文档库 最新最全的文档下载
当前位置:文档库 › 第7章锐角三角函数(题型分类全解)

第7章锐角三角函数(题型分类全解)

第7章锐角三角函数(题型分类全解)
第7章锐角三角函数(题型分类全解)

第7章锐角三角函数

一、知识点梳理--------锐角三角函数

【考点1】如图,在Rt △ABC 中,∠C =90°, a 、b 分别是∠A 的对边和邻边,c 是斜边。 1、正切

将∠A 的对边a 与邻边b 的比叫做∠A 的正切,记作:tanA . 即:b

a

A A A =∠∠=的邻边的对边tan

2、正弦

将∠A 的对边a 与斜边c 的比叫做∠A 的正弦,记作:sinA 即:c a

A A =∠=

斜边的对边sin

3、将∠A 的邻边b 与斜边c 的比叫做∠A 的余弦,记作:cosA 即c

b

A A =∠=

斜边的邻边cos

【考点2】特殊角三角函数值

【考点3】解直角三角形---------构造直角三角形 1、解直角三角形-------已知元素至少有一个是边

在直角三角形中,除直角外,由直角三角形中的已知元素,求出其余未知元素的过程,叫做解直角三角形。 2、方法点拨

(1)涉“斜”选“弦”的策略 ( 2) 无“斜”选“切”的策略

3、方位角

方位角:首先确定好基准点,然后在基准点做好坐标,规定以南北方向为始边,左右旋转即可得到方位角.

4、仰角和俯角

5、坡度或破比

通常把坡面的铅直高度h和水平宽度l的比h

l叫做坡面的坡度或坡比,坡面与水

平面的夹角叫做坡角,通常用α表示,即tanα=h

l.显然,坡度越大,坡角越大,

坡面就越陡.

6、利用解直角三角形的知识解决实际问题的过程:.

(1)将实际问题抽象为数学问题(画出平面图形,转化为解直角三角形的问题);

(2)根据问题中的条件,适当选用锐角三角函数等解直角三角形;

(3)得到数学问题的答案;

(4)得到实际问题的答案.

二、题型分类全解

1、在Rt△ABC中,∠C=90°,AB=10,sin A=3

5,cos A=

4

5,tan A=

3

4,则BC

的长为( )

A.6B.7.5C.8D.12.5

2、在Rt△ABC中,∠C=90°,若∠A=60°,AC=20 m,则BC是

3、如图,在Rt △ABC 中,∠C =90°,AC =2,BC =6,解这个直角三角形.

3、如图,在锐角△ABC 中,AB=10,AC=32,5

3

sin B ,求(1)C tan (2)BC 长

4.在△ABC 中,若∠C =90°,sin A =1

2,AB =2,则△ABC 的周长为__ __.

5.在Rt △ABC 中,∠C =90°,有两边长分别为3和4,则sin A 的值为__ _.

6.如图28-2-8,在△ABC 中,BD ⊥AC ,AB =6,AC =5 3,∠A =30°. (1)求BD 和AD 的长; (2)求tan C 的值.

7、如图,在边长为1的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,连结CD 与AB 相交于点P ,则tan∠APD 的值是( ) A .2 B .

C .

D .

8、如图,A 、B 、C 是小正方形的顶点,且每个小正方形的边长为1,则tan ∠BAC 的值为( )

A .1

2

B .1

C

D

9、若a ,β

是一个三角形的两个锐角,且满足2

sin tan 0αβ?-+-=????

,则此三角形是________.

10、如图,若直线y =-3x +3与x 轴所形成的锐角为α,求α的正切值.

11、如图, 在Rt △ABC 中, ∠A=90°,AB=AC,D 为AC 上的一点,AD=1

3

AC,

求tan ∠DBC 的值

12、如图,

将矩形ABCD

沿

CE 折叠,点B 恰好落在边AD 上的点F 处,如果AB BC =2

3

.求tan ∠DCF 的值.

13、如图,在半径为3的⊙O 中,直径AB 与弦CD 相交于点E ,连接AC 、BD ,若AC =2,则cosD = .

14、如图,⊙O 是△ABC 的外接圆,AB 为直径,OD ∥BC 交⊙O 于点D ,交AC 于点E ,连接AD 、BD 、CD.

(1)求证:AD =CD ;

(2)若AB =10,cos ∠ABC =3

5

,求tan ∠DBC 的值.

15.如图,AB 是⊙O 的直径,CD 与⊙O 相切于点C ,与AB 的延长线交于点D ,DE ⊥AD 且与AC 的延长线交于点E. (1)求证:DC =DE ;

(2)若tan ∠CAB =1

2

,AB =3,求BD 的长.

16、热气球的探测器显示,从热气球看一栋楼顶部的仰角为30°,看这栋楼底部的俯角为60°,热气球与楼的水平距离为120 m.这栋楼有多高?

