度α=P1/P2 ,由于M2 >M1 ,所以ατ>α。2 q+ p1 d2 `1 J/ u 由以上特点可以看出,分子蒸馏技术,能分离常规蒸馏不易分离的物质,特别适宜于高沸点、热敏性物质的分离。 分子蒸馏是一种在高真空(<10Pa)条件下,在加热面上被蒸发的分子经过尽可能短的距离到达冷凝面进行冷凝,从而实现液-液分离的蒸馏过程。它具有蒸馏温度低、蒸馏真空度高、受热时间短、分离程度高等优点,是一种较新的尚未广泛运用于工业化生产的分离技术。 物料从上法兰盖进入分子蒸馏器,通过转子上的分配盘将物料连续均匀的分布到垂直的筒体加热面上,物料靠重力下降的同时,被旋转的刮膜装置在加热面强制形成极薄的湍流状液膜。 被蒸发的分子经过很短的距离到达内置冷凝器并冷凝下来,通过蒸发器底部的出料口排出,重组份进入短程蒸馏器的残渣收集槽并从侧面的出口排出。其蒸馏过程分以下几个步骤: 物料在加热面上形成液膜 分子在液膜表面上蒸发 被蒸发的分子从加热面向冷凝面运动 被蒸发的分子在冷凝面上冷凝 蒸馏物和残留物的收集排放 ◆真空度高、蒸馏温度低 分子蒸馏器及其配套设备充分考虑到分子蒸馏的要求,确保最小的空气泄漏率,并根据具体工艺要求,配置最合理的真空系统及其附属设备,使分子蒸馏器内部能稳定处于高真空状态(0.1Pa~10 Pa),此外由于刮膜装置在加热面上强制形成极薄的湍流状液膜,在较低的蒸馏温度下,被蒸发的分子经过很短的距离到达冷凝面并冷凝下来。

分子蒸馏技术及其应用的研究进展(精)

综述与专论 分子蒸馏技术及其应用的研究进展 陈立军陈焕钦 (华南理工大学化学工程研究所,广州510640 摘要分子蒸馏是一种在高真空下进行的特殊蒸馏技术。分子蒸馏是一项国内外正在工业化开发应用的高新分离技术,尚未实现大规模的工业化。分子蒸馏技术同普通蒸馏技术的差别很大。介绍了分子蒸馏基本原理、技术特点、主要装置和优势。此外还详细介绍了分子蒸馏技术在国内外的应用新进展,并提出了未来分子蒸馏领域的重点研究方向。关键词 平均自由程分子蒸馏应用进展R esearch Progress in the T echnique of Molecular Distillation and its Application Chen Lijun Chen H uanqin (R esearch I nstitute of Chemical E ngineering ,Southern China U niversity of T echnology ,G uangzhou 510640 Abstract The m olecular distillation (short -path distillation or unobstructed distillation is a special separation technique of liquid -liquid and a special distillation technique under the high vacuum.It is an industrializing Hi -tech at home and abroad and not used in

