文档库 最新最全的文档下载
当前位置:文档库 › 数学解题方法与技巧

数学解题方法与技巧

数学解题方法与技巧
数学解题方法与技巧

数学解题方法与技巧

一、换元法

“换元”的思想和方法,在数学中有着广泛的应用,灵活运用换元法解题,有助于数量关系明朗化,变繁为简,化难为易,给出简便、巧妙的解答。

在解题过程中,把题中某一式子如f(x),作为新的变量y 或者把题中某一变量如x ,用新变量t 的式子如g(t)替换,即通过令f(x)=y 或x=g(t)进行变量代换,得到结构简单便于求解的新解题方法,通常称为换元法或变量代换法。

用换元法解题,关键在于根据问题的结构特征,选择能以简驭繁,化难为易的代换f(x)=y 或x=g(t)。就换元的具体形式而论,是多种多样的,常用的有有理式代换,根式代换,指数式代换,对数式代换,三角式代换,反三角式代换,复变量代换等,宜在解题实践中不断总结经验,掌握有关的技巧。

例如,用于求解代数问题的三角代换,在具体设计时,宜遵循以下原则:(1)全面考虑三角函数的定义域、值域和有关的公式、性质;(2)力求减少变量的个数,使问题结构简单化;(3)便于借助已知三角公式,建立变量间的内在联系。只有全面考虑以上原则,才能谋取恰当的三角代换。

换元法是一种重要的数学方法,在多项式的因式分解,代数式的化简计算,恒等式、条件等式或不等式的证明,方程、方程组、不等式、不等式组或混合组的求解,函数表达式、定义域、值域或最值的推求,以及解析几何中的坐标替换,普通方程与参数方程、极坐标方程的互化等问题中,都有着广泛的应用。

例1 分解因式:(x 2-x-3)(x 2-x-5)-3

例2 在实数集上解方程:4141433=-++x x

例3 设sinx+siny=1,求cosx+cosy 的取值范围.

例4 设x,y ∈R ,且14

22

=+y x ,求函数f(x,y)=x 2+2xy+y 2+x+2y 的最小值和最大值。 二、消元法

对于含有多个变数的问题,有时可以利用题设条件和某些已知恒等式(代数恒等式或三角恒等式),通过适当的变形,消去一部分变数,使问题得以解决,这种解题方法,通常称为消元法,又称消去法。

消元法是解方程组的基本方法,在推证条件等式和把参数方程化成普通方程等问题中,也有着重要的应用。

用消元法解题,具有较强的技巧性,常常需要根据题目的特点,灵活选择合适的消元方法。

例1 解方程组: 11

514=+--y x x+1=y

x-y-z=6

例2 解方程组: y-z-x=0

z-x-y= -12

例3、设a,b,c 均为不等于1的正数,若 a x =b y =c z ①

0111=++z

y x ② 求证: abc=1

三、待定系数法

按照一定规律,先写出问题的解的形式(一般是指一个算式、表达式或方程),其中含有若干尚待确定的未知系数的值,从而得到问题的解。这种解题方法,通常称为待定系数法;其中尚待确定的未知系数,称为待定系数。

确定待定系数的值,有两种常用方法:比较系数法和特殊值法。

一、 比较系数法

比较系数法,是指通过比较恒等式两边多项式的对应项系数,得到关于待定系数的若干关系式(通常是多元方程组),由此求得待定系数的值。

比较系数法的理论根据,是多项式的恒等定理:两个多项式恒等的充分必要条件是对应

项系数相等,即a 0x n +a 1x n-1+ …+a n ≡b 0x n +b 1x n-1+… +b n 的充分必要条件是 a 0=b 0, a 1=b 1,……

a n =

b n 。

二、 特殊值法

特殊值法,是指通过取字母的一些特定数据值代入恒等式,由左右两边数值相等得到关于待定系数的若干关系式,由此求得待定系数的值。

特殊值法的理论根据,是表达式恒等的定义:两个表达式恒等,是指用字母容许值集内的任意值代替表达式中的字母,恒等式左右两边的值总是相等的。

待定系数法是一种常用的数学方法,主要用于处理涉及多项式恒等变形问题,如分解因式、证明恒等式、解方程、将分式表示为部分分式、确定函数的解析式和圆锥曲线的方程等。 例1 设二次函数的图象通过点A (-1,0),B (7,0),C (3,-8),求此二次函数的解析

式。

例2 以x-1的幂表示多项式 x 3-x 2+2x+2。

例3 分解因式:6x 2+xy-2y 2+x+10y-12.

四、判别式法

实系数一元二次方程

ax 2+bx+c=0 (a ≠0) ①

的判别式△=b 2-4ac 具有以下性质:

>0,当且仅当方程①有两个不相等的实数根

△ =0,当且仅当方程①有两个相等的实数根;

<0,当且仅当方程②没有实数根。

对于二次函数

y=ax 2+bx+c (a ≠0)②

它的判别式△=b 2-4ac 具有以下性质:

>0,当且仅当抛物线②与x 轴有两个公共点;

△ =0,当且仅当抛物线②与x 轴有一个公共点;

<0,当且仅当抛物线②与x 轴没有公共点。

利用判别式是中学数学的一种重要方法,在探求某些实变数之间的关系,研究方程的根和函数的性质,证明不等式,以及研究圆锥曲线与直线的关系等方面,都有着广泛的应用。 在具体运用判别式时,①②中的系数都可以是含有参数的代数式。

例1 已知关于x 的二次方程x 2+px+q=0有两正根

求证:对于一切实数r ≥0,方程qx 2

+(p-2rq)x+1-p=0也必有两正根。

例2、 x,y,z ∈R, a ∈R +,且

x+y+z=a, x 2+y 2+z 2=2

1a 2 试确定x,y,z 的取值范围。 例3、 已知a,x 为实数,|a|<2,求函数 y=f(x)=12+--ax x a x 的最大值与最小值。

从总体上说,解答数学题,即需要富有普适性的策略作宏观指导,也需要各种具体的方

法和技巧进行微观处理,只有把策略、方法、技巧和谐地结合起来,创造性地加以运用,才能成功地解决面临的问题,获取良好的效果。

五、 分析法与综合法

分析法和综合法源于分析和综合,是思维方向相反的两种思考方法,在解题过程中具有十分重要的作用。

在数学中,又把分析看作从结果追溯到产生这一结果的原因的一种思维方法,而综合

被看成是从原因推导到由原因产生的结果的另一种思维方法。通常把前者称为分析法,后者称为综合法。

具体的说,分析法是从题目的等证结论或需求问题出发,一步一步的探索下去,最后

达到题设的已知条件;综合法则是从题目的已知条件出发,经过逐步的逻辑推理,最后达到待证的结论或需求问题。

例1:设a,b ∈R +,且a ≠b ,求证:a 3+b 3>a 2b+ab

2 例2:已知A 1,A 2,…,A n 为凸多边形A 1A 2…A n 的内角,且

lgsinA 1+lgsinA 2+…+lgsinA n =0 , 试确定凸多边形的形状。

例3:设α,β∈(0,

2π),x 的一元二次方程f(x)=x 2+4ax+3a+1=0的两个根为tg 2

α,tg 2β,求a 的取值范围。 六、 数学模型法

例(哥尼斯堡七桥问题)18世纪东普鲁士哥尼斯堡有条普莱格河,这条河有两个支流,在城中心汇合后流入波罗的海。市内办有七座各具特色的大桥,连接岛区和两岸。每

到傍晚或节假日,许多居民来这里散步,观赏美丽的风光。年长日久,有人提出这样

的问题:能否从某地出发,经过每一座桥一次且仅一次,然后返回出发地?