17、如图,小明想测量河对岸的一幢高楼AB的高度,在河边C处测得楼顶A的仰角是60°,在距C处60米的E处有幢楼房,小明从该楼

房距离地面20米的D处测得高楼顶端A的仰角是30°(点B,

C,E在同一直线上,且AB,DE均与地面BE垂直),求楼

AB的高度.

18、如图一水库大坝的横断面为梯形ABCD,坝顶BC宽6米,坝高20米,斜坡AB的坡度i=1∶2.5,斜坡CD的坡角为30°,求坝底AD的长度(精确到0.1米,参考数据:2≈1.414,3≈1.732).

19、如图,某建筑物BC上有一旗杆AB,小明在与BC相距12 m的F处,观测到旗杆顶部A的仰角为60°,底部B的仰角为45°,小明的眼睛E与地面的距离EF为1.6 m.

(1)求建筑物BC的高度;

(2)求旗杆AB的高度.

(结果精确到0.1 m,参考数据:2≈1.41,3≈1.73)

三、才华展示

1、(8分)如图,1号楼在2号楼的南侧,两楼高度均为90m,楼间距为AB.冬至日正午,太阳光线与水平面所成的角为32.3°,1号楼在2号楼墙面上的影高为CA;春分日正午,太阳光线与水平面所成的角为55.7°,1号楼在2号楼墙面上的影高为DA.已知CD=42m.

(1)求楼间距AB;

(2)若2号楼共30层,层高均为3m,则点C位于第几层?(参考数据:sin32.3°≈0.53,cos32.3°≈0.85,tan32.3°≈0.63,sin55.7°≈0.83,cos55.7°≈0.56,tan55.7°

≈1.47)

2、(3分)如图,无人机于空中A 处测得某建筑顶部B 处的仰角为45°,测得该建筑底部C 处的俯角为17°.若无人机的飞行高度AD 为62m ,则该建筑的高度BC 为 m .

(参考数据:sin17°≈0.29,cos17°≈0.96,tan17°≈0.31)

4、如图,梯子斜靠在与地面垂直(垂足为O )的墙上,当梯子位于AB 位置时, 它与地面所成的角∠ ABO = 60°;当梯子底端向右滑动1 m (即BD = 1m )到达CD 位置时,它与地面所成的角∠ CDO = 51°18′,求梯子的长. (参考数据:sin 51°18′ ≈ 0.780,cos 51°18′ ≈ 0.625,tan

51°18′ ≈ 1.248)

解三角形题型总结

解三角形题型分类解析 类型一:正弦定理 1、计算问题: 例1、(2013?北京)在△ ABC 中,a=3, b=5 , sinA=2,贝U sinB= ________ 3 a + b + c = sin A sin B sin C 例2、已知.'ABC中,.A =60 , 例3、在锐角△ ABC中,内角A, B, C的对边分别为a, b, c,且2asinB= 7b. 求角A的大小; 2、三角形形状问题 例3、在ABC中,已知a,b,c分别为角A, B, C的对边, a cos A 1)试确定-ABC形状。 b cosB 2)若—=c°s B,试确定=ABC形状。b cos A 4 )在.ABC中,已知a2 ta nB=b2ta nA,试判断三角形的形状。 5)已知在-ABC中,bsinB=csinC,且sin2 A =sin2 B sin2 C ,试判断三角形的形状。 例4、(2016年上海)已知MBC的三边长分别为3,5,7,则该三角形的外接圆半径等于 __________ 类型二:余弦定理 1、判断三角形形状:锐角、直角、钝角 在厶ABC中, 若a2b2c2,则角C是直角; 若a2b2 ::: c2,则角C是钝角; 若a2b2c2,则角C是锐角. 例1、在厶ABC中,若a=9,bT0,c=12,则厶ABC的形状是______________ , 2、求角或者边 例2、(2016 年天津高考)在△ABC 中,若AB= 13 ,BC=3, Z C =120’ 则AC=. 例3、在△ ABC中,已知三边长a=3 , b=4 , c=—37 ,求三角形的最大内角.

例4、在厶ABC中,已知a=7,b=3,c=5,求最大的角和sinC? 3、余弦公式直接应用 例5、:在也ABC中,若a2=b2+c2+bc ,求角A 例6、:(2013重庆理20)在厶ABC中,内角A B, C的对边分别是a,b,c, 且a2+ b2+、、2 ab= c2. (1)求C 例7、设厶ABC的内角A , B , C所对的边分别为 a , b , c .若(a- c)(a ? b ? c) =ab , 则角C二例8 (2016年北京高考) 在ABC中,a2c^b^ . 2ac (1)求/ B的大小; (2 )求、、.2 cosA - cosC 的最大值. 类型三:正弦、余弦定理基本应用 例1.【2015高考广东,理11】设ABC的内角A , B , C的对边分别为a , b , c ,若a = <::'3 , 1 n sin B = —,C = 一,则b =. 2 6 例 2. (a c) J=1,贝q B等于。 ac 例3.【2015高考天津,理13】在厶ABC中,内角A,B,C所对的边分别为a,b,c,已知 MBC 的面积为3、'15 , b—c =2,cos A =-1,则a 的值为. 4 1 例 4.在厶ABC中,sin(C-A)=1 , sinB= ,求sinA=。 3 例5.【2015高考北京,理12】在厶ABC 中, c=6,则sin2A = sin C