分子蒸馏操作规程

一级分子蒸馏操作规程 一、系统概述 本系统特别适用于热敏性、粘滞的或具有高沸点,常规蒸馏无法处理的物料。本系统具有压降小、高真空度、传热系数高、蒸发时间短,可更好地保证物料不被破坏。 二、系统组成 本系统由四个子系统组成:分子蒸馏系统、导热油加热系统、冷冻水系统、循环水系统。下面对子系统逐一介绍。 1、分子蒸馏系统,由进料泵P101、导热油循环泵P10 2、重相出料泵P10 3、 轻相出料泵P104、热水循环泵P106、预热器E101、分子蒸馏E102、冷 井E103、真空缓冲罐V103、一级水环真空泵,三级罗茨泵P105组成。 设计使用温度为170℃、空载真空度10Pa以内。 2、导热油加热系统采用导热油温度自动控制,设计使用温度为170℃。 3、循环水及冷冻水来至公用系统 三、操作规程 在操作本系统前,请仔细阅读设备使用说明书、图纸和本规程,如因不遵循本规程和擅自改造、改变设备用途所造成的不良后果,本公司概不承担任何责任。 1、开机步骤: 1)、在每次开机前,请检查各润滑点是否润滑充分、转动部分是否灵活、冷却水是否接通、阀门是否处在正确位置、有无泄漏、有无安全 隐患,操作人员必须经过培训,并熟知应急处置措施。 2)、保持循环水和冷冻水阀门为打开状态,保证循环水和冷冻水供应正常。开启热水循环泵。检查导热油加热系统所有阀门,打开设备的导热油手动阀门(放空阀和旁通阀除外)。开启温度控制,进料预设温度为160℃,分子蒸馏内导热油温度设定为170℃。当导热油温度升至60℃时,启动真空泵,机组运行应平稳无异常噪音,长期运行需每班监控真空冷却器内液位,每周检测工作液水质,定期更换新工作液。 3)、真空泵启动程序:开启循环水阀门(开度50%,以工作水温度不超过50℃为宜),,开启一级水环真空泵,开启真空泵前进气阀门,当气温低于0℃时,每次停泵后必须将泵内积水排净(包括冷却水)以防冻裂; 观察真空度,当真空度低于-0.08MP时开启罗茨机组。分子蒸馏系统为10Pa以下。 2、分子蒸馏进料步骤: 开启进料阀,启动进料泵,调节泵后调节阀控制进料量1000kg/h,启动分子蒸馏刮板电机,刮板电机频率设定40HZ,产品色度可通过管路视镜观察。。 3、分子蒸馏出料步骤: 设定轻组分罐的出料液位上限为900mm,出料液位下限为300mm,设定重组分罐的出料液位上限为900mm,出料液位下限为300mm,保证 大气腿下端浸没在轻组分中,当出料泵启动时,应根据流量调节泵前阀门

最新分子蒸馏技术的原理和应用

分子蒸馏技术的原理 和应用

分子蒸馏技术的原理和应用 分子蒸馏技术简介 分子蒸馏是一项较新的尚未广泛应用于产业化生产的分离技术,能解决大量常规蒸馏技术所不能解决的题目。分子蒸馏是一种特殊的液-液分离技术,能在极高真空下操纵,它依据分子运动均匀自由程的差别,能使液体在远低于其沸点的温度下将其分离,特别适用于高沸点、热敏性及易氧化物系的分离。由于其具有蒸馏温度低于物料的沸点、蒸馏压强低、受热时间短、分离程度高等特点,因而能大大降低高沸点物料的分离本钱,极好地保护了热敏性物质的特点品质,该项技术用于纯自然保健品的提取,可摆脱化学处理方法的束缚,真正保持了纯自然的特性,使保健产品的质量迈上一个新台阶。 分子蒸馏技术,作为一种对高沸点、热敏性物料进行有效的分离手段,自本世纪三十年代出现以来,得到了世界各国的重视。到本世纪六十年代,为适应浓缩鱼肝油中维生素A的需要,分子蒸馏技术得到了规模化的产业应用。在日、美、英、德、苏相继设计制造了多套分子蒸馏装置,用于浓缩维生素A,但当时由于各种原因,应用面太窄,发展速度很慢。但是,在过往地三十多年中,人们一直在不断地重视着这项新的液-液分离技术的发展,对分离装置精益求精、完善,对应用领域不断探索、扩展,因而一直有新的专利和新的应用出现。特别是从八十年代末以来,随着人们对自然物质的青睐,回回自然潮流的兴起,分子蒸馏技术得到了迅速的发展。

对分子蒸馏的设备,各国研制的形式多种多样。发展至今,大部分已被淘汰,目前应用较广的为离心薄膜式和转子刮膜式。这两种形式的分离装置,也一直在精益求精和完善,特别是针对不同的产品,其装置结构与配套设备要有不同的特点,因此,就分子蒸馏装置本身来说,其开发研究的内容尚十分丰富。 在应用领域方面,国外已在数种产品中进行产业化生产。特别是近几年来在自然物质的提取方面应用较为突出,如:从鱼油中提取EPA与DHA、从植物油中提取自然维生素E等。另外,在精细化工中间体方面的提取和分离,品种也越来越多。 我国对分子蒸馏技术的研究起步较晚,八十年代末期,国内引进了几套分子蒸馏生产线,用于硬脂酸单甘酯的生产。国内的科研职员也曾经作过一些研究,但未见产业化应用的报道。 分子蒸馏成套产业化装置具有设计新奇、结构独特、工艺先进,可明显进步分离效率。从小试到产业化生产又到小试的反复循环实验探索中,特别解决了产业化生产中轻易出现的突出题目。如有效地解决了物料返混题目,明显地进步了产品质量,创造性地设计了有补偿功能的消息密封方式;实现了产业装置高真空下的长期稳定运行。该项技术属国内领先、国际先进。 截止目前为止已经开发的产品有二十余种,如:硬脂酸单甘酯、丙二醇酯、玫瑰油、小麦胚芽油、米糠油、谷维素等。并已确定了应用分子蒸馏技术的有关工艺条件,为进行产业化生产奠定了基础。 分子蒸馏的原理和装置的结构决定其有如下特点: 1、分子蒸馏的操纵温度远低于物料的沸点:

分子蒸馏的原理word版

分子蒸馏的原理 分子蒸馏是一种特殊的液--液分离技术,它不同于 传统蒸馏依靠沸点差分离原理,而是靠不同物质分子运 动平均自由程的差别实现分离。这里,分子运动自由程 (用λ表示)是指一个分子相邻两次碰撞之间所走的路 程。 当液体混合物沿加热板流动并被加热,轻、重分 子会逸出液面而进入气相,由于轻、重分子的自由程不 同,因此,不同物质的分子从液面逸出后移动距离不同, 若能恰当地设置一块冷凝板,则轻分子达到冷凝板被冷 凝排出,而重分子达不到冷凝板沿混合液排出。这样, 达到物质分离的目的。 >>> 分子蒸馏技术的特点 分子蒸馏技术作为一种与国际同步的高新分离技术,具有其它分离技术无法比拟的优点: 1、操作温度低(远低于沸点)、真空度高(空载≤1Pa)、受热时间短(以秒计)、分离效率高等,特别适宜于高沸点、热敏性、易氧化物质的分离; 2、可有效地脱除低分子物质(脱臭)、重分子物质(脱色)及脱除混合物中杂质; 3、其分离过程为物理分离过程,可很好地保护被分离物质不被污染,特别是可保持天然提取物的原来品质; 4 、分离程度高,高于传统蒸馏及普通的薄膜蒸发器。 >>> 分子蒸馏技术工业化应用产品 A 氨基酸酯阿魏酸三萜醇酯 B 丙烯酸酯丙二醇酯苯乙烯-丙烯腈丙交酯薄荷酯白术挥发油苯基马来酰亚胺柏木油菠萝酮苯甲酸C12~C15醇酯 C 长链二元酸(C9-C18)粗石蜡除草剂柴胡挥发油茶树油苍术油川芎提取物蚕蛹油 D 单甘酯(单硬脂酸甘油酯单月桂酸甘油脂等)(牛油及猪油等)脱胆固醇大蒜油丁三醇当归提取物2-丁基辛醇独活提取物豆甾醇独活提取物多糖酯多不饱和脂肪酸对苯二甲酸二乙酯脱除多氯联苯

分子蒸馏原理

分子蒸馏原理 根据分子运动理论,液体混合物受热后分子运动会加剧,当接受到足够能量时,就会从液面逸出成为气相分子。随着液面上方气相分子的增加,有一部分气相分子就会返回液相。在外界条件保持恒定的情况下,最终会达到分子运动的动态平衡,从宏观上看即达到了平衡。 根据分子运动平均自由程公式,不同种类的分子,犹豫其分子有效直径不同,故其平均自由程也不同,即从统计学观点看,不同种类分子逸出液面后不与其他分子碰撞的飞行距离是不同的 分子蒸馏的分离作用就是依据液体分子受热会从液面逸出,而不同种类分子溢出后,在气相中其运动平均自由程不同这一性质来实现的。 分子蒸馏是一种非平衡状态下的蒸馏,由其原理来看,它又根本区别于常规蒸馏。因此,它具备许多常规蒸馏无法比拟的优点 (1)操作温度低: 常规蒸馏是靠不同物质的沸点差进行分离的,而分子蒸馏是靠不同物质的分子运动平均自由程的差别进行分离的,也就是说后者在分离过程中,蒸汽分子一旦由液相中逸出(挥发)就可实现分离,而非达到沸腾状态。因此,分子蒸馏是在远离沸点下进行操作的。 (2)蒸馏压强低: 由分子运动平均自由程公式可知,要想获得足够大的平均自由程,必须通过降低蒸馏压强来获得。另外,由于分子蒸馏装置独特的结构形式,其内部压降极小,可获得很高的真空度。尽管常规真空蒸馏也可以采用较高的真空度,但由于其内部结构上的至于(特别是填料塔或板式塔),其阻力较分子蒸馏装置大得多,因而难以达到高的真空度。一般常规真空蒸馏其真空度仅达5kPa,而分子蒸馏真空度可达0.1-100Pa。 由上述可知,分子蒸馏是在极高真空度下操作,又远离物质的沸点,因此分子蒸馏的实际操作温度比常规真空蒸馏低得多,一般可低50-100℃。 (3)受热时间短:

