文档库 最新最全的文档下载
当前位置:文档库 › 沪教版六年级数学反推法解题举例与练习

沪教版六年级数学反推法解题举例与练习

沪教版六年级数学反推法解题举例与练习
沪教版六年级数学反推法解题举例与练习

沪教版六年级数学反推法解题举例与练习

专题简析:

有些应用题如果按照一般方法,顺着题目的条件一步一步地列出算式求解,过程比较繁琐。所以,解题时,我们可以从最后的结果出发,运用加与减、乘与除之间的互逆关系,从后到前一步一步地推算,这种思考问题的方法叫倒推法。

例题1。

一本文艺书,小明第一天看了全书的13 ,第二天看了余下的3

5 ,还剩下48页,这本书

共有多少页?

【思路导航】从“剩下48页”入手倒着往前推,它占余下的1-35 =2

5

。第一天看后还剩

下48÷25 =120页,这120页占全书的1-13 =23 ,这本书共有120÷2

3 =180

页。即

48÷(1-35 )÷(1-1

3 )=180(页)

答:这本书共有180页。

练习1

1. 某班少先队员参加劳动,其中37 的人打扫礼堂,剩下队员中的5

8

打扫操场,还剩12

人打扫教室,这个班共有多少名少先队员?

2. 一辆汽车从甲地出发,第一天走了全程的38 ,第二天走了余下的2

3

,第三天走了250

千米到达乙地。甲、乙两地间的路程是多少千米?

3. 把一堆苹果分给四个人,甲拿走了其中的16 ,乙拿走了余下的2

5

,丙拿走这时所剩的

3

4 ,丁拿走最后剩下的15个,这堆苹果共有多少个?

例题2。

筑路队修一段路,第一天修了全长的15 又100米,第二天修了余下的2

7 ,还剩500米,

这段公路全长多少米?

【思路导航】从“还剩500米”入手倒着往前推,它占余下的1-27 =5

7

,第一天修后还剩

500÷57 =700米,如果第一天正好修全长的1

5 ,还余下700+100=800米,这

800米占全长的1-15 =45 ,这段路全长800÷4

5

=1000米。列式为:

【500÷(1-27 )+100】÷(1-1

5

)=1000米

答:这段公路全长1000米。 练习2

1. 一堆煤,上午运走27 ,下午运的比余下的1

3

还多6吨,最后剩下14吨还没有运走,这

堆煤原有多少吨?

2. 用拖拉机耕一块地,第一天耕了这块地的13 又2公顷,第二天耕的比余下的1

2

多3公

顷,还剩下35公顷,这块地共有多少公顷?

3. 一批水泥,第一天用去了12 多1吨,第二天用去了余下1

3

少2吨,还剩下16吨,原来

这批水泥有多少吨?

例题3。

有甲、乙两桶油,从甲桶中倒出13 给乙桶后,又从乙桶中倒出1

5

给甲桶,这时两桶油各有24千克,原来甲、乙两个桶中各有多少千克油?

【思路导航】从最后的结果出发倒推,甲、乙两桶共有(24×2)=48千克,当乙桶没

有倒出15 给甲桶时,乙桶内有油24÷(1-1

5 )=30千克,这时甲桶内只有

48-30=18千克,而甲桶已倒出1

3 给了乙桶,可见甲桶原有的油为18÷(1

-1

3

)=27千克,乙桶原有的油为48-27=21千克。 甲:【24×2-24÷(1-15 )】÷(1-1

3 )=27(千克)

乙:24×2-27=21(千克)

答:甲桶原有油27千克,乙桶原有油21千克。 练习3

1. 小华拿出自己的画片的15 给小强,小强再从自己现有的画片中拿出1

4

给小华,这时两

人各有画片12张,原来两人各有画片多少张?

2. 甲、乙两人各有人民币若干元,甲拿出15 给乙后,乙又拿出1

4

给甲,这时他们各有90

元,他们原来各有多少元?

3. 一瓶酒精,第一次倒出13 ,然后倒回瓶中40克,第二次再倒出瓶中酒精的5

9

,第三

次倒出180克,瓶中好剩下60克,原来瓶中有多少克酒精?

例题4。

甲、乙、丙三人共有人民币168元,第一次甲拿出与乙相同的钱数给乙;第二次乙拿出与丙相同的钱数给丙;第三次丙拿出与这时甲相同的钱数给甲。这样,甲、乙、丙三人的钱数相等,原来甲比乙多多少元钱?

【思路导航】根据题意,由最后甲钱数是168÷3=56元可推出:第一次甲拿出与乙同样的

钱数给乙后,甲剩下的钱是56÷2=28元,这28元就是原来甲比乙多的钱数。

168÷3÷2=28元

答:原来甲比乙多28元。 练习4

1. 甲、乙、丙三个班共有学生144人,先从甲班调出与乙班相同的人数给乙班,再从乙

班调出与丙班相同的人数到丙班。再从丙班调出与这时甲班相同的人数给甲班,这样,甲、乙、丙三个班人数相等。原来甲班比乙班多多少人?