数学模型法,是指把所考察的实际问题,进行数学抽象,构造相应的数学模型,通过对数学模型的研究,使实际问题得以解决的一种数学方法。

利用数学模型法解答实际问题(包括数学应用题),一般要做好三方面的工作:

(1) 建模。根据实际问题的特点,建立恰当的数学模型。从总体上说,建模的基本手段,是数学抽象方法。建模的具体过程,大体包括以下几个步骤:

1o 考察实际问题的基本情形。分析问题所及的量的关系,弄清哪些是常量,哪些是变量,

哪些是已知量,哪些是未知量;了解其对象与关系结构的本质属性,确定问题所及的具体系统。

2o 分析系统的矛盾关系。从实际问题的特定关系和具体要求出发,根据有关学科理论,

抓住主要矛盾,考察主要因素和量的关系。

3o 进行数学抽象。对事物对象及诸对象间的关系进行抽象,并用有关的数学概念、符号

和表达式去刻画事物对象及其关系。如果现有的数学工具不够用,可以根据实际情况,建立

新的数学概念和数学方法去表现数学模型。

(2)推理、演算。在所得到的数学模型上,进行逻辑推理或数学演算,求出相应的数学结果。

(3) 评价、解释。对求得的数学结果进行深入讨论,作出评价和解释,返回到原

来的实际问题中去,形成最终的解答。

例1:把一根直径为的圆木,加工成横截面为矩形的柱子,问何锯法可使废弃的木料最少? 例2:有一隧道处于交通拥挤、事故易发地段,为了保证安全,交通部门规定,隧道内的车距d 正比于车速v (千米/时)的平方与车身长(米)的积,且车距不得小于半个车身长。假定车身长为l (米),当车速为60(千米/时)时,车距为1.44个车身长,在交通繁忙时,应规定臬的车速成,可使隧道的车流量最大?

例3、(1998年保送生综合试题)渔场中鱼群的最大养殖为m 吨。为保证鱼群生长空间,实际养殖量不能达到最大养殖量,必须留出适当的空闲量。已知鱼群的年增长量y 吨和实际养殖量x 吨与空闲的乘积成正比,比例系数为K (K>0)

(1) 写出y 关于x 的函数关系式,并指出这个函数的定义域。

(2) 求鱼群年增长量的最大值。

例4:某公司有资金100万元,董事会决定全部投资到甲、乙两工厂,投资甲厂可获得的利润为投资额的20%;投资乙厂可获得的利润由公式M=195

16 x (M 为利润额,x 为投资额,单位均为万元)确定,问公司如何分配100万元资金投资这两个工厂,使获得利润最大?最大利润是多少?

作业:

1、 设x 的二次方程x 2-2x+lg(2a 2-a)=0有一正根和一负根,求a 的范围。

2、(1994年高考题)在测量某物理的过程中,因仪器和观察的误差,使得n 次测量分别得到a 1,a 2,……, a n 共n 个数据。我们规定所测物理量的“最佳近似值”a 是这样一个量:与其它近似值比较,a 与各数据的差的平方和最小,依此规定,从a 1 ,a 2 , ……a n ,推出的a 的值。

3、 塑料厂销售科计划出售一种塑料鞋,经营人员不是仅仅根据估计的生产成本来确定塑料

鞋的销售价格,而是通过对经营塑料鞋的零售商进行调查,看看在不同的价格下会进多少货。通过一番调查,确定的需求关系是p=-750x+15000(p 为零售商进货的总数量,x 为每双鞋的出厂价), 并求得工厂生产塑料鞋固定成本是7000元,估计生产每双塑料鞋的材料和劳动生产费用为4元,为了获得最大利润,工厂应把每双鞋的出厂价定为多少元?

4、建筑一个容积为2400米3

,深为6米的长方体蓄水池,池壁每平方米的造价为a 元,池底每平方米粉的造价为2a 元,则如何建造才能使总造价为最小。

4、 某一信托公司,考虑投资1600万元建造一座涉外宾馆。经预测,该宾馆建成后,每年

年底可获利600万元,假设银行每年复利计息,利率为10%。若需要在三年内收回全部投资,每年至少应该收益多少万元(结果保留一位小数)?

七、试验法

解答数学题,需要多方面的信息。数学中的各种试验,常常能给人以有益的信息,为分析问题和解决问题提供必要的依据。

用试验法处理数学问题时,必须从问题的实际情形出发,结合有关的数学知识,恰当选择试验的对象和范围;在制定试验方案时,要全面考虑试验的各种可能情形,不能有所遗

漏;在实施试验方案时,要讲究试验技巧,充分利用各次试验所提供的信息,以缩小试验范围,减少试验次数,尽快找出原题的解答。

任何试验都和观察相联系。观察依赖于试验,试验离不开观察。因此,要用好试验法,必须勤于观察,善于观察,有目的、有计划、有条理地进行观察。

例1:在正整数集N +上解方程:xy+3x-5y=3

例2、已知方程x 2+(m+1)x+2m-1=0的两个根都是整数,求m 的整数值。

例3、求所有的实数k ,使得方程kx 2+(k+1)x+(k-1)=0的根都是整数。

八、分类法

分类法是数学中的一种基本方法,对于提高解题能力,发展思维的缜密性,具有十分重要的意义。

不少数学问题,在解题过程中,常常需要借助逻辑中的分类规则,把题设条件所确定的集合,分成若干个便于讨论的非空真子集,然后在各个非空真子集内进行求解,直到获得完满的结果。这种把逻辑分类思想移植到数学中来,用以指导解题的方法,通常称为分类或分域法。

用分类法解题,大体包含以下几个步骤:

第一步:根据题设条件,明确分类的对象,确定需要分类的集合A ;

第二步:寻求恰当的分类根据,按照分类的规则,把集合A 分为若干个便于求解的非空真子集A 1,A 2,…A n ;

第三步:在子集A 1,A 2,…A n 内逐类讨论;

第四步:综合子集内的解答,归纳结论。

以上四个步骤是相互联系的,寻求分类的根据,是其中的一项关键性的工作。从总体上说,分类的主要依据有:分类叙述的定义、定理、公式、法则,具有分类讨论位置关系的几何图形,题目中含有某些特殊的或隐含的分类讨论条件等。在实际解题时,仅凭这些还不够,还

需要有较强的分类意识,需要思维的灵活性和缜密性,特别要善于发掘题中隐含的分类条件。 例1:求方程2)

lg(2lg =+a x x 的实数解,其中a 为实参数。 例2:△ABC 中,AD ⊥BC 于点D ,M 是BC 的中点,且∠B=2∠C 。求证:DM=

21AB 例3:解方程:2|x+2|-|2x+1-1|=2x+1+1

九、数形结合法

数形结合,是研究数学的一个基本观点,对于沟通代数、三角与几何的内在联系,具有重要的指导意义。理解并掌握数形结合法,有助于增强人们的数学素养,提高分析问题和解决问题的能力。

数和形这两个基本概念,是数学的两块基石。数学就是围绕这两个概念发展起来的。在数学发展的进程中,数和形常常结合在一起,在内容上互相联系,在方法上互相渗透,在一定条件下可以互相转化。

数形结合的基本思想,是在研究问题的过程中,注意把数和形结合起来考察,斟酌问题的具体情形,把图形性质的问题转化为数量关系的问题,或者把数量关系的问题转化为图形性质的问题,使复杂问题简单化,抽象问题具体化,化难为易,获得简便易行的成功方案。 中学数学中,数形结合法包含两个方面的内容:一是运用代数、三角知识,通过对数量关系的讨论,去处理几何图形问题;二是运用几何知识,通过对图形性质的研究,去解决数量关系的问题。就具体方法而论,前者常用的方法有解析法、三角法、复数法、向量法等;后者常用的方法主要是图解法。