分子蒸馏技术

分子蒸馏技术 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

分子蒸馏技术 系别:化学系 专业:应用化学 学号: 2012122142 姓名:贺翠 时间: 2014-2015学年第二学期

分子蒸馏技术 贺翠 (太原师范学院山西太原030031) 摘要分子蒸馏技术是高纯材料制备的瓶颈技术,一直备受各国重视。本文介绍了国内外分子蒸馏技术的发展概况及其应用特点,结合实际应用的要求,对分子蒸馏的技术理论、分子蒸馏分离过程以及在精细化工、医药、高纯度物质、超分子化合物制备等方面的应用前沿,做了较全面而详细的介绍。 关键词分子蒸馏分析精馏 分子蒸馏技术(Molecular Distillation,MD)不同于一般蒸馏技术,它是运用不同物质分子运动自由程的差别而实现物质的分离,能够实现远离沸点下的操作。它具备蒸馏压强低、受热时间短、分离程度高等特点,能大大降低高沸点物料的分离成本,极好地保护热敏性物质的品质。分子蒸馏技术已广泛应用于高纯物质的提取,它可摆脱化学处理方法的束缚,真正保持了纯天然的特性,所以特别适用于天然物质的提取与分离,在国际上已被广泛应用于食品、医药、香料等工业中。 1 分子蒸馏的国内外发展概况 追溯到第2次世界大战以前,伴随真空技术和真空蒸馏技术发展起来的一种液-液分离技术。Hickman[1]博士是最早的发明人之一,早在1920年,他就利

用分子蒸馏设备做过大量的小试实验,并将该方法发展到中试规模。当时的实验装置非常简单,他们是在一块平板上将欲分离物质涂成薄层使其在高真空下蒸发,蒸汽在周围的冷表面上凝结。操作时使蒸发面与冷凝面的距离小于气体分子的平均自由程,从而气体分子彼此发生碰撞的几率远小于气体分子在冷凝面上凝结的几率。因此,这种简单的蒸馏方法在美国首先以“分子蒸馏”的概念出现,并沿用至今。 20世纪的30~ 60年代是分子蒸馏技术的研发时代,至60年代末,德、日、英、美及前苏联均有多套大型工业化装置投入工业化应用。但由于相关技术的发展还很落后,致使当时分子蒸馏技术及装备在总体上还不够完善。例如,分子蒸馏蒸发器的分离效率还有待提高、密封及真空获得技术还有待改进、应用领域还有待拓展、分离成本还有待降低等。所有这些都是后来的研究者改进的方向。 从20世纪60年代至今的50多年来,各国研究者均十分重视这一领域的研究,不断有新的专利和文献出现。同时,也出现了一些专业技术公司专门从事分子蒸馏器的开发制造,使分子蒸馏技术的工业应用得到了进一步发展。我国对分子蒸馏技术的研究开始得比较晚。20世纪60年代,樊丽秋[2]首次在国内进行了分子蒸馏相关研究;70年代末,余国琮、樊丽秋[3]发表了对降膜式分子蒸馏研究的相关论文;80年代,国内才有分子蒸馏器方面相关专利出现,随后又引进了几套国外的分子蒸馏装置,用于硬脂酸单甘酯的生产。 近年来,我国许多高校及科研单位对分子蒸馏技术进行了广泛的研发。特别是90年代以来,随着人们对天然物质的青睐以及全球回归自然潮流的兴起,特别是中药现代化、国际化进程的迫近,分子蒸馏技术在高沸点、热敏性天然物