2. 甲、乙、丙三个盒子各有若干个小球,从甲盒拿出4个放入乙盒,再从乙盒拿出8个

放入丙盒后,三个盒子内的小球个数相等。原来乙盒比丙盒多几个球?

3. 甲、乙、丙三个仓库面粉袋数的比是6:9:5,如果从乙仓库拿出400袋平均分给甲、

丙两仓库,则甲、乙两个仓库的数量相等。这三个仓库共存面粉多少袋?

例题5。

甲、乙两个仓库各有粮食若干吨,从甲仓库运出14 到乙仓库后,又从乙仓库运出1

4 到甲

仓库,这时甲、乙两仓库的粮食储量相等。原来甲仓库的粮食是乙仓库的几分之几? 【思路导航】解题关键是把两个仓库粮食的和看作“1”,由题意可知,从乙仓库运出1

4

到甲

仓库,乙仓库最后占两仓库和的1

2

①当乙仓库没有往甲仓库运时,乙仓库占两仓库和的几分之几?

12 ÷(1-14 )=23

②甲仓库占两仓库和的几分之几? 1-23 =1

3

③甲仓库原来占两仓库和的几分之几?

13 ÷(1-14 )=49

④原来甲仓库时乙仓库的几分之几? 4÷(9-4)=4

5

答:原来甲仓库的粮食是乙仓库的4

5

练习5 1.

甲、乙两个仓库各有粮食若干吨,从甲仓库运出13 到乙仓库后,又从乙仓库运出1

3 到

甲仓库,这时甲、乙两仓库的粮食储量相等。原来甲仓库的粮食是乙仓库的几分之

几?

2.

甲、乙两个仓库各有粮食若干吨,从甲仓库运出15 到乙仓库后,又从乙仓库运出1

4 到

甲仓库,这时甲、乙两仓库的粮食储量相等。原来甲仓库的粮食是乙仓库的几分之

几?

3.

甲、乙两个仓库各有粮食若干吨,从甲仓库运出13 到乙仓库后,又从乙仓库运出2

5

甲仓库,这时乙仓库的粮食是甲仓库的9

10

。原来甲仓库的粮食是乙仓库的几分之几?

答案: 练1

1. 12÷(1-58 )÷(1-3

7 )=56人

2. 250÷(1-23 )÷(1-3

8

)=1200千米

3. 15÷(1-34 )÷(1-25 )÷(1-1

6 )=120个

练2

1. (14+6)÷(1-13 )÷(1-2

7 )=42吨

2. 【(35+3)÷(1-12 )+2】÷(1-1

3 )=117公顷

3. 【(16-2)÷(1-13 )+1】÷(1-1

2 )=44吨

练3

1、 小华:【12×2-12÷(1-14 )】÷(1-1

5

)=10张

小强:12×2-10=14张

2、 甲:【90×2-90÷(1-14 )】÷(1-1

5

)=75元

乙:90×2-75=105元

3、 【(60+180)÷(1-59 )-40】÷(1-1

3 )=750元

练4

1、 144÷3÷2=24人

2、 8×2-4=12个

3、 (400+400÷2)÷(9-6)×(9+6+5)=4000袋

练5 1、

a :把甲、乙两仓库粮食总吨数看作“1”,先求甲原来占两仓库和的几分之几?

【1-12 ÷(1-13 )】÷(1-13 )=38

b :原来甲仓库是乙仓库的几分之几? 3÷(8-3)=3

5

2、 a :【1-12 ÷(1-14 )】÷(1-15 )=5

12

b :5÷(12-5)=5

7

3、 a :【1-910+9 ÷(1-25 )】÷(1-13 )=6

19

b “6÷(19-6)=6

13

沪教版小学数学六年级下册教材梳理

六年级第二学期课本熟悉程度 总括:本册书包括四个章节,其中第五、第六章节为本册书的重难点,而第 七、八章节是了解、理解性的知识,是学习后面知识的一个认知基础。 第五章为有理数,因此作为本书的重点。首先要知道那些是有理数,有理数包 括哪些部分并且掌握有理数的四则运算(加、减、乘、除),最后要明白何为科学 记数法,怎样将一个数表示成科学记数法。 第六章为一次方程(组)和一次不等式(组),是本书的重点同时也是一个难 点。因此我们要了解何为一次方程(组),怎么样解一次方程(组),而更重要的 是一次方程(组)的应用,将实际的问题转化为一次方程(组)进而求解,这对于 学生来说是难点。作为平行的学习,可将一次不等式(组)与一次方程(组)类似 的学习,明白一次不等式(组)是将一次方程(组)中的等号改成不等号,并且解 一次不等式(组)常与数轴联系起来,这样更直观。一次不等式(组)是我们中考 中必考的考点因此要适当的强化学习。 第七、八章是线段与角的画法及长方体的再认识,此部分知识点是认识、了 解、理解性知识,了解角,线段,余角,补角及其画法并且知道长方体及长方体上 的棱与棱、棱与平面及平面与平面之间的关系以及长方体的画法。 第五章 有理数 有理数包括整数和分数,而整数又包括正整数和负整数,分数又包括正分数 和负分数。 数轴:任何一个有理数都可以用数轴上的一个点表示。只有符号不同的两个 数,我们称其中一个数是另一个数的相反数,也称两个数互为相反数,注意: 0的相反数是0. 一个数在数轴上所对应的点与原点的距离,叫做这个数的绝对值。如4-的绝 对值为4(距离,0≥x )。数轴上的点从左到右依次增大,正数大于零,零大于 负数,正数大于负数。 有理数加法的运算率:a b b a +=+(交换律),)()(c b a c b a ++=++(结合 律)。有理数减法法则:减去一个数,等于加上这个数的相反数 ()(b a b a -+=-), 两数相乘的符号法则:正正得正,负正(正负)得负,负负得正 有理数乘法法则;两数相乘,同号得正,异号得负,并把绝对值相乘,任何数 与零相乘,都得零。 乘法的交换律(ba ab =),乘法的结合律()()(bc a c ab =),乘法对加法的 分配律(bc ab c b a +=+)()。 有理数的除法:除法是乘法的逆运算。零除以任何一个不为零的数,都得 零。 有理数的乘方: n a (为幂为指数,为底数,n a a n )。求n 个相同因数的积 的运算,叫做乘方,乘方的结果叫做幂。特别:00,11==n n 。