(完整版)解三角形专题题型归纳

《解三角形》知识点、题型与方法归纳 一、知识点归纳(★☆注重细节,熟记考点☆★) 1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径) 变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R ===()(角化边公式) 3::sin :sin :sin a b c A B C =() sin sin sin (4),,sin sin sin a A a A b B b B c C c C === 2.正弦定理适用情况: (1)已知两角及任一边; (2)已知两边和一边的对角(需要判断三角形解的情况). 3.余弦定理及其推论 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+- 222 222 222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab +-= +-=+-= 4.余弦定理适用情况: (1)已知两边及夹角; (2)已知三边. 注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式. 5.常用的三角形面积公式 (1)高底??= ?2 1ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R ===?为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边) (2)sin sin (ABC A B a b A B ?>?>?>在中,即大边对大角,大角对大边) (3)在ABC ?中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22 A B C += 7.实际问题中的常用角 (1)仰角和俯角

高中解三角形题型大汇总

解三角形题型总结 题型一:正选定理的应用 1. ABC ?的三内角A 、B 、C 的对边边长分别为a b c 、、,若,2a A B ==, 则cos _____B = B. C. D. 2. 如果111A B C ?的三个内角的余弦值分别等于222A B C ?的三个内角的正弦值,则( ) A .111A B C ?和222A B C ?都是锐角三角形 B .111A B C ?和222A B C ?都是钝角三角形 C .111A B C ?是钝角三角形,222A B C ?是锐角三角形 D .111A B C ?是锐角三角形,222A B C ?是钝角三角形 3. 在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若 ( ) C a A c b cos cos 3=-,则 =A cos _________________。 4.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =a 2,则=a b A . B . C D 5.ABC ?中,3 π = A ,BC =3,则ABC ?的周长为( ) A . 33sin 34+??? ? ?+πB B . 36sin 34+??? ??+πB C .33sin 6+??? ??+πB D .36sin 6+??? ? ? +πB 6. 在ABC ?中,已知3,1,60===?ABC S b A o ,则=++++C B A c b a sin sin sin 7.设ABC ?的内角,,A B C 的对边分别为,,a b c ,且35 cos ,cos ,3,513 A B b = ==则c =______

解三角形题型总结原创

解三角形题型总结 ABC ?中的常见结论和定理: 一、 内角和定理及诱导公式: 1.因为A B C π++=, 所以sin()sin ,cos()cos , tan()tan A B C A B C A B C +=+=-+=-; sin()sin ,cos()cos ,tan()tan A C B A C B A C B +=+=-+=-; sin()sin ,cos()cos ,tan()tan B C A B C A B C A +=+=-+=- 因为,22A B C π++= 所以sin cos 22A B C +=,cos sin 22 A B C +=,………… 2.大边对大角 3.在△ABC 中,熟记并会证明tanA+tanB+tanC=tanA·tanB·tanC; (2)A 、B 、C 成等差数列的充要条件是B=60°; (3)△ABC 是正三角形的充要条件是A 、B 、C 成等差数列且a 、b 、c 成等比数列.

四、面积公式: (1)12a S ah = (2)1()2 S r a b c =++(其中r 为三角形内切圆半径) (3)111sin sin sin 222 S ab C bc A ac B === 五、 常见三角形的基本类型及解法: (1)已知两角和一边(如已知,,A B 边c ) 解法:根据内角和求出角)(B A C +-=π; 根据正弦定理 R C c B b A a 2sin sin sin ===求出其余两边,a b (2)已知两边和夹角(如已知C b a ,,) 解法:根据余弦定理2 2 2 2cos c a b ab C =+-求出边c ; 根据余弦定理的变形bc a c b A 2cos 2 22-+=求A ; 根据内角和定理求角)(C A B +-=π. (3)已知三边(如:c b a ,,) 解法:根据余弦定理的变形bc a c b A 2cos 2 22-+=求A ; 根据余弦定理的变形ac b c a B 2cos 2 22-+=求角B ; 根据内角和定理求角)(B A C +-=π (4)已知两边和其中一边对角(如:A b a ,,)(注意讨论解的情况) 解法1:若只求第三边,用余弦定理:222 2cos c a b ab C =+-; 解法2:若不是只求第三边,先用正弦定理R C c B b A a 2sin sin sin ===求B (可能出现一解,两解或无解的情况,见题型一); 再根据内角和定理求角)(B A C +-=π;. 先看一道例题: 例:在ABC ?中,已知0 30,32,6===B c b ,求角C 。(答案:045=C 或0135)