分子蒸馏的应用研究进展

!" 分子蒸馏的应用研究进展 陈文伟,陈 钢,高荫榆 (南昌大学食品科学教育部重点实验室,江西南昌!!##$%) 摘 要:阐述了分子蒸馏的基本原理及其区别于普通真空蒸馏的主要特点,并介绍了分子蒸馏在食品、医 药、香料等工业方面的应用研究。 关键词:分子蒸馏;短程;研究应用中图分类号:&’#()*) 文献标识码:+ 文章编号:,##%-.!/"0(##!1#"-##!"-#! 分子蒸馏过程一般可分为以下"步: 21物料在加热面上的液膜形成;31分子在液膜表面上的自由蒸发;41分子从加热面向冷凝面的运动;51分子在冷凝面上的捕获;61馏出物和残留物的收集。! 分子蒸馏的特点 分子蒸馏具有如下特点: 0,1分子蒸馏的操作温度。由分子蒸馏原理可知,混合物的分离是由于不同种类的分子逸出液面后的平均自由程不同的性质来实现的,并不需要沸腾,所以分子蒸馏是在远低于沸点的温度下进行操作的。这点与常规蒸馏有本质的区别。 0(1蒸馏压强低。整个物料系统均在真空下,其最低蒸馏压力必须保证低于#*"7892,因此物料不易氧化受损。 从以上两个特点可知,分子蒸馏一般是在远低于常规蒸馏温度的情况下进行操作的。一般常规真空蒸馏或真空精馏由于在沸腾状态下操作,其蒸发温度比分子蒸馏高得多,加之其塔板或填料的阻力,比分子蒸馏大得多,所以其操作温度比分子蒸馏高得多。 0!1受热时间短。由分子蒸馏原理可知,受加热的液面与冷凝面间的距离要求小于轻分子的平均自由程,而由液面逸出的轻分子,几乎未经碰撞就到达冷凝面,所以受热时间很短。另外,混合液体呈薄膜状,使液面与加热面的面积几乎相等,这样物料在蒸馏过程中受热时间就变得更短。对真空蒸馏而言,受热时间为,:,而分子蒸馏仅为十几秒。 0$1分离程度更高。分子蒸馏能分离常规蒸馏 收稿日期:(##!-#(-(#作者简介:陈文伟(,/%.-) ,男,硕士,研究方向为食品资源的开发与利用。分子蒸馏0;<864=82>5?@A?882A?A -D2A:5?@A?882A?

分子蒸馏技术及其在食品方面的应用

分子蒸馏技术及其在食品方面的应用 摘要:分子蒸馏技术是一种新型、高效的分离技术,现已在许多领域得到广泛应用。本文介绍下分子蒸馏的概念、原理、特点以及影响分子蒸馏速度的因素;其中举以例子,介绍下分子蒸馏技术目前在食品工业中的应用。最后本文对其发展状况及应用前景进行了分析和展望。 关键词:分子蒸馏技术;食品;应用;前景

蒸馏是实现分离的一种最基本的方法,可实现固体和液体或液体和液体混合物的分离。常规蒸馏的过程中,经常采用减压的方法,能够有效降低蒸馏所需要的温度,从而可以避免有些物质在蒸馏过程中因受热分解而造成的损失。但是,对于沸点高、热不稳定、粘度高或容易爆炸的物质,并不适宜使用普通减压蒸馏法。为了分离和纯化这些特殊性质的物质,一种新的分离技术——分子蒸馏技术也相应产生。 分子蒸馏是一种以液相中逸出的气相分子依靠气体扩散为主体的分离过程,是在高真空度下进行分离操作的连续蒸馏过程,实质上是一种特殊的液-液蒸馏分离技术。分子蒸馏过程中,待分离物质组分可在远低于常压沸点的温度下挥发,并且各组分的受热过程很短,因此成为目前分离目的产物最温和的蒸馏方法,特别适合于分离高沸点、粘度大、热敏性的天然物料[1]。目前,分子蒸馏技术已成功地应用于食品、医药、化妆品、精细化工、香料工业等行业。 1 基本原理 分子蒸馏技术的原理,在于突破了常规蒸馏依靠沸点差分离物质的原理,而是依靠不同物质分子逸出后的运动平均自由程的差别来实现物质的分离。普通蒸馏过程中,当形成的蒸汽分子离开溶液液面后,在运动中相互碰撞,一部分进入冷凝器中,另一部分则返回溶液内。分子蒸馏技术的特点,在于溶液液面与冷凝器的冷凝面间距离十分靠近,蒸汽分子离开液面后,在它们的分子自由程内未经过相互碰撞就可到达冷凝面,不再返回溶液内[2]。 对液体混合物的分离,首先要加热提供能量,接受到足能量的分子就会逸出液面成为气相分子。不同质量的分,由于分子有效直径不同,一般轻分子的平均自由程较大,分子的平均自由程较小。若在离液面小于轻分子平均自由而大于重分子平均自由程处设置一个冷凝面,当轻分子到冷凝面后就被冷凝,从而使轻分子不断逸出;而重分子达不到冷凝面就会发生碰撞而返回溶液中,很快与液相中重分子趋于动态平衡,表观上不再从液相中逸出。通过这种方法,就可以将轻分子和重分子进行分离[3]。 分子平均自由程是一个分子在相邻的两次分子碰撞之间所经过的路程,它的长短与分子有效直径、压力和温度有关[4]。当压力不变时,物质的分子平均自由程随温度的增加而增加;当温度不变时,物质的分子平均自由程随压力的降低而增加。例如,当系统中的压力为13.3Pa 时,空气分子的平均自由程只有0.056cm,而当系统