(完整版)数学归纳法经典例题详解

例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n Λ. 请读者分析下面的证法: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k Λ. 那么当n =k +1时,有: ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ????????? ??+-++??? ??+--++??? ??-+??? ??-+??? ? ?-=3211211211217151513131121k k k k Λ 322221321121++?=??? ??+-= k k k ()1 121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立. 由①、②可知,对一切自然数n 等式成立. 评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求. 正确方法是:当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k

()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 例2.是否存在一个等差数列{a n },使得对任何自然数n ,等式: a 1+2a 2+3a 3+…+na n =n (n +1)(n +2) 都成立,并证明你的结论. 分析:采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性. 解:将n =1,2,3分别代入等式得方程组. ?????=++=+=603224 26321 211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3. 故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立. 下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式 a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 因为起始值已证,可证第二步骤. 假设n =k 时,等式成立,即 a 1+2a 2+3a 3+…+ka k =k (k +1)(k +2) 那么当n =k +1时, a 1+2a 2+3a 3+…+ka k +(k +1)a k +1 = k (k +1)(k +2)+ (k +1)[3(k +1)+3] =(k +1)(k 2+2k +3k +6) =(k +1)(k +2)(k +3) =(k +1)[(k +1)+1][(k +1)+2] 这就是说,当n =k +1时,也存在一个等差数列a n =3n +3使a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)成立. 综合上述,可知存在一个等差数列a n =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 例3.证明不等式n n 21 31 21 1<++++Λ (n ∈N). 证明:①当n =1时,左边=1,右边=2.

数列数学归纳法测试题

数列 数学归纳法测试题 班级 姓名 得分 . 一、选择题: 1、等差数列{n a }中,a 3+a 7-a 10=8,a 11-a 4=4,则S 13=…………………………………………( ) (A )168 (B ) 156 (C )78 (D ) 152 2、数列{n a }、{n b }都是等差数列,a 1=25,b 1=75,a 100+b 100=100,则{n a +n b }的前100项和为( ) (A )0 (B )100 (C )10000 (D )102400 3、等差数列5,244,3,77 ,第n 项到第n +6项的和为T ,则|T|最小时,n=…………………( ) (A )6 (B )5 (C )4 (D )3 4、等差数列{n a }满足123101a a a a ++++ =0,则有……………………………………………( ) (A )11010a a +> (B )21000a a +< (C )3990a a += (D )5151a = 5、一个首项为正数的等差数列中,S 3=S 11,则当S n 最大知,n=……………………………………( ) (A )5 (B ) 6 (C )7 (D ) 8 6、{n a }为等比数列,{n b }是等差数列,b 1=0,n c =n a +n b ,如果数列{n c }是1,1,2,…,则{n c }的前10项和为……………………………………………………………………………………( ) (A ) 978 (B ) 557 (C ) 467 (D )以上都不对 7、若相异三数(),(),()a b c b c a c a b ---组成公比为q 的等比数列,则…………………………( ) (A )210q q ++= (B ) 210q q -+= (C ) 210q q +-= (D ) 210q q --= 8、{n a }的前n 项和为S n =232n n -,当n ≥2时,有…………………………………………………( ) (A )n S >n na >1na (B ) n S 45a a (D ) 36a a ≥45a a 10、一个等比数列前n 项和为21n -,则它的前n 项的各项平方和为……………………………( ) (A )2(21)n - (B ) 122(21)n - (C )41n - (D )1(41)3 n - 11、据市场调查,预测某种商品从2004年初开始的几个月内累计需求量n S (万件)近似满足n S =2(215)90 n n n --,则本年度内需求量超过1.5万件的月份是……………………………( )