例:方程sinx=2

x 解的个数为 A 、1 B 、2 C 、3 D 、4

例:已知实数x,y 满足3x+4y-1=0,求22)2()1(-+-y x 的最小值。

例:设x ∈R ,求80817222+-+

++x x x x 的最小值。 例:对每个实数x ,记-x,x 2,x+2三者中的最大者为F(x),求F(x)及F(x)的最小值。

例:如果方程|x 2-4x+3|=px 有四个不同的实数根,求p 的取值范围

十、反证法与同一法

反证法和同一法是间接证明的两种方法,在解题中有着广泛的应用。

(一)反证法是一种重要的证明方法。这里主要研究反证法的逻辑原理、解题步骤和适用范围。

反证法的解题步骤:

第一步:反设。假设命题结论不成立,即假设原结论的反面为真。

第二步:归谬。由反设和已知条件出发,经过一系列正确的逻辑推理,得出矛盾结果。这里所说的矛盾结果,通常是指推出的结果与已知公理、定义、定理、公式矛盾,与已知条件矛盾,与临时假设矛盾,以及自相矛盾等各种情形。

第三步:存真。由矛盾结果,断定反设不真,从而肯定原结论成立。

反证法的三个步骤是互相联系的。反设是前提,归谬是关键,存真是目的。只有正确地作出反设,合乎逻辑地进行推导,才能间接地证出原题。

例1:已知A 1,A 2,…A n 是凸n 边形的n(n>3)个内角。求证:这n 个内角中至多有3个内角是锐角。

例2:设平面α∥平面β,直线l ∩平面α=A 。求证:直线l 与平面β相交。

例3:求证:方程 x=qsinx+a (0

十一、同一法

互逆的两个命题未必等效。但是,当一个命题条件和结论都唯一存在,它们所指的概念是同一概念时,这个命题和它的逆命题等效。这个道理通常称为同一原理。

对于符合同一原理的命题,当直接证明有困难时,可以改证和它等效的逆命题,只要它的逆命题正确,这个命题就成立。这种证明方法叫做同一法。

同一法常用于证明符合同一原理的几何命题。应用同一法解题,一般包括下面几个步骤: 第一步:作出符合命题结论的图形。

第二步:证明所作图形符合已知条件。

第三步:根据唯一性,确定所作的图形与已知图形重合。

第四步:断定原命题的真实性。

例1:在△ABC 中,D 、E 分别是AB 、AC 的中点,求证:DE ∥BC

例2:矩形ABCD 中,AB=2

1BC ,E 是AD 上一点,且∠DCE=15°。求证:BE=BC 作业: 1、 已知函数f(x)的定义域是[2,10],求函数F(x)=f(x+a)+f(x-a)的定义域,其中a>0.

2、 已知α,β∈(0,2

π),且sin(α+β)=2sin α。求证:α<β 3、 在梯形ABCD 中,E 为一腰BC 上的一点,已知△AED 的面积是梯形ABCD 的面积的一半,求证:CE=EB

函数对称性的探究

讲函数的对称性主要是讲奇偶函数图像的对称性,函数与反函数图像的对称性。前者是函数自身的性质,而后者是函数的变换问题。下文中我们均简称为函数的变换性。函数的对称性在近几年高考中屡见不鲜,对于解决其它问题也很有帮助,同时也是数学美的很好体现。现通过函数自身的对称性和不同函数之间的对称变换这两个方面来探讨函数对称性有关的性质。

1. 函数自身的对称性探究

高考题回放:(20XX年广东卷I)设函数

,,且在闭区间[0,7]上只有

(1)试判断函数的奇偶性;

(2)试求方程在闭区间[-2005,2005]上根的个数并证明你的结论。

分析:由可得:函数图象既关于x=2对称,又关于x=7对称,进而可得到周期性,然后再继续求解,而本题关键是要首先明确函数的对称性,因此,熟悉函数对称性是解决本题的第一步。

定理1 函数的图像关于直线x=a对称的充要条件是即

证明(略)

推论函数的图像关于y轴对称的充要条件是

定理2 函数的图像关于点A(a,b)对称的充要条件是

证明(略)

推论函数的图像关于原点O对称的充要条件是

偶函数、奇函数分别是定理1,定理2的特例。

定理3 ①若函数的图像同时关于点A(a,c)和点B(b,c)成中心对称(),则是周期函数,且是其一个周期。

②若函数的图像同时关于直线成轴对称(),则

是周期函数,且是其一个周期。

③若函数的图像既关于点A(a,c)成中心对称又关于直线x=b成轴对称(),则是周期函数,且是其一个周期。

以下给出③的证明,①②的证明留给读者。

因为函数的图像关于点A(a,c)成中心对称。

所以代得:

又因为函数的图像关于直线成轴对称。

所以代入(*)得:

代入(**)得:

是周期函数,且是其一个周期。

2. 不同函数对称性的探究

定理4 函数的图像关于点成中心对称。

证明:设点图像上任一点,则。点关于点

的对称点为,此点坐标满足,显然点

在的图像上。

同理可证:图像上关于点对称的点也在的图像上。

推论函数与的图像关于原点成中心对称。

定理5 函数与的图像关于直线成轴对称。

证明设点是图像上任意一点,则。点关于直线

的对称点为,显然点在的图像上。

同理可证:图像上关于直线对称的点也在图像上。

推论函数与的图像关于直线y轴对称。

定理6 ①函数与的图像关于直线成轴对称。

②函数与的图像关于直线成轴对称。

现证定理6中的②

设点是图像上任一点,则。记点关于直线

的对称点,则,所以

代入

之中得。所以点在函数的图像上。

同理可证:函数的图像上任一点关于直线的轴对称点也在函数

的图像上。故定理6中的②成立。

推论函数的图像与的图像关于直线成轴对称。

3. 函数对称性应用举例

例1 定义在R上的非常数函数满足:为偶函数,且,则

一定是()

A. 是偶函数,也是周期函数

B. 是偶函数,但不是周期函数

C. 是奇函数,也是周期函数

D. 是奇函数,但不是周期函数

解:因为为偶函数,所以。

所以有两条对称轴,因此是以10为其一个周期的周期函数,所以x=0即y轴也是的对称轴,因此还是一个偶函数。故选(A)。

例2 设定义域为R的函数、都有反函数,并且和的函数图像关于直线对称,若,那么()

A. 2002

B. 2003

C. 2004

D. 2005

解:因为的函数图像关于直线对称,所以

的反函数是,而的反函数是,所以

,所以有

故,应选(C)。

例3 设是定义在R上的偶函数,且,当时,

,则___________

解:因为f(x)是定义在R上的偶函数,所以的对称轴;

又因为的对称轴。故是以2为周期的周期函数,所以

例4 函数的图像的一条对称轴的方程是()

解:函数的图像的所有对称轴的方程是,所以

,显然取时的对称轴方程是,故选(A)。

例5 设是定义在R上的奇函数,且的图象关于直线,则:

_____________

解:函数的图像既关于原点对称,又关于直线对称,所以周期是2,又

,图像关于对称,所以,所以

数列

一、基本概念

1、数列的定义及表示方法:按一定次序排列成的一列数叫数列

2、数列的项an与项数n

3、按照数列的项数来分,分为有穷数列与无穷数列

4、按照项的增减规律分为:递增数列,递减数列,摆动数列和常数列

5、数列的通项公式an

6、数列的前n项和公式Sn

7、等差数列、公差d、等差数列的结构:an=a1+(n-1)d

8、等比数列、公比q、等比数列的结构:an=a1·q^(n-1)

二、基本公式:

9、一般数列的通项an与前n项和Sn的关系:an= Sn-Sn-1

10、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k 项)

当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。

11、等差数列的前n项和公式:Sn=a1·n+1/2·n·(n+1)·d

当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。

12、等比数列的通项公式: an= a1·q^(n-1) an= ak·q^(n-k)

(其中a1为首项、ak为已知的第k项,an≠0)

13、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);

当q≠1时,Sn=a1·(q^n-1)/(q-1)