解三角形专题题型归纳

解三角形专题题型归纳

《解三角形》知识点、题型与方法归纳 一、知识点归纳(★☆注重细节,熟记考点☆★) 1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径) 变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R ===()(角化边公式) 3::sin :sin :sin a b c A B C =() sin sin sin (4),,sin sin sin a A a A b B b B c C c C === 2.正弦定理适用情况: (1)已知两角及任一边; (2)已知两边和一边的对角(需要判断三角形解的情况). 3.余弦定理及其推论 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+- 222 222222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab +-=+-=+-= 4.余弦定理适用情况: (1)已知两边及夹角; (2)已知三边. 注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式. 5.常用的三角形面积公式 (1)高底??=?2 1ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R ===?为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边) (2)sin sin (ABC A B a b A B ?>?>?>在中,即大边对大角,大角对大边) (3)在ABC ?中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22 A B C += 7.实际问题中的常用角 (1)仰角和俯角

三角函数解三角形题型归类

三角函数解三角形题型归类 一知识归纳: (一)任意角、弧度制及任意角的三角函数 1.角的概念 (1)任意角:①定义:角可以看成平面内 绕着端点从一个位置旋转到另一个位置所成的 ;②分类:角按旋转方向分为 、 和 . (2)所有与角α终边相同的角,连同角α在内,构成的角的集合是S = . (3)象限角:使角的顶点与 重合,角的始边与 ,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限. 2.弧度制 (1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示,读作弧度.正角的弧度数是一个 ,负角的弧度数是一个负数 ,零角的弧度数是 . (2)角度制和弧度制的互化:180°=π rad,1°=π180 rad , 1 rad =? ?? ?? ? 180π°. (3)扇形的弧长公式:l =|α|·r ,扇形的面积公式:S =12 lr

=12 |α|·r 2. 3.任意角的三角函数 (1)定义:设α是一个任意角,它的终边与单位圆交于点 P (x ,y ),那么sin α= ,cos α= ,tan α = . (2)任意角α的终边与单位圆交于点P (x ,y )时,sin α =y ,cos α=x ,tan α=y x (x ≠0) 4.三角函数值在各象限的符号规律:一全正、二正弦、三正切、四余弦. (二)公式概念 1.三角函数诱导公式? ?? ???k 2π+α(k ∈Z)的本质 奇变偶不变(对k 而言,指k 取奇数或偶数),符号看象限(看原函数,同时把α看成是锐角). 2.两角和与差的三角函数公式 (1)sin(α±β)=sin αcos β±cos αsin β; (2)cos(α±β)=cos αcos β?sin αsin β; (3)tan(α±β)=tan α±tan β1?tan αtan β. 3.二倍角公式 (1)sin 2α=2sin αcos α; (2)cos 2α=cos 2 α-sin 2 α=2cos 2 α-1=1-2sin 2 α,

高中数学解三角形题型完整归纳

高中数学解三角形题型目录一.正弦定理 1.角角边 2.边边角 3.与三角公式结合 4.正弦定理与三角形增解的应对措施 5.边化角 6.正弦角化边 二.余弦定理 1.边边边 2.边角边 3.边边角 4.与三角公式结合 5.比例问题 6.余弦角化边 7.边化余弦角 三.三角形的面积公式 1.面积公式的选用 2.面积的计算 3.正、余弦定理与三角形面积的综合应用 四.射影定理 五.正弦定理与余弦定理综合应用 1.边角互化与三角公式结合 2.与平面向量结合 3.利用正弦或余弦定理判断三角形形状 4.三角形中的最值问题 (1)最大(小)角 (2)最长(短)边 (3)边长或周长的最值

(4)面积的最值 (5)有关正弦或余弦或正切角等的最值 (6)基本不等式与余弦定理交汇 (7)与二次函数交汇 六.图形问题 1.三角形内角之和和外角问题 2.三角形角平分线问题 3.三角形中线问题 4.三角形中多次使用正、余弦定理 5.四边形对角互补与余弦定理的多次使用 6.四边形与正、余弦定理 六.解三角形的实际应用 1.利用正弦定理求解实际应用问题 2.利用余弦定理求解实际应用问题 3.利用正弦和余弦定理求解实际应用问题 一.正弦定理 1.角角边 ?=?=?= 例.在中,解三角形 ABC A B a 30,45,2,. ?=?=?== 练习1.在中则 ABC A B a c ,30,45, . 练习2.在中,已知45,,求 ?=?=?= 30. ABC C A a b 2.边边角 例中,解这个三角形?===? ABC a .45,. 练习1中,则 ?==+== . 1,2,sin ABC a b A C B C 练习2.中则 ?===?= ,3,60,_____ ABC c b C A