沪教版六年级数学下册习题

沪教版六年级数学下册习题 1 / 4 预初数学第二学期周练八 班级 姓名 学号______成绩 __ 一、填空题(23*2’=46’) 1、 在,312x -,2xy ,2y x +,34x y |,5.0|-,34622y x -,1x x -中, 单项式有 ______个, 多项式有________个 2、多项式22635 a a -+-是_____次____项式,其中一次项系数是 ___________ 3、用代数式表示5除m 的商与4的和 4、当3=m ,2n =-时,代数式222n m -的值是 _ ___ 5.若134-m y x 与34---n x y 是同类项,则mn=____________ 6.多项式2322739t t t +-+按字母t 的升幂排列是_____________________ 7.化简:①()y y x x ---557=____________ ②()()x x x x 42322-++--=____________ ③mn mn 5 15--=_____________ 8、食堂有煤a 千克,原计划每天用煤b 千克。如果每天节约用煤c 千克,则a 千克的煤可以用 天,节约后可以多用 天 9.已知12=+a a ,则35 1512+--a a =_____________ 10.互为补角的两角之差为22o,则这两个角分别为____________度 11.如图, OC ⊥OA ,OD ⊥OB ,则∠AOB=∠_________,理由是_____________ _______ 12.如图,A 、O 、D 三点在同一直线上,OE ⊥AD,∠AOB =∠COD ,则图中与∠AOB 互余的角:_______________,互补的角有:_________________ (第11题) (第12题) (第13题) 13.如图,∠AOB=72o,OC 平分∠AOB ,OD ⊥OC ,则∠AOD=______度. 14. 如图:在任意△ABC 中有这样一条性质:两边之和大于第三边, 即AB+BC>AC ,你能否用我们所学过的知识说明上述性质的正确性: _____________________________________________ C B A

(完整版)数学归纳法经典例题及答案(2)

数学归纳法(2016.4.21) 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n Λ 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k Λ. 当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k ()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立.

题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++Λ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ Λ. 那么当n =k +1时, 11 1 31 21 1++++++k k Λ 1 1 1211 2+++=++

数学归纳法典型例习题

欢迎阅读数学归纳法典型例题 一. 教学内容: 高三复习专题:数学归纳法 二. 教学目的 掌握数学归纳法的原理及应用 三. 教学重点、难点 四. ??? ??? (1 ??? (2()时命题成立,证明当时命题也成立。??? 开始的所有正整数 ??? 即只 称为数学归纳法,这两步各司其职,缺一不可,特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性,如果没有第一步,而仅有第二步成立,命题也可能是假命题。 【要点解析】 ? 1、用数学归纳法证明有关问题的关键在第二步,即n=k+1时为什么成立,n=k+1时成立是利用假设n=k时成立,根据有关的定理、定义、公式、性质等数学结论推证出n=k+1时成立,而不是直接代入,否则n=k+1时也成假设了,命题并没有得到证明。 ??? 用数学归纳法可证明有关的正整数问题,但并不是所有的正整数问题都是用数学归纳法证明的,学习时要具体问题具体分析。

? 2、运用数学归纳法时易犯的错误 ??? (1)对项数估算的错误,特别是寻找n=k与n=k+1的关系时,项数发生什么变化被弄错。 ??? (2)没有利用归纳假设:归纳假设是必须要用的,假设是起桥梁作用的,桥梁断了就通不过去了。 ??? (3)关键步骤含糊不清,“假设n=k时结论成立,利用此假设证明n=k+1时结论也成立”,是数学归纳法的关键一步,也是证明问题最重要的环节,对推导的过程要把步骤写完整,注意证明过程的严谨性、规范性。 ? 例1. 时,。 ,右边,左边 时等式成立,即有,则当时, 由①,②可知,对一切等式都成立。 的取值是否有关,由到时 (2 到 本题证明时若利用数列求和中的拆项相消法,即 ,则这不是归纳假设,这是套用数学归纳法的一种伪证。 (3)在步骤②的证明过程中,突出了两个凑字,一“凑”假设,二“凑”结论,关键是明确 时证明的目标,充分考虑由到时,命题形式之间的区别和联系。

沪教版六年级下学期数学各章知识点整理

沪教版六年级下学期数学知识点梳理 第五章有理数 5.1有理数的意义 1.相反意义的量 收入及支出;增加及减少;上升及下降; 零上及零下;高于海平面及低于海平面;前进及后退;盈利及亏损;……任意规定一方为正,则另一方为负。 2.正数及负数 5.2数轴 1.数轴的概念及画法 数轴是规定了原点、正方向和单位长度的直线; 数轴画法:一直线 + 三要素 2.数轴的性质 数轴上表示的两个数,右边的数总比左边的数大; 正数都大于零,负数都小于零,正数大于一切负数。 1 / 16

3.相反数 只有符号不同的两个数互为相反数,其中一个数是另一个数的相反数;0的相反数是0. 正数的相反数是负数;负数的相反数是正数;零的相反数是它本身。 4.相反数的几何意义 数轴上,表示互为相反数的两个点,它们分别位于原点的两侧,而且及原点的距离相等。 5.3绝对值 3.有理数的大小比较 两个负数,绝对值大的反而小; 对于任意有理数的大小比较应采用:正数都大于零,负数都小于零,正数大于负数。 比较两个数的大小,还可以用“作差法”,即: 2 / 16