三、有关等差、等比数列的结论

14、等差数列的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等差数列。

15、等差数列中,若m+n=p+q,则 am+an=ap+aq

16、等比数列中,若m+n=p+q,则 am·an=ap·aq

17、等比数列的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等比数列。

18、两个等差数列与的和差的数列{an+bn}仍为等差数列。

19、两个等比数列与的积、商、倒数组成的数列

{an·bn}、{an/bn} 、{1/(an·bn)} 仍为等比数列。

20、等差数列的任意等距离的项构成的数列仍为等差数列。

21、等比数列的任意等距离的项构成的数列仍为等比数列。

22、三个数成等差的设法:a-d,a,a+d;

四个数成等差的设法:a-3d,a-d,,a+d,a+3d

23、三个数成等比的设法:a/q,a,aq;

四个数成等比的错误设法:a/q3,a/q,aq,aq3

四、数列求和的常用方法:

公式法、裂项相消法、错位相减法、倒序相加法等。(关键是找数列的通项结构)

24、分组法求数列的和:如an=2n+3n

25、错位相减法求和:如an=n·2^n

26、裂项法求和:如an=1/n(n+1)

27、倒序相加法求和:如an= n

28、求数列的最大、最小项的方法:

① an+1-an=……如an= -2n2+29n-3

② (an>0) 如an=

③ an=f(n) 研究函数f(n)的增减性如an= an^2+bn+c(a≠0)

29、在等差数列中,有关Sn 的最值问题——常用邻项变号法求解:

(1)当 a1>0,d<0时,满足的项数m使得Sm取最大值.

(2)当 a1<0,d>0时,满足的项数m使得Sm取最小值.

在解含绝对值的数列最值问题时,注意转化思想的应用。

求数列通项公式常用以下几种方法:

一、题目已知或通过简单推理判断出是等比数列或等差数列,直接用其通项公式。

例:在数列{an}中,若a1=1,an+1=an+2(n1),求该数列的

通项公式an。

解:由an+1=an+2(n1)及已知可推出数列{an}为a1=1,d=2的等差数列。

所以an=2n-1。此类题主要是用等比、等差数列的定义判断,是较简单的

基础小题。

二、已知数列的前n项和,用公式: an=S1 (n=1) ,an=Sn-Sn-1 (n>2)

例:已知数列{an}的前n项和Sn=n2-9n,第k项满足5

(A) 9 (B) 8 (C) 7 (D) 6

解:∵an=Sn-Sn-1=2n-10,∴5<2k-10<8 ∴k=8 选 (B)

此类题在解时要注意考虑n=1的情况。

三、已知an与Sn的关系时,通常用转化的方法,先求出Sn与n的关系

再由上面的(二)方法求通项公式。

四、用累加、累积的方法求通项公式对于题中给出an与an+1、an-1的

递推式子,常用累加、累积的方法求通项公式。

例:设数列{an}是首项为1的正项数列,且满足(n+1)an+12-nan2+an+1an=0,求数列{an}的通项公式

数列求和的方法

求数列的前n项和是高中数学《数列》一章的教学重点之一,而对于一些非等差数列,又非等比数列的某些数列求和,是教材的难点。不过,只要认真去探求这些数列的特点。和结构,也并非无规律可循。

典型示例:

1、用通项公式法:

规律:能用通项公式写出数列各项,从而将其和重新组合为可求数列和。

例1:求5,55,555,…,的前n项和。

解:∵an= 5 9(10n-1)

∴Sn = 5 9(10-1)+ 5 9(102-1) + 5 9(103-1) + … + 5 9(10n-1)

= 5 9[(10+102+103+……+10n)-n]

= (10n+1-9n-10)

2、错位相减法:

一般地形如{an·bn}的数列,{ an }为等差数列, { bn }为等比数列,均可用错位相减法求和。

例2:求:Sn=1+5x+9x2+······+(4n-3)xn-1

解:Sn=1+5x+9x2+······+(4n-3)xn-1 ①

①两边同乘以x,得

x Sn=x+5 x2+9x3+······+(4n-3)xn ②

①-②得,(1-x)Sn=1+4(x+ x2+x3+······+ )-(4n-3)xn

当x=1时,Sn=1+5+9+······+(4n-3)=2n2-n

当x≠1时,Sn= 1 1-x [ 4x(1-xn) 1-x +1-(4n-3)xn ]

3、裂项抵消法:

这一类数列的特征是:数列各项是等差数列某相邻两项或几项的积,

一般地,{an}是公差为d的等差数列,则:

即裂项抵消法,多用于分母为等差数列的某相邻k项之积,而分子为常量的分式型数列的求和,对裂项抵消法求和,其裂项可采用待定系数法确定。

例3:求 1 3, 1 1 5, 1 3 5, 1 63之和。

解:

4、分组法:

某些数列,通过适当分组,可得出两个或几个等差数列或等比数列,从而可利用等差数列或等比数列的求和公式分别求和,从而得出原数列之和。

例4:求数列的前n项和。

解:

5、聚合法:

有的数列表示形式较复杂,每一项是若干个数的和,这时常采用聚合法,

先对其第n项求和,然后将通项化简,从而改变原数列的形式,有利于找出解题办法。

例5:求数列2,2+4,2+4+6,2+4+6+8,……,2+4+6+……+2n,…的前n项和

解:∵an=2+4+6+……+2n= n(n+1)=n2+n

∴Sn=(12+1)+(22+2)+(32+3) +……+( n2+n)

=(12+22+32+……+ n2)+(+2+3+……+n)

= n(n+1)(2n+1)+ n(n+1)

= 1 3n(n+1)(n+2)

6、反序相加法:

等差数列前n项和公式的推导,是先将和式中各项反序编排得出另一个和式,然后再与原来的和式对应相加,从而解得等差数列的前n项和公式,利用这种方法也可以求出某些数列的前n项和。

配方法题研究-备战2021年中考数学解题方法之探究十法(解析版)

备战2020中考数学解题方法专题研究 专题6 配方法专题 【方法简介】 配方法是指将一个式子(包括有理式和超越式)或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和,这种方法称之为配方法。这种方法常常被用到恒等变形中,以挖掘题目中的隐含条件,是解题的有力手段之一。 把代数式通过凑配等手段,得到完全平方式,再运用完全平方式是非负数这一性质达到增加问题的条件的目的,这种解题方法叫配方法. 配方法的作用在于改变代数式的原有结构,是求解变形的一种手段;配方法的实质在于改变式子的非负性,是挖掘隐含条件的有力工具,配方法在代数式的化简求值、解方程、解最值问题、讨论不等关系等方面有广泛的应用. 运用配方法解题的关键是恰当的“凑配”,应具有整体把握题设条件的能力,即善于将某项拆开又重新分配组合,得到完全平方式. 【真题演练】 1. 用配方法解一元二次方程x 2﹣4x ﹣6=0,变形正确的是( ) A .(x ﹣2)2=0 B .(x ﹣4)2=22 C .(x ﹣2)2=10 D .(x ﹣2)2=8 【解答】解:x 2﹣4x ﹣6=0, 移项得:x 2﹣4x =6, 配方得:x 2﹣4x+4=10,即(x ﹣2)2=10. 故选:C . 2. 用配方法解下列方程: (1)x 2+3x -4=0; (2)x(x +8)=609. 【解析】解:(1)由x 2+3x -4=0, 得x 2+3x + ????322-????322-4=0, 即????x +322-254=0,????x +322=254 , ∴x +32=±52,x =-32±52 , ∴x 1=1,x 2=-4.