分子蒸馏原理(精)

分子蒸馏原理 根据分子运动理论, 液体混合物受热后分子运动会加剧, 当接受到足够能量时, 就会从液面逸出成为气相分子。随着液面上方气相分子的增加, 有一部分气相分子就会返回液相。在外界条件保持恒定的情况下,最终会达到分子运动的动态平衡,从宏观上看即达到了平衡。 根据分子运动平均自由程公式, 不同种类的分子, 犹豫其分子有效直径不同, 故其平均自由程也不同, 即从统计学观点看, 不同种类分子逸出液面后不与其他分子碰撞的飞行距离是不同的 分子蒸馏的分离作用就是依据液体分子受热会从液面逸出, 而不同种类分子溢出后, 在气相中其运动平均自由程不同这一性质来实现的。 分子蒸馏是一种非平衡状态下的蒸馏,由其原理来看,它又根本区别于常规蒸馏。因此,它具备许多常规蒸馏无法比拟的优点 (1操作温度低: 常规蒸馏是靠不同物质的沸点差进行分离的, 而分子蒸馏是靠不同物质的分子运动平均自由程的差别进行分离的,也就是说后者在分离过程中,蒸汽分子一旦由液相中逸出(挥发就可实现分离,而非达到沸腾状态。因此,分子蒸馏是在远离沸点下进行操作的。 (2蒸馏压强低: 由分子运动平均自由程公式可知, 要想获得足够大的平均自由程, 必须通过降低蒸馏压强来获得。另外,由于分子蒸馏装置独特的结构形式,其内部压降极小,可获得很高的真空度。尽管常规真空蒸馏也可以采用较高的真空度, 但由于其内部结构上的至于 (特别是填料塔或板式塔, 其阻力较分子蒸馏装置大得多,因而难以达到高的真空度。一般常规真空蒸馏其真空度仅达 5kPa ,而分子蒸馏真空度可达 0.1- 100Pa 。

由上述可知, 分子蒸馏是在极高真空度下操作, 又远离物质的沸点, 因此分子蒸馏的实际操作温度比常规真空蒸馏低得多,一般可低 50-100℃。 (3受热时间短: 鉴于分子蒸馏是基于不同物质分子运动平均自由程的差别而实现分离, 因而装置中加热面与冷凝面的间距要小于轻分子的运动平均自由程 (即间距很小 ,这样,由液面逸出的轻分子几乎未发生碰撞即达到冷凝面, 所以受热时间很短。另外, 若采用较先进的分子蒸馏器结构, 使混合液的液面形成薄膜状, 这时液面与加热面的面积几乎相等, 那么物料在设备中的而停留时间很短。另外, 若采用较先进的分子蒸馏器结构,使混合液的液面形成薄膜状,这时液面与加热面的面积几乎相等, 那么物料在设备中的停留时间很短, 因此蒸余物料的受热时间也很短。假定真空蒸馏需受热数十分钟,则分子蒸馏受热仅为几秒或几十秒。 (4分离程度及产品收率高: 分子蒸馏常常用来分离常规蒸馏难以分离的物质, 而且就两种方法均能分离的物质而言, 分子蒸馏的分离程度更高。从两种方法相同条件下的挥发度不同可以看出这一点。 (5另外,众多学者在研究分子蒸馏分离过程中传热、传质阻力的影响因素后,认为因其液膜很薄,加之在非平衡状态下操作,传热、传质阻力的影响较常规蒸馏小的多,因此,其分离效率要远远高于常规蒸馏。 鉴于以上众多因素,可见分子蒸馏操作温度低,被分离物质不易分解或聚合;受热时间短, 被分离物质可避免热损伤;分离程度高,可提高分离效率。因此,总体上说,分子蒸馏产品的收率较传统蒸馏会大大提高。 分子蒸馏是一种特殊的液 --液分离技术,它不同于传统蒸馏依靠沸点差分离原理,而是靠不同物质分子运动平均自由程的差别实现分离。