5.4.有理数加法 1.有理数加法及加法法则 把两个有理数合成一个有理数的运算,叫做有理数的加法。分五种情况:①两个正数相加;②两个负数相加;③两个异号数相加;④有理数和零相加; ⑤零和零相加。 有理数的加法法则:①同号两数相加,取相同的符号,并把绝对值相加; ②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;③互为相反数的两个数相加得零;④一个数及零相加,仍得这个数。 注意:利用加法法则计算的步骤:先确定和的符号,再进行绝对值相加或相减。 2.有理数加法运算律 加法交换律:a+b=b+a;加法结合律:(a+b)+c=a+(b+c) 运算律有下列规律:①互为相反数的两数可以先相加;②符号相同的数可以相加;③分母相同的数可以先相加;④几个数相加能得到整数的可以先相加。 5.5.有理数的减法 1.有理数的减法法则及运算 法则:减去一个数,等于加上这个数的相反数。 注意:两个“变”字,①改变运算符号;②改变减数的性质符号(变为相反数), 牢记一个“不变”,被减数及减数的位置不变,即没有交换律。 3 / 16

数学归纳法例题讲解

数学归纳法例题讲解 例1.用数学归纳法证明: ()() 1 212121 7 515 313 11+= +-+ +?+ ?+ ?n n n n . 请读者分析下面的证法: 证明:①n =1时,左边3 13 11=?= ,右边3 11 21= += ,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()() 1 212121 7 515 313 11+= +-+ +?+ ?+ ?k k k k . 那么当n =k +1时,有: ()()()() 32121 12121 7 515 313 11+++ +-+ +?+ ?+ ?k k k k ?? ??????? ??+-++??? ??+--++??? ??-+??? ??-+??? ??-= 321121121121 7151513131121k k k k 3 22 221321121++? =??? ??+-= k k k ()1 1213 21+++= ++= k k k k 这就是说,当n =k +1时,等式亦成立. 由①、②可知,对一切自然数n 等式成立. 评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求. 正确方法是:当n =k +1时. ()()()() 32121 12121 7 515 313 11+++ +-+ +?+ ?+ ?k k k k ()() 321211 2+++ += k k k k

()() ()()()() 321211232121 322 ++++= ++++= k k k k k k k k ()1 1213 21+++= ++= k k k k 这就说明,当n =k +1时,等式亦成立, 例2.是否存在一个等差数列{a n },使得对任何自然数n ,等式: a 1+2a 2+3a 3+…+na n =n (n +1)(n +2) 都成立,并证明你的结论. 分析:采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性. 解:将n =1,2,3分别代入等式得方程组. ??? ??=++=+=60 3224 26321 211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3. 故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立. 下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式 a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 因为起始值已证,可证第二步骤. 假设n =k 时,等式成立,即 a 1+2a 2+3a 3+…+ka k =k (k +1)(k +2) 那么当n =k +1时, a 1+2a 2+3a 3+…+ka k +(k +1)a k +1 = k (k +1)(k +2)+ (k +1)[3(k +1)+3] =(k +1)(k 2+2k +3k +6) =(k +1)(k +2)(k +3) =(k +1)[(k +1)+1][(k +1)+2] 这就是说,当n =k +1时,也存在一个等差数列a n =3n +3使a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)成立. 综合上述,可知存在一个等差数列a n =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…

实用文库汇编之数学归纳法经典例题及答案

*实用文库汇编之数学归纳法(2016.4.21)* 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k . 当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k ()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立.

题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ . 那么当n =k +1时, 11 1 31 21 1++++++k k 1 1 1211 2+++=++

沪教版六年级数学下册全套教案习题

六年级下册第五章有理数知识点 1、正数:大于0的数叫做正数。 2、负数:在正数前面加上负号“-”的数叫做负数。 3、0既不是正数也不是负数。 零是正数和负数的分界。 4、有理数:整数和分数统称为有理数。 有理数:正数:正整数、零、负整数 分数:正分数、负分数 5、数轴:规定了原点、正方向、单位长度的直线叫做数轴。 数轴上的点从左到右依次增大,正数大于零,零大于负数,正数大于负数。 6、相反数:绝对值相等,只有负号不同的两个数叫做互为相反数。 7、绝对值:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。记做|a|。 由绝对值的定义可得:|a-b|表示数轴上a点到b点的距离。 一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 8、有理数加法法则 加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变。 表达式:a+b=b+a。 加法结合律:有理数的加法中,三个数相加,先把前两个数相加或者先把后两个数相加,和不变。 表达式:(a+b)+c=a+(b+c) 9、有理数减法法则 减去一个数,等于加这个数的相反数。 表达式:a-b=a+(-b) 10、有理数乘法法则 两数相乘,同号得正,异号得负,并把绝对值相乘。 任何数同0相乘,都得0. 乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。 表达式:ab=ba 乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。 表达式:(ab)c=a(bc) 乘法分配律:一般地,一个数同两个的和相乘,等于把这个数分别同这两个数相乘,再把积相加。 表达式:a(b+c)=ab+ac 注意:几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正;几个数相乘,有因数为零,