高中数学解题技巧归纳

高中数学破题技巧 主讲人:徐德桦(绍兴一中) 一、列举法 【方法阐释】列举法就是通过枚举集合中所有的元素,然后根据集合的基本运算进行求解的方法。这种方法适用于数集的有关运算以及集合类型的新定义运算问题,也适用于一些集合元素比较少而且类型比较单一类型的题目,如排列组合等等。 【典型实例】 设P,Q为两个非空实数集合,定义集合P*Q={z|z=a/b,a∈P,b∈Q},若P={-1,0,1},Q={-2,2},则集合P*Q中元素的个数是() A.2 B.3 C.4 D.5 二、定义法 【方法阐释】利用定义判断充分条件和必要条件的方法就是最基本的、最常规的方法(回忆一下这些条件的判断方法),一般拿到陌生的题目或者一些新定义类型的题目都需要从定义和性质出发寻找突破口。 【典型实例】 “(m-1)(a-1)>0”是“logam>0”的()(logam 意思就是以a为底m的对数) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 三、特殊函数法

【方法阐释】对于一些小题目(譬如,选择题和填空题)一般不需要详细的过程和步骤,只要有一种预感和能说服自己的理由可以尝试地使用一些特定的函数或者说特殊值。给定函数f(x)具备的一些性质来研究它另外的一些性质。对于能看出来是定值的题目一般也宜用特殊值法。 【典型实例】 定义在R上的函数f(x)关于(2,0)对称,且在[2,+无穷)上单调递增,如果x1+x2>4,且(x1-2)(x2-2)<0,则f(x1)+f(x2)与0的大小关系是() A.f(x1)+f(x2)>0 B.f(x1)+f(x2)=0 C.f(x1)+f(x2)<0 D.无法判断 四、换元法 【方法阐释】这是一种高中阶段最常用的数学解题方法,贯穿于高中所有的阶段。解题过程就是将复杂的抽象的难以分辨和讨论的问题转化为简单具体直接而且熟悉的问题。例如,求函数y = x^4+2x^2-8的最值,就可以t=x^2(t>=0),这里t的范围需要特别注意。 【典型实例】 若2=

高中数学解题的21个典型方法与技巧

高中数学解题的21个典型方法与技巧 2018-12-26 1、解决绝对值问题(化简、求值、方程、不等式、函数)的基本思路是:把绝对值的问题转化为不含绝对值的问题。具体转化方法有: ①分类讨论法:根据绝对值符号中的数或表达式的正、零、负分情况去掉绝对值。 ②零点分段讨论法:适用于含一个字母的多个绝对值的情况。 ③两边平方法:适用于两边非负的方程或不等式。 ④几何意义法:适用于有明显几何意义的情况。 2、根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。因式分解的一般步骤是:提取公因式→选择用公式→十字相乘法→分组分解法→拆项添项法。 3、利用完全平方式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。配方法的主要根据有: ①()2222a ab b a b ±+=± ②()2 222222a b c ab bc ca a b c +++++=++ ③()()()22222212a b c ab bc ca a b b c c a ??+++++=+++++? ? ④222222224224244b b b b b b ac ax bx c a x x c a x x c a x a a a a a a ??-????++=++=+??++-=++ ? ? ??????? 4、解某些复杂的特型方程要用到换元法。换元法解题的一般步骤是:设元→换元→解元→还元。 5、待定系数法是在已知对象形式的条件下求对象的一种方法。适用于求解点的坐标、函数解析式、曲线方程等重要问题的解决。其步骤是:①设②列③解④写 6、复杂代数等式条件的使用技巧:右边化为零,左边变形。 ①因式分解型:()()0---?---=,两种情况为或型。 ②配成平方型:()()22 0---+---=,两种情况为且型。 7、数学中两个最伟大的解题思路: ①求值的思路 ?????→方程思想与方法列欲求值字母的方程或方程组 ②求取值范围的思路??????→不等式思想与方法欲求范围字母的不等式或不等式组

(完整版)数学归纳法经典例题详解

例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n Λ. 请读者分析下面的证法: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k Λ. 那么当n =k +1时,有: ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ????????? ??+-++??? ??+--++??? ??-+??? ??-+??? ? ?-=3211211211217151513131121k k k k Λ 322221321121++?=??? ??+-= k k k ()1 121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立. 由①、②可知,对一切自然数n 等式成立. 评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求. 正确方法是:当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k

()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 例2.是否存在一个等差数列{a n },使得对任何自然数n ,等式: a 1+2a 2+3a 3+…+na n =n (n +1)(n +2) 都成立,并证明你的结论. 分析:采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性. 解:将n =1,2,3分别代入等式得方程组. ?????=++=+=603224 26321 211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3. 故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立. 下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式 a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 因为起始值已证,可证第二步骤. 假设n =k 时,等式成立,即 a 1+2a 2+3a 3+…+ka k =k (k +1)(k +2) 那么当n =k +1时, a 1+2a 2+3a 3+…+ka k +(k +1)a k +1 = k (k +1)(k +2)+ (k +1)[3(k +1)+3] =(k +1)(k 2+2k +3k +6) =(k +1)(k +2)(k +3) =(k +1)[(k +1)+1][(k +1)+2] 这就是说,当n =k +1时,也存在一个等差数列a n =3n +3使a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)成立. 综合上述,可知存在一个等差数列a n =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 例3.证明不等式n n 21 31 21 1<++++Λ (n ∈N). 证明:①当n =1时,左边=1,右边=2.

《数学归纳法及其应用举例》教案

《数学归纳法及其应用举例》教案 中卫市第一中学 俞清华 教学目标: 1.认知目标:了解数学归纳法的原理,掌握用数学归纳法证题的方法。 2.能力目标:培养学生理解分析、归纳推理和独立实践的能力。 3.情感目标:激发学生的求知欲,增强学生的学习热情,培养学生辩证唯物主义的世界观 和勇于探索的科学精神。 教学重点: 了解数学归纳法的原理及掌握用数学归纳法证题的方法。 教学难点: 数学归纳法原理的了解及递推思想在解题中的体现。 教学过程: 一.创设情境,回顾引入 师:本节课我们学习《数学归纳法及其应用举例》(板书)。首先给大家讲一个故事:从前有 一个员外的儿子学写字,当老师教他写数字的时候,告诉他一、二、三的写法时,员外儿子很高兴,告诉老师他会写数字了。过了不久,员外要写请帖宴请亲朋好友到家里做客,员外儿子自告奋勇地要写请帖。结果早晨开始写,一直到了晚间也没有写完,请问同学们,这是为什么呢? 生:因为有姓“万”的。 师:对!有姓“万”的。员外儿子万万也没有想到“万”不是一万横,而是这么写的“万”。通过这个故事,你对员外儿子有何评价呢? 生:(学生的评价主要会有两种,一是员外儿子愚蠢,二是员外儿子还是聪明的。) 师:其实员外儿子观察、归纳、猜想的能力还是很不错的,但遗憾的是他猜错了!在数学 上,我们很多时候是通过观察→归纳→猜想,这种思维过程去发现某些结论,它是一种创造性的思维过程。那么,我们在以前的学习过程中,有没有也像员外儿子那样猜想过某些结论呢? 生:有。例如等差数列通项公式的推导。 师:很好。我们是由等差数列前几项满足的规律:d a a 011+=,d a a +=12,d a a 213+=,d a a 314+=,……归纳出了它的通项公式的。其实我们推导等差数列通项公式的方法和员外儿子猜想数字写法的方法都是归纳法。那么你能说说什么是归纳法,归纳法有什么特点吗? 生:由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法。特点:特殊→一般。 师:对。(投影展示有关定义) 像这种由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法。根据推理过程中考察的 对象是涉及事物的一部分还是全部,分为不完全归纳法和完全归纳法。 完全归纳法是一种在研究了事物的所有(有限种)特殊情况后得出一般结论的推理方法,又 叫做枚举法。那么,用完全归纳法得出的结论可靠吗? 生:(齐答)可靠。 师:用不完全归纳法得出的结论是不是也是可靠的呢?为什么?