解三角形专题题型归纳

《解三角形》知识点、题型与方法归纳 1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径) 变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R ===()(角化边公式) 3::sin :sin :sin a b c A B C =() sin sin sin (4),,sin sin sin a A a A b B b B c C c C === 2.正弦定理适用情况: (1)已知两角及任一边; (2)已知两边和一边的对角(需要判断三角形解的情况). 3.余弦定理及其推论 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+- 222 222 222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab +-= +-=+-= 4.余弦定理适用情况: (1)已知两边及夹角; (2)已知三边. 注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式. 5.常用的三角形面积公式 (1)高底??= ?2 1ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R ===?为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边) (2)sin sin (ABC A B a b A B ?>?>?>在中,即大边对大角,大角对大边) (3)在ABC ?中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22A B C += 解三角形有用的结论

【高中数学】解三角形的知识总结和题型归纳

解三角形的知识总结和题型归纳 一、知识必备: 1.直角三角形中各元素间的关系: 在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。(1)三边之间的关系:a 2+b 2=c 2。(勾股定理)(2)锐角之间的关系:A +B =90°;(3)边角之间的关系:(锐角三角函数定义) sin A =cos B =c a ,cos A =sin B =c b ,tan A =b a 。 2.斜三角形中各元素间的关系: 在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。(1)三角形内角和:A +B +C =π。 (2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等 R C c B b A a 2sin sin sin ===(R 为外接圆半径)(3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ;c 2=a 2+b 2-2ab cos C 。 3.三角形的面积公式: (1)?S = 21ah a =21bh b =21 ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高);(2)?S =21ab sin C =21bc sin A =2 1 ac sin B ; 4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面 【高中数学】

《解三角形》常见题型总结

《解三角形》常见题型总结 1、1正弦定理和余弦定理 1、1、1正弦定理 【典型题剖析】 考察点1:利用正弦定理解三角形例1 在ABC中,已知 A:B:C=1:2:3,求a :b :c、 【点拨】 本题考查利用正弦定理实现三角形中边与角的互化,利用三角形内角和定理及正弦定理的变形形式 a :b :c=sinA: sinB: sinC 求解。解: 【解题策略】 要牢记正弦定理极其变形形式,要做到灵活应用。例2在ABC 中,已知c=+,C=30,求a+b的取值范围。 【点拨】 此题可先运用正弦定理将a+b表示为某个角的三角函数,然后再求解。解:∵C=30,c=+,∴由正弦定理得:∴ a=2(+)sinA,b=2(+)sinB=2(+)sin(150-A)、 ∴a+b=2(+)[sinA+sin(150-A)]=2(+)2sin75cos(75-A)= cos(75-A)① 当75-A=0,即A=75时,a+b取得最大值=8+4;② ∵A=180-(C+B)=150-B,∴A<150,∴0<A<150,∴-75<75-A<75, ∴cos75<cos(75-A)≤1,∴> cos75==+、综合①②可得a+b的

取值范围为(+,8+4>考察点2:利用正弦定理判断三角形形状例3在△ABC中,tanB=tanA,判断三角形ABC的形状。 【点拨】 通过正弦定理把边的关系转化为角的关系,利用角的关系判断△ABC的形状。解:由正弦定理变式a=2RsinA,b=2RsinB得:,即,,、∴为等腰三角形或直角三角形。 【解题策略】 “在△ABC中,由得∠A=∠B”是常犯的错误,应认真体会上述解答过程中“∠A=∠B或∠A+∠B=”的导出过程。例4在△ABC 中,如果,并且B为锐角,试判断此三角形的形状。 【点拨】 通过正弦定理把边的形式转化为角的形式,利用两角差的正弦公式来判断△ABC的形状。解:、又∵B为锐角,∴B= 45、由由正弦定理,得,∵代入上式得:考察点3:利用正弦定理证明三角恒等式例5在△ABC中,求证、 【点拨】 观察等式的特点,有边有角要把边角统一,为此利用正弦定理将转化为、证明:由正弦定理的变式得:同理 【解题策略】 在三角形中,解决含边角关系的问题时,常运用正弦定理进行边角互化,然后利用三角知识去解决,要注意体会其中的转化

解三角形常用知识点归纳与题型总结-解三角形题型归纳总结

解三角形常用知识点归纳与题型总结 1、①三角形三角关系:A+B+C=180°;C=180°—(A+B); ②.角平分线性质定理:角平分线分对边所得两段线段的比等于角两边之比. ③.锐角三角形性质:若A>B>C 则6090,060A C ?≤c; a-b