数学归纳法经典例题及答案精品

【关键字】认识、问题、要点 数学归纳法( 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k . 当n =k +1时. 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立. 题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ . 那么当n =k +1时, 这就是说,当n =k +1时,不等式成立. 由①、②可知,原不等式对任意自然数n 都成立. 说明:这里要注意,当n =k +1时,要证的目标是 1211 1 31 21 1+<++++++k k k ,当代入归纳假设后,就是要证明:

1211 2+<++k k k . 认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标. 题型3.证明数列问题 例3 (x +1)n =a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+…+a n (x -1)n (n ≥2,n ∈N *). (1)当n =5时,求a 0+a 1+a 2+a 3+a 4+a 5的值. (2)设b n = a 22n -3,T n = b 2+b 3+b 4+…+b n .试用数学归纳法证明:当n ≥2时,T n =n (n +1)(n -1)3 . 解: (1)当n =5时, 原等式变为(x +1)5=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4+a 5(x -1)5 令x =2得a 0+a 1+a 2+a 3+a 4+a 5=35=243. (2)因为(x +1)n =[2+(x -1)]n ,所以a 2=C n 2·2n -2 b n =a 22 n -3=2C n 2=n (n -1)(n ≥2) ①当n =2时.左边=T 2=b 2=2, 右边=2(2+1)(2-1)3 =2,左边=右边,等式成立. ②假设当n =k (k ≥2,k ∈N *)时,等式成立, 即T k =k (k +1)(k -1)3 成立 那么,当n =k +1时, 左边=T k +b k +1=k (k +1)(k -1)3+(k +1)[(k +1)-1]=k (k +1)(k -1)3 +k (k +1) =k (k +1)?? ??k -13+1=k (k +1)(k +2)3 =(k +1)[(k +1)+1][(k +1)-1]3 =右边. 故当n =k +1时,等式成立. 综上①②,当n ≥2时,T n =n (n +1)(n -1)3 .

高中数学高考总复习数学归纳法习题及详解(可编辑修改word版)

A. n -1 B. n +1-1 C. n +1-2 D. n +2-2 高中数学高考总复习数学归纳法习题及详解 一、选择题 1 1 . 已知a = ,数列{a }的前n 项和为S ,已计算得S = 2-1, S = 3-1,S =1, n n +1+ n n n 1 2 3 由此可猜想 S n =( ) [答案] B 1 1 1 1 2.已知 S k = + + + + + +…+ (k =1,2,3,…),则 S k +1 等于( ) k 1 k 2 k 3 2k 1 A. S k + + 2(k 1) 1 1 B. S k + + - + 2k 1 k 1 1 1 C. S k + + - + 2k 1 2k 2 1 1 D. S k + + + + 2k 1 2k 2 [答案] C 1 1 1 1 1 1 1 [解析] S k +1= + + + + + +…+ = + + + + +…+ = + + + (k 1 1 1 1) 1 1 (k 1) 2 1 2(k 1) 1 1 k 2 k 3 2k 2 k 1 +…+ + + + - + + + =S k + + - + . k 2 2k 2k 1 2k 2 k 1 2k 1 2k 2 3. 对于不等式 1°当 n =1 时, n 2+n ≤n +1(n ∈N *),某人的证明过程如下: 12+1≤1+1,不等式成立. 2°假设 n =k (k ∈N *)时不等式成立,即 k 2+k

数学归纳法典型例题

实用文档 文案大全数学归纳法典型例题 一. 教学内容: 高三复习专题:数学归纳法 二. 教学目的 掌握数学归纳法的原理及应用 三. 教学重点、难点 数学归纳法的原理及应用 四. 知识分析 【知识梳理】 数学归纳法是证明关于正整数n的命题的一种方法,在高等数学中有着重要的用途,因而成为高考的热点之一。近几年的高考试题,不但要求能用数学归纳法去证明现代的结论,而且加强了对于不完全归纳法应用的考查,既要求归纳发现结论,又要求能证明结论的正确性,因此,初步形成“观察—-归纳—-猜想—-证明”的思维模式,就显得特别重要。 一般地,证明一个与正整数n有关的命题,可按下列步骤进行: (1)(归纳奠基)证明当n取第一个值n = n0时命题成立; (2)(归纳递推)假设n= k()时命题成立,