分子蒸馏的研究现状及应用前景

分子蒸馏的研究现状及应用前景

分子蒸馏的研究现状及应用前景 学生姓名卢贝贝 学号2014118008 所属学院化学化工学院 专业化学工艺 日期2014年10月

分子蒸馏的研究现状及应用前景 摘要:分子蒸馏技术的基本原理及其有别于一般蒸馏技术的特点。例如,蒸馏温度远低于液体沸点,蒸馏压强低,受热时间短等。同时还介绍了分子蒸馏技术在工业中的应用以及国内外发展概况综合评述了分子蒸馏技术的基本原理、技术特点及装置,提出了未来分子蒸馏领域的重点研究方向。分子蒸馏技术作为一种环境友好的高新分离技术,向人们展示出广阔的应用前景。 关键词:分子蒸馏特点装置应用展望 引言 分子蒸馏技术不同于一般蒸馏技术[1]。它是运用不同物质分子运动自由程的差别而实现物质的分离,因而能够实现远离沸点下的操作。分子蒸馏[2]是一种在高真空(0.1~10Pa)条件下进行的液—液分离技术,又称为短程蒸馏,具有蒸馏温度低、真空度高、物料受热时间短、分离程度高等特点,且分离过程为不可逆过程,不存在沸腾和鼓泡现象,因而特别适合于高沸点、热敏性和易氧化物质的分离。目前,分子蒸馏已被成功地应用于制药、石油化工、食品、化妆品、农业等领域[2-12]。 1分子蒸馏的基本原理、特点及设备 1.1 分子蒸馏的基本原理 分子蒸馏是利用分子平均自由程的差异来分离液体混合物的,其基本原理如图 1 所示[13]。待分离物料在加热板上形成均匀液膜,经加热,料液分子由液膜表面自由逸出。在与加热板平行处设一冷凝板,冷凝板的温度低于加热板,且与加热板之间的距离小于轻组分分子的平均自由程而大于重组分分子的平均自由程。这样由液膜表面逸出的大部分轻组分分子能够到达冷凝面并被冷凝成液体,而重组分分子则不能到达冷凝面,故又重新返回至液膜中,从而可实现轻重组分的分离。

分子蒸馏技术及其最新应用

分子蒸馏技术及其应用进展 摘要分子蒸馏技术是近年来发展起来的一种新型的液-液分离技术,现已在很多领域得到广泛的应用。综合评述了分子蒸馏的基本原理、过程技术特点、常用设备及其优缺点。工业应用及过程模型化的研究进展。并对分子蒸馏过程技术的前景提出了一些展望。 前言分子蒸馏[1]又叫短程蒸馏,是一种在高真空下,利用不同物质的分子运动平均自由程的差异来实现分离的液-液分离技术。该技术具有蒸馏温度低、受热时间短、分离程度高、系统能耗低等特点,并且该分离技术为不可逆过程,不存在沸腾及鼓泡现象。因此特别适用于分离高沸点、热敏性和易氧化的物质,能解决常规蒸馏技术所不能解决的问题。目前已广泛地应用于国民经济的各个行业中。 1 分子蒸馏过程技术的基本原理和特点 分子蒸馏是指在高真空的条件下,液体分子受热从液面逸出,利用不同分子平均自由程差导致其表面蒸发速率不同而达到分离的方法[2]。分子分离过程如图所示,经过预热处理 的待分离料液从进口沿加热板自上而下流入,受 热的液体分子从加热板逸出。由于冷凝和蒸发表 面的间距一般小于或等于蒸发分子的平均自由 程,逸出分子可以不经过分子碰撞而直接到达冷 凝面冷凝,最后进入轻组分接受罐。重组分分子 由于平均自由程小,不能到达冷凝板,从而顺加 热板流入重组分接收罐中,这样就实现了轻重组 分的分离[3]。 2 分子蒸馏的基本过程 根据分子蒸馏的基本理论,可将蒸馏过程分 解为以下5个步骤:①物料在加热面上形成液膜; ②分子在液膜表面上自由蒸发;③分子从加热面向冷凝面的运动;④轻分子在冷凝面上被捕获,重分子返回物料液膜;⑤馏出物和残留物的收集。 3 分子蒸馏设备和特点 3.1 设备组成 一套完整的分子蒸馏设备主要由脱气系统、进料系统、