解三角形常见题型归纳

解三角形常见题型归纳 正弦定理和余弦定理是解斜三角形和判定三角形类型的重要工具,其主要作用是将已知条件中的边、角关系转化为角的关系或边的关系。 题型之一:求解斜三角形中的基本元素 指已知两边一角(或二角一边或三边),求其它三个元素问题,进而求出三角形的三线(高线、角平分线、中线)及周长等基本问题. 1. 在ABC ?中,AB=3,AC=2,BC=10,则AB AC ?= ( ) A .23- B .3 2- C .32 D .23 【答案】D 2.(1)在?ABC 中,已知032.0=A ,081.8=B ,42.9=a cm ,解三角形; (2)在?ABC 中,已知20=a cm ,28=b cm ,040=A ,解三角形(角度精确到01,边长精确到1cm )。 3.(1)在?ABC 中,已知=a c 060=B ,求b 及A ; (2)在?ABC 中,已知134.6=a cm ,87.8=b cm ,161.7=c cm ,解三角形 4(2005年全国高考江苏卷) ABC ?中,3 π = A ,BC =3,则ABC ?的周长为( ) A .33sin 34+??? ? ? + πB B .36sin 34+??? ? ? +πB C .33sin 6+??? ? ? + πB D .36sin 6+??? ? ? +πB 分析:由正弦定理,求出b 及c ,或整体求出b +c ,则周长为3+b +c 而得到结果.选(D). 5 (2005年全国高考湖北卷) 在ΔABC 中,已知6 6 cos ,364== B AB ,A C 边上的中线B D =5,求sin A 的值. 分析:本题关键是利用余弦定理,求出AC 及BC ,再由正弦定理,即得sin A . 解:设E 为BC 的中点,连接DE ,则DE //AB ,且3 6221== AB DE ,设BE =x 在ΔBDE 中利用余弦定理可得:BED ED BE ED BE BD cos 22 2 2 ?-+=,

高三第一轮复习解三角形题型总结

2018高三第一轮复习解三角形题型总结 题型一:正选定理的应用 1. ABC ?的三内角A 、B 、C 的对边边长分别为a b c 、、,若,2a A B ==, 则cos _____B = B. C. D. 2. 如果111A B C ?的三个内角的余弦值分别等于222A B C ?的三个内角的正弦值,则( ) A .111A B C ?和222A B C ?都是锐角三角形 B .111A B C ?和222A B C ?都是钝角三角形 C .111A B C ?是钝角三角形,222A B C ?是锐角三角形 D .111A B C ?是锐角三角形,222A B C ?是钝角三角形 3. 在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若 ( ) C a A c b cos cos 3=-,则 =A cos _________________。 4.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =a 2,则=a b A . B . C D 5.ABC ?中,3 π = A ,BC =3,则ABC ?的周长为( ) A . 33sin 34+??? ? ?+πB B . 36sin 34+??? ??+πB C .33sin 6+??? ??+πB D .36sin 6+??? ? ? +πB 6. 在ABC ?中,已知3,1,60===?ABC S b A o ,则 =++++C B A c b a sin sin sin

7.设ABC ?的内角,,A B C 的对边分别为,,a b c ,且35 cos ,cos ,3,513 A B b = ==则c =______ 8.(2017全国卷2文16)ABC ?的内角C B A ,,的对边分别为c b a ,,,若 A c C a B b cos cos cos 2+=,则=B ________. 9.在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是________. 题型二:三角形解的个数的判断 1. 在ABC △中,根据下列条件解三角形,则其中有二个解的是 A 、10,45,70b A C === B 、60,48,60a c B === C 、7,5,80a b A === D 、14,16,45a b A === 2. 在ABC ?中,若30,4A a b ∠===,则满足条件的ABC ? A .不存在 B .有一个 C .有两个 D 不能确定 3.△ABC 中,∠A=60°, a= 6 , b=4, 那么满足条件的△ABC ( ) A 有 一个解 B 有两个解 C 无解 D 不能确定 4.符合下列条件的三角形有且只有一个的是 ( ) A .a=1,b=2 ,c=3 B .a=1,b=2 ,∠A=30°

高考数学题型全归纳解三角形考点归纳

【考题回放】 1.设,,a b c 分别是ABC ?的三个内角,,A B C 所对的边,则()2a b b c =+是2A B =的( ) (A )充分条件 (B )充分而不必要条件 (C )必要而充分条件 (D )既不充分又不必要条件 2.在ABC ?中,已知C B A sin 2tan =+,给出以下四个论断: ① 1cot tan =?B A ② 2sin sin 0≤ +

解三角形题型总结很全面

解三角形 要点一、正弦定理和余弦定理的概念 ①正弦定理公式: 2sin sin sin a b c R A B C ===(其中R 表示三角形的外接圆半径) ②余弦定理公式: 第一形式: 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+- 第二形式: 222 222 222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab +-= +-= +-= 要点二、三角形的面积公式 ① 111 222ABC a b c S a h b h c h ?=?=?=?; ②111 sin sin sin 222 ABC S bc A ab C ac B ?===; 要点三、利用正、余弦定理解三角形 已知两边和一边的对角或已知两角及一边时,通常选择正弦定理来解三角形;已知两边及夹角或已知三边时,通常选择余弦定理来解三角形.特别是求角时尽量用余弦定理来求,尽量避免分类讨论. 在ABC ?中,已知,a b 和A 时,解的情况主要有以下几类: ①若A 为锐角时:a bsin A a bsin A ()bsin A a b ()a b ()