高中数学三角函数解题方法研究

高中数学三角函数解题方法研究 三角函数作为高中数学重点知识,是高考的必考内容,会通过选择、填空、解答等多种 题型来考查我们的掌握程度、思维能力。通过对三角函数知识的学习与思考有利于我们加深 对三角函数的记忆和理解,同时也能锻炼我们思维能力、提高学习效率和质量。接下来,谈 谈对高中数学三角函数解题方法的几点思考。 一、加强审题,注意审题方法 我们在做三角函数题时,切忌急躁,一定要定下心来认真审题,认真琢磨题干中的每一 个信息,如此以来,就不会出现审错题问题。我在学习的过程中,归纳总结了几个审题方法:第一,在面对新颖题型时,擦亮眼睛认真审题,把题干中的已知条件、重点信息进行标注, 运用所学知识明确已知条件和未知结论二者的关系,明确解题方向、选择解题方法,从而成 功解题。切忌浏览完题目信息立即动笔解题,一定要找到关键信息,进而成功解题;第二, 在面对常见题型时,要学会与自己做过的类似题目进行对比,发现二者异同点,从而找到解 答本题最合适的方法,切忌照搬照抄;第三,在审题的过程中,做个有心人,深度挖掘题干 隐含信息,特别是在面对图形题时,要留心每个细节,寻找内在联系,从而正确解答。 二、深化三角函数概念理论 数学是高中阶段的基础学科,也是核心学科,加强对基础知识的记忆和理解有利于我们 打好数学基础,提高后续数学学习质量。 在学习的过程中,我发现,在考试中,三角函数多是以选择题的形式出现,考查范围非 常广,解题时涉及很多基础知识,很多题目都是通过公式变形得出答案的,因此,在日常学 习中要加强对基础知识的训练。以"弧度制"章节知识点为例,需要我们掌握弧长公式、扇形 面积公式,还要掌握角度制、弧度制之间的换算知识;再如,学习"同角三角函数基本关系" 章节时,需要掌握平方、商数、倒数关系,涉及到的诸多公式。还要充分掌握三角变换中的"消去法"、"化弦法"等运用方法,从而在解题过程中灵活运用。 另一方面,就三角函数这一章节知识点来说,我们知识学好基础知识,扎实基本功,才 能在解决实际问题的过程中游刃有余。由此可见,作为高中生,我们在学习数学三角函数知 识过程中,要加强对三角函数基础知识的记忆、理解和掌握,不断提升自己的概括能力。我 们都是在高一阶段接触到三角函数知识的,大部分学生在刚开始学习的时候,都能理解和掌握,但是也有不少学生在时间的推移中将高一学的知识忘记了。所以,我们在高中阶段,应 做好回头看工作,实时对所学的知识进行巩固记忆,深化概念理论,从而为后续深入学习三 角函数知识打好基础,进而树立正确的解题理念和解题思虑,不断提高学习效率和质量。 三、加强课后练习,提高解题思路的多样性 我在学习三角函数一段时间以后发现要想理解和掌握三角函数知识点,没有什么捷径, 只能通过掌握三角函数理论知识、加强练习,才能有效提升自己的解题能力、学习能力。所以,我发现,只有通过实现理论知识与实际训练的高度结合,才有不断丰富解题思路、进而 有效解决问题。如,在学习"三角函数正弦定理"章节知识点时,我们可以通过做大量的练习 题来加强对正弦定理的理解和掌握,并学以致用,解决实际问题。如,已经锐角三角形ABC,假设每个内角为A、B、C所对应的边分别时a、b、c,如果a=sinA·2b,求B。解:正弦定理 正弦定理的sinA=2sinBsinA,综合已知条件a=sinA·2b,得出,sinB=1/2。我们只要知道正弦定理,很快就能解答这道题。反过来看,这道题实质上是在考查我们对正弦定理的掌握程度。 由此可见,我们必须掌握好三角函数的基本知识,并学以致用,用这些概念、定理、公理去 解决实际问题,加强练习,并学会总结,才能有效提高解题能力、数学学习能力。

高中数学解题方法大全

第一章 高中数学解题基本方法 一、 配方法 配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。 最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy 项的二次曲线的平移变换等问题。 配方法使用的最基本的配方依据是二项完全平方公式(a +b) =a +2ab +b ,将这个公式灵活运用,可得到各种基本配方形式,如: a 2 + b 2=(a +b)2 -2ab =(a -b)2 +2ab ; a 2 +a b +b 2 =(a +b)2 -ab =(a -b)2 +3ab ; a 2 + b 2 + c 2 +ab +bc +ca = 2 1[(a +b)2 +(b +c) 2+(c +a) 2] a 2+b 2+c 2=(a +b +c) 2-2(ab +bc +ca)=(a +b -c)2 -2(ab -bc -ca)=… 结合其它数学知识和性质,相应有另外的一些配方形式,如: 1+sin2α=1+2sin αcos α=(sin α+cos α) ; x + =(x + ) -2=(x - ) +2 ;…… 等等。 Ⅰ、再现性题组: 1. 在正项等比数列{a }中,a ?a +2a ?a +a ?a =25,则 a +a =_______。 2. 方程x +y -4kx -2y +5k =0表示圆的充要条件是_____。 A. 1 C. k ∈R D. k = 或k =1 3. 已知sin α+cos α=1,则sin α+cos α的值为______。

高中数学函数解题技巧及方法

专题1 函数 (理科) 一、考点回顾 1.理解函数的概念,了解映射的概念. 2.了解函数的单调性的概念,掌握判断一些简单函数的单调性的方法. 3.了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数. 4.理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质. 5.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质. 6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 二、经典例题剖析 考点一:函数的性质与图象 函数的性质是研究初等函数的基石,也是高考考查的重点内容.在复习中要肯于在对定义的深入理解上下功夫. 复习函数的性质,可以从“数”和“形”两个方面,从理解函数的单调性和奇偶性的定义入手,在判断和证明函数的性质的问题中得以巩固,在求复合函数的单调区间、函数的最值及应用问题的过程中得以深化.具体要求是: 1.正确理解函数单调性和奇偶性的定义,能准确判断函数的奇偶性,以及函数在某一区间的单调性,能熟练运用定义证明函数的单调性和奇偶性. 2.从数形结合的角度认识函数的单调性和奇偶性,深化对函数性质几何特征的理解和运用,归纳总结求函数最大值和最小值的常用方法. 3.培养学生用运动变化的观点分析问题,提高学生用换元、转化、数形结合等数学思想方法解决问题的能力. 这部分内容的重点是对函数单调性和奇偶性定义的深入理解. 函数的单调性只能在函数的定义域内来讨论.函数y=f(x)在给定区间上的单调性,反映了函数在区间上函数值的变化趋势,是函数在区间上的整体性质,但不一定是函数在定义域上的整体性质.函数的单调性是对某个区间而言的,所以要受到区间的限制. 对函数奇偶性定义的理解,不能只停留在f(-x)=f(x)和f(-x)=-f(x)这两个等式上,要明确对定义域内任意一个x,都有f(-x)=f(x),f(-x)=-f(x)的实质是:函数的定义域关于原点对称.这是函数具备奇偶性的必要条件.稍加推广,可得函数f(x)的图象关于直线x=a对称的充要条件是对定义域内的任意x,都有f(x+a)=f(a-x)成立.函数的奇偶性是其相应图象的特殊的对称性的反映.这部分的难点是函数的单调性和奇偶性的综合运用.根据已知条件,调动相关知识,选择恰当的方法解决问题,是对学生能力的较高要求. 函数的图象是函数性质的直观载体,函数的性质可以通过函数的图像直观地表现出来。

数列解题技巧归纳总结---好(5份)

知识框架 111111(2)(2)(1)(1)()22()n n n n n n m p q n n n n a q n a a a q a a d n a a n d n n n S a a na d a a a a m n p q --=≥=?? ←???-=≥?? =+-? ?-?=+=+??+=++=+??两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解 的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1) 11(1)() n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+???? ? ??????????????????? ???????????? ???? ????????????? ?????? ? ?? ?? ?? ?? ??????????? 等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和 求和倒序相加求和累加累积 归纳猜想证明分期付款数列的应用其他??????? ? ? 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握 了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足11 2 n n a a +=,而12a =,求n a =?