证明当时命题也成立。 只要完成这两个步骤,就可以断定命题对从开始的所有正整数n 都成立。上述证明方法叫做数学归纳法。 数学归纳法是推理逻辑,它的第一步称为奠基步骤,是论证的基础保证,即通过验证落实传递的起点,这个基础必须真实可靠;它的第二步称为递推步骤,是命题具有后继传递性的保证,即只要命题对某个正整数成立,就能保证该命题对后继正整数都成立,两步合在一起为完全归纳步骤,称为数学归纳法,这两步 实用文档 文案大全各司其职,缺一不可,特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性,如果没有第一步,而仅有第二步成立,命题也可能是假命题。 【要点解析】 1、用数学归纳法证明有关问题的关键在第二步,即n=k+1时为什么成立,n=k+1时成立是利用假设n=k时成立,根据有关的定理、定义、公式、性质等数学结论推证出n=k+1时成立,而不是直接代入,否则n =k+1时也成假设了,命题并没有得到证明。 用数学归纳法可证明有关的正整数问题,但并不是所有的正整数问题都是用数学归纳法证明的,学习时要具体问题具体分析。 2、运用数学归纳法时易犯的错误 (1)对项数估算的错误,特别是寻找n=k与n=k+1的关系时,项数发生什么变化被弄错。

沪教版小学数学六年级下册各章知识点梳理

沪教版六年级下学期数学知识点梳理 1.相反意义的量 收入与支出;增加与减少;上升与下降; 零上与零下;高于海平面与低于海平面;前进与后退;盈利与亏损;……任意规定一方为正,则另一方为负。 2.正数与负数 4.数轴的概念与画法 数轴是规定了原点、正方向和单位长度的直线; 数轴画法:一直线 + 三要素 5.数轴的性质 数轴上表示的两个数,右边的数总比左边的数大; 正数都大于零,负数都小于零,正数大于一切负数。 6.相反数 只有符号不同的两个数互为相反数,其中一个数是另一个数的相反数;0的相反数是0. 正数的相反数是负数;负数的相反数是正数;零的相反数是它本身。 7.相反数的几何意义 数轴上,表示互为相反数的两个点,它们分别位于原点的两侧,而且与原点的距离相等。

10.有理数的大小比较 两个负数,绝对值大的反而小; 对于任意有理数的大小比较应采用:正数都大于零,负数都小于零,正数大于负数。 比较两个数的大小,还可以用“作差法”,即: 11.有理数加法及加法法则 把两个有理数合成一个有理数的运算,叫做有理数的加法。分五种情况:①两个正数相加;②两个负数相加;③两个异号数相加;④有理数和零相加;⑤零和零相加。 有理数的加法法则:①同号两数相加,取相同的符号,并把绝对值相加;②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;③互为相反数的两个数相加得零;④一个数与零相加,仍得这个数。 注意:利用加法法则计算的步骤:先确定和的符号,再进行绝对值相加或相减。 12.有理数加法运算律 加法交换律:a+b=b+a;加法结合律:(a+b)+c=a+(b+c) 运算律有下列规律:①互为相反数的两数可以先相加;②符号相同的数可以相加;③分母相同的数可以先相加;④几个数相加能得到整数的可以先相加。 13.有理数的减法法则及运算 法则:减去一个数,等于加上这个数的相反数。 注意:两个“变”字,①改变运算符号;②改变减数的性质符号(变为相反数), 牢记一个“不变”,被减数与减数的位置不变,即没有交换律。 14.有理数乘法的意义 乘法是加法的特殊运算形式,它可以看作是多个相同的数相加运算的一种简便运算。如:n个a相加等于n*a 15.有理数的乘法法则 两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘都得零。 注意:①运算步骤:符号→绝对值相乘;②带分数要化成假分数 16.有理数乘法法则的推广 几个不为0的数相乘,积的符号由负因数的个数决定。当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。

数学归纳法经典例题及答案

数学归纳法(2016.4.21) 令狐采学 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点:两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: 证明:①n=1时,左边31311=?= ,右边3 1121=+=,左边=右边,等式成立. ②假设n=k 时,等式成立,即: ()()1212121751531311+=+-++?+?+?k k k k . 当n=k+1时. 这就说明,当n=k+1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立. 题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++ (n ∈N). 证明:①当n=1时,左边=1,右边=2.

左边<右边,不等式成立. ②假设n=k 时,不等式成立,即 k k 21 31 21 1<++++ . 那么当n=k+1时, 这就是说,当n=k+1时,不等式成立. 由①、②可知,原不等式对任意自然数n 都成立. 说明:这里要注意,当n=k+1时,要证的目标是 1211 1 31 21 1+<++++++k k k ,当代入归纳假设后,就是 要证明: 1211 2+<++k k k . 认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标. 题型3.证明数列问题 例3 (x +1)n =a0+a1(x -1)+a2(x -1)2+a3(x -1)3+…+an(x -1)n(n ≥2,n ∈N*). (1)当n =5时,求a0+a1+a2+a3+a4+a5的值. (2)设bn =a2 2n -3,Tn =b2+b3+b4+…+bn.试用数学归纳法 证明:当n ≥2时,Tn =n(n +1)(n -1)3. 解:(1)当n =5时, 原等式变为(x +1)5=a0+a1(x -1)+a2(x -1)2+a3(x -1)3+