一解 一解 b a A b <? 无解 一解锐角 要点四、三角形的形状的判定 特殊三角形的判定: (1)直角三角形 勾股定理:2 2 2 a b c +=, 互余关系:0 90A B +=,cos 0C =,sin 1C =; (2)等腰三角形 a b =,A B =; 用余弦定理判定三角形的形状(最大角A 的余弦值的符号) (1)在ABC ?中,222 222090cos 02b c a A A b c a bc +-<?+>; (2)在ABC ?中,222 22290cos 02b c a A A b c a bc +-=?= =?+=; (3)在ABC ?中,222 22290cos 02b c a A A b c a bc +-?>?>?< (2)互补关系:0 sin(A+B)=sin(180)sinC C -=, 0cos(A+B) cos (180)cosC C =-=-, 0tan(A+B) tan(180)tan C C =-=-;

解三角形高考真题汇总

2017高考真题解三角形汇编 1.(2017北京高考题)在△ABC 中,A ∠ =60°,c =3 7 a . (Ⅰ)求sin C 的值; (Ⅱ)若a =7,求△ABC 的面积. 2.(2017全国卷1理科)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为 2 3sin a A (1)求sin B sin C ; (2)若6cos B cos C =1,a =3,求△ABC 的周长. 3.(2017全国卷1文科)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c 。已知 sin sin (sin cos )0B A C C +-=,a =2,c C =B A . π 12 B . π6 C . π4 D . π3 4.(2016全国卷2理科)ABC ?的内角,,A B C 的对边分别为,,a b c ,已知 2 sin()8sin 2 B A C +=. (1)求cos B (2)若6a c += , ABC ?面积为2,求.b 5.(2017全国卷2文科16)△ABC 的内角A,B,C 的对边分别为a,b,c,若 2b cosB=a cosC+c cosA,则B= 6.(2017全国卷3理科)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin A cos A =0,a ,b =2. (1)求c ;(2)设D 为BC 边上一点,且AD ⊥ AC,求△ABD 的面积. 7.(2017全国卷3文科)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c 。已知C =60°,b ,c =3,则A =_________。 8.(2017山东高考题理科)在C ?AB 中,角A ,B ,C 的对边分别为a ,b ,c .若 C ?AB 为锐角三角形,且满足()sin 12cosC 2sin cosC cos sinC B +=A +A , 则下列等式成立的是( ) (A )2a b = (B )2b a = (C )2A =B (D )2B =A 9.(2017山东高考题文科)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知 b =3,6AB AC ?=-u u u r u u u r ,S △ABC =3,求A 和a . 10.(2017天津高考题理科)在ABC △中,内角,,A B C 所对的边分别为,,a b c .已

解三角形题型总结(原创)

解三角形题型总结(原创)

解三角形题型总结 ABC 中的常见结论和定理: 一、内角和定理及诱导公式: 1 .因为A B C ? 所 以 sin(A B) =sin C, (2)A 、B 、C 成等差数列的充要条件是 B=60°; ⑶△ ABC 是正三角形的充要条件是 A 、B 、C 成等差数列且a 、b 、c 成等比数列. 二、正弦定理: cos(A B) = _cosC, tan (A B) = _ ta nC ; sin( A C) 二 sin B, sin( B C)二 sin A, 因为ABC 二 cos(A C)二-cosB, cos(B C)二-cos 代 tan (A C)二- ta n B ; tan(B C)二-2 2 所以 sin =cos C , 2 ?大边对大角 A B . C cos sin , 2 ? 3.在△ ABC 记并会证 tanA+tanB+tanC=tanA tanB tanC;

公式变形:① a=2Rsin A b=2Rsin B c = 2RsinC (边转化成 角) 边) a:b: c =sin A: sinB: sinC 文字:在- ABC 中,任意一边的平方,等于另外两 边的平方和,减去这两边与它们夹角的余 弦值的乘积的两倍。 符号 : a 2 二 b 2 e 2 —2bccos A 2 2 2 c a b - 2ab cosC a sin A =— 2R b sin B =— 2R c sin C =— 2R (角转化成 ④ __ a be sin A +sinB +sin a _ b _ e sin A sinB sinC =2R 余弦定理: 2 2 2 b a c - 2ac cos B cosC 二 .2 2 2 cosA = b +c t 2bc a 2 b 2 -c 2ab cosB 二 c 2 「b 2ac