数学解题方法与技巧教学的研究_答题技巧

数学解题方法与技巧教学的研究_答题技巧 数学解题方法与技巧教学的研究 前面所说的数学习过程的练习题一般是由标准答案,已知和求解都是十分清楚的。而实际生活中许多问题预先是不知答案或者不一定有统一的答案,甚至可能没有答案,这样一类可以用数学方法去研究和解决的问题称为数学问题解答。它的常见类型和价值是这样的。 1. 可以构建数学模型的非常规的实际问题。这类问题往往不是纯数学化的问题模式,而是一种情景,一种实际需求,只是为了解决遇到的困难,需要讲实际问题转化为数学模型并进行解释与解决。这是在生活和实践中运用数学最常用的方式,培养的是学生面对实际进行的问题解决能力。 2. 探究性问题:要求的是通过一定的探索,研究来认识数学对象的性质,去发现其数学规律,这种问题要求一种研究式的思维能力,在问题解决过程中感受发现的乐趣,它培养的是一种主动探索精神和科学态度。 3. 开放性问题:是问题的条件、结论、解题策略或应用等方面具有一定的开放程度的问题,学生在研究这类问题时通常采用的是合作研究,这种方式可互相启发学生的合作与交流,在交流和合作中完善和优化自己的思维。这类问题的解决可培养学生的思维的灵活性和发散性。培养学生的创新意识。 二、解题的方法与技巧 数学思想方法在解题中有不可忽视的作用 解题的学习过程通常的程序是:阅读数学知识,理解概念;在对例题和老师的讲解进行反思,思考例题的方法、技巧和解题的规范过程;然后做数学练习题。 基本题要练程序和速度;典型题尝试一题多解开发数学思维;最后要及时总结反思改错,交流学习好的解法和技巧。著名的数学教育家波利亚说过“如果没有反思,就错过了解题的的一次重要而有意义的方面。” 教师在教学设计中要让学生解好数学问题,就要对数学思想方法有清楚的认识,才能更好的挖掘题目的功能,引导学生发现总结题目的解法和技巧,提高解题能力。

高中数学50个解题小技巧

高中数学50个解题小技巧 XX:__________ 指导:__________ 日期:__________

1 . 适用条件 [直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。x为分离比,必须大于1。 注:上述公式适合一切圆锥曲线。如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。 2 . 函数的周期性问题(记忆三个) (1)若f(x)=-f(x+k),则T=2k;(2)若f(x)=m/(x+k)(m不为0),则T=2k;(3)若f(x)=f(x+k)+f(x-k),则T=6k。 注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。 c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。 3 . 关于对称问题(无数人搞不懂的问题)总结如下 (1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a, b)中心对称 4 . 函数奇偶性 (1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空 5 . 数列爆强定律 (1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:

S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立(4)等比数列爆强公式:S(n+m)=S(m)+q2mS(n)可以迅速求q 6 . 数列的终极利器,特征根方程 首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p2(n-1)+x,这是一阶特征根方程的运用。 二阶有点麻烦,且不常用。所以不赘述。希望同学们牢记上述公式。当然这种类型的数列可以构造(两边同时加数) 7 . 函数详解补充 1、复合函数奇偶性:内偶则偶,内奇同外 2、复合函数单调性:同增异减 3、重点知识关于三次函数:恐怕没有多少人知道三次函数曲线其实是中心对称图形。它有一个对称中心,求法为二阶导后导数为0,根x即为中心横坐标,纵坐标可以用x带入原函数界定。另外,必有唯一一条过该中心的直线与两旁相切。 8 . 常用数列bn=n×(22n)求和Sn=(n-1)×(22(n+1))+2记忆方法 前面减去一个1,后面加一个,再整体加一个2 9 . 适用于标准方程(焦点在x轴)爆强公式 k椭=-{(b2)xo}/{(a2)yo}k双={(b2)xo}/{(a2)yo}k抛=p/yo 注:(xo,yo)均为直线过圆锥曲线所截段的中点。 10 . 强烈推荐一个两直线垂直或平行的必杀技 已知直线L1:a1x+b1y+c1=0直线L2:a2x+b2y+c2=0若它们垂直:(充要条件)a1a2+b1b2=0;若它们平行:(充要条件)a1b2=a2b1且a1c2≠a2c1[这个条件为了

(完整版)数学归纳法经典例题及答案(2)

数学归纳法(2016.4.21) 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n Λ 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k Λ. 当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k ()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立.

题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++Λ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ Λ. 那么当n =k +1时, 11 1 31 21 1++++++k k Λ 1 1 1211 2+++=++

中学数学解题方法研究模拟试题

中学数学解题方法研究模拟试题 一、填空题:(每题4分,共28分) 1.递推方法是根据具体问题,首先关系,再通过递推关系进行求解,从而解决这一具体问题的方法。 2.三角代换可以沟通数学学科的联系,在解题过程中要善于捕捉这方面的素材,引入适当的三角变换,可以扩展解题视野,拓宽解题思路。 3.对于任意两个实数a、b,总存在实数t,使,我们称t为增量,这种代换称为增量代换。 4.利用数学模型法解答实际问题(包括数学应用题),一般要做好三方面的工作:(1)建模;(2)推理、演算;(3)。 5. 分析解题包括两方面的内容:一是;二是对题解进行深入地思考。 6. 的主要表现形式是:综合与单一间的分合;整体与部分间的分合;无限与有限间的分合等。在解数学问题时,分合并用策略的主要体现为拼凑、拆与并、割与补等。 7.中学数学中,包含两个方面的内容:一是运用代数、三角知识,通过对数量关系的讨论,去处理几何图形问题;二是运用 中学数学解题方法模拟试题

中学数学解题方法模拟试题 几何知识,通过对图形性质的研究,去解决数量关系的问题。 二、单选题:在下列各题的备选答案中选择一个正确的。(每题4分,共12分) 8.函数)2(log )(22x x x f +=的单调递减区间是( ) A. ),0[+∞; B. ),2(+∞-; C.),0(+∞; D. )2,(--∞ 9.等差数列{}{}n n b a ,的前n 项和分别为n n T S 和,若 132+=n n T S n n ,则n n n b a ∞→lim 等于( ) A. 1 B.36 C. 32 D. 9 4 10.已知函数()2sin (0)f x x ωω=>在区间34ππ??-???? ,上的最小值是2-,则ω的最小值等于( ) A.23 B.32 C.2 D.3 三、解答题(每题15分,共45分) 11.已知函数R m m x m x x f ∈++-=,)1()(2。若tan A ,tan B 是方程04)(=+x f 的两个实根,A 、B 是锐角三角形ABC 的两个内角,求m 的取值范围。