数学归纳法经典例题及答案

数学归纳法(2016421) 、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值n 0 (如n 0 1或2等)时结论正确; (2)假设当n k (k N , k n °)时结论正确,证明n k 1时结论也正确. 综合(1)、( 2), 注意:数学归纳法使用要点: 两步骤,一结论 、题型归纳: 题型1.证明代数恒等式 用数学归纳法证明: 当n=k+1时. k 1 2k 3 由①、②可知,对一切自然数 n 等式成立. 证明:①n=1时,左边 ②假设n =k 时, 2n 1 1 2n 1 n 2n 1 1 3 等式成立,即: -,右边 3 -,左边=右边,等式成立. 3 2k 1 2k 1 k 2k 1 2k 1 2k 1 2k 1 2k 3 2k 1 2k 1 2k 3 2k 2 2k 1 3k 1 2k 3 2k 1 k 1 2k 1 2k 3 这就说明, 当n=k+1时,等式亦成立,

题型2.证明不等式 11 1 _ 例2 ?证明不等式1 2打(n € N ). V 2 <3 V n 证明:①当n=1时,左边=1,右边=2. 左边 <右边,不等式成立. 那么当n=k+1时, 2 .k 2k 1 2.k 1 这就是说,当n=k+1时,不等式成立. 由①、②可知,原不等式对任意自然数 n 都成立. 说明:这里要注意,当 n=k+1时,要证的目标是 1 1 1 1 ---------------------------------------- 1 — — — ------------ 2 \ k 1,当代入归纟纳假设后,就是要证明: ■. 2 3 . k 、k 1 2、、k 1— 2 k 1 . -k 1 认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标. 题型3.证明数列问题 例 3 (x + 1)n = a o + a 1(x — 1) + a 2(x — 1)2+ a 3(x — 1)3 + …+ a n (x — 1)n (n > 2, n € N *). (1)当 n = 5 时,求 a o + a 1 + a 2 + a 3 + a 4 + a 5 的值. a 2 十 ⑵设b n = 2厂3, T n = b 2 + b 3 + b 4+…+ b n .试用数学归纳法证明:当 n 》2时,T n = n(n +1)( n — 1) 3 . 解:(1) 当 n = 5 时, 原等式变为(x + 1)5= a o + a 1(x — 1) + a 2(x — 1)2+ a 3(x — 1)3 + a 4(x — 1)4+ a 5(x — 1)5②假设n=k 时,不等式成立,即 1 'I 1 .3 1 . 2 1 ■- 3

上海沪教版六年级数学下知识点总结

上海沪教版六年级数学下知识点总结 第五章有理数 5.1有理数的意义 整数和分数统称为有理数 有理数整数:正整数、零、负整数 分数:正分数、负分数 5.2正数和负数 数轴:规定了原点、正方向和单位长度的直线叫数轴。 数轴的三要素:原点、单位长度、正方向。 所有的数都可以用数轴上的点来表示。也可以用数轴来比较两个数的大小 在数轴上表示的两个数,正方向的数大于负方向的数 零是正数和负数的分界。 只有符号不同的两个数,我们称其中一个数为另一个数的相反数,也称为这两个数互为相反数,零的相反数是零。 一个数在数轴上所对应的点与原点的距离,叫做这个数的绝对值 注意: 1、一个正数的绝对值是它本身。 2、一个负数的绝对值是它的相反数。 3、零的绝对值是零。 4、两个负数,绝对值大的那个数反而小。 5.3有理数的加减 有理数加法法则: 1、同号两数相加,取原来的符号,并把绝对值相加。 2、异号两数相加,绝对值相等时和为零,绝对值不相等时,其和的绝对值为较大绝对值减去较小的绝对值所得的差,其和的符号取绝对值较大的加数的符号。 3、一个数同零相加,仍得这个数。 有理数加法的运算律 1、交换律:a+b=b+a 2、结合律:(a+b)+ c=a+(b+c) 有理数的减法法则 1、减去一个数,等于加上这个数的相反数 2、a-b=a+(-b)

5.4有理数的乘除 两数相乘的符号法则 正正得正,正负得负,负正得负,负负得正。 有理数的乘法法则 1、两数相乘,同号得正,异号得负,并把绝对值相乘。 2、任何数与零相乘,都得零。 注意连成的符号: 1、几个不等于零的数相乘,积的符号由负因数的个数决定 2、当负因数有奇数个时,积为负 3、当负因数有偶数个时,积为正 4、几个数相乘,有因数为零,积就为零 有理数除法法则 1、两数相除,同号得正,异号得负,并把绝对值相除。 2、零除以任何一个不为零的数,都得零。 5.5有理数的乘方 求N个相同因数的积的运算,叫做乘方。乘法的结果叫做幂。在a n中,a叫做底数,n叫做指数,读作a的n次方,a n看做是a的n次方结果时,读作a的n次幂。 注意: 1、正数的任何次幂都是正数,负数的奇数次幂是负数,负数的偶数次幂是正数。 2、有理数混合运算的顺序:先乘方,后乘除,再加减;统计运算从左到右;如果有括号,先算小括号,后算中括号,再算大括号。 3、把一个数写成a*10n(其中1≤a<10,n是正整数,这种形式的计数方法叫做科学计数法

相关文档
相关文档 最新文档