解三角形三类经典题型

解三角形三类经典类型 类型一 判断三角形形状 类型二 求范围与最值 类型三 求值专题 类型一 判断三角形形状 例1:已知△ABC 中,bsinB=csinC,且C B A 2 22sin sin sin +=,试判断三角形的形状. 解:∵bsinB=csinC,由正弦定理得 sin 2B=sin 2 C ,∴ sinB=sinC ∴ B=C 由 C B A 222sin sin sin += 得 2 22c b a += ∴三角形为等腰直角三角形. 例2:在△ABC 中,若B= 60,2b=a+c,试判断△ABC 的形状. 解:∵2b=a+c, 由正弦定理得2sinB=sinA+sinC,由B= 60得sinA+sinC=3 由三角形内角和定理知sinA+sin(A - 120)=3,整理得 sin(A+ 30)=1 ∴A+ 60,9030==A 即,所以三角形为等边三角形. 例3:在△ABC 中,已知2 2 tan tan b a B A =,试判断△ABC 的形状. 解:法1:由题意得 B A A B B A 2 2sin sin cos sin cos sin =,化简整理得sinAcosA=sinBcosB 即sin2A=sin2B ∴2A=2B 或2A+2B=π ∴A=B 或2 π = +B A ,∴三角形的形状为等腰三角形或直角三角形. 法2:由已知得22cos sin cos sin b a A B B A =结合正、余弦定理得2 22222 2222b a bc a c b b a c b c a a =-+? -+? , 整理得0))((2 2 2 2 2 =-+-c b a b a ∴ 2 2222c b a b a =+=或 即三角形为等腰三角形或直角三角形 例4:在△ABC 中,(1)已知sinA=2cosBsinC ,试判断三角形的形状; (2)已知sinA= C B C B cos cos sin sin ++,试判断三角形的形状. 解:(1)由三角形内角和定理得 sin(B+C)=2cosBsinC 整理得sinBcosC -cosBsinC=0即sin(B -C)=0 ∴ B=C 即三角形为等腰三角形. (2)由已知得 sinAcosB+sinAcosC=sinB+sinC ,结合正、余弦定理得

高考大题---解三角形中有关最值问题的题型汇总

解三角形中有关最值问题的题型汇总 1.(2010年浙江高考)在ABC ?中,c b a ,,C B A 所对的边分别为,,角,设S 为ABC ?的面积,满足)(4 3222c b a S -+=。 (1)求角C 的大小; (2)求B A sin sin +的最大值。 2(2011年湖南高考)在ABC ?中,c b a ,,C B A 所对的边分别为,,角,且满足C a A c sin sin = (1) 求角C 的大小; (2) 求)4cos(sin 3π +-B A 的最大值,并求取得最大值时角A ,B 的大小。 3.(2011年全国新课标2)在ABC ?中,?=60B ,AC=3,求AB+2BC 的最大值。 4.(2012太原模拟)ABC ?中,c b a ,,C B A 所对的边分别为,,角,设向量),(a b a c m --=→,),(c b a n +=→,若→m 平行于→n 。 (1)求角B 的大小; (2)求C A sin sin +的最大值。 5(2012年浙江宁波模拟)已知函数θθπ2cos )4( sin 32)(2-+=x f ,A 为ABC ?中的最小内角,且满足32)(=A f 。 (1)求角A 的大小; (2)若BC 边上的中线长为3,求ABC S ?的最大值。 6. (2013年全国新课标2)在ABC ?中,c b a ,,C B A 所对的边分别为 ,,角,已知B c C b a sin cos += (1)求B ; (2)若b=2, 求ABC S ?的最大值。

7(2014年陕西高考)在ABC ?中,c b a ,,C B A 所对的边分别为,,角。 (1)若c b a ,,成等差数列,证明sinA+sinC=2sin(A+C); (2)若c b a ,,成等比数列,求cosB 的最小值。 8.(2015年山东高考)设)4(cos cos sin )(2π+ -=x x x x f (1)求)(x f 的单调区间; (2)在锐角ABC ?中,c b a ,,C B A 所对的边分别为,,角,若)2(A f =0,a=1,求ABC S ?的最大值。 9.(2016年北京高考)在ABC ?中,ac b c a 2222+=+ (1)求角B 的大小; (2)C A cos cos 2+求的最大值。 10(2016高考山东理数)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知tan tan 2(tan tan ).cos cos A B A B B A +=+ (Ⅰ)证明:a+b=2c; (Ⅱ)求cosC 的最小值. 11.(2016河南中原名校一联,理10)在ABC ?中,角A ,B ,C 的对边分别为a ,b , c ,已知向量()cos ,cos m A B = ,(),2n a c b =- ,且//m n . (1)求角A 的大小; (2)若4=a ,求ABC S ?的最大值。 12.(2016绥化模拟)在ABC ?中,232cos 2 --x x C 是方程的一个根。 (1)求角C ; (2)当a+b=10时,求ABC ?周长的最小值。

相关文档
相关文档 最新文档