高中数学知识点以及解题方法大全

前言 (2) 第一章高中数学解题基本方法 (3) 一、配方法 (3) 二、换元法 (7) 三、待定系数法 (14) 四、定义法 (19) 五、数学归纳法 (23) 六、参数法 (28) 七、反证法 (32) 八、消去法……………………………………… 九、分析与综合法……………………………… 十、特殊与一般法……………………………… 十一、类比与归纳法………………………… 十二、观察与实验法………………………… 第二章高中数学常用的数学思想 (35) 一、数形结合思想 (35) 二、分类讨论思想 (41) 三、函数与方程思想 (47) 四、转化(化归)思想 (54) 第三章高考热点问题和解题策略 (59) 一、应用问题 (59) 二、探索性问题 (65) 三、选择题解答策略 (71) 四、填空题解答策略 (77) 附录……………………………………………………… 一、高考数学试卷分析………………………… 二、两套高考模拟试卷………………………… 三、参考答案…………………………………… 前言 美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。 高考试题主要从以下几个方面对数学思想方法进行考查: ①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去 法等; ②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等; ③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、 归纳和演绎等; ④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化 归)思想等。 数学思想方法与数学基础知识相比较,它有较高的地位和层次。数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。 数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。 可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。 为了帮助学生掌握解题的金钥匙,掌握解题的思想方法,本书先是介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化( 第一章高中数学解题基本方法 一、配方法 配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。 最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。 配方法使用的最基本的配方依据是二项完全平方公式(a+b) 2 =a 2 +2ab+b 2 ,将这个公式灵活运用,可得到各种基本配方形式,如: a 2 +b 2 =(a+b) 2 -2ab=(a-b) 2 +2ab; a 2 +ab+b 2 =(a+b) 2 -ab=(a-b) 2 +3ab=(a+ b 2) 2 +( 3 2b) 2 ; a 2 +b 2 +c 2 +ab+bc+ca= 1 2[(a+b) 2 +(b+c) 2 +(c+a) 2 ] a 2 +b 2 +c 2 =(a+b+c) 2 -2(ab+bc+ca)=(a+b-c) 2 -2(ab-bc-ca)=… 结合其它数学知识和性质,相应有另外的一些配方形式,如: 1+sin2α=1+2sinαcosα=(sinα+cosα) 2 ; x 2 + 1 2 x=(x+ 1 x) 2 -2=(x- 1 x) 2 +2 ;……等等。 Ⅰ、再现性题组: 1. 在正项等比数列{a n}中,a1?a5+2a3?a5+a3?a7=25,则 a3+a5=_______。 2. 方程x 2 +y 2 -4kx-2y+5k=0表示圆的充要条件是_____。 A. 1 41 C. k∈R D. k= 1 4或k=1 3. 已知sin 4 α+cos 4 α=1,则sinα+cosα的值为______。 A. 1 B. -1 C. 1或-1 D. 0 4. 函数y=log1 2 (-2x 2 +5x+3)的单调递增区间是_____。 A. (-∞, 5 4] B. [ 5 4,+∞) C. (- 1 2, 5 4] D. [ 5 4,3) 5. 已知方程x 2 +(a-2)x+a-1=0的两根x1、x2,则点P(x1,x2)在圆x 2 +y 2 =4上,则实数a=_____。 【简解】 1小题:利用等比数列性质a m p -a m p +=a m 2 ,将已知等式左边后配方(a3+a5) 2 易求。答案是:5。 2小题:配方成圆的标准方程形式(x-a) 2 +(y-b) 2 =r 2 ,解r 2 >0即可,选B。 3小题:已知等式经配方成(sin 2 α+cos 2 α) 2 -2sin 2 αcos 2 α=1,求出sinαcosα,然后求出所求式的平方值,再开方求解。选C。 4小题:配方后得到对称轴,结合定义域和对数函数及复合函数的单调性求解。选D。 5小题:答案3-11。 Ⅱ、示范性题组: 例1.已知长方体的全面积为11,其12条棱的长度之和为24,则这个长方体的一条对角线长为_____。 A. 23 B. 14 C. 5 D. 6 【分析】先转换为数学表达式:设长方体长宽高分别为x,y,z,则211 424 () () xy yz xz x y z ++= ++= ? ? ? ,而欲求对角线长x y z 222 ++,将其配凑成两已知式的组合形式可得。

数学归纳法典型例习题

欢迎阅读数学归纳法典型例题 一. 教学内容: 高三复习专题:数学归纳法 二. 教学目的 掌握数学归纳法的原理及应用 三. 教学重点、难点 四. ??? ??? (1 ??? (2()时命题成立,证明当时命题也成立。??? 开始的所有正整数 ??? 即只 称为数学归纳法,这两步各司其职,缺一不可,特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性,如果没有第一步,而仅有第二步成立,命题也可能是假命题。 【要点解析】 ? 1、用数学归纳法证明有关问题的关键在第二步,即n=k+1时为什么成立,n=k+1时成立是利用假设n=k时成立,根据有关的定理、定义、公式、性质等数学结论推证出n=k+1时成立,而不是直接代入,否则n=k+1时也成假设了,命题并没有得到证明。 ??? 用数学归纳法可证明有关的正整数问题,但并不是所有的正整数问题都是用数学归纳法证明的,学习时要具体问题具体分析。

? 2、运用数学归纳法时易犯的错误 ??? (1)对项数估算的错误,特别是寻找n=k与n=k+1的关系时,项数发生什么变化被弄错。 ??? (2)没有利用归纳假设:归纳假设是必须要用的,假设是起桥梁作用的,桥梁断了就通不过去了。 ??? (3)关键步骤含糊不清,“假设n=k时结论成立,利用此假设证明n=k+1时结论也成立”,是数学归纳法的关键一步,也是证明问题最重要的环节,对推导的过程要把步骤写完整,注意证明过程的严谨性、规范性。 ? 例1. 时,。 ,右边,左边 时等式成立,即有,则当时, 由①,②可知,对一切等式都成立。 的取值是否有关,由到时 (2 到 本题证明时若利用数列求和中的拆项相消法,即 ,则这不是归纳假设,这是套用数学归纳法的一种伪证。 (3)在步骤②的证明过程中,突出了两个凑字,一“凑”假设,二“凑”结论,关键是明确 时证明的目标,充分考虑由到时,命题形式之间的区别和联系。

【高二数学的解题的方法介绍】高二数学题库

高二网权威发布高二数学的解题的方法介绍,更多高二数学的解题的方法介绍相关信息请访问高二网。 【导语】掌握正确有效的解题方法会让学生在解题的时候可以节省很多的时间,下面大范文网将为大家带来高中数学的解题的方法介绍,希望能够帮助到大家。 高中数学的解题的方法 确保运算准确,立足一次成功 数学高考题的容量在120分钟时间内完成大小26个题,时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功。解题速度是建立在解题准确度基础上,更何况数学题的中间数据常常不但从“数量”上,而且从“性质”上影响着后继各步的解答。所以,在以快为上的前提下,要稳扎稳打,层层有据,步步准确,不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤,假如速度与准确不可兼得的说,就只好舍快求对了,因为解答不对,再快也无意义。 讲求规范书写,力争既对又全 考试的又一个特点是以卷面为唯一依据。这就要求不但会而且要对、对且全,全而规范。会而不对,令人惋惜;对而不全,得分不高;表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。因为字迹潦草,会使阅卷老师的第一印象不良,进而使阅卷老师认为考生学习不认真、基本功不过硬、“感情分”也就相应低了,此所谓心理学上的“光环效应”。“书写要工整,卷面能得分”讲的也正是这个道理。 面对难题,讲究方法,争取得分 会做的题目当然要力求做对、做全、得满分,而更多的问题是对不能全面完成的题目如何分段得分。下面有两种常用方法。 缺步解答。 对一个疑难问题,确实啃不动时,一个明智的解题方法是将它划分为一个个子问题或一系列的步骤,先解决问题的一部分,即能解决到什么程度就解决到什么程度,能演算几步就写几步,每进行一步就可得到这一步的分数。如从最初的把文字语言译成符号语言,把条件和目标译成数学表达式,设应用题的未知数,设轨迹题的动点坐标,依题意正确画出图形等,都能得分。还有象完成数学归纳法的第一步,分类讨论,反证法的简单情形等,都能得分。而且可望在上述处理中,从感性到理性,从特殊到一般,从局部到整体,产生顿悟,形成思路,获得解题成功。 跳步解答。 解题过程卡在一中间环节上时,可以承认中间结论,往下推,看能否得到正确结论,如得不出,说明此途径不对,立即否得到正确结论,如得不出,说明此途径不对,立即改变方

相关文档
相关文档 最新文档