2、分子蒸馏操作规程

2、分子蒸馏操作规程 分子蒸馏车间作业指导书 一、开机前准备工作: (1)开蒸汽总阀,系统逐级破空,放出冷井物料; (2)进料泵、过料泵、出料泵、传动点动试运行,并检查油杯液封; (3)检查真空系统阀门是否复位,并检查泵组真空油; (4)检查导热油系统阀门和蒸汽系统阀门; (5)检查冷却水塔水位; (6)检查脱气罐及各储罐阀门; (7)开启空压机和制氮机; 二、开机程序: 1、检查导热油及蒸汽是否达到要求。导热油温度≥170℃,蒸汽压力≥0.4Mpa。 2、开启冷却塔风扇(配工艺)及冷却塔循环水泵,查看泵压; 3、同时开启冰水机及冰水循环泵,查看冰水机电流; 4、开启6-8级热水循环泵; 5、开启真空泵组,按顺序开启。同时观察真空泵进出冷却水温差是否正常。直到绝对压力达到A线一级≤10Pa,二到八级达到0.1Pa,B线一级≤50Pa二到八级达到3Pa,再进行以下操作。 6、开启水喷射泵,由酯化油罐中抽30-35cm液位酯化油到脱气罐中,开启蒸汽升温,保持真空,温度105±5℃。开启水环泵拉各级接收罐真空; 7、等到泡沫消除,脱气完毕后,开启进料泵,调进料泵转速60r/min左右,观察视筒,并逐级开启各级过料泵和传动开关。 8、等冷油逐级走至出渣口,设置表盘各级温度,然后开启加热开关。 9、逐级开启出料泵,直至各级温度稳定至设定温度±2℃。

10、调整转速,逐渐提到120r/min左右,稳定走料半小时; 11、进行出料读秒,并取样,将接收罐清空,抽回至脱气罐; 三、日常操作: 1、脱气:脱气罐油温达到105±5℃后继续搅拌无明显泡沫,完成脱气; 2、进料:进料切换注意脱气罐液位不要完全走空,先开另一脱气罐出料阀门,再关闭原脱气罐出料阀门; 3、出料:出料泵调节至适当转速,不间断出料。每次放料,单一进行,不要一次同时关闭多台出料泵停止出料,放料完成后,等接收罐拉起真空后,立即开启出料泵,以免造成轻相料包溢罐,进入冷井,甚至抽至旋片泵泵腔; 4、装桶:当每级接收储罐液位达到1m时立即进行装桶。 ①半成品桶面擦洗:用回收酒精擦洗桶面,直至去除油污; ②半成品桶充氮:将氮气管插入桶底进行充氮,至桶口冒出白色烟雾(氮气),③接收罐氮气破空:关闭接收储罐真空阀,开启氮气阀门直至达到0.1Mpa;④标重:油净重180 Kg,关闭出料阀门,旋紧桶盖,做好标签和记录; 5、巡查记录: ①每小时记录各级温度、压力; ②每小时观察出料及过料泵液封情况; ③每小时观察真空泵、冷却水塔、冰水机、水环真空泵、水喷射泵;④每小时空压机、制氮机放水排污; ⑤每半小时观察脱气罐温度、真空、液面。 四、关机程序: 1、进料基本结束后,将两桶二级油抽至脱气罐。 2、调节各级温度,设置各级温度为20℃。设置完毕关闭加热开关。 3、关闭各级出料泵及阀门,调节转速至60r/min左右。开启各级回前级系统,逐级开启出料泵,由出渣口接料。 4、进料结束,关闭进料泵,逐级关闭过料泵及过料阀门,然后关闭出料泵及传动。

相关文档 最新文档